当前位置:文档之家› 电磁感应中的力学问题和能量问题

电磁感应中的力学问题和能量问题

电磁感应中的力学问题和能量问题
电磁感应中的力学问题和能量问题

电磁感应中的力学问题和能量问题

作者: 日期:

四、电磁感应中的力学问题和能量问题

电磁感应中的力学问题与能量转化问题

1. 考点分析:

电磁感应的题目往往综合性较强,与前面的知识联系较多,涉及力学知识(如牛顿运动定律、功、动能定理、能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、安培力、直流电路知识、磁场知识等)等多个知识点,突出考查考生理解能力、分析综合能力,尤其从实际问题中抽象概括构建物理模型的创新能力。

2. 知识储备:

(1)计算感应电动势大小的两种表达式:N-T,Blvsin

(2)判断产生的感应电流的方向方法:楞次定律,右手定则

(3)安培力计算公式: F = BII

3. 基本方法:

I a.确定电源(E

E

R r

感应电流

F BIl

运动导体受到的安

F ma

培力合外力a变化情况运动状态的分析临界状

态)

b.在受力分析与运动情况分析的同时,又要抓住能量转化和守恒这一基本规律,分析清

楚哪些力做功,就可以知道有哪些形式的能量参与了转换,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就将其他形式能转化为电能,做正功将电能转化为其他形式能;然后利用能量守恒列出方程求解

3.典例分析

、电磁感应现象中的力学问题

【例1】如图所示,有两根足够长、不计电阻,相距L的平行光滑金属导轨cd、ef与水平面成B角固定放置,底端接一阻值为R的电阻,在轨道平面内有磁感应强度为B的匀强磁场,方

向垂直轨道平面斜向上.现有一平行于ce、垂直于导轨、质量为m电阻不计的金属杆ab,在

沿轨道平面向上的恒定拉力F作用下,从底端ce由静止沿导轨向上运动,当ab杆速度达到稳

定后,撤去拉力F,最后ab杆又沿轨道匀速回到ce端.已知ab杆向上和向下运动的最大速度

相等.求:拉力F和杆ab最后回到ce端的速度v.

aB

R e

例如图1所示,AB、CD是两根足够长的固定平行金属导轨,两导轨间的距离为L,导轨平面与水平面的夹角为0,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B,在导轨的AC端连接一个阻值为R的电阻,一根质量为

m、垂直于导轨放置的金属棒ab,从静止开始沿导轨下滑。求导

体ab下滑的最大速度v m;(已知ab与导轨间的动摩擦因数为卩,

导轨和金属棒的电阻都不计。g=10m / s2)

练习1、(2010江苏)如图所示,两足够长的光滑金属导轨竖直放置,相距为L, 一理想电流表与两导轨相连,匀强磁场与导轨平面垂直。一质量为m有效电阻为R的导体棒在距磁场上

边界h处静止释放。导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I。整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。求:

(1) 磁感应强度的大小B;

(2) 电流稳定后,导体棒运动速度的大小v;

(3) 流经电流表电流的最大值I m

_____ ?

!X X K X K

h

M丄X x x ? x x X

■M X X X X

M M K K K M

X1M X 3C X X

X X X X x X

X >£X卞X X X X X

t------- L -------- -

【小结】

1、电磁感应与力学问题联系的桥梁是磁场对感应电流的_________ 力。

解答电磁感应中的力学问题,一方面要应用电磁学中的有关规律,另一方面运用力学的有关规律。在分析方法上,要始终抓住导体棒的受力特点及其变化规律,明确导体棒的运动过程以及运动

过程中状态的变化,把握运动状态的临界点。

2、电磁感应中的动力学临界问题的处理方法:

解决此类问题的关键在于通过动态分析寻找过程中的临界状态,如速度、加速度取最大值

或最小值的条件等,基本思路是:确定_____________ T根据________________ 求感应电流T根据

A

确定导体所受的安培力T 由力的 __________ 求合外力T 根据 ____________ 确定a 的变化T 根据 的关系分析运动状态T 临界状态。/ 二、电磁感应现象中能量问题

【例5】如图所示,电动机通过其转轴上的绝缘细绳牵引一根原来静止的长为 L = 1m 质量m

=0.1kg 的导体棒ab ,导体棒紧贴在竖直放置、 电阻不计的金属框架上, 导体棒的电阻 R = 1Q, 磁感应

强度B= 1T 的匀强磁场方向垂直于导体框架所在平面.

当导体棒在电动机牵引下上升

h

=3. 8m 时,获得稳定速度,此过程中导体棒产生热量 Q= 2J .电动机工作时,电压表、电流 表的

读数分别为7V 和1A,电动机的内阻r = 1 Q. (1) 导体棒所达到的稳定速度是多少 ?

(2)

导体棒从静止到达稳定速度的时间是多少

小结: 在分析电磁感应中的能量问题时应首先分析清楚有哪些力做功,知道有哪些形式的能参与转 化,如有摩擦力做功,必然有 _________ 能出现;有重力做功就有 __________ 能参与了转化;安培 力做正功将 _________ 能转化为 ______________ 能,安培力做负功将 __________________ 能转化为 能;然后利用能量守恒定律求解。

练习2、如图所示,足够长的水平导体框架的宽度

L =0.5 m,电阻忽略不计,定值电阻 F =2Q O

磁感应强度B=0.8 T 的匀强磁场方向垂直于导体框平面,

一根质量为n r0.2 kg 、有效电阻r =2Q

的导体棒MN 垂直跨放在框架上,该导体棒与框架间的动摩擦因数 口 =0.5,导体棒在水平恒力

F =1.2N 的作用下由静止开始沿框架运动到刚开始匀速运动时,

通过导体棒截面的电量共为

q =2

不计 .、.

2

切摩擦,g 取10m/ s .求: C,求:(1 )导体棒做匀速运动时的速度;

2

)

例题?两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属

细杆的电阻为r=0.25 Q,回路中其余部分的电阻可不计.已知两金属细杆在平行于导轨的拉力的

作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如

图3所示.不计导轨上的摩擦.

(1)求作用于每条金属细杆的

拉力的大小.

(2)求两金属细杆在间距增加0.40m的滑

动过程中共产生的热量

例题:如图4所示,质量为m、边长为I的正方形线框,从有界的匀强磁场上方由静止自由下落,线框电阻为R.匀强磁场的宽度为H . (I v H ,磁感强度为B,线框下落过程中ab边与

磁场边界平行且沿水平方向。已知ab边刚进入磁场和刚穿出磁场时线框都作减速运动,加速

、1

度大小都是- g。求

3

(1) ab边刚进入磁场时与ab边刚出磁场时的速度大小;

(2) cd边刚进入磁场时,线框的速度大小;

(3) 线框进入磁场的过程中,产生的热量。

例、金属棒a在离地h高处从静止开始沿光滑弧形金属轨道下滑,导轨的水平部分有竖直向上的匀

强磁场B,水平部分原来放有一金属杆b。如图所示,已知m a:m b= 3: 4,导轨足够长,不计摩擦,求:

(1)a和b的最大速度分别为多大?

(2)整个过程释放岀来的最大热能是多少?(设m a已知)

高中物理电磁感应综合问题

电磁感应综合问题 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定 理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、 直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下 两个方面: (1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图,抓住a=0时,速度v达最大值的特点。 (2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例 如:如图所示中的金属棒ab沿导轨由静止下滑时,重力势能减小,一 部分用来克服安培力做功转化为感应电流的电能,最终在 R上转转化为焦耳热,另一部分转化为金属棒的动能.若 导轨足够长,棒最终达到稳定状态为匀速运动时,重力势 能用来克服安培力做功转化为感应电流的电能,因此,从 功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往 是解决电磁感应问题的重要途径. 【例1】如图1所示,矩形裸导线框长边的长度为2l,短边的长度 为l,在两个短边上均接有电阻R,其余部分电阻不计,导线框一长边

及x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l x B B 20π=。一光滑导体棒AB 及短边平行且 及长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。 答案:(1))()(sin v l t R l vt v l B F 203222220≤≤=π (2)R v l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导 轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一及水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2,方向及初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。求: (1)电流为零时金属杆所处的位置; (2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向; (3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方

电磁感应中的动力学和能量问题计算题专练

电磁感应中的动力学和能量问题(计算题专练) 1、如图所示,在倾角θ=37°的光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ,磁感应强度B的大小为5 T,磁场宽度d=0.55 m,有一边长L=0.4 m、质量m1=0.6 kg、电阻R=2 Ω的正方形均匀导体线框abcd通过一轻质细线跨过光滑的定滑轮与一质量为m2=0.4 kg的物体相连,物体与水平面间的动摩擦因数μ=0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长.(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求: (1)线框abcd还未进入磁场的运动过程中,细线中的拉力为多少? (2)当ab边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab边距磁场MN边界的距离x多大? (3)在(2)问中的条件下,若cd边恰离开磁场边界PQ时,速度大小为2 m/s,求整个运动过程中ab边产生的热量为多少? 解析(1)m1、m2运动过程中,以整体法有 m1g sin θ-μm2g=(m1+m2)a a=2 m/s2 以m2为研究对象有F T-μm2g=m2a(或以m1为研究对象有m1g sin θ-F T=m1a) F T=2.4 N (2)线框进入磁场恰好做匀速直线运动,以整体法有 m1g sin θ-μm2g-B2L2v R =0 v=1 m/s ab到MN前线框做匀加速运动,有 v2=2ax x=0.25 m (3)线框从开始运动到cd边恰离开磁场边界PQ时: m1g sin θ(x+d+L)-μm2g(x+d+L)=1 2 (m1+m2)v21+Q 解得:Q=0.4 J 所以Q ab=1 4 Q=0.1 J 答案(1)2.4 N (2)0.25 m (3)0.1 J 2、如图所示,足够长的金属导轨MN、PQ平行放置,间距为L,与水平面成θ角,导轨与定值电阻R1和R2相连,且R1=R2=R,R1支路串联开关S,原来S闭合.匀强磁场垂直导轨平面向上,有一质量为m、有效电阻也为R的导体棒ab与导轨垂直放置,它与导轨粗糙接触且始终接触良好.现将导体棒ab从静止释放,沿导轨下滑,当导体棒运动达到稳定状 态时速率为v,此时整个电路消耗的电功率为重力功率的3 4 .已知 重力加速度为g,导轨电阻不计,求: (1)匀强磁场的磁感应强度B的大小和达到稳定状态后导体棒ab 中的电流强度I; (2)如果导体棒ab从静止释放沿导轨下滑x距离后达到稳定状态,这一过程回路中产生的电热是多少? (3)导体棒ab达到稳定状态后,断开开关S,从这时开始导体棒ab下滑一段距离后,通过导

电磁感应中的能量问题练习

电磁感应中的能量问题练习 一、单项选择题 1.如图所示,固定的水平长直导线中通有电流I,矩形线框与导线在同一竖直平面内,且一边与导线平行.线框由静止释放,在下落过程中() A.穿过线框的磁通量保持不变B.线框中感应电流方向保持不变 C.线框所受安培力的合力为零D.线框的机械能不断增大 答案: B 解析: 当线框由静止向下运动时,穿过线框的磁通量逐渐减小,根据楞次定律可得产生的感应电流的方向为顺时针且方向不发生变化,A错误,B正确;因线框上下两边所在处的磁场强弱不同,线框所受的安培力的合力一定不为零,C错误;整个线框所受的安培力的合力竖直向上,对线框做负功,线框的机械能减小,D错误. 2.如图所示,固定在水平绝缘平面上足够长的金属导轨不计电阻,但表 面粗糙,导轨左端连接一个电阻R,质量为m的金属棒(电阻也不计) 放在导轨上,并与导轨垂直,整个装置放在匀强磁场中,磁场方向与 导轨平面垂直.用水平恒力F把ab棒从静止起向右拉动的过程中 ①恒力F做的功等于电路产生的电能 ②恒力F和摩擦力的合力做的功等于电路中产生的电能 ③克服安培力做的功等于电路中产生的电能 ④恒力F和摩擦力的合力做的功等于电路中产生的电能和棒获得的动能之和 以上结论正确的有() A.①②B.②③C.③④D.②④ 答案: C 解析: 在此运动过程中做功的力是拉力、摩擦力和安培力,三力做功之和为棒ab动能增加量,其中安培力做功将机械能转化为电能,故选项C正确.

3. 一个边长为L 的正方形导线框在倾角为θ的光滑固定斜面上由静止开始沿斜面下滑,随后进入虚线下方方向垂直于斜面 的匀强磁场中.如图所示,磁场的上边界线水平,线框的下边ab 边始终水平,斜面以及下方的磁场往下方延伸到足够远.下列推理判断正确的是( ) A .线框进入磁场过程b 点的电势比a 点高 B .线框进入磁场过程一定是减速运动 C .线框中产生的焦耳热一定等于线框减少的机械能 D .线框从不同高度下滑时,进入磁场过程中通过线框导线横截面的电荷量不同 答案: C 解析: ab 边进入磁场后,切割磁感线,ab 相当于电源,由右手定则可知a 为等效电源的正极,a 点电势高,A 项错.由于线框所受重力的分力mg sin θ与安培力大小不能确定,所以不能确定其是减速还是加速,B 项错;由能量守恒知C 项 对;由q =n ΔΦR 知,q 与线框下降的高度无关,D 项错. 4. 如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R ,质量不能忽略的金属棒与两导 轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁 场方向与导轨平面垂直,棒在竖直向上的恒力F 作用下加速上升的一段时间内,力F 做的功与 安培力做的功的代数和等于( ) A .棒的机械能增加量 B .棒的动能增加量 C .棒的重力势能增加量 D .电阻R 上放出的热量 答案: A 解析: 由动能定理有W F +W 安+W G =ΔE k ,则W F +W 安=ΔE k -W G ,W G <0,故ΔE k -W G 表示机械能的增加量.选A 项.

电磁感应中的能量问题分析高中物理专题.docx

第 10 课时电磁感应中的能量问题分析 一、知识内容: 1、分析:棒的运动过程→ 运动性质→ 遵从规律; 2、掌握能量的转化方向:哪些能量减少,哪些能量增加; 3、电能→内能 Q:I 恒定→Q I 2 Rt ;I变化:用有效值求,或能量守恒; 4、常用知识点:动能定理、能量守恒、W 、P、Q、等。 二、例题分析: 【例 1】如图所示, PQ 、MN 为足够长的两平行金属导轨,它们之间连接一个阻值为R=8 Ω的电阻,导轨间距为 L=1m ,一质量 m=0.1kg,电阻 r=2 Ω的均匀金属杆水平放在 导轨上,它与导轨的滑动摩擦因数 3 / 5 ,导轨平面倾角300,在垂直导轨平面方向有匀强磁场, B=0.5T ,今让金属杆由静止开始下滑,从杆静止开始到杆 AB恰好匀速运动的过程中经过杆的电量q 1C ,求: (1)当 AB 下滑速度为2m/ s时加速度的大小 (2)AB 下滑的最大速度 (3)从静止开始到 AB 匀速运动过程R 上产生的热量? 【例2】如图所示,两根间距为l 的光滑金属导轨(不计电阻),由 一段圆弧部分与一段无限长的水平段部分组成,其水平段加 有竖直向下方向的匀强磁场,其磁感应强度为B,导轨水平段 上静止放置一金属棒cd,质量为2m,电阻为2r,另一质量为 m,电阻为 r 的金属棒ab,从圆弧段M 处由静止释放下滑至 N 处进入水平段,圆弧段 MN 半径为 R,所对圆心角为 60°,求: (1) ab 棒在 N 处进入磁场区速度多大?此时棒中电流是多少? (2) cd 棒能达到的最大速度是多大? (3) cd 棒由静止到达最大速度过程中,系统所能释放的热量是多少? 【例 3】用质量为m、总电阻为R 的导线做成边长为l 的正方形线框MNPQ ,并将其放在倾 光磁静角为θ的平行绝缘导轨上,平行导轨的间距也为l,如图所示。线框与导轨之间是滑的,在导轨的下端有一宽度为l(即 ab=l)、磁感应强度为 B 的有界匀强磁场,场的边界aa′、bb′垂直于导轨,磁场的方向与线框平面垂直。某一次,把线框从 止状态释放,线框恰好能够匀速地穿过磁场区域。若当地的重力加速度为g,求:(1)线框通过磁场时的运动速度; (2)开始释放时, MN 与 bb′之间的距离; (3)线框在通过磁场的过程中所生的焦耳热。

高考物理--电磁感应中的动力学问题(习题)

第61课时 电磁感应中的动力学问题(题型研究课) [命题者说] 电磁感应动力学问题是历年高考的一个热点,这类题型的特点一般是单棒或双棒在磁场中切割磁感线,产生感应电动势和感应电流。感应电流受安培力而影响导体棒的运动,构成了电磁感应的综合问题,它将电磁感应中的力和运动综合到一起,其难点是感应电流安培力的分析,且安培力常常是变力。这类问题能很好地提高学生的综合分析能力。 (一) 运动切割类动力学问题 考法1 单杆模型 [例1] (2016·全国甲卷) 水平面(纸面)间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上。t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动。t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动。杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ。重力加速度大小为g 。求 (1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值。 单杆模型的分析方法 (1)电路分析:导体棒相当于电源,感应电动势E =BLv ,电流I = E R +r 。 (2)受力分析:导体棒中的感应电流在磁场中受安培力F 安=BIL ,I =BLv R +r ,F 安=B 2L 2v R +r 。 (3)动力学分析:安培力是变力,导体棒在导轨上做变加速运动,临界条件是安培力和其他力达到平衡,这时导体棒开始匀速运动。 考法2 双杆模型 [例2] (1)如图1所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度为B 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计,导轨间的距离为l ,两根质量均为m 、电阻均为R 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直。在t =0时刻,两杆都处于静止状态。现有一与导轨平行,大小恒为F 的力作用于金属杆甲上,使金属杆在导轨上滑动,试分析金属杆甲、乙的收尾运动情况。 (2)如图2所示,两根足够长的固定的平行金属导轨位于同一水平面,导轨上横放着两根导体棒ab 和cd ,构成矩形回路。在整个导轨平面都有竖直向上的匀强磁场,设两导体棒均可沿导轨无摩擦地滑行。开始时,棒cd 静

高中物理复习课:电磁感应中的动力学和能量问题教案

复习课:电磁感应中的动力学和能量问题教案 班级:高二理科(6)班下午第一节授课人:课题电磁感应中的动力学与能量问题第一课时 三维目标1.掌握电磁感应中动力学问题的分析方法 2.理解电磁感应过程中能量的转化情况 3.运用能量的观点分析和解决电磁感应问题 重点1.分析计算电磁感应中有安培力参与的导体的运动及平衡问题 2.分析计算电磁感应中能量的转化与转移 难点1.运用牛顿运动定律和运动学规律解答电磁感应问题 2.运用能量的观点分析和解决电磁感应问题 教具多媒体辅助课型复习课课 时 安 排 2课时 教学过程一、电磁感应中的动力学问题 课前同学们会根据微课视频完成学案上的知识清单:1.安培力的大小 2.安培力的方向判断 3.两种状态及处理方法 状态特征处理方法 平衡态加速度为零根据平衡条件列式分析 非平衡态 加速度不为 零 根据牛顿第二定律进行动态分析或结 合功能关系进行分析 4.力学对象和电学对象的相互关系

教学过程指导学生处理学案上的例题和拓 展训练 例1:如图所示,在磁感应强 度为B,方向垂直纸面向里的 匀强磁场中,金属杆MN放 在光滑平行金属导轨上,现用平行于金属杆的恒力F,使MN从静止开始向右滑动,回路的总电阻为R,试分析MN 的运动情况,并求MN的最大速度。 拓展训练1:如图所示,两根足 够长的平行金属导轨固定在倾 角θ=30°的斜面上,导轨电 阻不计,间距L=0.4 m。导轨 所在空间被分成区域Ⅰ和Ⅱ, 两区域的边界与斜面的交线为 MN,Ⅰ中的匀强磁场方向垂直 斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5 T。在区域Ⅰ中,将质量m1=0.1 kg,电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑。然后,在区域Ⅱ中将质量m2=0.4 kg,电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑。cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2。问: (1)cd下滑的过程中,ab中的电流方向; (2)ab刚要向上滑动时,cd的速度v多大; 例2:如图所示的图中,导体棒ab垂直放在水平导轨上,导轨处在方向垂直于水平面向下的匀强磁场中。导体棒和导轨间接触良好且摩擦不计,导体棒、导轨的电阻均可忽略,今给导体棒ab一个向右的初速度V0。有的同学说电容器断路无电流,棒将一直匀速运动 下去;有的同学认为棒相当于电 源,将给电容器充电,电路中有电 流,所以在安培力的作用下,棒将 减速。关于这个问题你怎么看呢?

高中物理 电磁感应现象中的能量问题

电磁感应现象中的能量问题 能的转化与守恒,是贯穿物理学的基本规律之一。从能量的观点来分析、解决问题,既是学习物理的基本功,也是一种能力。 电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功。此过程中,其他形式的能量转化为电能。当感应电流通过用电器时,电能又转化为其他形式的能量。“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能。同理,安培力做功的过程,是电能转化为其它形式能的过程。安培力做了多少功,就有多少电能转化为其它形式的能。 认真分析电磁感应过程中的能量转化、熟练地应用能量转化和守恒定律是求解较复杂的电磁感应问题的常用方法,下面就几道题目来加以说明。 一、安培力做功的微观本质 1、安培力做功的微观本质 设有一段长度为L、矩形截面积为S的通电导体,单位体积中含有的自由电荷数为n,每个自由电荷的电荷量为q,定向移动的平均速率为v,如图所示。 所加外磁场B的方向垂直纸面向里,电流方向沿导体水平向右,这个电流是由于自由电子水平向左定向运动形成的,外加磁场对形成电流的运动电荷(自由电子)的洛伦兹力使自由电子横向偏转,在导体两侧分别聚集正、负电荷,产生霍尔效应,出现了霍尔电势差,即在导体内部出现方向竖直向上的横向电场。因而对在该电场中运动的电子有电场力f e的作用,反之自由电子对横向电场也有反作用力-f e作用。场强和电势差随着导体两侧聚集正、负电荷的增多而增大,横向电场对自由电子的电场力f e也随之增大。当对自由电子的横向电场力f e增大到与洛伦兹力f L相平衡时,自由电子没有横向位移,只沿纵向运动。导体内还有静止不动的正电荷,不受洛伦兹力的作用,但它要受到横向电场的电场力f H的作用,因而对横向电场也有一个反作用力-f H。由于正电荷与自由电子的电量相等,故正电荷对横向电场的反作用-f H和自由电子对横向电场的反作用力-f e相互抵消,此时洛伦兹力f L与横向电场力f H相等。正电荷是导体晶格骨架正离子,它是导体的主要部分,整个导体所受的安培力正是横向电场作用在导体内所有正电荷的力的宏观表现,即F=(nLS)f H=(nLS)f L。 由此可见,安培力的微观本质应是正电荷所受的横向电场力,而正电荷所受的横向电场力正是通过外磁场对自由电子有洛伦兹力出现霍尔效应而实现的。

电磁感应中的综合问题

电磁感应中的综合问题 1.电磁感应中的力学问题 电磁感应中通过导体的感应电①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向; 流,在磁场中将受到安培力的作用.②求回路中电流; ;电磁感应问题往往和力学问题联系在③分析导体受力情况 一起,解决这类问题的基本方法是:④列出动力学方程或平衡方程并求解. 电磁感应中的力学问题,常常以导体棒在滑轨上运动的形式出现一种是滑轨上仅一个导体棒的运 动.这种情况有两种类型:①“电一动一电”类型 如图所示,水平放置的光滑平行导轨MN、PQ放有长为l、电阻为R、质量为m的金属棒ab.导轨左端接内电阻不计、电动势为E的电源形成回路,整个装置放在竖直向上的匀强磁场B之中.导轨电阻不计且足够长,并与开关S串接.当刚闭合开关时,棒ab因电而动,其受安培力FBlab有最大加速度amaxE,方向向右,此时ab具RBlabE.然而,ab 一旦具有了速度,则因动而电,立即产生了电动势.因为速度决mR定感应电动势,而感应电动势与电池的电动势反接

又导致电流减小,从而使安培力变小,故加速度减小,不难分析ab导体的运动是一种复杂的变加速运动.当FA=0,ab 速度将达最大值,故ab运动的收尾状态为匀速运动,且达到的最大速度为vmax= E. Bl ②“动一电一动”类型. 如图所示,型平行滑轨PQ、MN与水平方向成α角.长度l、质量m,电阻为R的导体ab紧贴在滑轨并与PM平行、滑轨电阻不计.整个装置处于 与滑轨平面正交、磁感应强度为B的匀强磁场中,滑轨足够长.导体ab静止 释放后,于重力作用下滑,此时具有最大加速度amax=gsinα.ab一旦运动。 则因动而生电,产生感应电动势,在PMba回路中产生电流,磁场对此电流作用力刚好与下滑力方向反向,随着a 棒下滑速度不断增大. E=Blv,IE,则电路 R中电流随之变大,安培阻力 B2l2F变大,直到与下 R滑力的合力为零,即加速度为零,以vmax= mgRsin的 22Bl最大速度收尾.此过程中,重力势能转化为ab棒的动能与回路中电阻 2耗散的热能之和.电磁感应中的力学问题,另一种是滑轨上有两个导体棒的运动情况,这种情况下两棒的运动特点可用右表进行

电磁感应中的力学问题和能量问题(20201004205630)

四、电磁感应中的力学问题和能量问题 电磁感应中的力学问题与能量转化问题 1. 考点分析: 电磁感应的题目往往综合性较强,与前面的知识联系较多,涉及力学知识(如牛顿运动定律、功、动能定理、能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、安培力、直流电路知识、磁场知识等)等多个知识点,突出考查考生理解能力、分析综合能力,尤其从实际问题中抽象概括构建物理模型的创新能力。 2. 知识储备: (1)计算感应电动势大小的两种表达式:N -T, Blvsin (2)判断产生的感应电流的方向方法:楞次定律,右手定则 (3)安培力计算公式: F = BII 3. 基本方法: I a.确定电源(E E R r 感应电流 F BIl 运动导体受到的安 F ma 培力合外力a变化情况运动状态的分析临界状态) b.在受力分析与运动情况分析的同时,又要抓住能量转化和守恒这一基本规律,分析清 楚哪些力做功,就可以知道有哪些形式的能量参与了转换,如有摩擦力做功,必然有内能出现; 重力做功就可能有机械能参与转化;安培力做负功就将其他形式能转化为电能,做正功将电能转化为其他形式能;然后利用能量守恒列出方程求解 3.典例分析 一、电磁感应现象中的力学问题 【例1】如图所示,有两根足够长、不计电阻,相距L的平行光滑金属导轨cd、ef与水平面 成B角固定放置,底端接一阻值为R的电阻,在轨道平面内有磁感应强度为B的匀强磁场,方向垂直轨道平面斜向上.现有一平行于ce、垂直于导轨、质量为m电阻不计的金属杆ab,在沿轨道平面向上的恒定拉力F作用下,从底端ce由静止沿导轨向上运动,当ab杆速度达到稳 定后,撤去拉力F,最后ab杆又沿轨道匀速回到ce端.已知ab杆向上和向下运动的最大速度相等.求:拉力F和杆ab最后回到ce端的速度v.

物理 电磁感应中的能量问题 基础篇

物理总复习:电磁感应中的能量问题 【考纲要求】 理解安培力做功在电磁感应现象中能量转化方面所起的作用。 【考点梳理】 考点、电磁感应中的能量问题 要点诠释: 电磁感应现象中出现的电能,一定是由其他形式的能转化而来的,具体问题中会涉及多种形式能之间的转化,如机械能和电能的相互转化、内能和电能的相互转化。分析时应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功就可以知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就是将其他形式的能转化为电能,做正功就是将电能转化为其他形式的能,然后利用能量守恒列出方程求解。 电能求解的主要思路: (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。 (2)利用能量守恒求解:机械能的减少量等于产生的电能。 (3)利用电路特征求解:通过电路中所产生的电流来计算。 【典型例题】 类型一、根据能量守恒定律判断有关问题 例1、如图所示,闭合线圈abcd用绝缘硬杆悬于O点,虚线表示有界磁场B,把线圈从图示位置释放后使其摆动,不计其它阻力,线圈将() A.往复摆动 B.很快停在竖直方向平衡而不再摆动 C.经过很长时间摆动后最后停下 D.线圈中产生的热量小于线圈机械能的减少量 【思路点拨】闭合线圈在进出磁场的过程中,磁通量发生变化,闭合线圈产生感应电流,其机械能转化为电热,根据能量守恒定律机械能全部转化为内能。 【答案】B 【解析】当线圈进出磁场时,穿过线圈的磁通量发生变化,从而在线圈中产生感应电流,机械能不断转化为电能,直至最终线圈不再摆动。根据能量守恒定律,在这过程中,线圈中产生的热量等于机械能的减少量。 【总结升华】始终抓住能量守恒定律解决问题,金属块(圆环、闭合线圈等)在穿越磁场时有感应电流产生,电能转化为内能,消耗了机械能,机械能减少,在磁场中运动相当于力学部分的光滑问题,不消耗机械能。上述线圈所出现的现象叫做电磁阻尼。用能量转化和守恒定律解决此类问题往往十分简便。磁电式电流表、电压表的指针偏转过程中也利用了电磁阻尼现象,所以指针能很快静止下来。 举一反三 【变式】光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程是y=x2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示).一个小金属块从抛物线上y=b(b>a)处以速度v沿抛物线下滑.假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是( )

电磁感应中的力学问题和能量问题

电磁感应中的力学问题和能量问题

作者: 日期:

四、电磁感应中的力学问题和能量问题 电磁感应中的力学问题与能量转化问题 1. 考点分析: 电磁感应的题目往往综合性较强,与前面的知识联系较多,涉及力学知识(如牛顿运动定律、功、动能定理、能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、安培力、直流电路知识、磁场知识等)等多个知识点,突出考查考生理解能力、分析综合能力,尤其从实际问题中抽象概括构建物理模型的创新能力。 2. 知识储备: (1)计算感应电动势大小的两种表达式:N-T,Blvsin (2)判断产生的感应电流的方向方法:楞次定律,右手定则 (3)安培力计算公式: F = BII 3. 基本方法: I a.确定电源(E E R r 感应电流 F BIl 运动导体受到的安 F ma 培力合外力a变化情况运动状态的分析临界状 态) b.在受力分析与运动情况分析的同时,又要抓住能量转化和守恒这一基本规律,分析清 楚哪些力做功,就可以知道有哪些形式的能量参与了转换,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就将其他形式能转化为电能,做正功将电能转化为其他形式能;然后利用能量守恒列出方程求解 3.典例分析 、电磁感应现象中的力学问题 【例1】如图所示,有两根足够长、不计电阻,相距L的平行光滑金属导轨cd、ef与水平面成B角固定放置,底端接一阻值为R的电阻,在轨道平面内有磁感应强度为B的匀强磁场,方 向垂直轨道平面斜向上.现有一平行于ce、垂直于导轨、质量为m电阻不计的金属杆ab,在 沿轨道平面向上的恒定拉力F作用下,从底端ce由静止沿导轨向上运动,当ab杆速度达到稳 定后,撤去拉力F,最后ab杆又沿轨道匀速回到ce端.已知ab杆向上和向下运动的最大速度 相等.求:拉力F和杆ab最后回到ce端的速度v.

电磁感应中的能量转换问题_经典

在电磁感应中的动力学问题中有两类常见的模型. 类型“电—动—电”型“动—电—动”型 示 意 图 棒ab长L,质量m,电阻R;导轨光滑水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计 分析S闭合,棒ab受安培力F= BLE R ,此 时a= BLE mR ,棒ab速度v↑→感应电 动势BLv↑→电流I↓→安培力F= BIL↓→加速度a↓,当安培力F=0 时,a=0,v最大,最后匀速 棒ab释放后下滑,此时a=gsin α,棒 ab速度v↑→感应电动势E=BLv↑→ 电流I= E R ↑→安培力F=BIL↑→加速 度a↓,当安培力F=mgsin α时,a= 0,v最大,最后匀速 运动 形式 变加速运动变加速运动 最终状态匀速运动vm= E BL 匀速运动vm= mgRsin α B2L2

1、如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦. (1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图. (2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小. (3)求在下滑过程中,ab杆可以达到的速度最大值.

1、解析 (1)如右图所示,ab 杆受重力mg ,竖直向下;支持力FN ,垂直斜面向上;安培力F ,平行斜面 向上. (2)当ab 杆速度为v 时,感应电动势 E =BLv ,此时电路中电流 I =E R =BLv R ab 杆受到安培力F =BIL =B2L2v R 根据牛顿运动定律,有ma =mgsin θ-F =mgsin θ-B2L2v R a =gsin θ-B2L2v mR . (3)当B2L2v R =mgsin θ时,ab 杆达到最大速度vm =mgRsin θB2L2

电磁感应现象中的能量问题

电磁感应现象中的能量问题邵晓华 目标: 使学生能处理电磁感应规律与能量综合应用的问题,并学会处理能量问题的方法与技巧。提高学生的分析综合能力和解决实际问题的能力,帮助学生树立正确的科学观。 教学过程 【问题概述】电磁感应现象部分的知识历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力。电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必定有“外力”克服安培力做功,此过程中,其它形式的能转化为电能,当电流通过电阻时,电能又转化为其它形式的能量. 【典例赏析】 例1、如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R, 质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒 与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面 垂直,棒在竖直向上的恒力F作用下加速上升的一段时间内,力F做的 功与安培力做的功的代数和等于() A.棒的机械能增加量 B.棒的动能增加量 C.棒的重力势能增加量 D.电阻R上放出的热量 小结:分析过程中应当牢牢抓住能量守恒这一基本规律,即分析清楚有哪些力做功,就可知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功,就可能有机械能参与转化;安培力做负功就将其他形式能转化为电能,做正功将电能转化为其他形式的能; 针对练习:P189(4)P191(4)两题 分析作业P306(8,9,10) 例2(P189例4) 分析P306(11) 能力提升: 例3.(如图16(甲) 为一研究电磁感应 的装置,其中电流传 感器(相当于一只理 想的电流表)能将各 时刻的电流数据实 时送到计算机,经计 算机处理后在屏幕 上显示出I-t图象。 已知电阻R及杆的 电阻r均为0.5Ω,杆的质量m及悬挂物的质量M均为0.1kg,杆长L=1m。实验时,先断

高考物理专题电磁感应中的动力学和能量综合问题及参考复习资料

高考专题:电磁感应中的动力学和能量综合问题 一.选择题。(本题共6小题,每小题6分,共36分。1—3为单选题,4—6为多选题) 1.如图所示,“U ”形金属框架固定在水平面上,处于竖直向下的匀强磁场中棒以水平初速度v 0向右运动,下列说 法正确的是( ) 棒做匀减速运动 B.回路中电流均匀减小 点电势比b 点电势低 棒受到水平向左的安培力 2.如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在0到1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是( ) 3.如图所示,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界 与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,可能正确描述上述过程的是( ) A B C D 4.如图1所示,两根足够长、电阻不计且相距L =0.2 m 的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U =4 V 的小灯泡,两导轨间有一磁感应强度大小B =5 T 、方向垂直斜面向上的匀强磁场.今将一根长为L 、质量为m =0.2 、电阻r =1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒 与导轨间的动摩擦因数μ=0.25,已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g 取10 2, 37°=0.6, 37°=0.8,则( ) 班级 姓名 出题者 徐利兵 审题者 得分 密 封 线

电磁感应与力学综合问题

电磁感应与力学综合练习2 1.两根电阻不计的光滑金属导轨,平行放置在倾角为 的斜面上.导轨的下端接有电阻R ,斜面处在匀强磁场中,磁场方向垂直于斜面向上,质量为m ,电阻不计的金属棒ab ,在沿斜面与棒垂直的恒力F 作用下,沿斜面匀速上滑,并上升h 高度,在这个过程中:( ) A 、作用于金属棒上的各力的合力所做的功等于零; B 、恒力F 与安培力的合力所做的功等于零; C 、恒力F 与重力的合力所做的功等于电阻R 上发出的焦耳热; D 、作用于金属棒上的各力的合力所做的功等于mgh 与电阻上发出的焦耳热之和; 2.如图所示,竖直面内的虚线上方是一匀强磁场B ,从虚线下方竖直上抛一正方形线圈,线圈越过虚线进入磁场,最后又落回原处,运动过程中线圈平面保持在竖直平面内,不计空气阻力,则: A .上升过程克服磁场力做的功大于下降过程克服磁场力做的功 B .上升过程克服磁场力做的功等于下降过程克服磁场力做的功 C .上升过程克服重力做功的平均功率大于下降过程中重力的平均功率 D .上升过程克服重力做功的平均功率等于下降过程中重力的平均功率 3.如图所示,虚线框abcd 内为一矩形匀强磁场区域,ab=2bc,磁场方向垂直于纸面;实线框a ′b ′c ′d ′是一正方形导线框,a ′b ′边与ab 边平行.若将导线框以相同的速度匀速地拉离磁场区域,以W 1表示沿平行于ab 的方向拉出过程中外力所做的功,W 2表示以同样速率沿平行于bc 的方向拉出过程中外力所做的功,则 A.W 1=W 2 B.W 2=2W 1 C.W 1=2W 2 D.W 2=4W 1 4.一条形磁铁用细线悬挂处于静止状态,一铜质金属环从条形磁铁的正上方由静止开始下落,如图所示,在下落过程中,下列判断中正确的是 A .在下落过程中金属环内产生电流,且电流的方向始终不变 B .在下落过程中金属环的加速度始终等于 g C .磁铁对细线的拉力始终大于其自身的重力 D .金属环在下落过程动能的增加量小于其重力势能的减少量 5、正方形的闭合线框,边长为a ,质量为m ,电阻为R ,在竖直平面内以某一水平初速度在垂直于框面的水平磁场中,运动一段时间t 后速度恒定,运动过程中总有 两条边处在竖直方向(即线框自身不转动),如图58所示。已知磁场的磁感应强度 在竖直方向按B=B 0+ky 规律逐渐增大,如图所示,k 为常数。在时间t 内: A 、水平分速度不断减小;B 、水平分速度不断增大; C 、水平分速度大小不变; D 、在竖直方向上闭合线框做自由落体运动。 6.如图所示,相距均为d 的的三条水平虚线L 1与L 2、L 2与L 3之间分别有垂直纸面向外、向里的匀强磁场,磁感应强度大小均为B 。一个边长也是d 的正方形导线框,从L 1上方一定高处由静止开始自由下落,当ab 边刚越过L 1进入磁场时,恰好以速度v 1做匀速直线运动;当ab 边在越过L 2运动到L 3之前的某个时刻,线框又开始以速度v 2做匀速直线运动,在线框从进入磁场到速度变为v 2的过程中,设线框的动能变化量大小为△E k ,重力对线框做功大小为W 1,安培力对线框做功大小为W 2,下列说法中正确的有( ) A .在导体框下落过程中,由于重力做正功,所以有v 2>v 1 B .从ab 边进入磁场到速度变为v 2的过程中,线框动能的变化量大小为 △E k =W 2-W 1 C .从ab 边进入磁场到速度变为v 2的过程中,线框动能的变化量大小为 △E k =W 1-W 2 D .从ab 边进入磁场到速度变为v 2的过程中,机械能减少了W 1+△ E k 7.如图所示,ABCD 为固定的水平光滑矩形金属导轨,AB 间距离为L ,左右两端均接有阻值为R 的电阻,处在方向竖直向下、磁感应强度大小为B 的匀强磁场中,质量为m 、长为L 的导体棒MN 放在导轨上,甲、乙两根相同的

2016电磁感应现象和力学综合(yaoyao)

专题:电磁感应现象和力学综合 一、电磁感应现象中的动力学问题 例题分析 1、如图所示,ab 和cd 是位于水平面内的平行金属轨道,间距为l ,其电阻可忽略不计,ac 之间连接一阻值为R 的电阻。ef 为一垂直于ab 和cd 的金属杆,它与ad 和cd 接触良好并可沿轨道方向无摩擦地滑动,电阻可忽略。整个装置处在匀强磁场中,磁场方向垂直于图中纸面向里,磁感应强度为B ,当施外力使杆ef 以速度v 向右匀速运动的距离为d 时,则: (1)杆ef 中的电流大小为 ,方向 ; (2)杆ef 所受的安培力为 ,方向 ; (3)对杆施外力的外力大小F= ,方向 ; (4)外力对杆 ef 所做的功为W F = ; (5)安培力对杆ef 所做的功为W A = ; (6)电流所做的功为W 电= ;电路中产生的焦耳热Q= ; (7)外力的功率P F = ,安培力的功率P A = ,电路中产生热功率P R = ,外力的功率、安培力的功率、热功率的大小关系是 。 (8)通过回路的电量q= 。 2、如图所示,空间存在B=0.5T ,方向竖直向下的匀强磁场,MN 、PQ 是处于同一水平面内相互平行的粗糙长直导轨,间距L=0.2m , 电阻R=0.3Ω接在导轨另一端,ab 是跨接在导轨上质量为m=0.1kg 、电阻r=0.1Ω的导体棒和导轨间的动摩擦因素μ=0.2,。从零时刻开始,对ab 棒施加一个牵引力F=0.45N 、方向水平向左的恒定拉力,使其从静止开始沿导轨做滑动,过程中棒始终保持与导轨垂直且接触良好。求(1)ab 棒所能达到的最大速度; (2)试画出导体棒运动的速度—时间图像; (3) 当改变拉力的大小时,相对应的ab 棒能 达到的最大速度v m 也会改变,试画出v m -F 图线。

电磁感应的能量问题

电磁感应的能量问题 电磁感应中的动力学问题 1.安培力的大小 ?? ? ?? 感应电动势:E=Blv 感应电流:I= E R+r 安培力公式:F=BIl ?F= B2l2v R+r 2.安培力的方向 (1)先用右手定则确定感应电流方向,再用左手定则确定安培力方向。 (2)根据楞次定律,安培力方向一定和导体切割磁感线运动方向相反。 1.电磁感应中动力学问题的动态分析 联系电磁感应与力学问题的桥梁是磁场对电流的安培力,由于感应电流与导体切割磁感线运动的加速度有着相互制约关系,因此导体一般不是匀变速直线运动,而是经历一个动态变化过程再趋于一个稳定状态,分析这一动态过程的基本思路是: 导体受力运动――→ E=BLv感应电动势错误!感应电流错误!通电导体受安培力→合外力变化――→ F合=ma加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定的临界状态。 2.解题步骤 (1)用法拉第电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向。 (2)应用闭合电路欧姆定律求出电路中的感应电流的大小。 (3)分析研究导体受力情况,特别要注意安培力方向的确定。 (4)列出动力学方程或平衡方程求解。 3.两种状态处理 (1)导体处于平衡态——静止或匀速直线运动状态。

处理方法:根据平衡条件——合外力等于零,列式分析。 (2)导体处于非平衡态——加速度不为零。 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析。

4.电磁感应中的动力学临界问题 (1)解决这类问题的关键是通过运动状态的分析,寻找过程中的临界状态,如速度、加速度为最大值或最小值的条件。 (2)基本思路是: 电磁感应中的能量问题 1.能量的转化 闭合电路的部分导体做切割磁感线运动产生感应电流,感应电流在磁场中受安培力。外力克服安培力做功,将其它形式的能转化为电能,电流做功再将电能转化为其它形式的能。 2.实质 电磁感应现象的能量转化,实质是其它形式的能和电能之间的转化。 1.能量转化分析 (1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程。 (2)当磁场不动、导体做切割磁感线的运动时,导体所受安培力与导体运动方向相反,此即电磁阻尼。在这种情况下,安培力对导体做负功,即导体克服安培力做功,将机械能转化为电能,当感应电流通过用电器时,电能又转化为其它形式的能,如通过电阻转化为内能(焦耳热)。 即:其他形式的能如:机械能 ――――――→安培力做负功 电能――――→电流做功 其他形式的能如:内能 (3)当导体开始时静止、磁场(磁体)运动时,由于导体相对磁场向相反方向做切割磁感线

电磁感应中的动力学和能量问题(教师版)

专题 电磁感应中的动力学和能量问题 一、电磁感应中的动力学问题 1.电磁感应与动力学、运动学结合的动态分析,分析方法是: 导体受力运动产生感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,直至达到稳定状态. 2.分析动力学问题的步骤 (1)用电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向. (2)应用闭合电路欧姆定律求出电路中感应电流的大小. (3)分析研究导体受力情况,特别要注意安培力方向的确定. (4)列出动力学方程或平衡方程求解. 3.两种状态处理 (1)导体处于平衡态——静止或匀速直线运动状态. 处理方法:根据平衡条件——合外力等于零,列式分析. (2)导体处于非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 二、电磁感应中的能量问题 1.电磁感应过程的实质是不同形式的能量转化的过程.电磁感应过程中产生的感应电流在磁场中必定受到安培力作用,因此要维持感应电流存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能,“外力”克服安培力做多少功,就有多少其他形式的能转化为电能;当感应电流通过用电器时,电能又转化为其他形式的能.可以简化为下列形式: 其他形式的能如:机械能 ――→安培力做负功电能 ――→电流做功其他形式的能如:内能 同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能. 2.电能求解的思路主要有三种 (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功; (2)利用能量守恒求解:机械能的减少量等于产生的电能; (3)利用电路特征求解:通过电路中所产生的电能来计算. 例1 如图所示,MN 、PQ 为足够长的平行金属导轨,间距L =0.50 m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R =5.0 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B =1.0 T .将一根质量为m =0.050 kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离s =2.0 m .已知g =10 m/s 2,sin 37°=0.60,cos 37°=0.80.求: (1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒到达cd 处的速度大小; (3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量. 解析 (1)设金属棒开始下滑时的加速度大小为a ,则 mg sin θ-μmg cos θ=ma a =2.0 m/s 2 (2)设金属棒到达cd 位置时速度大小为v 、电流为I ,金属棒受力平衡,有mg sin θ=BIL + μmg cos θ I =BL v R 解得v =2.0 m/s (3)设金属棒从ab 运动到cd 的过程中,电阻R 上产生的热量为Q ,由能量守恒, 有mgs sin θ=12 m v 2+μmgs cos θ+Q 解得Q =0.10 J 突破训练1 如图所示,相距为L 的两条足够长的平行金属导轨,与水平面的夹角为θ,导轨上固定有质量为m 、电阻为R 的两根相同的导体棒,导体棒MN 上方轨道粗糙、下方轨

相关主题
文本预览
相关文档 最新文档