当前位置:文档之家› 基本不等式 基础练习题

基本不等式 基础练习题

基本不等式 基础练习题
基本不等式 基础练习题

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

基本不等式练习题及答案解析

1.若xy>0,则对x y+ y x说法正确的是() A.有最大值-2B.有最小值2 C.无最大值和最小值D.无法确定 答案:B 2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是() A.400 B.100 C.40 D.20 答案:A 3.已知x≥2,则当x=____时,x+4 x有最小值____. 答案:2 4 4.已知f(x)=12 x+4x. (1)当x>0时,求f(x)的最小值; (2)当x<0 时,求f(x)的最大值. 解:(1)∵x>0,∴12 x,4x>0. ∴12 x+4x≥2 12 x·4x=8 3. 当且仅当12 x=4x,即x=3时取最小值83, ∴当x>0时,f(x)的最小值为8 3. (2)∵x<0,∴-x>0. 则-f(x)=12 -x +(-4x)≥2 12 -x ·?-4x?=83, 当且仅当12 -x =-4x时,即x=-3时取等号. ∴当x<0时,f(x)的最大值为-8 3. 一、选择题 1.下列各式,能用基本不等式直接求得最值的是() A.x+1 2x B.x 2-1+ 1 x2-1 C.2x+2-x D.x(1-x) 答案:C 2.函数y=3x2+ 6 x2+1 的最小值是() A.32-3 B.-3 C.6 2 D.62-3

解析:选D.y=3(x2+ 2 x2+1 )=3(x2+1+ 2 x2+1 -1)≥3(22-1)=62-3. 3.已知m、n∈R,mn=100,则m2+n2的最小值是() A.200 B.100 C.50 D.20 解析:选A.m2+n2≥2mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程: ①∵a,b∈(0,+∞),∴b a+ a b≥2 b a· a b=2; ②∵x,y∈(0,+∞),∴lg x+lg y≥2lg x·lg y; ③∵a∈R,a≠0,∴4 a+a≥2 4 a·a=4; ④∵x,y∈R,,xy<0,∴x y+ y x=-[(- x y)+(- y x)]≤-2?- x y??- y x?=-2. 其中正确的推导过程为() A.①②B.②③C.③④D.①④解析:选D.从基本不等式成立的条件考虑. ①∵a,b∈(0,+∞),∴b a, a b∈(0,+∞),符合基本不等式的条件,故①的推导 过程正确; ②虽然x,y∈(0,+∞),但当x∈(0,1)时,lg x是负数,y∈(0,1)时,lg y是负数,∴ ②的推导过程是错误的; ③∵a∈R,不符合基本不等式的条件, ∴4 a+a≥24 a·a=4是错误的; ④由xy<0得x y, y x均为负数,但在推导过程中将全体 x y+ y x提出负号后,(- x y)均 变为正数,符合基本不等式的条件,故④正确. 5.已知a>0,b>0,则1 a+ 1 b+2ab的最小值是() A.2 B.2 2 C.4 D.5 解析:选 C.∵1 a+ 1 b+2ab≥ 2 ab +2ab≥22×2=4.当且仅当 ?? ? ??a=b ab=1 时, 等号成立,即a=b=1时,不等式取得最小值4. 6.已知x、y均为正数,xy=8x+2y,则xy有()

高中不等式的基本知识点和练习题(供参考)

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>;d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a ab b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()0002 2≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42 -=?,则不等式的解的各种情况如下表: 2、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。

3、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < (三)线性规划 1、用二元一次不等式(组)表示平面区域 二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法 由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点) 3、线性规划的有关概念: ①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件. ②线性目标函数:关于x 、y 的一次式z =a x +b y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数. ③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解: 满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域. 使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性约束条件下的最优解的步骤: (1)寻找线性约束条件,列出线性目标函数; (2)由二元一次不等式表示的平面区域做出可行域; (3)依据线性目标函数作参照直线a x +b y =0,在可行域内平移参照直线求目标函数的最优解 2 a b +≤

基本不等式练习题及答案

双基自测 1.(人教A版教材习题改编)函数y=x+1 x (x>0)的值域为( ). A.(-∞,-2]∪[2,+∞) B.(0,+∞) C.[2,+∞) D.(2,+∞) 2.下列不等式:①a2+1>2a;②a+b ab ≤2;③x2+ 1 x2+1 ≥1,其中正确的个 数是 ( ).A.0 B.1 C.2 D.3 3.若a>0,b>0,且a+2b-2=0,则ab的最大值为( ). B.1 C.2 D.4 4.(2011·重庆)若函数f(x)=x+ 1 x-2 (x>2)在x=a处取最小值,则a= ( ). A.1+ 2 B.1+ 3 C.3 D.4 5.已知t>0,则函数y=t2-4t+1 t 的最小值为________. 考向一利用基本不等式求最值 【例1】?(1)已知x>0,y>0,且2x+y=1,则1 x + 1 y 的最小值为________; (2)当x>0时,则f(x)= 2x x2+1 的最大值为________. 【训练1】 (1)已知x>1,则f(x)=x+ 1 x-1 的最小值为________. (2)已知0<x<2 5 ,则y=2x-5x2的最大值为________. (3)若x,y∈(0,+∞)且2x+8y-xy=0,则x+y的最小值为________. 考向二利用基本不等式证明不等式

【例2】?已知a>0,b>0,c>0,求证:bc a + ca b + ab c ≥a+b+c. . 【训练2】已知a>0,b>0,c>0,且a+b+c=1. 求证:1 a + 1 b + 1 c ≥9. 考向三利用基本不等式解决恒成立问题 【例3】?(2010·山东)若对任意x>0, x x2+3x+1 ≤a恒成立,则a的取值 范围是________. 【训练3】(2011·宿州模拟)已知x>0,y>0,xy=x+2y,若xy≥m-2恒成立,则实数m的最大值是________. 考向三利用基本不等式解实际问题 【例3】?某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m.房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低【训练3】(2011·广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g(n)与科技成本的投入次数n 的关系是g(n)=80 n+1 .若水晶产品的销售价格不变,第n次投入后的年利润为 f(n)万元. (1)求出f(n)的表达式; (2)求从今年算起第几年利润最高最高利润为多少万元 【试一试】(2010·四川)设a>b>0,则a2+ 1 ab + 1 a a-b 的最小值是 ( ). A.1 B.2 C.3 D.4 双基自测

基本不等式完整版(非常全面)

2 8 基本不等式专题辅导 2 2 2、基本不等式一般形式(均值不等式) 若 a,b R ,则 a b 2 ab 3、基本不等式的两个重要变形 (1)若 a,b R *,则 2 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数 的和为定植时,它们的积有最小值; a b 6、柯西不等式 (1)若 a, b,c, d R ,则(a 2 b 2)(c 2 d 2) (ac bd )2 (2) 若 a 1, a 2, a 3, bi, b 2, b 3 R ,则有: 2 2 2 2 2 2 2 (a 1 a 2 a 3 )(柑 b ? b 3 ) (aQ a ?b 2 a s b s ) (3) 设a 1,a 2, ,a n 与 db, ,b 是两组实数,则有 2 2 2 p22 2 佝 a 2 a . )(0 b 2 b n )(日山 a 2b 2 a n b n ) 一、知识点总结 1、基本不等式原始形式 二、题型分析 题型一:利用基本不等式证明不等式 (1)若 a,b R ,则 a 2 b 2 2ab 1、设a,b 均为正数,证明不等式:、.ab 二 (2)右 a, b R ,则 ab a,b,c 为两两不相等的实数, (2)若 a, b R ,则 ab b 2 ab bc ca 4、求最值的条件:“一正, 二定,三相等” 5、常用结论 1 (1)若 x 0,则 x — 2 (当且仅当 x 1时取“=”) x 1 (2)若 x 0,则 X - 2 (当且仅当 x 1时取 “=”) X (3)若 ab 0,则-- 2 (当且仅当 a b 时取 “=”) b a 2 2 (4)若 a, b R ,则 ab ( 旦 b)2 a b 2 2 (5)若 a, b R ,贝U 1 . a ab b a 2 b 2 v ------ 1 1 2 2 (1 已知a a,b,c a )(1 1, 求证: b)(1 c) 8abc a, b, c R

最新基本不等式练习题及答案

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2 +1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1 c ≥9. 考向三 利用基本不等式解决恒成立问题 【例3】?(2010·山东)若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是 ________. 【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 考向三 利用基本不等式解实际问题 【例3】?某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低? 【训练3】 (2011·广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g (n )与科技成本的投入次数n 的关系是g (n )= 80 n +1 .若水晶产品的销售价格不变,第n 次投入后的年利润为f (n )万元. (1)求出f (n )的表达式; (2)求从今年算起第几年利润最高?最高利润为多少万元? 【试一试】 (2010·四川)设a >b >0,则a 2+1 ab +1 a (a - b ) 的最小值是( ). A .1 B .2 C .3 D .4 双基自测 D .(2,+∞) 答案 C 2.解析 ①②不正确,③正确,x 2+ 1x 2+1=(x 2 +1)+1x 2+1 -1≥2-1=1.答案 B 3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤1 2.答案 A

广东高考数学(理)一轮题库:7.4-基本不等式(含答案)

第4讲基本不等式一、选择题 1.若x>0,则x+4 x 的最小值为( ). A.2 B.3 C.2 2 D.4 解析∵x>0,∴x+4 x ≥4. 答案 D 2.已知a>0,b>0,a+b=2,则y=1 a + 4 b 的最小值是( ). A.7 2 B.4 C. 9 2 D.5 解析依题意得1 a + 4 b = 1 2? ? ? ? ? 1 a + 4 b( a+b)= 1 2? ? ? ? ? ? 5+ ? ? ? ? ? b a + 4a b≥ 1 2? ? ? ? ? 5+2 b a × 4a b =9 2 ,当且仅当 ?? ? ?? a+b=2 b a = 4a b a>0,b>0 ,即a= 2 3 , b=4 3 时取等号,即 1 a + 4 b 的最小值是 9 2 . 答案 C 3.小王从甲地到乙地的时速分别为a和b(a

又v -a =2ab a + b -a =ab -a 2a +b >a 2-a 2a +b =0,∴v >a . 答案 A 4.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4 C.a +b 有最大值 2 D .a 2+b 2有最小值 22 解析 由基本不等式,得ab ≤a 2+b 2 2 = a +b 2 -2ab 2 ,所以ab ≤1 4 ,故B 错; 1 a +1 b =a +b ab =1ab ≥4,故A 错;由基本不等式得a +b 2 ≤ a +b 2 = 1 2 ,即a +b ≤ 2,故C 正确;a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=1 2, 故D 错. 答案 C 5.已知x >0,y >0,且2x +1 y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是 ( ). A .(-∞,-2]∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2) 解析 ∵x >0,y >0且2x +1 y =1, ∴x +2y =(x +2y )? ???? 2x +1y =4+4y x +x y ≥4+2 4y x ·x y =8,当且仅当4y x =x y , 即x =4,y =2时取等号, ∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

基本不等式专项基础练习

基本不等式专项基础练习 @ 1.若实数b a ,满足2=+b a ,则b a 33+的最小值是( ) C.32 D.432 2.设0,0>>b a ,若3是a 3与b 3的等比中项,则b a 1 1 +的最小值为( ) D.41 3.若0>x ,则x x 2 +的最小值为 此时x 的值为( ) 若x<0则x x 2 +有最( )值为_______ 4.4.已知a,b 为正实数,且b a b a 1 1 ,12+=+则的最小值为( )

A .24 B .6 C .3-22 D .3+22 ; 5.若y x y x y x 21,14,0,0+=+>>则且的最小值为( ) A .9 B .28 C .249+ D .24 6.已知,且满足,则xy 的最大值为_____ 7.已知232=+y x )0,0(>>y x ,则xy 的最小值是_____________。 8.已知,则函数的最小值为 ___________ 9若21x y +=,则24x y +的最小值是______ 10 正数,x y 满足21x y +=,则 y x 11+的最小值为______ 11若x >0,求函数y =x +4x 的最小值,并求此时x 的值; (2)设02,求x +4x -2 的最小值; (4)已知x >0,y >0,且 1x +9y =1,求x +y 的最小值. ,x y R +∈134x y +=t o >2t 41t y t -+=

11解 (1)当x >0时,x +4x ≥2 x ·4x =4, 当且仅当x =4x ,即x 2=4,x =2时取等号. ∴函数y =x +4x (x >0)在x =2时取得最小值4. (2)∵00, ∴y =4x (3-2x )=2[2x (3-2x )] ≤2???? ??2x +3-2x 22=92. 当且仅当2x =3-2x ,即x =34 时,等号成立. ∵34∈? ?? ??0,32. ? ∴函数y =4x (3-2x )(02,∴x -2>0, ∴x +4x -2=x -2+4x -2 +2 ≥2 x -2·4x -2 +2=6, 当且仅当x -2= 4x -2,即x =4时,等号成立. 所以x +4x -2 的最小值为6. (4)方法一 ∵x >0,y >0,1x +9y =1,

基本不等式测试题苏教版必修

基本不等式测试题苏教 版必修 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

基本不等式测试题 A 组 一.填空题(本大题共8小题,每小题5分,共40分) 1.若xy>0,则 x y y x +的最小值是 。 .提示: x y y x +≥y x =2. 2. 已知a ,b 都是正数,则 a +b 2、 a 2+ b 2 2 的大小关系是 。 ≤ a 2+ b 2 2 。提示:平方作差,利用a 2+b 2≥2ab 可得。 3.若x +y =4,x >0,y >0,则lg x +lg y 的最大值是 。 .提示:lg x +lg y =lg xy ≤lg(2 x y +)2 =lg4. 4.已知 12 1(0,0),m n m n +=>>则mn 的最小值是 4. 121mn m n = +≥≥ 5.已知:226x y +=, 则 2x y +的最大值是___ .提示: 6 = 22x y +≥2, ∴22x y ≤9 。 故2x y +的最大值是9,此时x=y=2log 3。 6 某公司租地建仓库,每月土地占用费y 1与车库到车站的距离成反比,而每月库存货物 的运费y 2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站__________公里处 .提示 由已知y 1= x 20 ;y 2=0 8x (x 为仓库与车站距离), 费用之和y =y 1+y 2=0 8x + x 20≥2x x 208.0?=8,当且仅当0 8x =x 20 即x =5时“=” 成立。 7.已知正数x y 、满足3xy x y =++,则xy 的范围是 。 7.[9,)+∞。提示:由0,0x y >>,则3xy x y =++3xy x y ?-=+≥,即 230-≥13≤-≥(舍),当且仅当3x y xy x y ==++且即3x y ==时取“=”号,故xy 的取值范围是[9,)+∞。

集合、不等式基础测试题

集合、不等式测试卷 班级 姓名 得分 一、单项选择题(本大题共10小题,每小题4分,共40分) 1. 1、已知集},2|{N n n x x P ∈==,},4|{N n n x x T ∈==,则P T =U A. },4|{N n n x x ∈= B. },2|{N n n x x ∈= C. },|{N n n x x ∈= D. },4|{Z n n x x ∈= 2、01=-x 是012=-x 的 A .充要条件 B. 必要而非充分条件 C .充分而非必要条件 D. 既非充分也非必要条件] 3. 若a >b >0,c ∈R ,则下列不等式中不正确的是( ) A . a > b B . ab >b 2 C.a + c >b +c D. ac >bc 4. 已知集合{} 12≤-=x x A ,=B {}2>x x ,则=B A I A .{}32≤x x D . {}3≥x x 5. 设集合{|03,},M x x x N =≤<∈则M 的真子集个数为 A.3 B.6 C.7 D.8 的 是则有实根, 的方程关于>设q p a c bx ax x q a ac b p )0(0:,)0(04:.622≠=++≠- A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 {}{} {}2101,1,3,221.7....的值为 则实数若,,.已知集合D C B A x N M N M x -===I 8. 已知集合A={1,3,m },B={1,m},A ∪B=A ,则m= A.0或3 B.0或3 C.1或3 D.1或3 9.已知集合{}13M x x =-<,集合{} 260N x x x =--<,则A B =I A. {}23x x -<< B. {}24x x -<< C. {}3x x < D. {} 34x x << 10. 设集合{}|13,A x x x Z =-<∈,{}2|16,B x x x Z =≤∈ A B I = A . {1,2,3} B .{1,2,3,4} C . {-1,0,1,2,3} D .{0,1,2,3}

基本不等式(含答案)

§3.4 基本不等式:ab ≤ a + b 2 材拓展 1.一个常用的基本不等式链 设a >0,b >0,则有: min{a ,b }≤21a +1b ≤ ab ≤a +b 2≤ a 2+b 22≤max{a ,b }, 当且仅当a =b 时,所有等号成立. 若a >b >0,则有: b <21a +1b 0,则a b +b a ≥2. 3.利用基本不等式求最值的法则 基本不等式ab ≤a +b 2 (a ,b 为正实数)常用于证明不等式或求代数式的最值. (1)当两个正数的和为定值时,它们的积有最大值,即ab ≤????a +b 22,当且仅当a =b 时, 等号成立. (2)当两个正数的积为定值时,它们的和有最小值,即a +b ≥2ab ,当且仅当a =b 时,等号成立. 注意:利用基本不等式求代数式最值,要注意满足三个条件:①两个正数;②两个正数的积或和为定值;③取最值时,等号能成立.概括为“一正、二定(值)、三相等”. 4.函数f (x )=x +k x (k >0)的单调性在求最值中的应用 有些最值问题由于条件的限制使等号取不到,其最值又确实存在,我们可以利用函数f (x )=x +k x (k >0)的单调性加以解决. 利用函数单调性的定义可以证明函数f (x )=x +k x (k >0)在(0,k ]上单调递减,在[k ,+∞)上单调递增. 因为函数f (x )=x +k x (k >0)是奇函数,所以f (x )=x +k x (k >0)在(-∞,-k ]上为增函数,在[-k ,0)上为减函数.

(完整版)基本不等式练习题(带答案)

基本不等式 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.3- C.3- D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. C. D. 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 111a b c + + ≥ D .a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A .114x y ≤+ B .11 1x y +≥ C 2≥ D .11xy ≥ 8. a ,b 是正数,则 2,2 a b ab a b ++三个数的大小顺序是 ( ) A.22a b ab a b ++ 22a b ab a b +≤≤ + C. 22ab a b a b ++ D.22 ab a b a b +≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+ 11. 函数y =的最大值为 .

不等关系与基本不等式同步练习题

a 6 B. C. D. 6.已知 - 2 ≤ x < 3,-17 < y ≤ -11, 则 的取值范围是( ) A. -? 3 2 ? ? 3 ? ? 1 ? ?3,- ? B. - ,0 C. - ,0 D. - ,0 ? ??A. a - c > b - d B. a 不等关系与基本不等式同步练习题(一) (时间:120 分钟 满分:150 分) A.基础卷 一、选择题(5×8=40 分) 1.函数 y = x + 1 ( x > 2) 的最小值为( x - 2 ) A. 2 B . 3 C . 4 D . 3 2 2.不等式 x (1 - 3x) > 0 的解集是( ) 1 1 1 1 A . (-∞, ) B . (-∞,0) (0, ) C . ( ,+∞) D . (0, ) 3 3 3 3 3.已知 a 、b ∈ R, 且 ab > 0 ,则下列不等式不正确的是( ) A . a + b > a - b B . a + b < a + b C . 2 ab ≤ a + b D . b a + ≥ 2 a b 4.已知无穷数列 { n }是各项均为正数的等差数列,则有( ) A. a 4 ≤ a 6 a a 5.已知 a < 0,-1 < b < 0 ,则 a, ab, ab 2 的大小关系是( ) A. a > ab > ab 2 B. ab 2 > ab > a C. ab > a > ab 2 D. ab > ab 2 > a x 2 y - 1 ? ? 4 9 ? ? 4 ? ? 2 ? ? 4 ? 7.若 ab + 1 a + b < 1, 则 a 与 b 中必( ) A.一个大于1,一个小于1 B.两个都大于1 C.两个都小于1 D.两个的积小于1 8.已知 a > b , c > d , 则( ) b > C. c - b > d - a D. ac > bd d c

基本不等式练习题(带答案)

《基本不等式》同步测试 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2 111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.332- C.3-23 D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. 63 C. 46 D. 183 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 11123a b c + + ≥ D .3a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A . 114x y ≤+ B .111x y +≥ C .2xy ≥ D .1 1xy ≥ 8. a ,b 是正数,则 2,, 2 a b ab ab a b ++三个数的大小顺序是 ( ) A.22a b ab ab a b +≤≤+ B.22a b ab ab a b +≤≤ + C. 22ab a b ab a b +≤≤+ D.22 ab a b ab a b +≤≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<<

基本不等式学习知识梳理

基本不等式 【考纲要求】 1. 2 a b +≤ 的证明过程,理解基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2. 2 a b +≤ 解决最大(小)值问题. 3.会应用基本不等式求某些函数的最值;能够解决一些简单的实际问题 【知识网络】 【考点梳理】 考点一:重要不等式及几何意义 1.重要不等式: 如果,R a b ∈,那么2 2 2a b ab +≥(当且仅当a b =时取等号“=”). 2.基本不等式: 如果,a b 是正数,那么 2a b +≥(当且仅当a b =时取等号“=”). 要点诠释:22 2a b ab +≥ 和2 a b +≥ (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数;

(2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”。 (3)2 2 2a b ab +≥可以变形为:222a b ab +≤,2a b ab +≥可以变形为:2()2 a b ab +≤. 3.如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD . 易证~Rt ACD Rt DCB ??,那么2 CD CA CB =?,即CD ab = . 这个圆的半径为2b a +,它大于或等于CD ,即ab b a ≥+2 ,其中当且仅当点C 与圆心重合,即a b =时,等号成立. 要点诠释:1.在数学中,我们称 2 b a +为,a b 的算术平均数,称ab 为,a b 的几何平均数. 因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2.如果把 2 b a +看作是正数,a b 的等差中项,ab 看作是正数,a b 的等比中项,那么基本不等式可以叙述为:两个正数的等差中项不小于它们的等比中项. 考点二:基本不等式2 a b ab +≤的证明 1. 几何面积法 如图,在正方形ABCD 中有四个全等的直角三角形。 设直角三角形的两条直角边长为a 、b 22a b +4个直角三角形 的面积的和是2ab ,正方形ABCD 的面积为2 2 a b +。由于4个直角三角形的面积小于正方形的面积,所 以:22 2a b ab +≥。当直角三角形变为等腰直角三角形,即a b =时,正方形EFGH 缩为一个点,这时有2 2 2a b ab +=。

基本(均值不等式)不等式知识点基础练习

VIP 免费 欢迎下载 学生姓名: 任课教师: 试卷审查教师: 测试科目: 涉及章节: 教师评语: 不等是知识点 ★ 知 识 梳理 ★ 1.基本形式:,a b R ∈,则222a b ab +≥;0,0a b >>,则2a b ab +≥,当且仅当a b =时等号成立. 2求最值:当ab 为定值时,22,a b a b ++有最小值;当a b +或22a b +为定值时,ab 有最大值(0,0a b >>). 3.拓展:若0,0a b >>时,22 2 1122a b a b ab a b ++≤≤≤+,当且仅当a b =时等号成立. ★ 重 难 点 突 破 ★ 1.重点:理解基本不等式2 a b ab +≤ 等号成立条件,掌握用基本不等式证明不等式 会用基本不等式解决简单的最大(小)值问题. 2.难点:利用基本不等式2a b ab +≤求最大值、最小值 3.重难点:正确运用基本不等式证明不等式,会用基本不等式求某些函数的最值 二 方法技巧讲解 (1) 灵活运用基本不等式处理不等关系 问题1. 已知正数x 、y 满足x +2y =1,求 x 1+y 1的最小值. 点拨:∵x 、y 为正数,且x +2y =1, 日期: 2012- 时间:

∴x 1+y 1=(x +2y )(x 1+y 1) =3+x y 2+y x ≥3+22, 当且仅当 x y 2=y x ,即当x =2-1,y =1-22时等号成立. ∴x 1+y 1的最小值为3+22. (2)注意取等号的条件 问题2. 已知两正数x,y 满足x+y=1,则z=11()()x y x y ++ 的最小值为 。 点拨: 错解1、因为对a>0,恒有12a a +≥,从而z=11()()x y x y ++≥4,所以z 的最小值是4。 错解2、222222()22x y xy z xy xy xy xy xy +-==+-≥22(21)-=-,所以z 的最小值是2(21)-。 错因分析:解一等号成立的条件是11,11,1x y x y x y x y ====+=且即且与相矛盾。解二等号成立的条件是2,2xy xy xy ==即,与104 xy <≤相矛盾。 解析:z=11()()x y x y ++=1y x xy xy x y +++=21()222x y xy xy xy xy xy xy +-++=+-,令t=xy, 则210( )24x y t xy +<=≤=,由2()f t t t =+在10,4?? ???上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值254 。 ★ 热 点 考 点 题 型 探 析★ 考点1 利用基本不等式求最值(或取值范围) 题型1. 当积ab 为定值时,求和a b +最小值

相关主题
文本预览
相关文档 最新文档