当前位置:文档之家› 中考数学专题(3)动态几何问题分析

中考数学专题(3)动态几何问题分析

中考数学专题(3)动态几何问题分析
中考数学专题(3)动态几何问题分析

中考数学专题3 动态几何问题

第一部分 真题精讲

【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).

(1)当MN AB ∥时,求t 的值;

(2)试探究:t 为何值时,MNC △为等腰三角形.

【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB 时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。 【解析】

解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形.

A

B M C

N

E D

∵AB DE ∥,AB MN ∥.

∴DE MN ∥. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题) ∴MC NC EC CD =. (这个比例关系就是将静态与动态联系起来的关键) ∴ 1021035t t -=-.解得5017t =

. 【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】

(2)分三种情况讨论:

① 当MN NC =时,如图②作NF BC ⊥交BC 于F ,则有2MC FC =即.(利用等腰三角形底边高也是底边中线的性质)

∵4

sin 5DF C CD ∠==,

∴3

cos 5C ∠=,

∴310225t

t -=?,

解得25

8

t =.

A

B M C

N

F D

② 当MN MC =时,如图③,过M 作MH CD ⊥于H .

则2CN CH =,

∴()3

21025

t t =-?.

∴6017

t =.

A

B M C

N H

D

③ 当MC CN =时, 则102t t -=. 10

3t =.

综上所述,当258t =

、6017

或103时,MNC △为等腰三角形.

【例2】在△ABC 中,∠ACB=45o.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .

(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关

系,并证明你的结论.

(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么? (3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC

=3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)

【思路分析1】本题和上题有所不同,上一题会给出一个条件使得动点静止,而本题并未给出那个“静止点”,所以需要我们去分析由D 运动产生的变化图形当中,什么条件是不动的。由题我们发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递,就可以得解。 【解析】:

(1)结论:CF 与BD 位置关系是垂直;

证明如下: AB=AC ,∠ACB=45o,∴∠ABC=45o. 由正方形ADEF 得 AD=AF ,∵∠DAF=∠BAC =90o, ∴∠DAB=∠FAC ,∴△DAB ≌△FAC , ∴∠ACF=∠ABD . ∴∠BCF=∠ACB+∠ACF= 90o.即 CF ⊥BD .

【思路分析2】这一问是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,于是我们和上题一样找AC 的垂线,就可以变成第一问的条件,然后一样求解。

(2)CF ⊥BD .(1)中结论成立.

理由是:过点A 作AG ⊥AC 交BC 于点G ,∴AC=AG 可证:△GAD ≌△CAF ∴∠ACF=∠AGD=45o

∠BCF=∠ACB+∠ACF= 90o. 即CF ⊥BD 【思路分析3】这一问有点棘手,D 在BC 之间运动和它在BC 延长线上运动时的位置是不一

样的,所以已给的线段长度就需要分情况去考虑到底是4+X 还是4-X 。分类讨论之后利用相似三角形的比例关系即可求出CP .

(3)过点A 作AQ ⊥BC 交CB 的延长线于点Q , ①点D 在线段BC 上运动时,

∵∠BCA=45o,可求出AQ= CQ=4.∴ DQ=4-x , 易证△AQD ∽△DCP ,∴CP CD DQ

AQ

= , ∴

44

CP x

x =-, 2

4

x CP x ∴=-+.

②点D 在线段BC 延长线上运动时,

∵∠BCA=45o,可求出AQ= CQ=4,∴ DQ=4+x .

过A 作AC AG ⊥交CB 延长线于点G ,则ACF AGD ???.∴ CF ⊥BD ,

∴△AQD ∽△DCP ,∴CP CD DQ

AQ

= , ∴

44

CP x

x =+, 2

4

x CP x ∴=+.

【例3】已知如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.

G A B C D E

F

(1)求证:梯形ABCD 是等腰梯形;

(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =?∠保持不变.设

PC x MQ y ==,,求y 与x 的函数关系式; (3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.

【思路分析1】本题有一点综合题的意味,但是对二次函数要求不算太高,重点还是在考察

几何方面。第一问纯静态问题,自不必说,只要证两边的三角形全等就可以了。第二问和例1一样是双动点问题,所以就需要研究在P ,Q 运动过程中什么东西是不变的。题目给定∠MPQ=60°,这个度数的意义在哪里?其实就是将静态的那个等边三角形与动态条件联系了起来.因为最终求两条线段的关系,所以我们很自然想到要通过相似三角形找比例关系.怎么证相似三角形呢? 当然是利用角度咯.于是就有了思路. 【解析】

(1)证明:∵MBC △是等边三角形 ∴60MB MC MBC MCB ===?,∠∠ ∵M 是AD 中点 ∴AM MD = ∵AD BC ∥

∴60AMB MBC ==?∠∠, 60DMC MCB ==?∠∠ ∴AMB DMC △≌△ ∴AB DC =

∴梯形ABCD 是等腰梯形.

(2)解:在等边MBC △中,4MB MC BC ===,60MBC MCB ==?∠∠,

60MPQ =?∠

∴120BMP BPM BPM QPC +=+=?∠∠∠∠ (这个角度传递非常重要,大家要仔细揣摩)

∴BMP QPC =∠∠ ∴BMP CQP △∽△ ∴

PC CQ

BM BP

= ∵PC x MQ y ==, ∴44BP x QC y =-=-, ∴

444x y x -=

- ∴2

144y x x =-+ (设元以后得出比例关系,轻松化成二次函数的样子)

【思路分析2】第三问的条件又回归了当动点静止时的问题。由第二问所得的二次函数,很

A D

C B P M Q 60

轻易就可以求出当X 取对称轴的值时Y 有最小值。接下来就变成了“给定PC=2,求△PQC 形状”的问题了。由已知的BC=4,自然看出P 是中点,于是问题轻松求解。

(3)解: PQC △为直角三角形 ∵()2

1234

y x =

-+ ∴当y 取最小值时,2x PC ==

∴P 是BC 的中点,MP BC ⊥,而60MPQ =?∠, ∴30CPQ =?∠, ∴90PQC =?∠

以上三类题目都是动点问题,这一类问题的关键就在于当动点移动中出现特殊条件,例如某边相等,某角固定时,将动态问题化为静态问题去求解。如果没有特殊条件,那么就需要研究在动点移动中哪些条件是保持不变的。当动的不是点,而是一些具体的图形时,思路是不是一样呢?接下来我们看另外两道题.

【例4】已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连接DF ,G 为DF 中点,连接EG CG ,. (1)直接写出线段EG 与CG 的数量关系;

(2)将图1中BEF ?绕B 点逆时针旋转45?,如图2所示,取DF 中点G ,连接EG CG ,,

. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.

(3)将图1中BEF ?绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的

结论是否仍然成立?(不要求证明)

图3

图2

图1

F

E

A

B

C

D

A

B

C

D

E

F

G

G

F

E

D C

B

A

【思路分析1】这一题是一道典型的从特殊到一般的图形旋转题。从旋转45°到旋转任意角度,要求考生讨论其中的不动关系。第一问自不必说,两个共斜边的直角三角形的斜边

中线自然相等。第二问将△BEF 旋转45°之后,很多考生就想不到思路了。事实上,本题的核心条件就是G 是中点,中点往往意味着一大票的全等关系,如何构建一对我们想要的全等三角形就成为了分析的关键所在。连接AG 之后,抛开其他条件,单看G 点所在的四边形ADFE ,我们会发现这是一个梯形,于是根据我们在第一讲专题中所讨论的方法,自然想到过G 点做AD,EF 的垂线。于是两个全等的三角形出现了。 (1)CG EG =

(2)(1)中结论没有发生变化,即CG EG =.

证明:连接AG ,过G 点作MN AD ⊥于M ,与EF 的延长线交于N 点. 在DAG ?与DCG ?中,

∵AD CD ADG CDG DG DG =∠=∠=,,, ∴DAG DCG ??≌. ∴AG CG =. 在DMG ?与FNG ?中,

∵DGM FGN FG DG MDG NFG ∠=∠=∠=∠,,, ∴DMG FNG ??≌. ∴MG NG =

在矩形AENM 中,AM EN =

在Rt AMG ?与Rt ENG ?中, ∵AM EN MG NG ==,, ∴AMG ENG ??≌. ∴AG EG =. ∴EG CG =

M N

图2

A

B

C

D

E

F

G

【思路分析2】第三问纯粹送分,不要求证明的话几乎所有人都会答出仍然成立。但是我们不应该止步于此。将这道题放在动态问题专题中也是出于此原因,如果△BEF 任意旋转,

哪些量在变化,哪些量不变呢?如果题目要求证明,应该如何思考。建议有余力的同学自己研究一下,笔者在这里提供一个思路供参考:在△BEF 的旋转过程中,始终不变的依然是G 点是FD 的中点。可以延长一倍EG 到H ,从而构造一个和EFG 全等的三角形,利用BE=EF 这一条件将全等过渡。要想办法证明三角形ECH 是一个等腰直角三角形,就需要证明三角形EBC 和三角形CGH 全等,利用角度变换关系就可以得证了。 (3)(1)中的结论仍然成立.

G

图3

F

E

A

B

C

D

【例5】已知正方形ABCD 的边长为6cm ,点E 是射线BC 上的一个动点,连接AE 交射线DC 于点F ,将△ABE 沿直线AE 翻折,点B 落在点B′ 处.

(1)当

CE

BE

=1 时,CF=______cm , (2)当

CE

BE

=2 时,求sin ∠DAB ′ 的值; (3)当

CE

BE

= x 时(点C 与点E 不重合),请写出△ABE 翻折后与正方形ABCD 公共部分的面积y 与x 的关系式,(只要写出结论,不要解题过程).

【思路分析】动态问题未必只有点的平移,图形的旋转,翻折(就是轴对称)也是一大热点。这一题是朝阳卷的压轴题,第一问给出比例为1,第二问比例为2,第三问比例任意,所以也是一道很明显的从一般到特殊的递进式题目。同学们需要仔细把握翻折过程中哪些条件发生了变化,哪些条件没有发生变化。一般说来,翻折中,角,边都是不变的,所以轴对称图形也意味着大量全等或者相似关系,所以要利用这些来获得线段之间的比例关系。尤其注意的是,本题中给定的比例都是有两重情况的,E 在BC 上和E 在延长线上都是可能的,所以需要大家分类讨论,不要遗漏。

C

A

D

B

【解析】

(1)CF= 6 cm ; (延长之后一眼看出,EAZY )

(2)① 如图1,当点E 在BC 上时,延长AB ′交DC 于点M , ∵ AB ∥CF ,∴ △ABE ∽△FCE ,∴

FC

AB

CE BE =

. ∵

CE

BE

=2, ∴ CF=3. ∵ AB ∥CF ,∴∠BAE=∠F .

又∠BAE=∠B ′ AE , ∴ ∠B ′ AE=∠F .∴ MA=MF . 设MA=MF=k ,则MC=k -3,DM=9-k . 在Rt △ADM 中,由勾股定理得: k 2=(9-k)2+62, 解得 k=MA=132. ∴ DM=5

2

.(设元求解是这类题型中比较重要的方法)

∴ sin ∠DAB ′=

13

5

=AM DM ; ②如图2,当点E 在BC 延长线上时,延长AD 交B ′ E 于点N , 同①可得NA=NE .

设NA=NE=m ,则B ′ N=12-m . 在Rt △AB ′ N 中,由勾股定理,得 m 2=(12-m)2+62, 解得 m=AN=152. ∴ B ′ N=92

. ∴ sin ∠DAB ′=

5

3

='AN N B . (3)①当点E 在BC 上时,y=

18x

x 1

+; (所求△A B ′ E 的面积即为△ABE 的面积,再由相似表示出边长)

②当点E 在BC 延长线上时,y=

18x 18

x

-.

【总结】 通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。动态几何问题往往作为压轴题来出,所以难度不言而喻,但是希望考生拿到题以后不要慌张,因为无论是题目以哪种形态出现,始终把握的都是在变化过程中那些不变的量。只要条分缕析,一个个将条件抽出来,将大问题化成若干个小问题去解决,就很轻松了.为更好的帮助考生,笔者总结这种问题的一般思路如下:

第一、仔细读题,分析给定条件中那些量是运动的,哪些量是不动的。针对运动的量,要分析它是如何运动的,运动过程是否需要分段考虑,分类讨论。针对不动的量,要分析它们和动量之间可能有什么关系,如何建立这种关系。

图2

图1

第二、画出图形,进行分析,尤其在于找准运动过程中静止的那一瞬间题目间各个变量的关系。如果没有静止状态,通过比例,相等等关系建立变量间的函数关系来研究。 第三、做题过程中时刻注意分类讨论,不同的情况下题目是否有不同的表现,很多同学丢分就丢在没有讨论,只是想当然看出了题目所给的那一种图示方式,没有想到另外的方式,如本讲例5当中的比例关系意味着两种不一样的状况,是否能想到就成了关键。

第二部分 发散思考

【思考1】已知:如图(1),射线//AM 射线BN ,AB 是它们的公垂线,点D 、C 分别

在AM 、BN 上运动(点D 与点A 不重合、点C 与点B 不重合),E 是AB 边上的动点(点E 与A 、B 不重合)

,在运动过程中始终保持EC DE ⊥,且a AB DE AD ==+. (1)求证:ADE ?∽BEC ?; (2)如图(2),当点E 为AB 边的中点时,求证:CD BC AD =+;

(3)设m AE =,请探究:BEC ?的周长是否与m 值有关?若有关,请用含有m 的代

数式表示BEC ?的周长;若无关,请说明理由.

第25题(1) 第25题(2)

【思路分析】本题动点较多,并且是以和的形式给出长度。思考较为不易,但是图中有多个直角三角形,所以很自然想到利用直角三角形的线段、角关系去分析。第三问计算周长,要将周长的三条线段分别转化在一类关系当中,看是否为定值,如果是关于M 的函数,那么就是有关,如果是一个定值,那么就无关,于是就可以得出结论了。

【思考2】 △ABC 是等边三角形,P 为平面内的一个动点,BP=BA ,若0?<∠PBC <180°,

且∠PBC 平分线上的一点D 满足DB=DA ,

(1)当BP 与BA 重合时(如图1),∠BPD= °; (2)当BP 在∠ABC 的内部时(如图2),求∠BPD 的度数;

(3)当BP 在∠ABC 的外部时,请你直接写出∠BPD 的度数,并画出相应的图形.

【思路分析】本题中,和动点P 相关的动量有∠PBC ,以及D 点的位置,但是不动的量就是BD 是平分线并且DB=DA ,从这几条出发,可以利用角度相等来找出相似、全等三角形。事实上,P 点的轨迹就是以B 为圆心,BA 为半径的一个圆,那D 点是什么呢?留给大家思考一下~

【思考3】如图:已知,四边形ABCD 中,AD//BC , DC ⊥BC ,已知AB=5,BC=6,cosB=

35

. 点O 为BC 边上的一个动点,连结OD ,以O 为圆心,BO 为半径的⊙O 分别交边AB 于点P ,交线段OD 于点M ,交射线BC 于点N ,连结MN . (1)当BO=AD 时,求BP 的长; (2)点O 运动的过程中,是否存在BP=MN 的情况?若存在,请求出当BO 为多长时BP=MN ;若不存在,请说明理由;

(3)在点O 运动的过程中,以点C 为圆心,CN 为半径作⊙C ,请直接写出当⊙C 存在时,⊙O 与⊙C 的位置关系,以及相应的⊙C 半径CN 的取值范围。

【思路分析】这道题和其他题目不同点在于本题牵扯到了有关圆的动点问题。在和圆有关的问题当中,时刻不要忘记的就是圆的半径始终相等这一个隐藏的静态条件。本题第一问比较简单,等腰梯形中的计算问题。第二问则需要用设元的方法表示出MN 和BP ,从而讨论他们的数量关系。第三问的猜想一定要记得分类分情况讨论。

【思考4】在ABCD 中,过点C 作CE ⊥CD 交AD 于点E,将线段EC 绕点E 逆时针旋转90得到线段EF(如图1)

(1)在图1中画图探究:

①当P 为射线CD 上任意一点(P 1不与C 重合)时,连结EP 1绕点E 逆时针旋转90 得到线段EC 1.判断直线FC 1与直线CD 的位置关系,并加以证明;

②当P 2为线段DC 的延长线上任意一点时,连结EP 2,将线段EP 2绕点E 逆时针旋转90

A B C D O P

M N A B C D (备用图)

得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论. (2)若AD=6,tanB=

4

3

,AE=1,在①的条件下,设CP1=x,S

11

P FC=y,求y与x之间的函数关系式,并写出自变量x的取值范围.

【思路分析】本题是去年中考原题,虽不是压轴,但动点动线一起考出来,难倒了不少同学。事实上就在于如何把握这个旋转90°的条件。旋转90°自然就是垂直关系,于是又出现了一堆直角三角形,于是证角,证线就手到擒来了。第二问一样是利用平行关系建立函数式,但是实际过程中很多同学依然忘记分类讨论的思想,漏掉了很多种情况,失分非常可惜。建议大家仔细研究这道中考原题,按照上面总结的一般思路去拆分条件,步步为营的去解答。

第三部分思考题解析

【思考1解析】

(1)证明:∵EC

DE⊥,∴?

=

∠90

DEC.∴?

=

+

∠90

BEC

AED.又∵?

=

=

∠90

B

A,∴?

=

+

∠90

EDA

AED.

∴EDA

BEC∠

=

∠.∴ADE

?∽BEC

?.

(2)证明:如图,过点E作EF BC

//,交CD于点F,

∵E是AB的中点,容易证明)

(

2

1

BC

AD

EF+

=.

在DEC

Rt?中,∵CF

DF=,∴CD

EF

2

1

=.

∴)

(

2

1

BC

AD+CD

2

1

=.

∴CD

BC

AD=

+.

(3)解:AED

?的周长DE

AD

AE+

+

=m

a+

=,m

a

BE-

=.

设x

AD=,则x

a

DE-

=.

第25题

∵ ?=∠90A ,∴ 222AD AE DE +=.即2

2222x m x ax a +=+-.

∴ a

m a x 22

2-=.

由(1)知ADE ?∽BEC ?,

∴ 的周长的周长BEC ??ADE BE AD =m a a m a --=22

2a

m a 2+=. ∴ BEC ?的周长?+=

m

a a

2ADE ?的周长a 2=. ∴ BEC ?的周长与m 值无关.

【思考2答案】

解:(1)∠BPD= 30 °; (2)如图8,连结CD .

解一:∵ 点D 在∠PBC 的平分线上,

∴ ∠1=∠2.

∵ △ABC 是等边三角形, ∴ BA=BC=AC ,∠ACB= 60°. ∵ BP=BA , ∴ BP=BC . ∵ BD= BD , ∴ △PBD ≌△CBD .

∴ ∠BPD=∠3.- - - - - - - - - - - - - - - - - 3分 ∵ DB=DA ,BC=AC ,CD=CD , ∴ △BCD ≌△ACD . ∴ 134302

ACB ∠=∠=∠=?. ∴ ∠BPD =30°. 解二:∵ △ABC 是等边三角形, ∴ BA =BC=AC . ∵ DB=DA ,

∴ CD 垂直平分AB . ∴ 1

34302ACB ∠=∠=∠=?. ∵ BP=BA , ∴ BP=BC .

∵ 点D 在∠PBC 的平分线上,

∴ △PBD 与△CBD 关于BD 所在直线对称. ∴ ∠BPD=∠3. ∴ ∠BPD =30°. (3)∠BPD= 30°或 150° . 图形见图9、图10.

【思考3解析】

解:(1)过点A 作AE ⊥BC,在Rt △ABE 中,由AB=5,cosB=

3

5

得BE=3. ∵CD ⊥BC ,AD//BC ,BC=6,

∴AD=EC=BC -BE=3.

当BO=AD=3时, 在⊙O 中,过点O 作OH ⊥AB,则BH=HP ∵

cos BH B BO =,∴BH=39

355?=. ∴BP=

18

5

. (2)不存在BP=MN 的情况-

假设BP=MN 成立,

∵BP 和MN 为⊙O 的弦,则必有∠BOP=∠DOC. 过P 作PQ ⊥BC ,过点O 作OH ⊥AB,

∵CD ⊥BC ,则有△PQO ∽△DOC- 设BO=x ,则PO=x,由

3cos 5BH B x ==,得BH=3

5

x , ∴BP=2BH=

6

5

x . ∴BQ=BP×cosB=

1825x ,PQ=2425

x . ∴OQ=1872525

x x x -

=.

初中三年级中考复习平面几何证明题一题多解

初中三年级中考复习平面几何证明题一题多解 如图:已知青AB=AC ,E 是AC 延长线上一点,且有BF=CE ,连接FE 交BC 于D 。求证:FD=DE 。 分析:本题有好多种证明方法,由于新课标主 要用对称、旋转方法证明,但平行四边形的性质、平行线性质等都是证题的好方法,我在这里向初中三年级同学面对中考需对平面几何证明题的证明方法有一个系统的复习和提高。 下边我将自己证明这道题的方法给各位爱好者作以介绍,希望各位有所收获,仔细体会每 中方法的异同和要点,从中能得到提高。我是一位数学业余爱好者,不是学生,也不是老师,如有错误,请批评指证。信箱: wangsj629@https://www.doczj.com/doc/1315773664.html, . 证法一 ∧≌∠⊥∥△□° 证明:过E 点作EM ∥AB 交DC 延长线于M 点,则∠M=∠B ,又因为∠ACB=∠B ∠ACB=∠ECM=∠M ,所以CE=EM , 又EC=BF 从而EM=BF ,∠BFD=∠DEM 则△DBF ≌△DME ,故 FD=DE ; 证法二 证明:过F 点作FM ∥AE ,交BD 于点M , 则∠1=∠2 = ∠B 所以BF=FM , 又 ∠4=∠3 ∠5=∠E 所以△DMF ≌△DCE ,故 FD=DE 。 证法三 以BC 为对称轴作△BDF 的对称△BDN ,连接NE ,则△DBF ≌△DBN ,DF=DN ,BN=BF , NF ⊥BD ,∠FBD=∠NBD ,又因为∠C=∠FBD 所以∠NBD=∠C 。 BN ∥CE ,CE=BF=BN ,所以四边形BNCE 为平行四边形。故NF ∥BC , 所以NF ⊥NE ,因FN 衩BD 垂直平分,故D 是FE 的中点,所以FD=DE 。(也可证明D 是直角△NEF 斜边的中点)。 证法四: F C A E N E

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

(完整)初三数学几何的动点问题专题练习

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发, 同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度, 点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

中考数学几何一题多解获奖作品

中考几何母题的一题多解(多变) 一、三角形一题多解 如图:已知AB=AC,E是AC延长线上一点,且有BF=CE,连接FE交BC于D。求证:FD=DE。 证法一 证明:过E点作EM ∥AB交DC延长线于M点,则∠M=∠B,又因为∠ACB=∠B ∠ACB=∠ECM=∠M,所以CE=EM,又EC=BF 从而EM=BF,∠BFD=∠DEM 则△DBF≌△DME,故 FD=DE; 证法二 证明:过E点作EM ∥AB交DC延长线于M点,则∠M=∠B,又因为∠ACB=∠B ∠ACB=∠ECM=∠M,所以CE=EM,又EC=BF 从而EM=BF,∠BFD=∠DEM 则△DBF≌△DME,故 FD=DE; 证法二 证明:过F点作FM∥AE,交BD于点M, 则∠1=∠2 = ∠B 所以BF=FM, 又∠4=∠3 ∠5=∠E 所以△DMF≌△DCE,故 FD=DE。 二、平行四边形一题多解

如图4,平行四边形 ABCD中AD=2AB,E、F在直线AB上,且AE=BF=AB,求证:DF⊥CE. 证法一、易知ΔADF、ΔBCE为等腰三角形,故∠1=∠F, ∠2=∠E,又CD∥AB,故∠3=∠F, ∠4=∠E,从而∠1=∠3,∠2=∠4,而∠1+∠2+∠3+∠4=1800,故∠3+∠4=900,表明∠COD=900,所以DF⊥CE。 证法二、如图5,连接MN,则CD=BF,且CD∥BF,故BFCD为平行四边形,则CN=BN=AB,同理,DM=MA=AB,故CN=DM且CN∥DM,得平行四边形CDMN,易见CD=DM,故CDMN也是菱形,根据菱形的对角线互相垂直,结论成立。 证法三、如图6,连接BM、AN, 可证ΔAFN中,BN=BF=BA,则ΔAFN为直角三角形,即DF⊥AN,利用中位线定理可知AN∥CE,故DF⊥CE。 证法四、如图7,作DG∥CE交AE延长线于G,则EG=CD=AB=AE,故AD=AG=AF,从而DF⊥DG,而DGCE,故DF⊥CE 四\一题多解、多变《四边形面积》 1.如图所示,一个长为a,宽为b的矩形,两个阴影都是长为c的矩形与平行 四边形,则阴影部分面积是多少。 解法一 将大矩形进行平移将平行四边形 进行转换。 (a-c)(b-c) 解法二 重叠面积为c的平方,大矩形面积为ab,小矩形为ac,平行四边形为bc,阴影面积为ab-ac-bc+cc=(a-c)(b-c)

中考数学几何压轴题

1.(1)操作发现· 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由. (2)问题解决 保持(1)中的条件不变,若DC =2DF ,求AB AD 的值; (3)类比探究 保持(1)中的条件不变,若DC =n ·DF ,求 AB AD 的值. 2.如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB =75o,以CD 为一边的

等边△DCE 的另一顶点E 在腰AB 上. (1)求∠AED 的度数; (2)求证:AB =BC ; (3)如图2所示,若F 为线段CD 上一点,∠FBC =30o. 求 DF FC 的值. 3.如图①,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E ,DF ⊥BC 于点F .AD =2cm ,BC =6cm ,AE =4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M .若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终.. 为10cm 2.设EP =x cm ,FQ =y cm ,A B C D E 图1 A B C D E 图2 F

解答下列问题: (1)直接写出当x =3时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积. 4.如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1. A B C D E F (备用图) A B C D E F Q P 图① 图 ① A C A 1 B 1 C 1

中考数学常见题型几何动点问题

中考数学压轴题型研究(一)——动点几何问题 例1:在△ABC 中,∠B=60°,BA=24CM,BC=16CM, (1)求△ABC 的面积; (2)现有动点P 从A 点出发,沿射线AB 向点B 方向运动,动点Q 从C 点出发,沿射线CB 也向点B 方向运动。如果点P 的速度是4CM/秒,点Q 的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ 的面积是△ABC 的面积的一半 (3)在第(2)问题前提下,P,Q 两点之间的距离是多少 例2: ()已知正方形ABCD 的边长是1,E 为CD 边的中点, P 为正方形ABCD 边上的一个动点,动点P 从A 点出发,沿 A → B → C →E 运动,到达点 E.若点P 经过的路程为自变量x ,△APE 的面积为函数y , (1)写出y 与x 的关系式 (2)求当y = 1 3 时,x 的值等于多少 例3:如图1 ,在直角梯形ABCD 中,∠B=90°,DC ∥AB ,动点P 从B 点出发,沿梯形的边由B →C → D → A 运动,设点P 运动的路程为x ,△ABP 的面积为y , 如果关于x 的函数y 的图象如图2所示 ,那么△ABC 的面积为( ) A .32 B .18 C .16 D .10 例4:直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动.(1)直接写出两点的坐标; (2)设点的运动时间为秒,的面积为,求出与之间的函数关系式; (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标. 例5:已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒. (1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. 例6:如图(3),在梯形中,厘米,厘米,的坡度动点从出发以2厘米/秒的速度沿方向向点运动,动点从点出发以3厘米/秒的速度沿方向向点运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为秒. (1)求边的长; 图(3) B A C P Q B A M N

中考数学几何压轴题辅助线专题复习

中考压轴题专题几何(辅助线) 精选1.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为.精选2.如图,△ABC中,∠C=60°,∠CAB与∠CBA的平分线AE,BF相交于点D, 求证:DE=DF. 精选3.已知:如图,⊙O的直径AB=8cm,P是AB延长线上的一点,过点P作⊙O的切线,切点为C,连接AC. (1)若∠ACP=120°,求阴影部分的面积; (2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M,∠CMP的大小是否发生变化若变化,请说明理由;若不变,求出∠CMP的度数。 精选4、如图1,Rt△ABC中,∠ACB=90°,AC=3,BC=4,点O是斜边AB上一动点,以OA为半径作⊙O与AC边交于点P, (1)当OA=时,求点O到BC的距离; (2)如图1,当OA=时,求证:直线BC与⊙O相切;此时线段AP的长是多少 (3)若BC边与⊙O有公共点,直接写出OA的取值范围; (4)若CO平分∠ACB,则线段AP的长是多少 . 精选5.如图,已知△ABC为等边三角形,∠BDC=120°,AD平分∠BDC, 求证:BD+DC=AD. 精选6、已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.

(第6题图) (1)如图1,已知折痕与边BC交于点O,连结AP、OP、O A. ①求证:△OCP∽△PDA; ②若△OCP与△PDA的面积比为1:4,求边AB的长; (2)若图1中的点P恰好是CD边的中点,求∠OAB的度数; (3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化若变化,说明理由;若不变,求出线段EF的长度. 精选7、如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF. (1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立若成立,加以证明;若不成立,请说明理由; (2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少

中考数学重难点专题讲座动态几何与函数问题含答案(终审稿)

中考数学重难点专题讲座动态几何与函数问题 含答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

中考数学重难点专题讲座 第八讲动态几何与函数问题 【前言】 在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。其中通过图中已给几何图形构建函数是重点考察对象。不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。 【例1】 如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E. (1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部份)为s,s关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,且NQ平行于x轴,N点横坐标为4,求梯形上底AB的长及直角梯形OABC的面积. (2)当24 t<<时,求S关于t的函数解析式.

中考数学几何选择填空压轴题精选配答案

中考数学几何选择填空压轴题精选配答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

2016中考数学几何选择填空压轴题精选(配答案)一.选择题(共13小题) 1.(2013蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC 于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HEHB. A .1个B . 2个C . 3个D . 4个 2.(2013连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作 D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A .B . C . D . 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论: ①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A .1个B . 2个C . 3个D . 4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:

中考数学常见题型几何动点问题

中考数学压轴题型研究(一)——动点几何问题 例1:在△ABC 中,∠B=60°,B A=24CM,BC=16CM , (1)求△A BC 的面积; (2)现有动点P 从A 点出发,沿射线AB 向点B 方向运动,动点Q 从C 点出发,沿射线CB 也向点B方向运动。如果点P 的速度是4CM/秒,点Q 的速度是2CM /秒,它们同时出发,几秒钟后,△PBQ 的面积是△ABC 的面积的一半? (3)在第(2)问题前提下,P,Q 两点之间的距离是多少? 例2: ()已知正方形A BCD 的边长是1,E为CD 边的中点, P 为正方形AB CD 边上的一个动点,动点P从 A点出发,沿A →B → C →E运动,到达点E.若点P经过的路程为自变量x,△APE 的面积为函数y, (1)写出y 与x 的关系式 (2)求当y = 1 3 时,x 的值等于多少? 例3:如图1 ,在直角梯形AB CD中,∠B =90°,DC ∥A B,动点P 从B 点出发,沿梯形的边由B →C → D → A 运动,设点P 运动的路程为x ,△AB P的面积为y , 如果关于x 的函数y 的图象如图2所示 ,那么△ABC 的面积为( ) A.32 B .18 C.16? D.10 例4:直线3 64 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当48 5 S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 例5:已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒. (1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. A C B x A O Q P B y C Q

2019年中考数学几何证明、计算题汇编及解析

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. [解析] (1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2. 又tan ∠ADC=2,所以2 12 DM ==.即DC=BC. (2)等腰三角形. 证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC 所以,,CE CF ECD BCF =∠=∠. 所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=? 即△ECF 是等腰直角三角形. (3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=?,又45CEF ∠=?,所以90BEF ∠=?. 所以3BF k = = 所以1sin 33 k BFE k ∠= =. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. [解析] (1)∵四边形ABCD 是平行四边形, ∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE = 21AB ,CF =2 1 CD . ∴AE =CF ∴△ADE ≌△CBF . (2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形. E B F C D A

中考数学专题(3)动态几何问题分析

中考数学专题3 动态几何问题 第一部分 真题精讲 【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒). (1)当MN AB ∥时,求t 的值; (2)试探究:t 为何值时,MNC △为等腰三角形. 【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB 时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。 【解析】 解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形. A B M C N E D ∵AB DE ∥,AB MN ∥. ∴DE MN ∥. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题) ∴MC NC EC CD =. (这个比例关系就是将静态与动态联系起来的关键) ∴ 1021035t t -=-.解得5017t = . 【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】 (2)分三种情况讨论:

中考数学几何综合圆的综合大题压轴题

圆的综合大题 1.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF. (1)证明:AF平分∠BAC; (2)证明:BF=FD; (3)若EF=4,DE=3,求AD的长. 2.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点P在右半圆上移动(点P与点A,B不重合),过点P作PC⊥AB,垂足为C;点Q在射线BM上移动(点M在点B的右边),且在移动过程中保持OQ∥AP. (1)若PC,QO的延长线相交于点E,判断是否存在点P,使得点E恰好在⊙O上?若存在,求出∠APC的大小;若不存在,请说明理由; (2)连接AQ交PC于点F,设,试问:k的值是否随点P的移动而变化?证明你的结论.

3.已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P. (1)请你在图1中作出⊙O(不写作法,保留作图痕迹); (2)与是否相等?请你说明理由; (3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考) 4.在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F. (I)如图①,若∠F=50°,求∠BGF的大小; (II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.

5.如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF. (1)求证:∠ACD=∠F; (2)若tan∠F= ①求证:四边形ABCD是平行四边形; ②连接DE,当⊙O的半径为3时,求DE的长. 6.如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE. (1)求AC、AD的长; (2)试判断直线PC与⊙O的位置关系,并说明理由.

中考数学--动点问题题型方法归纳

图 B 图 B 图动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1(2009年齐齐哈尔市)直线3 64 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的 平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2.如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

人教版_2021年中考数学二轮复习--几何综合题(附答案)

2021年中考数学二轮复习--几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构 造基本图形. ⑵掌握常规的证题方法和思路. ⑶运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运 用数学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC中,AB=AC,以AC为直径的⊙O与AB相交于点E,点F是BE的中点. (1)求证:DF是⊙O的切线.(2)若AE=14,BC=12,求BF的长. 解:(1)证明:连接OD,AD. AC是直径, ∴AD⊥BC.⊿ABC中,AB=AC, ∴∠B=∠C,∠BAD=∠DAC. 又∠BED是圆内接四边形ACDE的外角, ∴∠C=∠BED. 故∠B=∠BED,即DE=DB. 点F是BE的中点,DF⊥AB且OA和OD是半径, 即∠DAC=∠BAD=∠ODA.

故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21 BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去). 则 BF 的长为2. 点拨:过半径的外端且垂直于半径的直线才是切线,所以要证明一条直线是否是此圆的切线,应满足这两个条件才行. 【例2】(重庆,10分)如图,在△ABC 中,点E 在BC 上, 点D 在AE 上,已知∠ABD =∠ACD,∠BDE =∠CDE .求证:BD =CD 。 证明:因为∠ABD=∠ACD,∠BDE=∠CDE 而∠BDE=∠AB D +∠BAD,∠CDE=∠ACD+∠CAD 所以 ∠BAD=∠CAD,而∠ADB=180°-∠BDE ∠ADC=180°-∠CDE,所以∠ADB =∠ADC 在△ADB 和△ADC 中, ∠BAD=∠CAD AD =AD ∠ADB =∠ADC 所以 △ADB≌△ADC 所以 BD =CD 。 (注:用“AAS”证三角形全等,同样给分) A B C D E

中考数学中的探究性问题动态几何(终审稿)

中考数学中的探究性问 题动态几何 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

中考数学中的《探究性问题——动态几何》 动态几何类问题是近几年中考命题的热点,题目灵活、多变,能够全面考查 学生的综合分析和解决问题的能力。 有关动态几何的概念,在很多资料上有说明,但是没有一个统一的定义,在这里就不在赘述了。本人只是用2005 年的部分中考数学试题加以说明。 一、知识网络 《动态几何》涉及的几种情况动点问题? 动线问题动形问题? ? 二、例题经典 1.【05 重庆课改】如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1 个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2 个单位长度的速度向点A 移动,设点P、Q 移动的时间为t 秒. (1) 求直线AB 的解析式; y (2) 当t 为何值时,△APQ 与△AOB 相似 24 A (3) 当t 为何值时,△APQ 的面积为 个平方单位 5 P Q

【解】(1)设直线AB 的解析式为y=k x+b 由题意,得b=6 8k+b=0 3 解得k=-b=6 4 3 所以,直线AB 的解析式为y=-x+6. 4 (2)由AO=6,BO=8 得AB=10 所以AP=t ,AQ=10-2t 1°当∠APQ=∠AOB 时,△APQ∽△AOB. t 10 2t 30 所以=解得t= (秒) 6 10 11 2°当∠AQP=∠AOB 时,△AQP∽△AOB. t 10 2t 50 所以=解得t= 10 6 13 (秒) (3)过点Q 作QE 垂直AO 于点E. BO 4 在Rt△AOB 中,Sin∠BAO= = AB 5 O y y A P Q O A Q y B B B x x x

中考数学几何专题知识点总结78点中考数学几何压轴题

中考数学几何专题知识点总结78点中考数学 几何压轴题 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

初中数学几何的动点问题专题练习

动点问题专题训练 1、(09包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ································································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间4 33 BP t ==秒, ∴515 443 Q CQ v t = ==厘米/秒. · ·················································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得15 32104 x x =+?, 解得80 3 x = 秒.

2020年中考数学 一题多解

一题多解 探究数学问题解决的新思路,对于学生发散性思维和创造性思维的培养是十分有利 的。 下面一道例题,是从多维度角度出发来探究解题新思路的: 例:如图(1)在梯形ABCD 中,AB ∥CD ,四边形ACED 是平行四边形,延长DC 交BE 于F. 求证:EF=FB 分析:这个题目本身不难,求证也容易,但通过对题设和结论的深入挖掘与探索,我们可以得出许多好的证法,总结如下: I E F B C A 证明一:如图所示,作BQ∥AD,交DF 延长线于Q 点,则四边形ABQD 是平行四边形,从而BQ=AD ,再由题设可证△CEF≌△QBF, 得证EF=FB. Q I E F B C A 证明二:如左图所示:作FM∥DA 交AB 于M ,则四边形ADFM 是平行四边形,从而FM=DA.再证△CEF≌△MFB,从而结论可得证. M I E F B C A 证明三:作CN∥EB 交AB 于N ,则四边形CNBF 是□,从而CN=FB. 再证:△ANC≌△DFE,可得CN=EF ,即EF=FB. N I E F B C A 证明四:作DP ∥FB 交AB 于P ,证明△ADP ≌△CEF ,从而得出结论. P I E F B C A

证明五:延长EC 交AB 于G ,则四边形ADCG 是□,∴CE=AD=GC ,即C 是EG 中点.又CF ∥GB ,∴F 是EB 中点,结论得证. G I E F B C A 证明六:连结AE 交CD 于O 点,则O 是AE 中点,又OF ∥AB , ∴F 是AB 中点,得证. I E F B C A 证明七:延长ED 交BA 延长线于H 点,则HACD 是□ , ∴CA=DH=ED ∴D 是EH 中点.又DF ∥HB ∴F 是EB 中点,得证. H I E F B C A 证明八:作ES ∥CD 交AD 延长线于S ,则CDSE 是□ ∴DS=CE=AD, ∴D 是AS 中点.又SE ∥CD ∥AB ∴F 是EB 中点,得证. S I E F B C A 证明九:在证明一作的辅助线基础上,连结EQ ,则可得ECBQ 是□,从而F 是□ECBQ 对角线EB 的中点。 总之,上述不同证法的辅助线可归结为以下两种: ①作平行线构成平行四边形和全等三角形进行等量代换。 ②作平行线,由题设产生中点,通过平行线等分线段定理的推论得出结论。 这其中,其实蕴含了平面几何的平移变换和旋转变换的数学思想。

中考数学压轴题几何代数综合题(PDF版)

第三课时 几何代数综合题1.已知:如图①,在矩形ABCD 中,AB=5,AD=320 ,AE ⊥BD ,垂足是 E.点F 是点E 关于AB 的对称点,连接 AF 、BF. (1)求AE 和BE 的长; (2)若将△ABF 沿着射线BD 方向平移,设平移的距离为 m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值. (3)如图②,将△ABF 绕点B 顺时针旋转一个角(0°<<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程 中,设A ′F ′所在的直线与直线 AD 交于点P.与直线BD 交于点Q.是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由 . 解:(1)在Rt △ABD 中,AB=5,AD = ,由勾股定理得:BD === . ∵S △ABD =BD?AE =AB?AD , ∴AE===4. 在Rt △ABE 中,AB=5,AE=4,由勾股定理得: BE=3.(2)设平移中的三角形为△ A ′ B ′F ′,如答图2所示:由对称点性质可知,∠ 1=∠2.由平移性质可知,AB ∥A ′B ′,∠4=∠1,BF=B ′F ′=3. ①当点F ′落在AB 上时,∵AB ∥A ′B ′, ∴∠3=∠4,∴∠3=∠2, ∴BB ′=B ′F ′=3,即m=3; ②当点F ′落在AD 上时,∵AB ∥A ′B ′, ∴∠6=∠2,∵∠1=∠2,∠5=∠1, ∴∠5=∠6,又易知A ′B ′⊥AD , ∴△B ′F ′D 为等腰三角形, ∴B ′D=B ′F ′=3, ∴BB ′=B D ﹣B ′D =﹣3=,即m=. (3)存在.理由如下:

相关主题
文本预览
相关文档 最新文档