当前位置:文档之家› dac0832函数信号发生器.

dac0832函数信号发生器.

dac0832函数信号发生器.
dac0832函数信号发生器.

智能仪器课程设计

设计题目:函数信号发生器设计

学生姓名:赵鑫、罗承波、江再农

学院名称:机械工程学院

班级:测控技术与仪器062班

学号:200646000227、20064600222、20064600215 指导教师:袁锋伟、王玉林、蒋彦

2009年6月

设计任务:

设计一个函数信号发生器,具体指标如下:

1采用AT89S51及DAC0832设计函数信号发生器;

2输出函数信号为正弦波或三角波或阶梯波;

3输出信号频率为100Hz,幅度0-10V可调;

4必须具有信号输出及外接电源、公共地线接口

低频函数信号发生器的设计

摘要:信号发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。目前使用的信号发生器大部分是利用分立元件组成的体积大,可靠性差,准确度低。课程设计需要各个波形的基本输出,这些波形的实现的具体步骤:正弦波的实现是非常麻烦的。它的实现过程是通过定义一些数据,然后执行时直接输出定义的数据就可以了。而三角波,则每次累加1,当达到初值时,每次累减1,算出延时时间,也就达到要求了,阶梯波和三角波类似!该设计使用的是AT89S51单片机构成的发生器,可产生三角波、方波、正弦波等多种波形,波形的频率可用程序控制改变。在单片机上加外围器件独立式开关,通过开关控制波形的选择。在单片机的输出端口接DAC0832进行DA转换,再通过运放进行波形调整,最后输出波形接在示波器上显示。

关键词:信号发生器;单片机;波形调整

The design of low-frequency function signal-generator

Abstract:Signal generator is a common signal source, widely used in electronic circuits, automatic control systems and experiments in areas such as teaching. Currently used by most of the signal generator is composed of discrete components use bulky, poor reliability, low accuracy. Curriculum design of the basic needs of all the output waveform, the waveform of the specific steps to achieve: the realization of sine wave is very troublesome. It is through the implementation of the definition of some data, and then direct the output when the definition of the implementation of the data on it. The triangle wave, then add 1 each time, when the initial value to reach every tired by 1, calculate the delay time, they meet the requirement, the ladder-wave and triangular wave similar! The design is composed of single-chip AT89S51 generator can produce the triangular wave, square wave, sine wave, etc.,

waveform control can be used to change the frequency. Increase in single-chip peripheral devices on stand-alone switch, switch control through the choice of waveform. Output ports in the MCU access to DA converter DAC0832, and then through the operational amplifier to adjust the waveform, then the final output waveform in the oscilloscope display.

Key words: signal generator;single-chip microcomputer;wave-form adjustment

目录

1、设计概述

1.1、设计任务-----------------------------------1

1.2、设计思想-----------------------------------1

2、硬件资料

2.1、芯片资料 ----------------------------------2

3、软件系统设计

3.1、正弦波设计流程图---------------------------4 3.2、三角波设计流程图---------------------------5

3.3、阶梯波设计流程图--------------------------7

4、系统的组装与调试

4.1、protel原理图------------------------- ------8

4.2、protues原理图----------------------- -------8

5、函数发生器程序-------------------------------9

6、操作说明--------------------------------------11

7、总结及心得体会-------------------------------12

8、问题解答-------------------------------------12 参考文献---------------------------------------12

函数信号发生器设计

1、设计概述

1.1、设计任务:

设计一个函数信号发生器,具体指标如下:

1采用AT89S51及DAC0832设计函数信号发生器;

2输出函数信号为正弦波或三角波或阶梯波;

3输出信号频率为100Hz,幅度0-10V可调;

4必须具有信号输出及外接电源、公共地线接口

1.2、主要设计思想

从此题的要求我的设计思路分以下几步:

(一)、课设需要各个波形的基本输出。如输出三角波、梯形波、正弦波。这些波形的实现的具体步骤:正弦波的实现是非常麻烦的。它的实现过程是通过定义一些数据,然后执行时直接输出定义的数据就可以了。然而为了实现100HZ的频率,终于发现,将总时间除了总步数,根据每步执行时间,算出延时时间,最终达到要求,然后建一个表通过查表来进行输出,这样主要工作任务就落到了建表的过程中。这样做的好处在于,查表所耗费的时钟周期相同,这样输出的点与点之间的距离就相等了,输出的波形行将更趋于完美,当然更让我们感到的高兴的是它输出波形的频率将近达到了100赫兹,能够满足我们设计的扩展要求了。而三角波,则每次累加1,当达到初值时,每次累减1,算出延时时间,也就达到要求了,阶梯波和三角波类似。

(二)、这次做的三种波形可以相互转换,这个实现起来找了很多人最终发现,在每次循环之初进行扫描,而在每个中断入口处,对中断优先级进行设定,最终达到设计目的。

如下图所示

图1.1

2、硬件资料

2.1、芯片功能介绍

(1)、DAC0832芯片介绍:

DAC0832为一个8位D/A转换器,单电源供电,在+5~+15V范围内均可正常工作。基准电压的范围为±10V,电流建立时间为1μs,CMOS工艺,低功耗20mW。DAC0832的内部结构框图如下图所示。

< 图 2 . 1 >

DAC0832的外部引脚及功能介绍图如下:

< 图 2. 2 >

(2)、DAC0832的应用:

DAC0832一是用作单极性电压输出,二是用作双极性电压输出,最后是用作程控放大器。

(3)、DAC0832与8031的连接方式:

DAC0832的与单片机的连接方式有三种方式:一、单缓冲

二、双缓冲、三是直通方式。本程序采用的是方式一即单缓冲方式,ILE为高电平,CS、WR1、WR2、XFER为低电平。

< 图 2 . 3 >.

I/O口引脚:

P0、P1、P2、P3为4个8位I/O口的外部引脚.

RST/VPD(9脚)RST:

单片刚接上电源时,其内部各寄存器处于随机状态,在此脚输入24个时钟周期宽度以上的高电平将使单片机复位。单片机正常工作时,此脚应为≤0.5V低电平。VPD:备用电源输入端。当Vcc下降到低于规定的值,而VPD在其规定的电压范围内(5±0.5V)时,VPD就向内部RAM提供备用电源以保持内部RAM的数据。

ALE/PROG(30引脚)ALE引脚输出为地址锁存允许信号,当单片机上电工作后,ALE 引脚不断输出正脉冲信号. 当访问片外存储器时,ALE(地址锁存允许信号)输出脉冲的负跳沿用于16位地址的低8位锁存信号。不访问片外存储器,ALE端以时钟振荡器频率的1/6固定输出正脉冲。在访问外部数据存储器时(执行MOVX指令),ALE会丢失一个ALE 脉冲。

MCS-51单片机的片外总线结构

<图2.4>

MCS-51系列单片机片外引脚可以构成如上图所示的三总线结构:

地址总线(AB)数据总线(DB)控制总线(CB)8031各个口的功能定义

3、软件系统设计

3.1、正弦波设计流程图及思想

正弦波的实现则相对比较复杂,因为正弦波的实现是输出各个点的值就行了,可是各个点值则要通过正弦函数来求出,不过这些值直接去网上下载下来使用就可以了。输出的数据刚好是256个数据,这样则可以直接相加就行了。

3.2、三角波的实现过程

三角波的实现是设置一个初值,然后进行加数,同样是加到某个数之后再进行减数,减到初值之后就再返回到先前的操作,这个操作跟锯齿波的实现是相似的。此程序输入的VREF的电压是+5V,因此该波形输出的最大频率是初值为00H和最终值为0FFH,且步数为1,这样输出的波形是最大的。题目要求输出频率100HZ,算出程序每步应该延续多少微秒,5ms/256即为循环一次所需时间

3.3、阶梯波的实现过程及实验仿真波形图

阶梯波的实现是设置一个初值00H,然后进行加数16,同样是加到某个数之后再进行减数,减到初值之后就再返回到先前的操作,在每个加数与减数时延时,达到频率100HZ 的要求。这个操作跟三角波的实现是相似的。为了实现阶梯波,编程的时间最多,每次总是出现锯齿状的阶梯波,其中还曾经用过定时控制,可是只能实现一个延时,其余的都没戏,最终发现只有设初值为0时,每次累加32,当达到初值时递减,其仿真图形如

3.4、三角波仿真波形图如下:

3.5、正弦波仿真波形图如下:

统的组装与调试

4.1、实验protues仿真图

<图4.1>

中断0为阶梯波,中断1为三角波,默认状态为正弦波!即当两个开关都断开时为正弦波,P3.2开关闭合时为阶梯波,P3.3口开关闭合时为三角波,但当P3.2和P3.3都闭合时,则按照中断优先级确定。

4.2、函数信号发生器ptotel电路图

<图4.2> 5、函数发生器程序

ORG 0000H

AJMP MAIN

ORG 0003H

AJMP JIETI

ORG 0013H

AJMP SANJIAO

ORG 0030H

MAIN: SETB EX0

SETB EX1

CLR IT0

CLR IT1

SETB EA

LCALL ZHENGXUAN

SJMP MAIN

;三角波

SANJIAO:

MOV DPTR,#2FFFH; 选中DA0832 MOV A,#00H

JNB P3.2,JIETI

UP1:

MOVX @DPTR,A ; 向0832输出数据

INC A

LCALL DELAY3

JNZ UP1

DOWN1:

DEC A ; A=!0 跳转反之顺序执

MOVX @DPTR,A

LCALL DELAY3

NOP

JNZ DOWN1

RETI

JIETI:MOV A,#00H

MOV IP,#04H

MOV DPTR,#2FFFH

LOOP6: JB P3.2,ZHENGXUAN

MOVX @DPTR,A

LCALL DELAY

CLR C

ADD A,#32

JNZ LOOP6

DOWN4:

NOP

NOP

CLR C

SUBB A,#32

MOVX @DPTR,A

LCALL DELAY

JNZ DOWN4

AJMP LOOP6

RETI

;正弦波

ZHENGXUAN: MOV R3,#00H ;取表格初值LOOP1: ;在表格里取数送到指定地址MOV A,R3

MOV DPTR,#SETTAB

MOVC A,@A+DPTR

JNB P3.2,JIETI

JNB P3.3,SANJIAO

MOVX @DPTR,A

INC R3

LCALL DELAY1 ;表格加一

AJMP LOOP1 ;循环

SETTAB: ;正弦表格

DB 80H,83H,86H,89H,8DH,90H,93H,96H

DB 99H,9CH,9FH,0A2H,0A5H,0A8H,0ABH,0AEH

DB 0B1H,0B4H,0B7H,0BAH,0BCH,0BFH,0C2H,0C5H DB 0C7H,0CAH,0CCH,0CFH,0D1H, 0D4H,0D6H,0D8H DB 0DAH,0DDH,0DFH,0E1H,0E3H, 0E5H,0E7H,0E9H DB 0EAH,0ECH,0EEH,0EFH,0F1H, 0F2H,0F4H,0F5H DB 0F6H,0F7H,0F8H,0F9H,0FAH, 0FBH,0FCH,0FDH DB 0FDH,0FEH,0FFH,0FFH,0FFH, 0FFH,0FFH,0FFH DB 0FFH,0FFH,0FFH,0FFH,0FFH, 0FFH,0FEH,0FDH DB 0FDH,0FCH,0FBH,0FAH,0F9H, 0F8H,0F7H,0F6H DB 0F5H,0F4H,0F2H,0F1H,0EFH, 0EEH,0ECH,0EAH DB 0E9H,0E7H,0E5H,0E3H,0E1H, 0DEH,0DDH,0DAH DB 0D8H,0D6H,0D4H,0D1H,0CFH, 0CCH,0CAH,0C7H DB 0C5H,0C2H,0BFH,0BCH,0BAH, 0B7H,0B4H,0B1H DB 0AEH,0ABH,0A8H,0A5H,0A2H, 9FH, 9CH, 99H DB 96H, 93H, 90H, 8DH, 89H, 86H, 83H, 80H

DB 80H, 7CH, 79H, 78H, 72H, 6FH, 6CH, 69H

DB 66H, 63H, 60H, 5DH, 5AH, 57H, 55H, 51H

DB 4EH, 4CH, 48H, 45H, 43H, 40H, 3DH, 3AH

DB 38H, 35H, 33H, 30H, 2EH, 2BH, 29H, 27H

DB 25H, 22H, 20H, 1EH, 1CH, 1AH, 18H, 16H

DB 15H, 13H, 11H, 10H, 0EH, 0DH, 0BH, 0AH

DB 09H, 08H, 07H, 06H, 05H, 04H, 03H, 02H

DB 02H, 01H, 00H, 00H, 00H, 00H, 00H, 00H

DB 00H, 00H, 00H, 00H, 00H, 00H, 01H, 02H

DB 02H, 03H, 04H, 05H, 06H, 07H, 08H, 09H

DB 0AH, 0BH, 0DH, 0EH, 10H, 11H, 13H, 15H

DB 16H, 18H, 1AH, 1CH, 1EH, 20H, 22H, 25H

DB 27H, 29H, 2BH, 2EH, 30H, 33H, 35H, 38H

DB 3AH, 3DH, 40H, 43H, 45H, 48H, 4CH, 4EH

DB 51H, 55H, 57H, 5AH, 5DH, 60H, 63H, 66H

DB 69H, 6CH, 6FH, 72H, 76H, 79H, 7CH, 80H

RET

DELAY1:MOV R5,#11

DJNZ R5,$

RET

DELAY:MOV R7,#50

MOV R6,#02

DS2:DJNZ R7,DS2

DJNZ R6,DS2

RET

DELAY3:MOV R4,#04H

DJNZ R4,$

NOP

RET

END

6、操作说明

6.1接线:

从左至右(从靠边开始)依次接线(+5V、OUT、-12V、+12V、GND)

6.2选择波形:

当两个开关皆靠近单片机这边时,为正弦波,同样的视角,靠上的开关选通中断1,为三角波,靠下的开关为中断0为阶梯波(注意:由于开关元器件缺失,在每次选通一种波形后,换另一种波形需先将原先的开关位置拨至0位。

7、课程设计体会

两个星期的课程设计很快就这样过去了,两周时间我们熟悉了从设计到制版到软件编程的全过程,也明白了细节决定成败的问题,在两周时间里,我们不断的碰到问题,比如说阶梯波总是像锯齿波,布线的宽度,焊点的大小,以及许许多多的问题,在不断解决问题的同时我们增长了知识,每一个细节都能可能会导致电路板的失败,在这几周里我们小组成员不断地深化改革,分工合作取得了不朽的成果,大家集思广义,最终确定了我们小组的设计方案,以及针对100Hz的实现方法。后来还有一个问题就是调频调幅的问题,由于我开始在程序当中设置的值过小导致后来我在示波器上看到的波形调频后效果不是非常的明显,后来我检查完了之后我又自己在电脑上进行修改程序调试终于把这个问题解决了。

最后,我觉得两个星期的时间虽然过的很快但是非常的充实。在这里再一次感谢各位老师的指导和同学的帮助。

8、问题解答

1、正弦波表格如何得来?

根据两个点(0,80H)、(π/2,0FFH),在0至π/2范围内有64个点,可以求得正弦波的函数方程为Y=127sin(90n/64)+128,(n=1,2,3,….256)

如当n=1时,求得Y=83H。

2、如何实现从-5V到+5V的变化范围?

DAC0832具有单极性和双极性两种情况,本次采样的是单极性电压输出,故输出为0V到10V,如果才用双极性电压输出即可达到要求。

参考文献

1、主编:周航慈.《单片机应用程序设计技术》北京航空航天大学出版社,2005。

2、主编:张伟.《Protel 99SE实用教程》,人民邮电出版社,2008。

DAC0832的波形发生器(汇编)

ORG 0000H KB:MOV P1,#0FFH;置P0口为输入方式MOV A,P1;读键值 CPL A ANL A,#1FH;屏蔽高三位 JZ KB;无键闭合继续检测 ACALL DL Y_10MS;延时10ms,去抖动MOV A,P1;再次检测有无键闭合 CPL A ANL A,#1FH JZ KB CJNE A,#01H,KB01 LCALL FANGBO;调用方波子程序SJMP KB KB01:CJNE A,#02H,KB02 LCALL JVCHI;调用锯齿波子程序SJMP KB KB02:CJNE A,#04H,KB03 LCALL TIXING;调用梯形波子程序SJMP KB KB03:CJNE A,#08H,KB04 LCALL SANJIAO;调用三角波子程序SJMP KB KB04:CJNE A,#10H,KB LCALL ZHENGXIAN;调用正弦波子程序SJMP KB ;方波子程序////////////// FANGBO: MOV DPTR,#0FFFEH LP1: MOV A,0 MOVX @DPTR,A LCALL DELAY1 MOV A,#0FFH MOVX @DPTR,A LCALL DELAY1 AJMP LP1 ;锯齿波子程序///////////// JVCHI: MOV DPTR,#0FFFEH MOV A,#0FFH WW:MOVX @DPTR,A DEC A NOP

NOP NOP AJMP WW ;梯形波子程序 TIXING: MOV DPTR,#0FFFEH MOV R2,#07DH MOV R4,#0AFH MOV A,#00H D1:MOVX @DPTR,A LCALL DELAY2 ADD A,R2 DJNZ R4,D1 AJMP D1 ;三角波子程序/////////////// SANJIAO: MOV DPTR,#0FFFEH MOV R6,#10H MOV A,#00H LOOP1: MOVX @DPTR,A ADD A,R6 CJNE A,#0FFH,LOOP1 LOOP2: MOVX @DPTR,A SUBB A,R6 CJNE A,#07H,LOOP2 AJMP LOOP1 ;正弦波子程序///////////////// ZHENGXIAN: MOV R1,#00H QZ:MOV A,R1 MOV DPTR,#SETTAB MOVC A,@A+DPTR MOV DPTR,#0FFFEH MOVX @DPTR,A INC R1 AJMP QZ ;延时程序2 DELAY2:MOV 31H,#02H PW:DJNZ 31H,PW RET ;延时子程序1 DELAY1: MOV 30H,#0FFH

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原 理 什么是函数信号发生器?函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。 函数信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。 函数信号发生器的工作原理:函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。它能够产生多种波形,如三角波、锯齿波、矩形波、正弦波,所以在生产实践和科技领域中有着广泛的应用。 函数信号发生器系统主要由主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表构成。当输入端输入小信号正弦波时,该信号分两路传输,一路完成整流倍压功能,提供工作电源;另一路进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出,输出端为可调电阻。 函数信号发生器产生的各种波形曲线均可以用三角函数方程式来表示,函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频发射,这里的射频波就是载波,把音频、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

基于DAC0832芯片的简单信号发生器设计

东北石油大学课程设计 2012年3月 9 日

东北石油大学课程设计任务书 课程单片机原理及应用课程设计 题目基于DAC0832芯片的简单信号发生器设计 专业班级姓名学号 一、设计目的:训练学生综合运用己学课程的基本知识,独立进行单片机应用技术开发工作,掌握单片机程序设计、调试,应用电路设计、分析及调试检测。 二、设计要求: 1. 应用MCS-51单片机设计基于DAC0832芯片的简单信号发生器; 2. 频率范围:0-1KHZ,输出电压:方波Up-p>3V,正弦波Up-p> 1V,波形特性:方波tr<100us,正弦波非线性失真系数r<5%; 3. 硬件设计根据设计的任务选定合适的单片机,根据控制对象设计接口电路。设计的单元电路必须有工作原理,器件的作用,分析和计算过程; 4. 软件设计根据电路工作过程,画出软件流程图,根据流程图编写相应的程序,进行调试并打印程序清单; 5. 原理图设计根据所确定的设计电路,利用Protel等有关工具软件绘制电路原理图、PCB板图、提供元器件清单。 三、参考资料: [1] 单片微型计算机与接口技术,李群芳、黄建编著,电子工业出版社; [2] 单片机原理及应用,张毅刚编著,高等教育出版社; [3] 51系列单片机及C51程序设计,王建校,杨建国等编著,科学出版社; [4] 单片机原理及接口技术,李朝青编著,北京航空航天大学出版社; 完成期限2012.3.5—2012.3.9 指导教师 专业负责人 2012年 3 月2 日

目录 目录.......................................................................................................................... I 第1章概述.. (1) 第2章信号发生器的原理 (2) 2.1 AT89C51芯片的简单介绍 (2) 2.2 数模转换器DAC0832的简单介绍 (4) 2.3共阳数码管和运算放大器LM358 (6) 第3章硬件电路设计 (7) 3.1 单片机最小系统 (7) 3.2 电源电路的设计 (8) 3.3 D/A转换接口电路的设计 (8) 第4章程序设计 (9) 4.1 主程序设计 (9) 4.2 信号发生器源程序 (10) 第5章总结 (14) 参考文献 (15)

函数信号发生器的使用方法规定

函数信号发生器的使用方法规定 1、目的:为操作人员作操作指导。 2、范围:适用于函数信号发生器操作人员。 3、操作步骤: 3.1注意事项 仪器在只使用“电压输出端”时应将“输出衰减”开关置于“0dB”~“80dB”内的位置,以免功率指示电压表指示过大而损坏。 3.2使用方法 3.2.1开机:在未开机前应首先检查仪器外接电源是否为交流220V±10%,50Hz±5%, 并检查电源插头上的地线脚应与在地接触良好,以防机壳带电。面板上的电源开关 应放在“关”位置,“电平调节”旋钮置中间,输出衰减旋钮置“0dB”,频段开关设 置在你所需要的频段。 3.2.2频率选择:首先将频段开关设置在你所期望的频率范围内,然后调节频率调谐旋钮 和频率微调旋钮,至数码管上指示你所需要的频率为止。 3.2.3波形选择:波形开关在“~”位置,可在电压输出端获得全频段的电压正弦信号,在 功率输出端可获得20Hz~100kHz的功率输出;波形开关在“”位置,在电压输 出端可获得全频段的电压方波信号。输出衰减在功率输出端8Ω档同样可以获得 20Hz~100kHz的方波功率输出。 3.2.4输出电压调整:电压输出端的输出电压可通过“电平调节”旋钮连续可调。 3.2.5功率输出调整:功率输出端的输出同由“电平调节”旋钮控制调节,并可通过“输 出衰减”进行80 dB的衰减。“输出衰减”控制开关上有8Ω和600Ω二档匹配档, 用以匹配低阻和较高负载以获取最大输出功率。 3.2.6功率的平衡输出:本仪器600Ω功率输出档可进行平衡输出,方法是可将面板上中间 红色接线柱和黑色接线柱之间的接地片取下,接在两个红色接线柱上即可,但本仪器连接的其它仪器也应不接在“地”电位。

函数信号发生器

函数信号发生器 函数信号发生器 作者:华伟锋卞蕊樊旭超 2013-8-8

函数信号发生器 摘要 直接数字频率合成(DDS)是一种重要的频率合成技术,具有分辨率高、频率变换快等优点,在雷达及通信等领域有着广泛的应用前景。本文介绍了DDS(直接数字频率合成)的基本原理和工作特点,提出以DDS芯片AD9850芯片为核心利用MSP430F5438单片机控制,辅以必要的外围电路,构成一个输出波形稳定、精度较高的信号发生器。该信号发生器主要能产生标准的正弦波、方波与三角波(锯齿波),波形可手动切换,频率步进可调,软件系统采用菜单形式进行操作,LCD液晶显示可实时显示输出信号的类型、幅度、频率和频率步进值,操作方便明了,还增加了很多功能。 关键词:AD9850;信号发生器;MSP430F149单片机;DDS;LCD液晶; Abstact:Direct Digital Synthesis (DDS) is an important frequency synthesizer technology, with high resolution, fast frequency conversion, etc., in radar and communications and other fields have a wide range of applications. This article describes the DDS (direct digital frequency synthesis) of the basic principles and work, we proposed to DDS chip AD9850 chip as the core using MSP430F5438 MCU control, supplemented by the necessary peripheral circuits to form a stable output waveform, high precision signal generator . The signal generator can generate standard primary sine wave, square wave and triangular wave (sawtooth), the waveform can be manually switched, frequency step adjustable software system used to operate the menu form, LCD liquid crystal display can be real-time display of the output signal type , amplitude, frequency and frequency step value, easy to understand, but also adds a lot of functionality. Key words:AD9850; signal generator; MSP430F5438MCU; DDS; LCD liquid crystal;

课程设计-基于DAC0832的波形发生器设计讲解

波形发生器设计 目录 摘要 (1) 第一章绪论 (2) 第二章DAC0832及其特性 (3) 2.1 D/A转换器与单片机接口探究 (3) 2.1.1 数据线连接 (3) 2.1.2 地址线连接 (3) 2.1.3 控制线连接 (3) 2.2 DAC0832的认识 (4) 2.2.1 DAC0832的结构 (4) 2.2.2 DAC0832的引脚 (4) 2.2.3 DAC0832的启动控制方式 (5) 第三章硬件设计 (7) 3.1 启动方式选择 (7) 3.2 框图设计 (7) 3.3 电路图设计 (7) 第四章程序设计 (9) 4.1 程序流程图 (9) 4.1.1 程序设计思路 (9) 4.1.2流程图 (9) 4.2 用C语言实现 (11) 4.3 用汇编语言实现 (14) 第五章Proteus仿真及结果 (17) 5.1方波: (17) 5.2正弦波: (17) 5.3三角波: (18) 5.4梯形波: (18) 5.5锯齿波: (19) 设计心得: (20) 参考文献: (21)

摘要 本设计使用AT89C51单片机做控制,选择8位D/A转换器DAC0832作D/A 转换。 硬件方面,首先51熟悉单片机的结构和工作原理,连接单片机的最小系统。之后熟悉D/A转换器工作方式,经过分析后选择DAC0832的单缓冲启动控制方式,完成电路框图。进一步根据设计要求完成通过独立按键控制D/A输出,作出电路框图和电路原理图。 软件方面:设计思路主要体现在两点上。一是控制,通过程序控制DAC转换与输出,按键消抖,选择相应的即将输出的波形。二是产生波形,根据波形的特点编写程序以产生相应波形的数字信号。 分别通过C语言和汇编语言实现简易的波形发生器,输出方波、正弦波、三角波、梯形波和锯齿波,通过独立按键控制分别输出不同的波形。以KILL 与Proteus为设计平台,仿真测试设计结果的正确性。 关键字: 51单片机,DAC0832,单缓冲启动控制方式,波形发生器,C语言设计,汇编语言设计

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

如何使用函数信号发生器

如何使用函数信号发生器 认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发. 这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波,换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路: 改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下: 将方波产生电路比较器的参考幅度予以固定(正、负可利用电路予以切换),改变充放电斜率,即可达成。 这种方式的设计一般使用者的反应是“难调”,这是大缺点,但它可以产生10%以下的占空比却是在采样时的必备条件。 以上的两种占空比调整电路设计思路,各有优缺点,当然连带的也影响到是否能产生“像样的”锯齿波。 接下来PA(功率放大器)的设计。首先是利用运算放大器(OP) ,再利用推拉式(push-pull)放大器(注意交越失真Cross-distortion的预防)将信号送到衰减网路,这部分牵涉到信号源输出信号的指标,包含信噪比、方波上升时间及信号源的频率响应,好的信号源当然是正弦波信噪比高、方波上升时间快、三角波线性度要好、同时伏频特性也要好,(也即频率上升,信号不能衰减或不能减太大),这部分电路较为复杂,尤其在高频时除利用电容作频率补偿外,也牵涉到PC板的布线方式,一不小心,极易引起振荡,想设计这部分电路,除原有的模拟理论基础外尚需具备实际的经验,“Try Error”的耐心是不可缺少的。 PA信号出来后,经过π型的电阻式衰减网路,分别衰减10倍(20dB)或100倍(40dB),此时一部基本的函数波形发生器即已完成。(注意:选用π型衰减网络而不是分压电路是要让输出阻抗保持一定)。 一台功能较强的函数波形发生器,还有扫频、VCG、TTL、 TRIG、 GATE及频率计等功能,其设

51单片机与0832波形发生器锯齿波、三角波、正弦波

// 锯齿波 #include #include // 绝对地址访问头文件 #define DAC0832 XBYTE[0x7fff] //DAC0832的地址为0x7fff void delay() // 定时器定时1ms { TH1=0xfc; TL1=0x18; //定时器初值设定 TR1=1; //启动定时器 while(!TF1); //查询是否溢出 TF1=0; //将溢出标志位清零 } void main() {unsigned char i; TMOD=0x10; // 设置定时器工作方式 while(1) {for(i=0;i<=255;i++) //形成锯齿波,最大值为255 { DAC0832=i; // D/A转换输出 delay(); // 延时 } } } //三角波 #include #include // 绝对地址访问头文件 #define DAC0832 XBYTE[0x7fff] //DAC0832的地址为0x7fff void delay() // 定时器定时1ms { TH1=0xfc; TL1=0x18; //定时器初值设定 TR1=1; //启动定时器 while(!TF1); //查询是否溢出 TF1=0; //将溢出标志位清零 } void main() {unsigned char i; TMOD=0x10; // 设置定时器工作方式 while(1) {for(i=0;i<255;i++) //形成三角波,i增加到最大值为255 {

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

dac0832函数信号发生器.

智能仪器课程设计 设计题目:函数信号发生器设计 学生姓名:赵鑫、罗承波、江再农 学院名称:机械工程学院 班级:测控技术与仪器062班 学号:200646000227、20064600222、20064600215 指导教师:袁锋伟、王玉林、蒋彦 2009年6月

设计任务: 设计一个函数信号发生器,具体指标如下: 1采用AT89S51及DAC0832设计函数信号发生器; 2输出函数信号为正弦波或三角波或阶梯波; 3输出信号频率为100Hz,幅度0-10V可调; 4必须具有信号输出及外接电源、公共地线接口

低频函数信号发生器的设计 摘要:信号发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。目前使用的信号发生器大部分是利用分立元件组成的体积大,可靠性差,准确度低。课程设计需要各个波形的基本输出,这些波形的实现的具体步骤:正弦波的实现是非常麻烦的。它的实现过程是通过定义一些数据,然后执行时直接输出定义的数据就可以了。而三角波,则每次累加1,当达到初值时,每次累减1,算出延时时间,也就达到要求了,阶梯波和三角波类似!该设计使用的是AT89S51单片机构成的发生器,可产生三角波、方波、正弦波等多种波形,波形的频率可用程序控制改变。在单片机上加外围器件独立式开关,通过开关控制波形的选择。在单片机的输出端口接DAC0832进行DA转换,再通过运放进行波形调整,最后输出波形接在示波器上显示。 关键词:信号发生器;单片机;波形调整

The design of low-frequency function signal-generator Abstract:Signal generator is a common signal source, widely used in electronic circuits, automatic control systems and experiments in areas such as teaching. Currently used by most of the signal generator is composed of discrete components use bulky, poor reliability, low accuracy. Curriculum design of the basic needs of all the output waveform, the waveform of the specific steps to achieve: the realization of sine wave is very troublesome. It is through the implementation of the definition of some data, and then direct the output when the definition of the implementation of the data on it. The triangle wave, then add 1 each time, when the initial value to reach every tired by 1, calculate the delay time, they meet the requirement, the ladder-wave and triangular wave similar! The design is composed of single-chip AT89S51 generator can produce the triangular wave, square wave, sine wave, etc.,

函数信号发生器

课程设计(论文) 课程名称:模拟电子技术基础课程设计 题目名称:函数信号发生器 姓名: 学号 班级: 专业:电子信息科学与技术 设计时间:2011-2012-1学期15、16周 教师评分: 2011 年 12 月11 日

目录 1设计的目的及任务 (1) 1.1 课程设计的目的 (3) 1.2 课程设计的任务与要求 (3) 2 电路设计总方案及各部分电路工作原理 (3) 2.1 电路设计总体方案............................................................( 3)2.2 正弦波发生电路的工作原理 (3) 2.3 正弦波---方波工作原理 (4) 2.4 方波---三角波工作原理 (5) 2.5 三角波---正弦波工作原理 (7) 3 电路仿真及结果 (8) 3.1 仿真电路图及参数选择 (8) 3.2 仿真结果及分析 (9) 4收获与体会 (13) 5 仪器仪表明细清单 (13) 6 参考文献 (14)

一、 设计的目的及任务 1.1 课程设计的目的: 1、 熟悉简易信号发生器的电路结构及电路原理,并掌握特定波形 的转换。 2、学习以及熟练运用multisim 工具。 1.2 课程设计的任务与要求 1、 设计一函数信号发生器,能输出特定频率(1kHz )的正弦波(两 个波形)、方波和三角波共四种波形。振幅固定,如-5V 到+5V 之间。 2、 拓展项(可选): 频率可调,锯齿波 脉冲波。 二、 电路设计总方案及各部分电路工作原理 三、 2.1 电路设计总体方案 积分电路 低通滤波

课程设计——波形发生器

波形发生器设计 一.摘要 本文以AT89C51单片机为核心,采用C语言的编程方法,外加DAC0832数模转换模块与集成运放模块,构成了函数波形发生器。可产生方波、三角波、正弦波、锯齿波等多种波形,波形的频率可用程序改变,并可根据需要选择输出波形。其中运用软硬件结合的方法实现设计功能,具有线路简单、结构紧凑、性能优越等特点。 关键词:51单片机;DAC;函数波形发生器 二.设计要求 1.产生正弦波、方波、三角波; 2.幅度可以设定; 3.出频率能达到1MHZ。 4. 发挥部分(自选) 三.设计目的 1、巩固、加深和扩大单片机应用的知识面,提高综合及灵活运用所学知识解决实际课题设计的能力。 2、培养针对课题需要,选择和查阅有关手册、图表及文献资料的能力,提高组成系统、编程、调试的动脑动手能力。 3、通过对课题设计方案的分析、选择、比较,熟悉运用单片机系统开发、软硬件设计的方法内容及步骤。 4,掌握各个接口芯片(如0832等)的功能特性及接口方法,并能运用其实现一个简单的单片机应用系统功能器件。

四.设计方案 波形发生器的实现方法通常有以下几种: 方案一:采用模拟电路搭建函数信号发生器,它可以同时产生方波、三角波、正弦波。但是这种模块产生的不能产生任意的波形(例如梯形波),并且频率调节很不方便。 方案二:采用锁相式频率合成器,利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需频率上,该方案性能良好,但难以达到输出频率覆盖系数的要求,且电路复杂。。 方案三:采用AT89S52单片机和DAC0832芯片,直接连接键盘和显示。该种方案主要对AT89S52单片机的各个I/O口充分利用。P1口是连接键盘, P2口接显示电路,P0口连接DAC0832输出波形。这样总体来说,能对单片机各个接口都利用上,而不在多用其它芯片,从而减小了系统的成本。也对按照系统便携式低频信号发生器的要求所完成。占用空间小,使用芯片少,低功耗。 综合考虑,方案三各项性能和指标都优于其他几种方案,能使输出频率有较好的稳定性,充分体现了模块化设计的要求,而且这些芯片及器件均为通用器件,在市场上较常见,价格也低廉,样品制作成功的可能性比较大,所以本设计采用方案三。 五.设计思路 1.基本功能 1.1.波形的产生 (1)正弦波:通过手动的方法计算出输出各点的电压值,然后

函数信号发生器使用说明

EE1641C~EE1643C型 函数信号发生器/计数器 使用说明书 共 11 张 2004年 10 月

1 概述 1.1 定义及用途 本仪器是一种精密的测试仪器,因其具有连续信号、扫频信号、函数信号、脉冲信号等多种输出信号,并具有多种调制方式以及外部测频功能,故定名为EE1641C型函数信号发生器/计数器、EE1642C(EE1642C1)型函数信号发生器/计数器、EE1643C型函数信号发生器/计数器。本仪器是电子工程师、电子实验室、生产线及教学、科研需配备的理想设备。 1.2 主要特征 1.2.1 采用大规模单片集成精密函数发生器电路,使得该机具有很高的可靠性及优良性能/价格比。 1.2.2 采用单片微机电路进行整周期频率测量和智能化管理,对于输出信号的频率幅度用户可以直观、准确的了解到(特别是低频时亦是如此)。因此极大的方便了用户。 1.2.3 该机采用了精密电流源电路,使输出信号在整个频带内均具有相当高的精度,同时多种电流源的变换使用,使仪器不仅具有正弦波、三角波、方波等基本波形,更具有锯齿波、脉冲波等多种非对称波形的输出,同时对各种波形均可以实现扫描、FSK调制和调频功能,正弦波可以实现调幅功能。此外,本机还具有单次脉冲输出。 1.2.4 整机采用中大规模集成电路设计,优选设计电路,元件降额使用, 以保证仪器高可靠性,平均无故障工作时间高达数千小时以上。 1.2.5 机箱造型美观大方,电子控制按纽操作起来更舒适,更方便。 2 技术参数 2.1 函数信号发生器技术参数 2.1.1 输出频率 a) EE1641C:0.2Hz~3MHz 按十进制分类共分七档 b) EE1642C:0.2Hz~10MHz 按十进制分类共分八档 c) EE1642C1:0.2Hz~15MHz 按十进制分类共分八档 d) EE1643C:0.2Hz~20MHz 按十进制分类共分八档 每档均以频率微调电位器实行频率调节。 2.1.2 输出信号阻抗 a) 函数输出:50Ω b) TTL同步输出:600Ω 2.1.3 输出信号波形 a) 函数输出(对称或非对称输出):正弦波、三角波、方波 b) 同步输出:脉冲波 2.1.4 输出信号幅度 a) 函数输出:≥20Vp–p±10%(空载);(测试条件:fo≤15MHz,0dB衰减) ≥14Vp–p±10%(空载);(测试条件:15MHz≤fo≤20MHz,0dB衰减) b) 同步输出:TTL电平:“0”电平:≤0.8V,“1”电平:≥1.8V(负载电阻≥600Ω) CMOS电平:“0”电平:≤4.5V,“1”电平:5V~13.5V可调(fo≤2MHz) c) 单次脉冲:“0”电平:≤0.5V,“1”电平:≥3.5V 2.1.5 函数输出信号直流电平(offset)调节范围:关或(–10V~+10V)±10%(空载) [“关”位置时输出信号所携带的直流电平为:<0V±0.1V,负载电阻为:50Ω时,调节范围为 (–5V~+5V)±10%]

单片机制作简易正弦波信号发生器(DAC0832)

调试时,电源的质量需要较高,不然的话,波形不易观察看清楚。 //河北工程大学信电学院自动化系 //设计调试成功 ***************将DA输出的 0V ~ -5V范围扩展成 -5V ~ +5V范围,电路如下图:*************** 如若VO2输出更平滑一些,可以在VO2处接一个小电容,滤掉高频。 (一)过程分析计算如下: ?第一级运放出来的V o1=-N*V ref/256。当V ref为+5V时,V o1=0~ -5V。 其中,V ref为参考电压,N为8位数字量输出到DAC0832 ?并结合第二级运放,是否可以推出来如下式子: V o2=-(2*V o1+V ref)=-(2*-N*V ref/256+V ref) =-(-2N*V ref/256+V ref) =2N*V ref/256-V ref 当参考电压V ref=5V时,V o2=10N/256-5。 由于要求输出的是正弦波xsinθ,幅值x不定,下面考虑幅值x分别取5和1的情况: ●当输出波形为5 sinθ时:5 sinθ=V o2 =2N*V ref/256-V ref =10N/256-5 //此时V ref=+5V 得sinθ=2N/256-1

●当输出波形为sinθ时:sinθ=V o2 =2N*V ref/256-V ref =10N/256-5 //此时V ref=+5V 得sinθ=10N/256-5 最后可以考虑输出波形的频率问题。例如要求输出特定频率的正弦波。 (二)针对输出的不同幅值波形 ?当输出波形为5 sinθ时:得sinθ=2N/256-1 这里我们要求进步为一度。具体到进步大小,和内存RAM或者ROM有关,即和你存放数据表的空间有关。放到哪个空间都可以。(这里周期采样最多256个点,步数可以为1、2、5等,自己视情况而定,这里由于是360度,256个采样点,故步的大小360/256=1.4=△θ,由此算的前三个 θ=0,1.4,2.8……,对应N为0x80,0x83,0x86……) 通过sinθ的特征和计算部分数据发现规律: 0~90度与90~180度大小是对称的;181~270度与270~359度是对称的。 故,不是所有数据都是计算的。

实验1 示波器函数信号发生器的原理及使用(实验报告之实验数据表)

实验1 示波器、函数信号发生器的原理及使用 【实验目的】 1. 了解示波器、函数信号发生器的工作原理。 2. 学习调节函数信号发生器产生波形及正确设置参数的方法。 3. 学习用示波器观察测量信号波形的电压参数和时间参数。 4. 通过李萨如图形学习用示波器观察两个信号之间的关系。 【实验仪器】 1. 示波器DS5042型,1台。 2. 函数信号发生器DG1022型,1台。 3. 电缆线(BNC 型插头),2条。 【实验内容与步骤】 1. 利用示波器观测信号的电压和频率 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。 图1-1 函数信号发生器生成的正、余弦信号的波形 学生姓名/学号 指导教师 上课时间 第 周 节

(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表 表1-1 正余弦信号的电压和时间参数的测量 电压参数(V)时间参数 峰峰值最大值最小值频率(Hz)周期(ms)正弦信号 3sin(200πt) 余弦信号 3cos(200πt) 2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。 图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形 3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形 (1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45o),观测并记录两正弦信号的李萨如图形于图1-3中。 (2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135o),观测并记录两正弦信号的李萨如图形于图1-3中。

函数信号发生器

基于labview的函数信号发生器的设计 [摘要] 介绍一种基于labvIEW环境下自行开发的虚拟函数信号发生器,它不仅能够产 生实验室常用的正弦波、三角波、方波、锯齿波信号,而且还可以通过输入公式,产生测试和研究领域所需要的特殊信号。对任意波形的发生可实现公式输入;对信号频率、幅度、相位、偏移量可调可控;方波占空比可以调控;噪声任意可加、创建友好界面、信号波形显示;输出频谱特性;所有调制都可微调与粗调。该仪器系统操作简便,设计灵活,功能强大,可以完成不同环境下的测量要求。因此具有很强的实用性。 关键词:虚拟仪器,labvIEW,虚拟函数信号发生器,正弦波,三角波,方波,锯齿波, 特殊信号。 引言: 在有关电磁信号的测量和研究中,我们需要用到一种或多种信号源,而函数信号发生器则为我们提供了在研究中所需要的信号源。它可以产生不同频率的正弦波,方波,三角波,锯齿波,正负脉冲信号,调频信号,调幅信号和随机信号等。其输出信号的幅值也可以按需要进行调节。传统信号发生器种类繁多,价格昂贵,而且功能固定单一,不具备用户对仪器进行定义及编程的功能,一个传统实验室很难拥有多类信号发生器。然而,基于虚拟仪器技术的实验室均能满足这一要求。 1、虚拟仪器简介: 自从1986年美国NI(National Instrument)公司提出虚拟仪器的概念以来,随着计 算机技术和测量技术的发展,虚拟仪器技术也得到很快的发展。虚拟仪器是指:利用现有的PC机,加上特殊设计的仪器硬件和专用软件,形成既有普通仪器的基本功能,又有一般仪器所没有的特殊功能的新型仪器。与传统的仪器相比其特点主要有:具有更好的测量精度和可重复性;测量速度快;系统组建时间短;由用户定义仪器功能;可扩展性强;技术更新快等。虚拟仪器以软件为核心,其软件又以美国NI公司的Labview虚拟仪器软件开发平台最为常用。Labview是一种图形化的编程语言,主要用来开发数据采集,仪器控制及数据处理分析等软件,功能强大。目前,该开发软件在国际测试、测控行业比较流行,在国内的测控领域也得到广泛应用。函数信号发生器是在科学研究和工程设计中广泛应用的一种通用仪器。下面结合一个虚拟函数信号发生器设计开发具体介绍基于图形化编程语言Labview的虚拟仪器编程方法与实现技术。 2、虚拟函数信号发生器的结构与组成 2.1 虚拟函数信号发生器的前面板

DAC0832数模转换说明书

设计说明书 题目:DAC0832数模转换 专业:机电 班级:机械111 姓名:蒋德昌 学号:2011071117

摘要 波形发生器是能够产生大量的标准信号和用户定义信号,并保证 高精度、高稳定性、可重复性和易操作性的电子仪器。函数波形发 生器具有连续的相位变换、和频率稳定性等优点,不仅可以模拟各 种复杂信号,还可对频率、幅值、相移、波形进行动态、及时的控制,并能够与其它仪器进行通讯,组成自动测试系统,因此被广泛 用于自动控制系统、震动激励、通讯和仪器仪表领域。 本设计是基于DAC0832波形发生器设计与实现。系统是用AT89C51 作为系统的控制核心,外围电路采用数字/模拟转换电路DAC0832, 运放电路采用最简单的反相放大器,按键,LCD显示器等。系统通 过按键来进行整个系统的控制,按键控制切换产生正弦波,锯齿波,三角波,并且通过另外四个按键改变幅值和频率。系统经过调试和 最后的检测,可以得出本系统一下特点:性能较好,稳定性强,价 格便宜,容易操作,具有一定的实用性,最后的成品可以用在常用 的有波形发生器功能要求的应用电子仪器设备上。 关键词:单片机波形发生器 DAC0832 LCD显示器

目录 1设计任务 (4) 2系统整体方案 (4) 3仿真图 (6) 4所用硬件介绍 (9) 4.1 DAC0832 (9) 4.2 LCD1602 (10) 4.3排阻 (11) 4.4 运算放大器 (12) 4.5按键 (13) 5软件系统设计 (14) 5.1 主程序流程图 (14) 5.2波形选择的设计 (14) 5.3按键改变波形频率的设计 (15) 5.4按键改变波形振幅的设计 (15) 6总结 (16)

相关主题
文本预览
相关文档 最新文档