当前位置:文档之家› 课程设计---制冷站自动控制的设计

课程设计---制冷站自动控制的设计

课程设计---制冷站自动控制的设计
课程设计---制冷站自动控制的设计

建筑电气及楼宇自动化

课程设计报告

设计题目:制冷站自动控制的设计

2012年4月28日

目录

1.概述 (3)

1.1制冷站自动控制设计目的 (3)

2.制冷站自动控制的设计内容 (3)

2.1制冷站运行参数与状态监控点版/位及常用传感器 (3)

2.2电气控制一、二次接线图和原理图设计 (5)

2.3制冷站的连锁控制及流程图 (4)

2.4制冷站的运行与调节控制 (5)

2.5制冷站PID调节原理框图 (7)

2.6使用西门子PLC STEP7完成制冷站连锁控制和PID 调节编程及仿真····································

3.参考文献········································

●概述

空调冷源系统一般由多台制冷剂和冷冻水循环泵、冷却水循环泵、冷却塔、补水箱、膨胀水箱等设备组成。制冷机、循环水泵、集水器/分水器、补水箱等设备以及水处理装置等辅助设备通常安装在专用的设备间——制冷站。制冷站经常设在建筑物的地下室。而冷源系统的冷却塔安装在室外(一般选在辅助建筑物屋顶或裙楼屋顶),膨胀水箱一般安装在建筑物最高的屋顶。为了保护空调系统的设备,冷冻水在进入系统之前必须经过处理(如除盐、除氧等),水处理设备也安装在制冷站。由于水处理设备运行时间相对较短,一般不纳入楼宇自动化系统进行在线监控。大多情况下,热源装置如锅炉、换热器也安装在制冷站。

1.1制冷站自动控制系统设计目的

1、学习制冷站自动控制系统的设计方法;

2、掌握制冷站自动控制系统的相关知识。

● 2.制冷站自动控制的设计内容

2.1制冷站运行参数与状态监控点版/位及常用传感器

楼宇自动化系统对制冷系统运行参数监控,监控内容主要包括以下几项:

1、冷水机组进水口与出水口冷冻水温检测,以了解冷冻机组的制冷

温度是否在合理的范围内;

2、集水器回水与分水器供水温度测量(一般情况下与冷水机组进/

出口冷冻水温度相同,二者可以只选其一),以了解末端冷负荷的变化情况;

3、冷冻水供/回水流量监测,测量流量和供回水温度结合,可计算

出空调系统的冷负荷量,作为能源消耗计量和系统效率评价的依据;

4、分水器和集水器压力压差测量,用压力传感器分别测量分水器进

水口、集水器出水口的压力,或用压差传感器测量分水器进水口、集水

器出水口的压力差。根据供回水压差调节压差旁通阀的开度;

5、冷水机组运行状态和故障检测,取自冷水机组控制器输出触点或

主接触器触点;

6、冷冻水循环运行状态、故障状态监测,用安装在水泵电机配电柜

接触器、热继电器的触点和安装在水泵出水管上的水流指示器共同检测。

当水泵处于运行状态时,其出水管内既有水流,在水流作用下水流开关

迅速动作,显示水泵进入工作状态。

2.2电气控制一、二次接线图和原理图设计

2.3制冷站的连锁控制及流程图

启动顺序控制:冷却塔风机→冷冻水泵→冷却水泵→冷水机组

停机顺序控制:冷水机组→冷却水泵→冷冻水泵→冷却塔风机

2.4制冷站的运行与调节控制

1、设备相互备用切换与均衡运行控制

冷冻水系统的各种设备基本上都是多台(套)配备,同类之间互为备用。

如果正在运行的设备发生故障需要停机,其他同类设备应能代替发生故障的设备投入运行,使整个系统的正常工作不受影响。

同时为了延长各设备的寿命,并使设备和系统出在高效率的工作状态,通常要求设备累计运行时间尽可能相同。每次启动设备是,应优先启动累计运行时间少的设备,并在合适的时间进行设备的切换,尽可能保持设备的均衡运行。

2、冷冻水回路冷水机组侧恒流量与空调末端设备变流量运行I——差

压旁路调节

在二管制的空调系统中,空调末端设备采用两通调节阀的空调水系统,在两通阀的调节过程中,系统末端负荷侧水量常发生变化,这些变化势必引起冷冻水流量的改变。而对于冷水机组来说,是不易进行变水量运行的。大多数冷水机组内部设有自动保护元件,当水量过小时,自动停止运行,保护

冷水机组。通过在冷冻水供回水总管之间设置旁路,并根据末端流量的变化

来调节旁通流量以抵消末端流量的改变对冷水机组一侧冷冻水流量的影响。旁路通常由旁通电动两通阀及压差控制器组成。通过测量冷冻水供水、回水之间压力差来控制冷冻水供水、回水之间旁通电动两通阀的开度,使冷冻水供水、回水之间压力差维持恒定,也就达到了使冷水机组一侧工作在恒水流状态的目的。由于旁路控制用于差压恒定,所以被称为差压旁路控制。

3、冷冻水回路冷水机组侧恒流量与空调末端设备变流量运行II——两级冷冻水泵协调控制

在冷冻水回路采用以及循环泵的系统中,为了协调空调冷冻水机组一侧要求恒流量与末端一侧变流量之间的矛盾,差压旁路调节是最常用的方案。但当空调系统负荷很大、空调末端设备特别多、设备分布分散、冷冻水管路长、管路阻力大的情况下,冷冻水回路必须采用二级泵才能满足空调末端对冷冻水压力的要求。由于冷冻水回路是二级水泵串联运行,简单的差压旁路无法适应系统及管路变化所带来的问题。在这种情况下,一般采用下图所示的管路系统和相应的控制原理来解决冷水机组测量到水流量恒定与空调末端一侧冷冻水流量变化之间的协调。

在上图中,左侧的以及冷冻水泵按冷水机组配置,以及冷冻水循环泵与

冷水机组一一对应,随冷水机组的启停而启动关闭。一级冷冻水循环泵负责克服冷水机组只冷冻水旁通管道一侧的水路阻力;二级冷冻水循环泵负责克服空调末端至冷冻水旁通管道一侧的水路阻力。二级冷冻水泵则依据旁通管路两侧的温度、流量关系调整二级泵的开启台数,以达到冷水机组一侧恒流量、末端设备一侧变流量的目的。

4、膨胀水箱与补水箱监控

膨胀水箱和补水箱属于辅助设备。膨胀水箱与冷丁水管路连通,当管路中的水随温度改变,体积发生热涨、冷缩变化时,增加体积可怕如膨胀水箱,减少体积可有膨胀水箱中的存水予以补充。补水箱存放经过除盐、除氧处理的冷冻用水,需要时通过补水泵向管路补水。

5、冷水机组的节能群控运行

两种基本方式:冷冻水灰水温度控制法,冷凉控制法。

6、冷却塔的节能运行控制

冷水机组对冷却水进水温度也有一定要求,并不是越低越好。因此,为

保证冷水机组正常工作,必须满足冷却水进水的设计温度。

2.5制冷站PID调节原理框图

2.6使用西门子PLC STEP7完成制冷站连锁控制和PID调节编程及仿真

3.参考文献

王再英.《智能建筑:楼宇自动化系统原理与应用》.北京:电子工业出版社

自动控制课程设计报告书

1 设计目的 (2) 2 设计容与条件 (2) 2.1 设计容 (2) 2.2 设计条件 (2) 3 滞后校正特性及设计一般步骤 (2) 3.1 滞后特性校正 (2) 3.2滞后校正设计一般步骤 (3) 4 校正系统分析 (3) 4.1校正参数确定 (3) 4.2校正前后系统特征根及图像 (6) 4.3 函数动态性能指标及其图像 (10) 4.4系统校正前后根轨迹及其图像 (11) 4.5 Nyquist图 (12) 4.6 Bode图 (15) 5 设计心得体会 (17) 6 设计主要参考文献 (18)

串联滞后校正装置设计 1、设计目的: 1) 了解控制系统设计的一般方法、步骤。 2) 掌握对系统进行稳定性分析、稳态误差分析以及动态特性分析的方法。 3) 掌握利用MATLAB 对控制理论容进行分析和研究的技能。 4) 提高分析问题解决问题的能力。 2、设计容与条件: 2.1设计容: 1) 阅读有关资料。 2) 对系统进行稳定性分析、稳态误差分析以及动态特性分析。 3) 绘制根轨迹图、Bode 图、Nyquist 图。 4) 设计校正系统,满足工作要求。 2.2设计条件: 已知单位负反馈系统的开环传递函数0 K G(S)S(0.0625S 1)(0.2S 1) = ++, 试用频率法设计 串联滞后校正装置,使系统的相位裕度050γ=,静态速度误差系数1 v K 40s -=,增 益欲度>17dB 。 3、滞后校正特性及设计一般步骤: 3.1滞后特性校正: 滞后校正就是在前向通道中串联传递函数为)(s G c 的校正装置来校正控制系统,)(s G c 的表达式如下所示。 1,11)(<++= a Ts aTs s G c 其中,参数a 、T 可调。滞后校正的高频段是负增益,因此,滞后校正对系统中高频噪声有削弱作用,增强了抗干扰能力。可以利用滞后校正的这一低通滤波所造成的高频衰减特性,降低系统的截止频率,提高系统的相位裕度,以改善系统的暂态性能。 滞后校正的基本原理是利用滞后网络的高频幅值衰减特性使系统截止频率下降,从而使系统获得足够的相位裕度。或者,是利用滞后网络的低通滤波特性,

制冷课程设计设计

制冷课程设计说明书瘦鱼生产冷库设计 专业:建筑环境与设备工程 姓名: 学号: 指导教师:李芃 2014年6月14日

目录 1.工程概述 1.1建库地点:西安,纬度:34o18’; 1.2此冷库属鱼类生产性冷库,其生产能力如下: 1)冻结能力:按每昼夜二次计,30吨/日; 2)冷藏库容量:冻结物冷藏间为250吨; 1.3制冷剂工质:氨 1.4冷库概况 本冷库采用的是氨制冷系统,设有冻结间、冻结物冷藏间、制冰间、冰库和穿堂及制冷压缩机房、变配电间等,主要功能室对鱼类的冻结加工与储藏; 2.设计依据 储存食品:鱼类(瘦鱼) .设计参数 1)室外设计参数 根据需要,查《民用建筑供暖通风与空气调节设计规范》, 2)邻室计算温度 若对两个库房之间或库房与其它建筑物之间进行传热计算时,则应以邻室计算温度代替室外温度。若邻间是冷藏间时,则按其设计库温来计算;若邻间为冷却间或冻结间时,则应该取该冷间空库保温的温度,即:冷却间按10℃,冻结间按-10℃计算;若该冷间地坪下设有通风加热装置时,其外侧温度按1℃~2℃计算。对于两用间的计算温度可这样确定,进行本房间热量计算时,室内温度取低库温值;作为其他库房的邻室时,则取高库温值。 3)冷间设计温度 =-23℃ 冻结间:t n =-18℃ 冻结物冷藏间:t n

常温穿堂:t = 30℃ c 4)进货温度与出货温度 计算货物耗冷量时需确定进货温度。进货温度按下列规则选取: a)未经冷却的鲜肉温度按35℃,经冷却的按4℃计算。 b)冻肉:从库外调入的为-8℃~-10℃;非外库调入的按该冷库冻结间终止降温 时货物的温度(肉体中心温度按15℃)计算。 c)新鲜鱼虾按整理鱼虾用水的水温计算;冰鲜鱼虾整理后的温度按15℃计算。货物的出货温度根据冷库的规模、产品品种以及产品冷加工工艺要求等来确定,无具体要求时下列数据可参考:肉类从冷却间出库时温度可按+4℃计,肉类鱼类从冻结间出库时的温度可按15℃计,冷却物冷藏间出库温度可按0℃计,冻结物冷藏间出库温度可按-18℃计。 3.制冷系统方案的设计 制冷剂的选择:氨 有以下优点:氨价格低廉且易于取得,对臭氧层无破坏作用,单位制冷量大,比较适用于大中型冷藏库制冷系统。 3.2供液方式的确定 表制冷供液方案对比

直流电动机调速课程设计

《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名: 班级: 09电气自动化大专 指导老师: 提交日期: 2012 年 3 月

前言 在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。 早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

自动控制系统课程设计说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:自动控制理论课程设计 设计题目:直线一级倒立摆控制器设计 院系:电气学院电气工程系 班级: 设计者: 学号: 指导教师: 设计时间:2016.6.6-2016.6.19 手机: 工业大学教务处

*注:此任务书由课程设计指导教师填写。

直线一级倒立摆控制器设计 摘要:采用牛顿—欧拉方法建立了直线一级倒立摆系统的数学模型。采用MATLAB 分析了系统开环时倒立摆的不稳定性,运用根轨迹法设计了控制器,增加了系统的零极点以保证系统稳定。采用固高科技所提供的控制器程序在MATLAB中进行仿真分析,将电脑与倒立摆连接进行实时控制。在MATLAB中分析了系统的动态响应与稳态指标,检验了自动控制理论的正确性和实用性。 0.引言 摆是进行控制理论研究的典型实验平台,可以分为倒立摆和顺摆。许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等,都可以通过倒立摆系统实验直观的表现出来,通过倒立摆系统实验来验证我们所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。 本次课程设计中以一阶倒立摆为被控对象,了解了用古典控制理论设计控制器(如PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,掌握MATLAB仿真软件的使用方法及控制系统的调试方法。 1.系统建模 一级倒立摆系统结构示意图和系统框图如下。其基本的工作过程是光电码盘1采集伺服小车的速度、位移信号并反馈给伺服和运动控制卡,光电码盘2采集摆杆的角度、角速度信号并反馈给运动控制卡,计算机从运动控制卡中读取实时数据,确定控制决策(小车运动方向、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,通过皮带带动小车运动从而保持摆杆平衡。

自动控制原理课程设计速度伺服控制系统设计样本

自动控制原理课程设计题目速度伺服控制系统设计 专业电气工程及其自动化 姓名 班级 学号 指引教师 机电工程学院 12月

目录一课程设计设计目 二设计任务 三设计思想 四设计过程 五应用simulink进行动态仿真六设计总结 七参照文献

一、课程设计目: 通过课程设计,在掌握自动控制理论基本原理、普通电学系统自动控制办法基本上,用MATLAB实现系统仿真与调试。 二、设计任务: 速度伺服控制系统设计。 控制系统如图所示,规定运用根轨迹法拟定测速反馈系数' k,以 t 使系统阻尼比等于0.5,并估算校正后系统性能指标。 三、设计思想: 反馈校正: 在控制工程实践中,为改进控制系统性能,除可选用串联校正方式外,经常采用反馈校正方式。常用有被控量速度,加速度反馈,执行机构输出及其速度反馈,以及复杂系统中间变量反馈等。反馈校正采用局部反馈包围系统前向通道中一某些环节以实现校正,。从控制观点来看,采用反馈校正不但可以得到与串联校正同样校正效果,并且尚有许多串联校正不具备突出长处:第一,反馈校正能有效地变化

被包围环节动态构造和参数;第二,在一定条件下,反馈校正装置特性可以完全取代被包围环节特性,反馈校正系数方框图从而可大大削弱这某些环节由于特性参数变化及各种干扰带给系统不利影响。 该设计应用是微分负反馈校正: 如下图所示,微分负反馈校正包围振荡环节。其闭环传递函数为 B G s ()=00t G s 1G (s)K s +()=22t 1T s T K s ζ+(2+)+1 =22'1T s 21Ts ζ++ 试中,'ζ=ζ+t K 2T ,表白微分负反馈不变化被包围环节性质,但由于阻尼比增大,使得系统动态响应超调量减小,振荡次数减小,改进了系统平稳性。 微分负反馈校正系统方框图

空调用制冷技术课程设计

目录 目录 (1) 设计任务书 (2) 设计说明书 (3) 一、制冷机组的类型及条件 (3) 二、热力计算 (6) 三、制冷压缩机型号及台数的确定 (7) 四、冷凝器的选择计算 (8) 五、蒸发器的选择计算 (12) 六、冷却水系统的选择 (14) 七、冷冻水系统的选择 (14) 八、管径的确定 (14) 九、其它辅助设备的选择计算 (15) 十、制冷机组与管道的保温 (17) 十一、设备清单 (18) 十二、参考文献 (18)

空调用制冷技术课程设计任务书 一、课程设计题目:本市某空调用制冷机房 二、原始数据 1.制冷系统采用空冷式直接制冷,空调制冷量定为100KW。 2.制冷剂为:氨(R717)。 3.冷却水进出口温度为:28℃/31℃。 4.大连市空调设计干球温度为28.4℃,湿球温度为25℃。 三、设计内容 1.确定设计方案根据制冷剂为:氨(R717)确定制冷系统型式。 2.根据冷冻水、冷却水的要求和条件,确定制冷工况并用压焓图来表示。 3.确定压缩机型号、台数、校核制冷量等参数。 4.根据蒸发温度、冷凝温度选择蒸发器(卧式壳管)冷凝器(水冷或空冷),并做其中一个设备(蒸发器或冷凝器)的传热计算。 5.确定辅助设备并选型 6.编写课程设计说明书。

空调用制冷技术课程设计说明书 一、制冷机组的类型及条件 1、初参数 1)、制冷系统主要提供空调用冷冻水,供水与回水温度为:7℃/12℃,空调制冷量定为100KW 。 2)、制冷剂为:氨(R717)。 3)、冷却水进出口温度为:28℃/31℃。 4)、大连市空调设计干球温度为28.4℃,湿球温度为25℃。 2、确定制冷剂种类和系统形式 根据设计的要求,本制冷系统为100KW 的氨制冷系统,一般用于小型冷库,该制冷机房应设单独机房且远离被制冷建筑物。因为制冷总负荷为100KW,所以可选双螺杆制冷压缩机来满足制冷量要求(空气调节用制冷技术第四版中国建筑工业出版社P48)。冷却水系统选用冷却塔使用循环水,冷凝器使用立式壳管式冷凝器,蒸发器使用强制循环对流直接蒸发式空气冷却器(即末端制冷设备)。 3、确定制冷系统设计工况 确定制冷系统的设计工况主要指确定蒸发温度、冷凝温度、压缩机吸气温度和过冷温度等工作参数。有关主要工作参数的确定参考《制冷工程设计手册》进行计算。 确定冷凝温度时,冷凝器冷却水进、出水温度应根据冷却水的使用情况来确定。 ①、 冷凝温度()的确定 从《制冷工程设计手册》中查到大连地区夏季室外平均每年不保证50h 的湿球温度(℃) C o s 25t 对于使用冷却水塔的循环水系统,冷却水进水温度按下式计算:

电机课程设计

第一章绪论 1.1摘要 电动机是把电能转换成机械能的设备。在机械、冶金、石油、煤炭、化学、航空、交通、农业以及其他各种工业中,电动机被广泛地应用着。随着工业自动化程度不断提高,需要采用各种各样的控制电机作为自动化系统的元件,人造卫星的自动控制系统中,电机也是不可缺少的。此外在国防、文教、医疗及日常生活中(现代化的家电工业中)电动机也愈来愈广泛地应用起来 与单相电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的 随着工业的不断发展,三相异步电动机的需求会越来越大,三相异步电动机的应用越来越广泛,三相异步电动机的操作系统是一个非常庞大而复杂的系统,它不仅为现代化工业、家庭生活和办公自动化等一系列应用提供基本操作平台,而且能提供多种应用服务,使人们的生活质量有了大幅度的提高,摆脱了人力劳作的模式。而三相异步电动机主要应用于工业生产的自动化操作中是三相异步电动机的主要应用之一,因此本课程设计课题将主要以在工业中三相交流异步电动机调频变速方法的应用过程可能用到的各种技术及实施方案为设计方向,为工业生产提供理论依据和实践指导。 1.2课程目的 笼式三相异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。正由于此,通过此课程设计,实现三相异步电动机的变频调速控制与应用。 1.3课程意义 这次课程设计可以使我们在学校学的理论知识用到实践中,使我们在学习中起到主导地位,是我们在实践中掌握相关知识,能够培养我们的职业技能,课程设计是以任务引领,以工作过程为导向,以活动为载体,给我们提供了一个真实的过程,通过设计和运行,反复调试、训练、便于我们掌握规范系统的电机方面的知识,同时也提高了我们的动手能力 1.4课程内容 在这次课程设计任务中,主要工作在于 1.了解三相异步电动机的结构和工作原理 2.了解异步电动机调速的意义、方法及其在工程上的应用,重点掌握绕线式三相异步电动机的串电阻调速方法,掌握绕线式异步电动机调压调速的原理和方法 3.三相异步电动机使用过程中的注意事项及故障处理 4.心得体会

自动控制课程设计~~~

指导教师评定成绩: 审定成绩: 重庆邮电大学 移通学院 自动控制原理课程设计报告 系部: 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:2013年12 月 重庆邮电大学移通学院制

目录 一、设计题目 二、设计报告正文 摘要 关键词 设计内容 三、设计总结 四、参考文献

一、设计题目 《自动控制原理》课程设计(简明)任务书——供2011级机械设计制造及其自动化专业(4-6班)本科学生用 引言:《自动控制原理》课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面分析和综合。 一设计题目:I型二阶系统的典型分析与综合设计 二系统说明: 该I型系统物理模拟结构如图所示。 系统物理模拟结构图 其中:R=1MΩ;C =1uF;R0=41R 三系统参量:系统输入信号:x(t); 系统输出信号:y(t);

四设计指标: 设定:输入为x(t)=a×1(t)(其中:a=5) 要求动态期望指标:M p﹪≤20﹪;t s≤4sec; 五基本要求: a)建立系统数学模型——传递函数; b)利用根轨迹方法分析和综合系统(学号为单数同学做); c)利用频率特性法分析和综合系统(学号为双数同学做); d)完成系统综合前后的有源物理模拟(验证)实验; 六课程设计报告: 1.按照移通学院课程设计报告格式写课程设计报告; 2.报告内容包括:课程设计的主要内容、基本原理; 3.课程设计过程中的参数计算过程、分析过程,包括: (1)课程设计计算说明书一份; (2)原系统组成结构原理图一张(自绘); (3)系统分析,综合用精确Bode图一张; (4)系统综合前后的模拟图各一张(附实验结果图); 4.提供参考资料及文献 5.排版格式完整、报告语句通顺; 6.封面装帧成册。

水果冷藏库冷库课程设计

课程设计 设计题目烟台300 t 装配式水果冷藏库 目录 1、冷库的概况................................................................................................................ 1.1、冷库的用途、规模情况......................................................................................... 1.2、冷库的气象资料..................................................................................................... 1.3、冷库的平面布置图................................................................................................. 2. 制冷系统设计方案概述.............................................................................................. 2.1、设计原则................................................................................................................. 2.2、制冷系统流程......................................................................................................... 2.3、制冷系统方案内容................................................................................................. 2.4、机房布置方案......................................................................................................... 2.5、库房特征................................................................................................................. 3、设计计算书................................................................................................................

自动控制课程设计题目

题目一转子绕线机控制系统 设转子绕线机控制系统对应的结构图如图所示,绕线机用直流电机来缠绕铜线,能快速准确地绕线,并使线圈连贯坚固。采用自动绕线机后,操作人员只需从事插入空的转子、按下启动按钮和取下绕好线的转子等简单操作。 设计控制器满足如下条件: (s G ) c 1.系统对斜坡输入响应的稳态误差小 于10%,静态速度误差系数Kv=10; 2.系统对阶跃输入的超调量在10%左 右; 3.按△=2%要求的系统调节时间为3s左 右。 要求: 1.分析设计要求,说明控制器的设计思路; 2.详细设计;

3.用MATLAB编程输出仿真结果及图形。 题目二海底隧道钻机控制系统连接法国和英国的英吉利海峡海底隧道于1987年12月开工建设,1990年11月,从两个国家分头开钻的隧道首次对接成功。隧道长37.82km,位于海底面以下61m. 隧道于1992年完工,共耗资14亿美元,每天能通过50辆列车,从伦敦到巴黎的火车行车时间缩短为3h. 钻机在推进过程中,为了保证必要的隧道对接精度,施工中使用了一个激光导引系统,以保持钻机的直线方向。钻机控制系统如图所示。图中C(s)为钻机向前的实际角度,R(s)为预期角度,N(s)为负载对机器的影响。

该系统设计目的是选择增益K,使系统对输入角度的响应满足工程要求,并且使扰动引起的稳态误差较小。 要求: 1.分析设计要求,说明控制器的设计思路; 2.详细设计; 3.用MATLAB编程输出仿真结果及图形。 题目三哈勃太空望远镜指向控制哈勃太空望远镜于1990年4月14日发射至离地球611km的太空轨道,它的发射与应用将空间技术发展推向了一个新的高度。望远镜的2.4m镜头拥有所有镜头中最光滑的表面,其指向系统能在644km以外将视野聚集在一枚硬币上。望远镜的偏

自动控制原理课程设计实验

上海电力学院 自动控制原理实践报告 课名:自动控制原理应用实践 题目:水翼船渡轮的纵倾角控制 船舶航向的自动操舵控制 班级: 姓名: 学号:

水翼船渡轮的纵倾角控制 一.系统背景简介 水翼船(Hydrofoil)是一种高速船。船身底部有支架,装上水翼。当船的速度逐渐增加,水翼提供的浮力会把船身抬离水面(称为水翼飞航或水翼航行,Foilborne),从而大为减少水的阻力和增加航行速度。 水翼船的高速航行能力主要依靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求系统使浮力稳定不变,相当于使纵倾角最小。 航向自动操舵仪工作时存在包括舵机(舵角)、船舶本身(航向角)在内的两个反馈回路:舵角反馈和航向反馈。 当尾舵的角坐标偏转错误!未找到引用源。,会引起船只在参考方向上发生某一固定的偏转错误!未找到引用源。。传递函数中带有一个负号,这是因为尾舵的顺时针的转动会引起船只的逆时针转动。有此动力方程可以看出,船只的转动速率会逐渐趋向一个常数,因此如果船只以直线运动,而尾舵偏转一恒定值,那么船只就会以螺旋形的进入一圆形运动轨迹。 二.实际控制过程 某水翼船渡轮,自重670t,航速45节(海里/小时),可载900名乘客,可混装轿车、大客车和货卡,载重可达自重量。该渡轮可在浪高达8英尺的海中以航速40节航行的能力,全靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求该系统使浮力稳定不变,相当于使纵倾角最小。

上图:水翼船渡轮的纵倾角控制系统 已知,水翼船渡轮的纵倾角控制过程模型,执行器模型为F(s)=1/s。 三.控制设计要求 试设计一个控制器Gc(s),使水翼船渡轮的纵倾角控制系统在海浪扰动D (s)存在下也能达到优良的性能指标。假设海浪扰动D(s)的主频率为w=6rad/s。 本题要求了“优良的性能指标”,没有具体的量化指标,通过网络资料的查阅:响应超调量小于10%,调整时间小于4s。 四.分析系统时域 1.原系统稳定性分析 num=[50]; den=[1 80 2500 50]; g1=tf(num,den); [z,p,k]=zpkdata(g1,'v'); p1=pole(g1); pzmap(g1) 分析:上图闭环极点分布图,有一极点位于原点,另两极点位于虚轴左边,故处于临界稳定状态。但还是一种不稳定的情况,所以系统无稳态误差。 2.Simulink搭建未加控制器的原系统(不考虑扰动)。

自动控制设计(自动控制原理课程设计)

自动控制原理课程设计 本课程设计的目的着重于自动控制基本原理与设计方法的综合实际应用。主要内容包括:古典自动控制理论(PID)设计、现代控制理论状态观测器的设计、自动控制MATLAB 仿真。通过本课程设计的实践,掌握自动控制理论工程设计的基本方法与工具。 1 内容 某生产过程设备如图1所示,由液容为C1与C2的两个液箱组成,图中Q 为稳态液体流量)/(3s m ,i Q ?为液箱A 输入水流量对稳态值的微小变化)/(3s m ,1Q ?为液箱A 到液箱B 流量对稳态值的微小变化)/(3s m ,2Q ?为液箱B 输出水流量对稳态值的微小变化)/(3s m ,1h 为液箱A 的液位稳态值)(m ,1h ?为液箱A 液面高度对其稳态值的微小变化)(m ,2h 为液箱B 的液位稳态值)(m ,2h ?为液箱B 液面高度对其稳态值的微小变化)(m ,21,R R 分别为A,B 两液槽的出水管液阻))//((3s m m 。设u 为调节阀开度)(2m 。 已知液箱A 液位不可直接测量但可观,液箱B 液位可直接测量。 图1 某生产过程示意图

要求 1. 建立上述系统的数学模型; 2. 对模型特性进行分析,时域指标计算,绘出bode,乃示图,阶跃反应曲线 3. 对B 容器的液位分别设计:P,PI,PD,PID 控制器进行控制; 4. 对原系统进行极点配置,将极点配置在-1+j 与-1-j;(极点可以不一样) 5. 设计一观测器,对液箱A 的液位进行观测(此处可以不带极点配置); 6. 如果要实现液位h2的控制,可采用什么方法,怎么更加有效?试之。 用MATLAB 对上述设计分别进行仿真。 (提示:流量Q=液位h/液阻R,液箱的液容为液箱的横断面积,液阻R=液面差变化h ?/流量变化Q ?。) 2 双容液位对象的数学模型的建立及MATLAB 仿真过程 一、对系统数学建模 如图一所示,被控参数2h ?的动态方程可由下面几个关系式导出: 液箱A:dt h d C Q Q i 111?=?-? 液箱B:dt h d C Q Q 22 21?=?-? 111/Q h R ??= 222/Q h R ??= u K Q u i ?=? 消去中间变量,可得: u K h dt h d T T dt h d T T ?=?+?++?222122221)( 式中,21,C C ——两液槽的容量系数 21,R R ——两液槽的出水端阻力 111C R T =——第一个容积的时间常数 222C R T =——第二个容积的时间常数 2R K K u =_双容对象的放大系数

制冷课程设计

目录 1.设计题目 (1) 2.设计原始资料 (2) 2.1室外气象参数 (2) 2.2冷室设计参数 (2) 2.3 冷室分布图 (3) 2.4 各个冷室吨位分配 (3) 3.设计内容 (3) 3. 1 冷负荷的计算 (3) 3.2制冷工况的确定 (7) 3.3压缩机的选择计算 (8) 3.4冷凝器的选择计算 (10) 3.5 蒸发器的选择计算 (10) 3.6膨胀阀的选择计算 (12) 3.7 辅助设备的选择计算 (12) 3.8供水方案的选择和管路计算 (13) 3.9制冷系统的流程图 (14) 参考文献···········错误!未定义书签。5

1.设计题目:沈阳市某菜市场冷库设计 2.设计原始资料 2.1气象资料 纬度:41.8o ,经度:123.38o ,海拔高度:441 m 夏季空调室外计算干球温度:30℃ 冬季室外大气压力:1011.8Pa 夏季室外大气压力:998.7Pa 冬季通风室外计算干球温度:-12.5℃ 冬季空调室外计算干球温度:-13.6℃ 夏季通风室外计算干球温度:27℃ 夏季空调室外计算湿球温度:24.4℃ 夏季空调室外计算日平均温度:26.8℃ 冬季空调室外相对湿度:87% 夏季通风室外相对湿度: 81% 冬季室外平均风速:4m/s 夏季室外平均风速:3.2m/s 2.2冷室设计参数 小型冷库不仅要求冷藏食品而且还要求冷冻食品,所以小型冷库应由冻结库和冷藏库组成。冷藏库与冻结库一样高,取2.6m. 根据设计任务要求,为提高冷库的性能,查阅资料得出冷室的型号,如下表: 表一冷库设计尺寸 型号长宽高库内容积 ZL-35S 4.6 3.6 2.6 35 ZL-72S 9.0 3.6 2.6 72 选用ZL-35S型房间作为冻结室,ZL-72S型作为冷却室和冷藏室。 由于冷库主要用来储存蔬菜和鱼,需要两个冷却物冷藏间,冷却间、冻结间、冻结物冷藏间各一个。查阅《冷库设计与管理》一书,根据食品种类,确定各个房间的设计温度和相对湿度,如下表: 表二冷库设计基本参数 序号冷间名称设计温度设计相对湿度适用食品 1 冷却间1 0 蔬菜

10KW直流电动机不可逆调速系统_电力拖动自动控制系统课程设计

交、直流调速课程设计 2004级电气工程专业电力拖动自动控制系统课程设计第五组课程设计 题目:10KW直流电动机不可逆调速系统课程:电力拖动自动控制系统专业:电气工程及其自动化指导老师:华* 组员:郑** 李** 张** 江* 日期:2007年12月24日星期一

课题:10KW直流电动机不可逆调速系统 一、技术数据: 直流电动机: 型号:Z3 —71、额定功率P N=10KW、U N=220V、额定电流I N =55A A N =1000r/min、极数2P=4、电枢电阻 R N =O.5Q、电枢电感 L D =7mH 励磁电压U L=220V、励磁电流I L=1.6A。 、要求 调速范围D=1O、S<=15%、电流脉动系数S < 10%、设计中几个重点说明 、主电路选择与参数计算 1、主电路选择原则:一般整流器功率在4KW以下采用单向整流电路,4KW 以上米用三相整流。 2、参数计算包括 整流变压器的参数计算、整流晶闸管的型号选择、保护电路的说明,参数计算与元件选择,平波电抗器电感量计算。 1.1直流电动机 型号:Z3 —71、额定功率P N=10KW、额定电压U N=220V、额定电流I N =55A 转速n N=1000r/min、极数2P=4 电枢电阻R N=O.5Q、电枢电感L D =7mH 励磁电压U L=220V、S<=15%、励磁电流I L=1.6A。 1.2电动机供电方案 据题意采用晶闸管可控整流装置供电。 本设计选用的是中直流电动机,可选用三相整流电路。又因本系统设计是不可逆系统,所以可选用三相半控桥整流电路。电动机的额定电压为220V,若用 电网直接供电,会造成导通角小,电流脉动大,并且功率因数抵,因此,还是用整流变压器供电方式为宜。 题中对电流的脉动提出要求,故使用增加电抗器。 反馈方式选择原则应是满足调速指标要求的前提下,选择最简单的反馈方

自动控制原理课程设计报告

自控课程设计课程设计(论文) 设计(论文)题目单位反馈系统中传递函数的研究 学院名称Z Z Z Z学院 专业名称Z Z Z Z Z 学生姓名Z Z Z 学生学号Z Z Z Z Z Z Z Z Z Z 任课教师Z Z Z Z Z 设计(论文)成绩

单位反馈系统中传递函数的研究 一、设计题目 设单位反馈系统被控对象的传递函数为 ) 2)(1()(0 0++= s s s K s G (ksm7) 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、对系统进行串联校正,要求校正后的系统满足指标: (1)在单位斜坡信号输入下,系统的速度误差系数=10。 (2)相角稳定裕度γ>45o , 幅值稳定裕度H>12。 (3)系统对阶跃响应的超调量Mp <25%,系统的调节时间Ts<15s 3、分别画出校正前,校正后和校正装置的幅频特性图。 4、给出校正装置的传递函数。计算校正后系统的截止频率Wc 和穿频率Wx 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、在SIMULINK 中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设计方法 1、未校正系统的根轨迹图分析 根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式的根在s 平面上变化的轨迹。 1)、确定根轨迹起点和终点。 根轨迹起于开环极点,终于开环零点;本题中无零点,极点为:0、-1、-2 。故起于0、-1、-2,终于无穷处。 2)、确定分支数。 根轨迹分支数与开环有限零点数m 和有限极点数n 中大者相等,连续并且对称于实轴;本题中分支数为3条。

《空调用制冷技术》课程设计

空调用制冷技术课程设计任务书 一、课程设计题目:空调用制冷机房设计 二、原始数据 1.制冷系统主要提供空调用冷冻水,供水与回水温度为:7℃/12℃,空调冷负荷1200kW。 2.制冷剂为:氟利昂(R22)。 3.冷却水进出口温度为:26.5℃/35.1℃。 4.某市空调设计干球温度为28.4℃,湿球温度为25℃。 三、设计内容 1.确定设计方案根据制冷剂为:氟利昂(R22)确定制冷系统型式。 2.根据冷冻水、冷却水的要求和条件,确定制冷工况并用压焓图来表示。 3.确定压缩机型号、台数,校核制冷量等参数。 4.根据蒸发温度、冷凝温度选择蒸发器、冷凝器(水冷或空冷),并做其中一个设备(蒸发器或冷凝器)的传热计算。 5.确定辅助设备并选型。 6.编写课程设计说明书。

目录 一、确定设计方案 (1) 二、确定制冷工况并用压焓图表示 (1) 三、确定压缩机型号、台数,并校核制冷量和电动机 (3) 四、冷凝器的选择与传热计算 (4) 五、蒸发器的选择与传热计算 (8) 六、辅助设备选型 (9) 七、管径的计算 (10) 八、水泵系统 (12) 九、保温层 (12) 十、噪声控制 (12) 十一、所选设备汇总表 (14) 十二、参考资料 (14)

一、确定设计方案 本制冷系统制冷剂为氟利昂(R22)。制冷系统主要提供空调用冷冻水,空调冷负荷1200kW 。冷冻水供水温度为7℃,回水温度为12℃。冷却水进口温度为26.5℃,出口温度为35.1℃。大连市空调设计干球温度为28.4℃,湿球温度为25℃。即: ℃71=z t ℃122=z t ℃5.261=l t ℃ 1.352=l t kW Q 1200= 二、确定制冷工况并用压焓图表示 2.1确定蒸发温度0t : 蒸发温度0t 比冷冻水供水温度℃71=z t 低3℃,即: ℃ 4 37 310=-=-=z t t 2.2 确定冷凝温度k t : 冷凝温度k t 比冷却水出口温度℃1.352=l t 高3.5℃,即: ℃ 6.38 5.31.35 5.32=+=+=l k t t 2.3 确定吸气温度吸t : 过热度一般为5~8℃,选取6℃,即: ℃ 吸10 64 60=+=+=t t 2.4 确定过冷温度过冷t : 再冷度一般为3~5℃,选取5℃,即:

自动控制系统课程设计

黑龙江科技大学 自动控制系统课程设计 课程名称自动控制系统课程设计 班级 学号 姓名

第一章系统工作原理 直流电机调速控制系统的原理框图如图1-1所示: 图1-1 原理框图 1.1 结构与调速原理 直流电机由定子和转子两部分组成,其间有一定的气隙。其构造的主要特点是具有一个带换向器的电枢。直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。其中主磁极是产生直流电机气隙磁场的主要部件,由永磁体或带有直流励磁绕组的叠片铁心构成。直流电机的转子则由电枢、换向器(又称整流子)和转轴等部件构成。其中电枢由电枢铁心和电枢绕组两部分组成。电枢铁心由硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。换向器是一种机械整流部件。由换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。各换向片间互相绝缘。换向器质量对运行可靠性有很大影响。 直流电机斩波调速原理是利用可控硅整流调压来达直流电机调速的目的,利用交流电相位延迟一定时间发出触发信号使可控硅导通即为斩波,斩波后的交流电经电机滤波后其平均电压随斩波相位变化而变化。为了达到控制直流电机目的,在控制回路加入了速度、电压、电流反馈环路和PID调节器来防止电机由于负载变化而引起的波动和对电机速度、电压、电流超常保护。

第二章主电路的设计与分析 2.1 主电路的各个部分电路 主电路主要环节是:整流电路、斩波电路。 图2-1 调速系统 直流脉宽调速系统的组成如图2-1所示,由主电路、控制及保护电路、信号检测电路三大部分组成。二极管整流桥把输入的交流电变为直流电,电阻R1为起动限流电阻,C1为滤波电容。可逆PWM变换器主电路系采用MOSFET所构成的H型结构形式,它是由四个功率IGBT管(VT1、VT2、VT3、VT4)和四个续流二极管(VD1、VD2、VD3、VD4)组成的双极式PWM可逆变换器,根据脉冲占空比的不同,在直流电机M上可得到正或负的直流电压。 2.1.1 整流电路 晶体二极管桥式整流电路是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。

自动控制原理课程设计

扬州大学水利与能源动力工程学院 课程实习报告 课程名称:自动控制原理及专业软件课程实习 题目名称:三阶系统分析与校正 年级专业及班级:建电1402 姓名:王杰 学号: 141504230 指导教师:许慧 评定成绩: 教师评语: 指导老师签名: 2016 年 12月 27日

一、课程实习的目的 (1)培养理论联系实际的设计思想,训练综合运用经典控制理论和相关课程知识的能力; (2)掌握自动控制原理的时域分析法、根轨迹法、频域分析法,以及各种校正装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标; (3)学会使用MATLAB语言及Simulink动态仿真工具进行系统仿真与调试; (4)学会使用硬件搭建控制系统; (5)锻炼独立思考和动手解决控制系统实际问题的能力,为今后从事控制相关工作打下较好的基础。 二、课程实习任务 某系统开环传递函数 G(s)=K/s(0.1s+1)(0.2s+1) 分析系统是否满足性能指标: (1)系统响应斜坡信号r(t)=t,稳态误差小于等于0.01; (2)相角裕度y>=40度; 如不满足,试为其设计一个pid校正装置。 三、课程实习内容 (1)未校正系统的分析: 1)利用MATLAB绘画未校正系统的开环和闭环零极点图 2)绘画根轨迹,分析未校正系统随着根轨迹增益变化的性能(稳定性、快速性)。 3)作出单位阶跃输入下的系统响应,分析系统单位阶跃响应的性能指标。 4)绘出系统开环传函的bode图,利用频域分析方法分析系统的频域性能指标(相角裕度和幅值裕度,开环振幅)。 (2)利用频域分析方法,根据题目要求选择校正方案,要求有理论分析和计算。并与Matlab计算值比较。 (3)选定合适的校正方案(串联滞后/串联超前/串联滞后-超前),理论分析并计算校正环节的参数,并确定何种装置实现。

重庆大学 自动控制原理课程设计

目录 1 实验背景 (2) 2 实验介绍 (3) 3 微分方程和传递函数 (6)

1 实验背景 在现代科学技术的众多领域中,自动控制技术起着越来越重要的作用。自动控制原理是相对于人工控制概念而言的,自动控制是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器,设备或生产过程(统称被控对象)的某个工作状态或参数(即被控制量)自动地按照预定的规律运行。 在自动控制原理【1】中提出,20世纪50年代末60年代初,由于空间技术发展的需要,对自动控制的精密性和经济指标,提出了极其严格的要求;同时,由于数字计算机,特别是微型机的迅速发展,为控制理论的发展提供了有力的工具。在他们的推动下,控制理论有了重大发展,如庞特里亚金的极大值原理,贝尔曼的动态规划理论。卡尔曼的能控性能观测性和最优滤波理论等,这些都标志着控制理论已从经典控制理论发展到现代控制理论的阶段。现代控制理论的特点。是采用状态空间法(时域方法),研究“多输入-多输出”控制系统、时变和非线性控制系统的分析和设计。现在,随着技术革命和大规模复杂系统的发展,已促使控制理论开始向第三个发展阶段即第三代控制理论——大系统理论和智能控制理论发展。 在其他文献中也有所述及(如下): 至今自动控制已经经历了五代的发展: 第一代过程控制体系是150年前基于5-13psi的气动信号标准(气动控制系统PCS,Pneumatic Control System)。简单的就地操作模式,控制理论初步形成,尚未有控制室的概念。 第二代过程控制体系(模拟式或ACS,Analog Control System)是基于0-10mA或4-20mA 的电流模拟信号,这一明显的进步,在整整25年内牢牢地统治了整个自动控制领域。它标志了电气自动控制时代的到来。控制理论有了重大发展,三大控制论的确立奠定了现代控制的基础;控制室的设立,控制功能分离的模式一直沿用至今。 第三代过程控制体系(CCS,Computer Control System).70年代开始了数字计算机的应用,产生了巨大的技术优势,人们在测量,模拟和逻辑控制领域率先使用,从而产生了第三代过程控制体系(CCS,Computer Control System)。这个被称为第三代过程控制体系是自动控制领域的一次革命,它充分发挥了计算机的特长,于是人们普遍认为计算机能做好一切事情,自然而然地产生了被称为“集中控制”的中央控制计算机系统,需要指出的是系统的信号传输系统依然是大部分沿用4-20mA的模拟信号,但是时隔不久人们发现,随着控制的集中和可靠性方面的问题,失控的危险也集中了,稍有不慎就会使整个系统瘫痪。所以它很快被发展成分布式控制系统(DCS)。 第四代过程控制体系(DCS,Distributed Control System分布式控制系统):随着半导体制造技术的飞速发展,微处理器的普遍使用,计算机技术可靠性的大幅度增加,目前普遍使用的是第四代过程控制体系(DCS,或分布式数字控制系统),它主要特点是整个控制系统不再是仅仅具有一台计算机,而是由几台计算机和一些智能仪表和智能部件构成一个了控制

相关主题
文本预览
相关文档 最新文档