当前位置:文档之家› 汽车排放分析系统中NOX转换效率的计算分析

汽车排放分析系统中NOX转换效率的计算分析

汽车排放分析系统中NOX转换效率的计算分析
汽车排放分析系统中NOX转换效率的计算分析

汽车排放分析系统中NOX转换效率的计算分析

摘要:本文介绍了汽车排放气体分析系统中氮氧化物分析仪的工作原理,并对汽车排放气体分析系统中氮氧化物的转换效率如何计算进行了详细分析;上述内容对汽车尾气排放试验人员有一定参考价值。

关键词:汽车排放分析系统;氮氧化物的转换效率;计算分析

前言

氮氧化物NOX是汽车尾气排放的主要污染物之一,所带来的环境效应多种多样,它是酸雨的成因之一,可导致地表水的酸化,大气能见度降低,增加水体中有害于鱼类和其他水生生物的毒素含量等。因此检测分析汽车尾气中氮氧化物的含量对环境污染控制具有重要意义。氮氧化物NOX包括NO2和NO,由于NOX分析仪不能直接检测出NO2的含量,需将NO2转换为NO才能进行检测,该转换过程由NOX转换器完成(NOX的转换效率指的是将NO2转换为NO的转换效率)。NOX的转换效率直接影响NOX的测量结果,因此为确保NOX分析仪检测数据的准确可靠,应定期检查转换效率是否符合要求。

1.NOX分析仪

1.1 化学发光法的原理

基态下的NO2不具有发光性,不能被化学发光法检测出来,但化学发光法可以检测出NO,因此须将NO2通过转换器转换为NO。

化学发光法的原理如下:

NO和O3发生化学反应产生激发态的NO2,大约有10%的NO2处于激发状态。当激发态的NO2*返回到基态NO2时,将产生波长为600—2400nm,中心波长为900nm的近红外荧光,其中一份光子的能量为hv。在一定的压力和温度条件下,荧光强度(或光子能量)只与反应前的NO的浓度成正比。利用光电倍增管吸收光子产生光电流,光电流强度与NO的浓度成线性,可通过光电强度测得NO的浓度。

1.2 NOX转换器原理

NOX转换器效率装置简图如图1所示,NO和O2进入气路系统,将流量电

氮氧化物的环境催化

氮氧化物的环境催化 1、氮氧化物的来源、危害和消除对策: 氮氧化物指的是只由氮、氧两种元素组成的化合物。常见的氮氧化物有一 氧化二氮(N 2O)、一氧化氮(NO)、二氧化氮 (NO 2 )、三氧化二氮(N 2 O 3 )、四氧化 二氮(N 2O 4 )和五氧化二氮(N 2 O 5 )等多种化合物,但主要是NO和NO 2 ,它们是常见 的大气污染物。 来源:①土壤和海洋中有机物的分解;②化石燃料的燃烧;③生产、使用硝酸的过程。 危害:①刺激呼吸系统,影响人体健康;②伤害动、植物;③形成光化学烟雾,使大气能见度降低;④形成酸雨。 消除方法:目前,消除NO X 的方法有催化法和非催化法。催化法包括催化还原法和催化氧化法;非催化法包括湿式吸收法,固体吸附法和等离子体法[3]。其中选择性催化还原(SCR)脱硝法是运用最广,效率最高的方法。这种方法主要通 过添加还原剂(如CO、H 2、C 3 H 6 、NH 3 或CH 4 等碳氢化合物)来实现对NO X 的还原, 适用于SCR技术的催化剂主要有金属催化剂、金属氧化物催化剂、分子筛催化剂、金属离子交换的沸石类催化剂和工业用V2O5类催化剂等[2]。因此,在富氧条件下的催化还原NOX成为近年来的研究热点[4]。 2、氮氧化物催化消除的研究与应用进展现状: 2.1、金属催化剂催化NO X 铜系[7][外3]催化剂选择性催化还原脱除NO X 研究中,其采用硅胶改性堇青石蜂窝陶瓷作为为载体,用Cu-0、Cu-Ce-O和Cu-Ce-Mn-0作为活性组分的催化剂,用 CO(NH 2) 2 为还原剂,并用XRD、SEM和BET等测试方法对催化剂进行表征。研究 表明:Cu-Ce-Mn-O/Si0 2 /堇青石催化剂具有最好的活性,主要是由于其活性中心密度大,晶体颗粒团聚集比较小,而且得到充分分散[8]。 贵金属催化分解NOX[Pt Pd Rn Rh 和 Ir],在各种载体中(TiO 2、ZnO 2 、ZrO 2 和 Al 2O 3 ),以 Al 2 O 3 为载体的贵金属活性最高。同时催化剂中贵金属的含量越 高,其活性也越高[4]。 2.2、金属氧化物催化NO X [4][6]:

氮氧化物排放标准2020

氮氧化物排放标准2020: 锅炉在燃烧过程中所产生的氮的氧化物主要为NO和NO2,通常把这两种氮的氧化物通称为氮氧化物NOx。煤炭、天然气、重油等天然矿物燃料在燃烧过程中生成的氮氧化物中,NO占90%,其余为NO2。新版《锅炉大气污染物排放标准》(GB 13271-2014)要求2017年4月1日后在用锅炉须由现行标准的氮氧化物排放量≤200mg/m3降低至排放量≤80mg/m3,新建锅炉由现行标准的氮氧化物排放量≤80 mg/m3降低至排放量≤30mg/m3。 中正低氮燃气锅炉SZS系列 为了进一步减少氮氧化物排放,改善空气质量,全国各地区在满足国家标准的同时,还陆续出台更为严格的地方标准。 区域 NOx指标(mg/m3) 参考标准 发布日期 新建 在用 北京 30

80 DB11-139-2015 2015 天津 80 150 DB12-151-2016 2016 郑州 30 未明确 郑州市2017年大气污染 防治攻坚行动方案的通知 2017 西安、宝鸡、咸阳、渭南、铜川 30 80 陕西省环境保护厅关于燃气锅炉低氮排放改造控制标准的复函2017.5.22 山东 核心区50 重点区100一般区150其它200

(2016.12.31之前) 七市执行150 其余执行200 DB37(征求意见稿) 2017.11.29 上海 50 150 (2019-12-31之前) 50 (2020-1-1之后) DB31387-2017 (征求意见稿) 2017 杭州 50 150 DB201(征求意见稿)DB201(征求意见稿)成都 200 400

GB 13271-2014 2014 未明确 30(煤改气) 关于优化环评审批促进燃煤锅炉提标改造的通知2017.9 重庆 200 400 DB 50/658-2016 2016 广东 150 200 DB44/765-2017 (征求意见稿) 2017 哈尔滨 150 150

氮氧化物排放量计算

锅炉燃烧氮氧化物排放量 燃料燃烧生成的氮氧化物量可用下式核算: GNOx=1.63B(β·n+10-6Vy·CNOx) 式中:GNOx ~燃料燃烧生成的氮氧化物(以NO2计)量(kg); B ~煤或重油消耗量(kg); β~燃烧氮向燃料型NO的转变率(%),与燃料含氮量n有关。普通燃烧条件下,燃煤层燃炉为25~50%(n≥0.4%),燃油锅炉为32~40%,煤粉炉取20~25%; n ~燃料中氮的含量(%); Vy ~燃料生成的烟气量(Nm3/kg); CNOx~温度型NO浓度(mg/Nm3),通常取70ppm,即93.8mg/Nm3。第一种方法: 《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一致的,假设了燃烧1kg煤产生10m3烟气。 GNOx=1.63×B×(N×β+0.000938)

GNOx—氮氧化物排放量,kg; B–消耗的燃煤(油)量,kg; N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。取0.85%。 β—燃料中氮的转化率,%。取70% 计算燃烧1t煤产生氮氧化物量为

18.64kg。 第二种方法:根据N守恒,计算公式为:G=B×N/14×a×46 其中:G—预测年二氧化氮排放量; N—煤的氮含量(%),取0.85%; a—氮氧化物转化为二氧化氮的效率(%),取70%。 B—燃煤量。 计算燃烧1t煤氮氧化物产生量为19.55 kg。 第三种方法: 按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为

流量频率分析计算

附件1 流量频率分析计算 根据业主提供的1966年至2010年共计45年的流量统计,其中1980年、1988年、2002年、2003年这4年10月中旬没有流量记录,进行频率分析计算如下。 各设计频率下的洪水流量采用矩法进行计算: 1. 计算经验频率: 计算公式为 %1 += n m P 式中 P-----经验频率; m-----洪水资料从大到小排列序号; n-----洪水资料全部项数,此处取n=41。 列表计算10月中旬平均流量经验频率:见表一 2.统计参数的初步计算: 平均流量 83 .22141 05.9095== = ∑n Q Q 变差系数C v 偏态系数C s 以上三式中 Q i -----系列变量,共计41个; Q -----系列变量均值; n -----系列项数;n=41; C v -----变差系数; C s -----偏态系数。 76 .1082.383.221)141(83.2214135.8084508)1(2222 2==-?-=--=∑Q n Q n Q C V 64.4)3()(3 33 =--=∑V i S C Q n Q Q C

表一:10月中旬平均流量频率决算表 年份10月中旬平 均流量 3 序号 按流量排序 Qi(m3/s) Qi2 经验频率 Pm(%) 1966 99.28 12341.345481873.0 2.4 1967 180.40 2902.19813946.80 4.8 1968 86.94 3896.9804429.61 7.1 1969 49.82 4413.43170924.36 9.5 1970 131.61 5343.64118088.45 11.9 1971 75.64 6319.3101952.49 14.3 1972 37.32 730693636.00 16.7 1973 176.67 8230.953314.81 19.0 1974 107.16 9213.7445684.79 21.4 1975 191.44 10193.2737353.29 23.8 1976 43.22 11191.44 36649.45 26.2 1977 47.34 12180.932724.81 28.6 1978 119.29 13180.40 32543.44 31.0 1979 58.48 14176.67 31213.63 33.3 1981 153.63 15165.2327300.95 35.7 1982 144.32 16153.7423635.99 38.1 1983 60.07 17153.63 23603.33 40.5 1984 17.49 18144.32 20826.97 42.9 1985 96.30 19131.61 17320.64 45.2 1986 97.07 20119.29 14230.10 47.6 1987 92.99 21109.3211950.86 50.0 1989 62.41 22107.16 11482.52 52.4 1990 57.35 2399.28 9857.04 54.8 1991 65.322497.07 9423.52 57.1 1992 319.32596.30 9272.85 59.5 1993 3062692.99 8646.85 61.9 1994 165.232786.94 7559.31 64.3 1995 180.92875.64 5720.72 66.7 1996 343.642965.324266.70 69.0 1997 230.93062.41 3894.63 71.4 1998 902.193160.07 3608.70 73.8 1999 2341.343258.48 3419.85 76.2 2000 896.93357.35 3288.83 78.6 2001 213.743449.82 2482.03 81.0 2004 413.433547.34 2240.94 83.3 2005 10.743646.962205.24 85.7 2006 15.93743.22 1867.91 88.1 2007 193.273837.32 1392.99 90.5 2008 153.743917.49 305.78 92.9 2009 46.964015.9252.81 95.2 2010 109.324110.74115.35 97.6 ∑9095.05 9095.05 8084508.3 平均值221.83 221.83

汽车排放分析系统中NOX转换效率的计算分析

汽车排放分析系统中NOX转换效率的计算分析 摘要:本文介绍了汽车排放气体分析系统中氮氧化物分析仪的工作原理,并对汽车排放气体分析系统中氮氧化物的转换效率如何计算进行了详细分析;上述内容对汽车尾气排放试验人员有一定参考价值。 关键词:汽车排放分析系统;氮氧化物的转换效率;计算分析 前言 氮氧化物NOX是汽车尾气排放的主要污染物之一,所带来的环境效应多种多样,它是酸雨的成因之一,可导致地表水的酸化,大气能见度降低,增加水体中有害于鱼类和其他水生生物的毒素含量等。因此检测分析汽车尾气中氮氧化物的含量对环境污染控制具有重要意义。氮氧化物NOX包括NO2和NO,由于NOX分析仪不能直接检测出NO2的含量,需将NO2转换为NO才能进行检测,该转换过程由NOX转换器完成(NOX的转换效率指的是将NO2转换为NO的转换效率)。NOX的转换效率直接影响NOX的测量结果,因此为确保NOX分析仪检测数据的准确可靠,应定期检查转换效率是否符合要求。 1.NOX分析仪 1.1 化学发光法的原理 基态下的NO2不具有发光性,不能被化学发光法检测出来,但化学发光法可以检测出NO,因此须将NO2通过转换器转换为NO。 化学发光法的原理如下: NO和O3发生化学反应产生激发态的NO2,大约有10%的NO2处于激发状态。当激发态的NO2*返回到基态NO2时,将产生波长为600—2400nm,中心波长为900nm的近红外荧光,其中一份光子的能量为hv。在一定的压力和温度条件下,荧光强度(或光子能量)只与反应前的NO的浓度成正比。利用光电倍增管吸收光子产生光电流,光电流强度与NO的浓度成线性,可通过光电强度测得NO的浓度。 1.2 NOX转换器原理 NOX转换器效率装置简图如图1所示,NO和O2进入气路系统,将流量电

初中物理专题复习能量转化中的效率计算

初中物理专题复习能量转化中的效率计算 能量可以从一种形式转化为另一种形式,要实现这种能量的转化需要一定的设备,由于设备本身的限制,不可能将一种能量全部转化为另一种能量,这就出现了设备的效率问题。笔者发现,2011年各地中考以设备的效率为载体,围绕有用的能量和总能量涉及的相关知识设置考点,试题的综合性较强,覆盖初中物理的力、热、电、能量等知识。 1.锅炉的效率 例1.(2011鞍山)某中学为学生供应开水,用锅炉将200kg的水从25℃加热到100℃,燃烧了6kg 的无烟煤。水的比热容是4.2×103J/(kg·℃),无烟煤的热值是3.4×l07J/kg。求: (1)锅炉内的水吸收的热量是多少? (2)无烟煤完全燃烧放出的热量是多少? (3)此锅炉的效率是多少? 解析:试题以锅炉为载体,考查了吸热升温公式和燃料燃烧放热公式。要求锅炉的效率,需要清楚锅炉将燃料燃烧放出的热量转化为水的内能,因此水温度升高吸收的热量是有用的能量,无烟煤完全燃烧放出的热量是总能量。 答案:(1) (2) (3)锅炉的效率

2.柴油抽水机的效率 例2.(2011荆门)今年我省出现大面积干旱,造成农田缺水,严重影响农作物生长,为缓解旱情,很多地方采用柴油抽水机从江湖中引水灌溉。某柴油抽水机把湖水抬升4.5m流入沟渠,再去灌溉农田。已知在2h内抬升了1600m3的水,此柴油抽水机的效率为40%,柴油的热值为4.5×107J/kg,g取10N/kg,求:(1)此柴油抽水机2h做了多少有用功?℃ (2)此柴油抽水机工作2h消耗了多少柴油? (3)此柴油抽水机的总功率为多少千瓦? 解析:柴油抽水机将柴油完全燃烧产生的能量通过克服重力做功转化为水的重力势能。试题以此为载体,考查了质量、密度、重力、热值、功和功率等知识。 (1)虽然抽水机是将水连续地分批抽上去,我们可以想象成抽水机将全部1600m3的水一次性地在2h 内缓慢抬升4.5m,这就是等效法的应用。这样利用计算出水的质量,再用计算重力,然后用就可以计算出有用功。 (2)要计算柴油的质量,需要先计算柴油燃烧放出的热量。这就要利用柴油抽水机的效率为40%这个数据。教学中发现很多同学常犯一个错误,就是利用柴油抽水机做的有用功去乘以效率。避免错误的方法 是想清楚柴油燃烧放出的热量是总的能量,总的能量要比有用的能量数值大。应该根据,得到 。 (3)柴油抽水机的总功率应该用总能量除以时间计算,总能量就是柴油燃烧放出的热量,时间是2h,要注意把单位化成秒。 答案:(1)

流量计算公式

流量计算公式 (1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为: 式中,q f为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=3.1794×10-6;c为流出系数;E为渐近速度系数;d为工况下孔板内径,mm;F G为相对密度系数,ε为可膨胀系数;F Z为超压缩因子;F T为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。 (2)速度式流量计 速度式流量计是以直接测量封闭管道中满管流动速度为原理的一类流量计。工业应用中主要有: ①涡轮流量计:当流体流经涡轮流量传感器时,在流体推力作用下涡轮受力旋转,其转速与管道平均流速成正比,涡轮转动周期地改变磁电转换器的磁阻值,检测线圈中的磁通随之发生周期性变化,产生周期性的电脉冲信号。在一定的流量(雷诺数)范围内,该电脉冲信号与流经涡轮流量传感器处流体的体积流量成正比。涡轮流量计的理论流量方程为: 式中n为涡轮转速;q v为体积流量;A为流体物性(密度、粘度等),涡轮结构参数(涡轮倾角、涡轮直径、流道截面积等)有关的参数;B为与涡轮顶隙、流体流速分布有关的系数;C为与摩擦力矩有关的系数。 ②涡街流量计:在流体中安放非流线型旋涡发生体,流体在旋涡发生体两侧交替地分离释放出两列规则的交替排列的旋涡涡街。在一定的流量(雷诺数)范围内,旋涡的分离频率与流经涡街流量传感器处流体的体积流量成正比。涡街流量计的理论流量方程为:

煤燃烧过程中氮氧化物的转化及控制

2003年第4期(总第31期) 山西能源与节能 SHAN X I EN ER GY AND CON SERVA T I ON 2003年12月 出 版煤燃烧过程中氮氧化物的转化及控制 杨 冬,路春美,王永征,宋行强 (山东大学热能工程研究所,山东 济南 250061) 摘 要:论述了煤在燃烧过程中,NO?的生成与破坏机理,介绍了工程实际中常用的几种低NO?燃烧技术,强调了煤洁净燃烧技术对环境和可持续发展的重大意义。 关键词:NO?;燃烧技术;环境保护 中图分类号:TQ534.9 文献标识码:B 引 言 我国煤炭资源丰富,也是世界上产煤和用煤大国,中国对煤炭的需求量占世界煤炭总产量的28%。煤炭在我国一次能源中占总消费量的比重为70%。 根据我国的国情,煤炭是主要动力燃料。但是煤炭中含有硫、氮等元素,在燃烧过程中会产生SO2和NO?,造成大气严重污染。这已经成为制约经济发展的一个重要因素。 燃煤电站锅炉是NO?的主要排放源,2000年全国的电站锅炉NO?平均排放浓度为750m g m3,NO?排放总量为258.02万t,据预测到2010年NO?排放总量将比2000年增长136万t左右。 在燃烧过程中生成的氮氧化物,几乎全是NO和NO2。通常把这两种氮氧化物称为NO?。大部分NO?中,NO占90%以上,NO2占5%~10%,而N2O只占1%左右。 NO?对植物有损害,对动物有致毒作用。大气中NO?和挥发性有机物在太阳光照射下经过一系列复杂的光化学反应,就会产生毒性很大的光化学烟雾。并且NO?能形成酸雨,造成水污染,还能破坏臭氧层,对全球气候变化产生极为不利的影响。 研究煤燃烧过程中NO?的生成和破坏机理,改进煤燃烧技术,可以减少NO?的生成与排放,走出一条适合我国国情的防治NO?污染之路。 收稿日期:2003205207 作者简介:杨 冬(1973- ),男,山西潍坊人,1995年毕业于山东工业大学动力系,工程师。 路春美(1958- ),女,山东淄博人,山东大学能 源与动力学院教授,博士生导师。 王永征(1965- ),男,山东淄博人,山东大学能 动学院教授,硕士生导师。 宋行强(1978- ),男,山东威海人,山东大学能 动学院研究生。1 NO?的生成 在燃烧过程中,NO?生成的途径有3条:一是空气中氮在高温下氧化产生,称为热力型NO?;二是由于燃料挥发物中碳氢化合物高温分解生成的CH自由基和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成NO?,称为快速型NO?;三是燃料中含氮化合物在燃烧中氧化生成的NO?,称为燃料型NO?。 1.1 热力型NO? 热力型NO?是空气中氮(N2)和氧(O2)在高温下生成的,通常有捷里多维奇(Zeldovich)机理或改进的Zeldovich 机理描述,可用下列支链反应式来表达: O2+M∴2O+M, O+N2∴N O+N, N+O2∴N O+O。 热力型NO?的生成量强烈地依赖着火焰温度及燃料 空气的当量比。实验研究表明:只有燃料富氧燃烧且温度超过1800Ο时,热力型NO?的生成量才急剧增大。当过量空气系数Α<0.95和T<1800Ο时,NO?可以忽略不计。 1.2 快速型NO? 快速型NO?是由CH i基(挥发分析过程得到的)冲击靠近火焰反应区的氮分子生成的。它较大地依赖于温度,且一般在富燃料碳氢火焰中占更大的优势。 1.2.1 著名的快速型NO?的生成机理的是费尼莫尔的反应机理。按照费尼莫尔的反应机理,快速型NO?的生成过程共有四组反应构成: a)在碳氢化合物燃烧时,特别是富燃料燃烧时,会分解出大量的CH、CH2、CH3和C2等离子团,它们会破坏燃烧空气中氮分子的化学键而生成HCN,CN等: CH+N2∴H CN+N, CH2+N2∴H CN+N H, CH3+N2∴H CN+N H2, C2+N2∴2CN。

环境监测中氮氧化物分子量的采用

环境监测中氮氧化物分子量的采用 90年代末期推出的产品。是按照国家标准《固定污染源排放气中颗粒物测定与气态污染物采样方法》GB/T16157-1996(目前仍为使用标准)要求设计的,但这个标准中没有监测氮氧化物的计算方法。为了满足用户的需要,国产在监测仪中增加了氮氧化物监测项目。设计人员按照书本中的公式,根据实际生产经验,采用: NOX = NO×1.05 进行计算, 1.05的含义为:NOX = NO + NO2 (通常烟气中NO2约占NOX 的5%),因此上式又可写为:NOX = NO + NO×5% 即:NOX = NO×1.05 ---------(1)(注:监测仪上只安装了NO传感器)。 2.在2001年后推出的产品。设计时,按照国家行业标准《固定污染源排放烟气连续监测系统技术要求及检测方法》HJ/T76-2001(其中第12页8. 3.1标准气体…NOX(以NO2计)?及第18页表6下注:…氮氧化物以NO2计?)的要求进行设计。按照规范,采用的计算公式为:NOX =。NO+NO2 NO用NO2表示则公式为:NOX = NO(NO2/NO)+ NO2 NO分子量为30,NO2分子量为46则公式为:NOX = NO(46/30)+ NO2 即:NOX = NO×1.53 + NO2 国家规范中氮氧化物注明…NOX(以NO2计)?,未给出详细演算方法。 国家规范对固定污染源气态污染物监测,二氧化硫和颗粒物有着明确的要求,氮氧化物监测方式的监测值计算公式长期以来未给出详细演

算方法。国家标准《固定污染源排放气中颗粒物测定与气态污染物采样方法》GB/T16157-1996没有提到氮氧化物监测的计算方式,2007年8月1日实施的HJ/T76-2007《固定污染源烟气排放连续监测系统技术要求及检测方法》替代了HJ/T76-2001,其中第15页8.3.1注明…NOX(以NO2计)?第25页表Ⅱ-1下注:…氮氧化物以NO2计?也未给出详细氮氧化物演算方法。其它有关固定污染源监测的规范如:HJ/T373-2007《固定污染源监测质量保证与质量控制技术规范》、HJ/T397-2007《固定源废气监测技术规范》、HJ/T75-2007《固定污染源烟气排放连续监测技术规范》等均未给出氮氧化物公式演算方法。 . 据了解,目前市场上运行的烟气监测仪器所用的氮氧化物计算公式各厂家也不尽相同,归纳起来有以下几种计算公式: NO×1.05 = NOX mg/m3 --------(氮氧化物以NO计) NO×1.53 + NO2 = NOX mg/m3---------(氮氧化物以NO2计)NO + NO2 = NOX mg/m3--------(氮氧化物以NO计)(NO ppm + NO2 ppm)2.05 = NOX mg/m3-----(氮氧化物以NO2计) 因此两种计算方法也是市场上运行的烟气监测仪器所普遍采用的。. 作为一种污染物应考虑该污染物对环境污染的贡献率,从已发表的资料证明,一氧化氮是不稳定污染气体。当一氧化氮从缺氧的烟囱中排放到空气中,遇到含氧量为21%的大气将迅速氧化成二氧化氮,

能量转化中的效率计算

能量转化中的效率计算 能量可以从一种形式转化为另一种形式,要实现这种能量的转化需要一定的设备,由于设备本身的限制,不可能将一种能量全部转化为另一种能量,这就出现了设备的效率问题。笔者发现,2019年各地中考以设备的效率为载体,围绕有用的能量和总能量涉及的相关知识设置考点,试题的综合性较强,覆盖初中物理的力、热、电、能量等知识。 1.锅炉的效率 例1.(2019鞍山)某中学为学生供应开水,用锅炉将200kg 的水从25℃加热到100℃,燃烧了6kg的无烟煤。水的比热容是4.2×103J/(kg·℃),无烟煤的热值是3.4×l07J/kg。求: (1)锅炉内的水吸收的热量是多少? (2)无烟煤完全燃烧放出的热量是多少? (3)此锅炉的效率是多少? 解析:试题以锅炉为载体,考查了吸热升温公式和燃料燃烧放热公式。要求锅炉的效率,需要清楚锅炉将燃料燃烧放出的热量转化为水的内能,因此水温度升高吸收的热量是有用的能量,无烟煤完全燃烧放出的热量是总能量。 答案:(1) (2) (3)锅炉的效率

2.柴油抽水机的效率 例2.(2019荆门)今年我省出现大面积干旱,造成农田缺水,严重影响农作物生长,为缓解旱情,很多地方采用柴油抽水机从江湖中引水灌溉。某柴油抽水机把湖水抬升4.5m 流入沟渠,再去灌溉农田。已知在2h内抬升了1600m3的水,此柴油抽水机的效率为40%,柴油的热值为4.5×107J/kg,g取10N/kg,求: (1)此柴油抽水机2h做了多少有用功?℃ (2)此柴油抽水机工作2h消耗了多少柴油? (3)此柴油抽水机的总功率为多少千瓦? 解析:柴油抽水机将柴油完全燃烧产生的能量通过克服重力做功转化为水的重力势能。试题以此为载体,考查了质量、密度、重力、热值、功和功率等知识。 (1)虽然抽水机是将水连续地分批抽上去,我们可以想象成抽水机将全部1600m3的水一次性地在2h内缓慢抬升 4.5m,这就是等效法的应用。这样利用计算出水的质量,再用计算重力,然后用就可以计算出有用功。 (2)要计算柴油的质量,需要先计算柴油燃烧放出的热量。这就要利用柴油抽水机的效率为40%这个数据。教学中发现很多同学常犯一个错误,就是利用柴油抽水机做的有用功去乘以效率。避免错误的方法是想清楚柴油燃烧放出的热量是总的能量,总的能量要比有用的能量数值大。应该根据,得

氮氧化物的计算方法

氮氧化物的计算方法 燃烧产生的氮氧化物根实际燃烧条件关系密切,所以要准确估算是非常困难的。如果条件允许,尽量类比具备可比性同类型项目实测数据;在无实测情况下最好查阅相关书籍或相关研究成果计算方式,根据相关条件选择相近情况公式的计算结果准确率稍高,而且符合导则要求可找到依据出处;切记别拍脑袋。以下几种方法供大家参考。 传统方法 第一种方法: 《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一 产生10m3烟气。致的,假设了燃烧1kg煤 GNOx=1.63×B×(N×β+0.000938) 氮氧化物排放量,kg; GNOx— B–消耗的燃煤(油)量,kg; N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。取0.85%。 β—燃料中氮的转化率,%。取70% 计算燃烧1t煤产生氮氧化物量为18.64kg。 第二种方法:根据N守恒,计算公式为:G,B×N/14×a×46 其中:G—预测年二氧化氮排放量; N—煤的氮含量(,),取0.85,; a—氮氧化物转化为二氧化氮的效率(%),取70%。

B—燃煤量。 计算燃烧1t煤氮氧化物产生量为19.55 kg。 第三种方法: 按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为9.08kg(第65页,表2-51);用烟煤作燃料,选锅炉铺撇式加煤产生的氮氧化物为7.5kg(第66页,表2-53);用无烟煤作燃料的锅炉燃烧,选可移动炉蓖产生的氮氧化物产生量为5kg(第67页,表2-57);美国典型的燃烧烟煤小型工业锅炉的氮氧化物7.5kg(第68页,表2-60)。 第四种计算方法: 采用《产排污系数手册》第十册:按燃烧1t煤来计算: 烟煤-层燃炉:2.94kg;285.7mg/m3;(第240页) 锅炉燃烧氮氧化物排放量 燃料燃烧生成的氮氧化物量可用下式核算: GNOx,1.63B(β?n+10,6Vy?CNOx) 式中:GNOx ~燃料燃烧生成的氮氧化物(以NO2计)量(kg); ); B ~煤或重油消耗量(kg β ~燃烧氮向燃料型NO的转变率(%),与燃料含氮量n有关。普通燃烧条件下,燃煤层燃炉为25~50%(n?0.4%),燃油锅炉为32~40%,煤粉炉取20~25%; n ~燃料中氮的含量(%); Vy ~燃料生成的烟气量(Nm3,kg); CNOx ~温度型NO浓度(mg,Nm3),通常取70ppm,即93.8mg,Nm3。 固定污染源监测质量保证与质量控制技术规范,试行,,HJ/T 373-2007, 中核定氮氧化物排放量 5.3.5 核定氮氧化物排放量

水文频率计算

《水文频率计算》 根据某水文现象的统计特性,利用现有水文资料,分析水文变量设计值与出现频率(或重现期)之间的定量关系的工作过程称为水文频率计算。 自然界的现象按发生情况可分成:必然事件,即在一定条件下必然会发生的事情,如降雨以后就要涨水是必然发生的;不可能事件,即在各条件实现之下永远不会发生的事情,如只在重力作用下的水由低处向高处流是不可能的;随机事件(也称偶然事件),即在一定条件下可能发生也可能不发生的事件,如每条河流每年出现一个流量的年最大值是必然的,但这个最大值可能是这个值也可能是那个值,它在数量上的出现是一种随机事件。频率计算中是以1来表示必然事件出现的可能性(即百分之百出现),以0表示不可能事件出现的可能性,随机事件出现的可能性介于0与1之间。 水文要素。如降雨、流量等在量的出现方面都有随机性的特点,水文变量如年雨量、年最大洪峰流量、枯季最小流量等都属于随机事件,均可用频率分析方法来分析计算。水文频率分析主要包括:利用现有水文资料组成样本系列,选择合适的频率曲线线型和估计它的统计参数,根据所绘制的频率曲线推求相应于各种频率(或重现期)的水文设计值。 样本系列。无限个成因相同、相互独立的同类水文变量的集合称为该水文变量的总体。这个总体是未知的,现有水文资料只是过去发生过的和今后可能发生的整个总体中的一个样本。把现有水文资料

的水文变量按大小次序排列组成一个系列,称为样本系列,其中所含水文变量的项数(系列长度)叫做样本容量。系列愈长,样本容量愈大。水文频率分析就是通过样本系列的统计特征来估计其总体的统计特征,如各种统计参数、某水文变量的频率等。因此,样本系列是水文频率分析的基础。用样本系列去推估容量很大或无限的总体的情况,会产生因抽样而引起的误差,这就是抽样误差。水文统计分析中所估计出的各种数值(如频率、分析中的各个参数、相关系数等)都有抽样误差。样本的容量越大误差越小,否则误差越大。抽样误差分析方法有两种:①解析法。用统计原理推求出抽样误差的公式,按公式求得抽样误差值。例如,均值的均方(抽样)误差值为,其中Cv为所研究变量系列的离差系数,n为系列的长度或样本容量。②统计试验法。即生成很长的资料系列,来研究样本容量一定时统计分析中各种数值的抽样误差。 经验频率。样本系列中某水文变量x大于或等于一定数值xm(即x≥xm)的可能性大小即为频率,一般用符号pm{x≥xm}来表示,其值在0与1之间。例如,某河段年最大洪峰流量系列中,出现流量Q≥1000米3/秒的可能性为百分之一,则称Q≥1000米3/秒的频率等于1%。设系列共有n项,其中第m项xm的频率Pm常用下列公式来计算:
水文频率分析中,称上式为经验频率公式,而Pm亦称为系列中第m 项的经验频率。经验频率在绘制频率曲线的适线法中应用。 重现期。指某水文变量的取值(x≥xm)在很长时期内平均多少

氮氧化物的计算方法

燃烧产生的氮氧化物根实际燃烧条件关系密切,所以要准确估算是非常困难的。如果条件允许,尽量类比具备可比性同类型项目实测数据;在无实测情况下最好查阅相关书籍或相关研究成果计算方式,根据相关条件选择相近情况公式的计算结果准确率稍高,而且符合导则要求可找到依据出处;切记别拍脑袋。以下几种方法供大家参考。 传统方法 第一种方法: 《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一致的,假设了燃烧1kg煤产生10m3烟气。 GNOx=1.63×B×(N×β+0.000938) GNOx—氮氧化物排放量,kg; B–消耗的燃煤(油)量,kg; N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。取0.85%。 β—燃料中氮的转化率,%。取70% 计算燃烧1t煤产生氮氧化物量为18.64kg。 第二种方法:根据N守恒,计算公式为:G=B×N/14×a×46 其中:G—预测年二氧化氮排放量; N—煤的氮含量(%),取0.85%; a—氮氧化物转化为二氧化氮的效率(%),取70%。 B—燃煤量。 计算燃烧1t煤氮氧化物产生量为19.55 kg。 第三种方法: 按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为9.08kg(第65页,表2-51);用烟煤作燃料,选锅炉铺撇式加煤产生的氮氧化物为7.5kg(第66页,表2-53);用无烟煤作燃料的锅炉燃烧,选可移动炉蓖产生的氮氧化物产生量为5kg(第67页,表2-57);美国典型的燃烧烟煤小型工业锅炉的氮氧化物7.5kg(第68页,表2-60)。 第四种计算方法: 采用《产排污系数手册》第十册:按燃烧1t煤来计算: 烟煤-层燃炉:2.94kg;285.7mg/m3;(第240页)

案例一-水文统计频率曲线图

案例一 水文统计频率曲线图 某站有24年的实测年径流量资料,见表1,使用目估线推求年径流量平率曲线的三个参数,并会出曲线图。 年份 年径流深 年份 年径流深 1952 538.3 1964 769.2 1953 624.9 1965 615.5 1954 663.2 1966 417.1 1955 591.7 1967 789.3 1956 557.2 1968 732.9 1957 998 1969 1064.5 1958 641.5 1970 606.7 1959 341.1 1971 586.7 1960 964.2 1972 567.4 1961 687.3 1973 587.7 1962 546.7 1974 709 1963 509.9 1975 883.5 表1 (1)经验频率计算 ①将原始资料填入表2,并且将原始资料按从小到大的排序也填入表2中。 ②用公式100%1 m P n = ?+计算经验频率,并将其列入表2中,并将x 和p 对应的点绘制在频率格纸上(图1),本案例分析中n=24. ③计算序列的多年平均流量n i 1()/366.395i X x n ===?平 (m 3/s) ④计算各项的模比系数按供公式i l x K x =平计算,并计入表2中,其总和应等于n 。 ⑤计算各项(K i -1),列入表2中,其总和应为零。 ⑥计算(K i -1)2,并列入表2中,可以求C v,,i 1 (1)(K 1)0.261 n i i v K C n =--= =-? ⑦计算(K i -1)3,并列入表2中,可求C s ,1 (1)^3 0.05(3)^3 n i i s v k C n C =-= =-? 计算经验参数平均值X 、变差系数C u 、偏态系数C s 如下表2.

氮氧化物(NOX)转化效率测定仪

氮氧化物(NOX)转化效率测定仪 一、简介 化学发光分析仪,例如英国Signal-4000系列,美国环保总署(EPA)1979重型车法规规定,转换器初次使用之前必须进行检查,以后每周要检查,以确保转换效率至少是90%。Signal的NOXGEN III产生数量精确已知的NO2,用于测试转换器的效率,完全符合EPA 的要求。 这台仪器结构紧凑,廉价,控制精密。测试结果重复性好,这些是从上一代转换效率测试仪无法得到的。O3由一电脉冲供电的高能量灯产生,改变电脉冲可以调整O3的产量。与高压电晕放电技术相比较,NOXGEN III 不会由空气产生任何NO。仪器内有一个稳压电路,一个脉冲馈送给一个高压电源变压器,克服电网电压的变化,确保仪器工作稳定,使产生的NO2的浓度稳定。 二、工作原理 NO和O2送入效率仪,高能灯将部分空气转换成O3。O2与O3的混合气体送入NO气流中,于是NO立即被O3转化成NO2,余下的O2与NO进行化学反应再一次产生NO2,但是,这一反应非常慢,转换效率测试中不需要考虑。 产生的NO2的量由NO浓度的下降来确定。例如,如果NO浓度下降了400vpm,那么,相应地,产生400vpm的NO2,因为这一氧化反应是1:1的分子反应。因此,NO2的浓度正比于产生的O3的浓度。当效率仪与分析仪的转换器连接以后,NO2应该转换回NO。从获得的测试结果,可以确定转换器的效率。 注意事项: 03发生器d的使用注意事项:NOXGEN III利用高效高能光源系统将O2离子化成O3。O3发生器整体安装在仪器内部一个盒内。没有授权的人员不要打开盒子,因为即使切断电源,盒子内仍然有高压电。 三、安装 注意:NOXGENIII的外壳是3u高度19”标准机箱。可以放在桌面上,也可装入19”标准机柜。放在桌面上时,机箱的前部有可以张开的支脚,使仪器倾斜,方便使用。 1.在19机柜的安装 当安装在19“机柜里时,要拆掉支脚。为此,松开底盖的4个十字头螺钉,向后拉底盖以便取下底盖。底盖取下后,可以很容易的拆下4个支脚,然后安装好底盖。至此,可以随时安装到19”及柜中。 该仪器采用Parker CP1 不锈钢管接头。因为存在NO,NO2和O3,它们都是腐蚀性气体,特别注意要确保管路没有泄漏。要按照生产厂家的建议来拆装这些压力管接头,注意不要拧得过紧。 2.标准气的连接 标准气应是NO,N2做平衡气,浓度与分析仪使用的标准气的浓度接近。仪器后面板有1/4”的管接头,应该使用特氟龙(PTFE)或不锈钢管。不要使用尼龙或铜管。 该仪器使用之前,仪器标准气的气路不要加压力,因为一旦在标准气进气口加压,会立即产生气流。 3.O2/空气入口 将O2或空气钢瓶与这一接头使用特氟龙(PTFE)或不锈钢管连接,最普遍的情况是使用O2,但是,使用干燥空气也可以产生与使用O2时几乎同样高的O3的产量,另外,signal NOXGENIII经过仔细设计,不会将空气中的氮气转换成NO,这表明,使用空气仍然可以做转换器效率测定而不降低精度。能见到的唯一差别是标准气中NO被转换为NO2,NO读数

生物必修三能量流动计算

一、食物链中的能量计算 1.已知较低营养级生物具有的能量(或生物量),求较高营养级生物所能获得能量(或生物量)的最大值。 例1.若某生态系统固定的总能量为24000kJ,则该生态系统的第四营养级生物最多能获得的能量是() A. 24kJ B. 192kJ C.96kJ D. 960kJ 解析:据题意,生态系统固定的总能量是生态系统中生产者(第一营养级)所固定的能量,即24000kJ,当能量的传递效率为20%时,每一个营养级从前一个营养级获得的能量是最多的。因而第四营养级所获得能量的最大值为:24000×20%×20%×20%=192kJ。 答案:D 规律:已知较低营养级的能量(或生物量),不知道传递效率,计算较高营养级生物获得能量(或生物量)的最大值时,可按照最大传递效率20%计算,即较低营养级能量(或生物量)×(20%)n(n为食物链中由较低营养级到所需计算的营养级的箭头数)。 2.已知较高营养级的能量(或生物量),求较低营养级应具备的能量(或生物量)的最小值。 例2.在一条有5个营养级的食物链中,若第五营养级的生物体重增加1 kg,理论上至少要消耗第一营养级的生物量为() A. 25 kg B. 125 kg C. 625 kg D. 3125 kg 解析:据题意,要计算消耗的第一营养级的生物量,应按照能量传递的最大效率20%计算。设需消耗第一营养级的生物量为X kg,则X=1÷(20%)4=625 kg。 答案:C 规律:已知能量传递途径和较高营养级生物的能量(或生物量)时,若需计算较低营养级应具有的能量(或生物量)的最小值(即至少)时,按能量传递效率的最大值20%进行计算,即较低营养级的生物量至少是较高营养级的能量(或生物量)×5n(n为食物链中,由较低营养级到所需计算的营养级的箭头数)。

流量计算公式大全

流量计算公式大全 (1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计仪表中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为: 式中,qf为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d 为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=×10-6;c为流出系数;E为渐近速度系数;d为工况下孔板内径,mm;FG 为相对密度系数,ε为可膨胀系数;FZ为超压缩因子;FT为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。流量计算器。 (2)速度式流量计 速度式流量计是以直接测量封闭管道中满管流动速度为原理的一类流量计。工业应用中主要有: ①涡轮流量计:当流体流经涡轮流量传感器时,在流体推力作用下涡轮受力旋转,其转速与管道平均流速成正比,涡轮转动周期地改变磁电转换器的磁阻值,检测线圈中的磁通随之发生周期性变化,产生周期性的电脉冲信号。在一定的流量(雷诺数)范围内,该电脉冲信号与流经涡轮流量传感器处流体的体积流量成正比。涡轮流量计的理论流量方程为: 式中n为涡轮转速;qv为体积流量;A为流体物性(密度、粘度等),涡轮结构参数(涡轮倾角、涡轮直径、流道截面积等)有关的参数;B为与涡轮顶隙、流体流速分布有关的系数;C为与摩擦力矩有关的系数。 ②涡街流量计:在流体中安放非流线型旋涡发生体,流体在旋涡发生体两侧交替地分离释放出两列规则的交替排列的旋涡涡街。在一定的流量(雷诺数)范围内,旋涡的分离频率与流经涡街流量传感器处流体的体积流量成正比。涡街流量计的理论流量方程为: 式中,qf为工况下的体积流量,m3/s;D为表体通径,mm;M为旋涡发生体两侧弓形面积与管道横截面积之比;d为旋涡发生体迎流面宽度,mm;f为旋涡的发生频率,Hz;Sr为斯特劳哈尔数,无量纲。 ③旋进涡轮流量计:当流体通过螺旋形导流叶片组成的起旋器后,流体被强迫围绕

相关主题
文本预览
相关文档 最新文档