当前位置:文档之家› 材料力学简明教程(景荣春)课后答案第3章

材料力学简明教程(景荣春)课后答案第3章

材料力学简明教程(景荣春)课后答案第3章
材料力学简明教程(景荣春)课后答案第3章

第 3 章扭转

思考题

3-1何谓扭矩?扭矩的正负号如何规定的?如何计算扭矩?

答轴在外力偶矩作用下,由截面法求出的横截面上分布内力向截面形心简化的合力(力

偶矩)称为扭矩。

对扭矩T的正负规定为:若按右手螺旋法则把T表示为矢量,当矢量方向与截面的外法线n的方向一致时,T为正;反之为负。

用截面法计算扭矩,注意截面位置应偏离外力偶矩作用面。

3-2薄壁圆筒、圆轴扭转切应力公式分别是如何建立的?假设是什么?公式的应用条件

是什么?

答等厚薄壁圆筒在两端垂直于轴线的平面内作用大小相等而转向相反的外力偶M e所

做试验结果现象表明,当薄壁圆筒扭转时,其横截面和包含轴线的纵向截面上都没有正应力,横截面上只有切应力?,因为筒壁的厚度 ?很小,可以假设沿薄壁圆筒筒壁厚度切应力不变。

又因在同一圆周上各点情况完全相同,应力也就相同,从而建立薄壁圆筒扭转切应力计算公

式;

在圆轴两端施加一对大小相等、方向相反的外力偶。从实验中观察到的现象,假设轴变

形后,横截面仍保持平面,其形状、大小与横截面间的距离均不改变,而且半径仍为直线(圆

轴扭转平面假设),连同胡克定律和静力平衡条件推出圆轴扭转切应力计算公式。

公式应用条件为线弹性材料、小变形、等截面(锥度不大的变截面可近似用)。

3-3试述纯剪切和薄壁圆筒扭转变形之间的差异及相互关系。

答单元体 4 个互相垂直的面上只作用切应力的状态称为纯剪切;薄壁圆筒扭转变形时(忽略厚度影响)筒壁各点的应力状态为纯剪切。

3-4试述剪切胡克定律与拉伸(压缩)胡克定律之间的异同点及3 个弹性常量E, G, ?之间关系。

答剪切胡克定律? = G?(反映角度的变化)与拉伸(压缩)胡克定律 ? = E∑(反映

长度的变化)皆为应力与应变成正比关系。3 个弹性常量E, G, ?之间关系为G =

E

2(1 + ? )

3-5圆轴扭转时如何确定危险截面、危险点及强度条件?

答等截面圆轴扭转时的危险截面为扭矩最大的横截面,变截面圆轴扭转时的危险截面在其扭矩与扭转截面系数比值最大的横截面;其危险点在该横截面的外边缘。强度条件为

? max = T max

W p

δ [? ]

3-6金属材料圆轴扭转破坏有几种形式?

答塑性金属材料和脆性金属材料扭转破坏形式不完全相同。塑性材料试件在外力偶作用下,先出现屈服,最后沿横截面被剪断,如图 a 所示;脆性材料试件受扭时,变形很小,最后沿与轴线约45°方向的螺旋面断裂,如图 b 所示。

T (x ) GI p (x ) T ? GI p ?? 思考题 3-6 解图

3-7 从强度方面考虑,空心圆轴为何比实心圆轴合理?

答 对于相同的横截面面积(即用相同量材料),空心圆轴比实心圆轴的抗扭截面系数大, 从而强度高。

3-8 如何计算扭转变形?怎样建立刚度条件?什么样的构件需要进行刚度校核? 答 (1)写出扭矩方程或扭矩图;相距 l 的两截面间的扭转角

d ∏ = d x l l

上式适用于等截面圆轴和截面变化不大的圆锥截面轴。对等截面圆轴,若在长 l 的两横截面 间的扭矩 T 为常量,则

∏ =

Tl GI p

圆轴扭转的刚度条件为

max δ [? ]

对于等截面圆轴为

? max =

T max GI p

δ [? ] 或

? max = T max

GI p

? 180? π δ [? ]

3-9 矩形截面轴的自由扭转切应力分布与扭转变形有何特点?如何计算最大扭转切应

力与扭转变形?

答轴扭转时,横截面边缘上各点的切应力都与截面边界相切,且 4 个角点处的切应力 为零;最大切应力? max 发生在截面长边的中点处,而短边中点处的切应力? 1 是短边上的最 大切应力。其计算公式为

? max =

T W t

=

T

?hb 2

? 1 = ?? max

(2)矩形截面杆扭转时,其横截面不再保持平面而发生翘曲。杆件两端相对扭转角

∏ =

Tl G ?hb 3 Tl

GI t

3-10 两根直径相同而长度和材料均不同的圆轴 1,2,在相同扭转作用下,试比较两者 最大切应力及单位长度扭转角之间的大小关系,

答最大切应力相同;单位长度扭转角不同。

3-11 同一变速箱中的高速轴一般较细,低速轴较粗,这是为什么?

答同一变速箱中的高速轴与低速轴指相对转速高低,其传递的功率相同(不计功率损

耗),啮合处线速度相同。要啮合处产生相同的线速度,则高速轴的啮合半径就较小;又因

为啮合处相互作用力相同,该作用力对啮合半径就较小的高速轴线产生的外力偶矩就较小,

从而在高速轴中产生的扭矩较小,故高速轴可做得较细。

3-12图示轴A和套筒B牢固地结合在一起,两者切变模量分别为G A和G B,两端受扭转力偶矩,为使轴和套筒承受的扭转相同而必须满足的条件是什么?

思考题3-12 图

答设套筒B的内、外径分别为d和D,则两者切变模量须满足下列关系:

G B G A =D 4 ? d 4

d 4

3-13 试画出空心圆轴扭转时,横截面上切应力分布规律图。

思考题3-14 解图

3-14 图示组合轴,中心部分为钢,外圈为铜。两种材料紧密组合成一整体,若该轴受

扭后,全部处于线弹性范围,试画出其横截面上的应力分布图。

思考题3-14 图思考题3-14 解图

3-15图示3 种闭口薄壁截面杆承受扭转作用,若3 种截面的横截面积A,壁厚 ?和承受的扭矩T均相同,则其扭转切应力最大和最小的各是哪种截面?

思考题3-15 图

答 ? c max > ? b max > ? a max

3-16图示承受扭矩的3 种截面形式,试分别画出其切应力沿壁厚的分布规律。

思考题3-16 图

= 9549 ? = 191 N ⊕ m

M A = 9549 ? = 9549 ? = 1337 N ⊕ m

习 题

3-1

求图示各轴的扭矩图,并指出其最大值。

(a)

(a1)

(c)

(c1)

解 (a) T max = 2M e ; (c) T max = ?40 kN ⊕ m ;

(b ) T max = ?M e

(d) T max = 4 kN ⊕ m (b)

(b1)

(d)

(d1)

3-2

图(a)所示某传动轴,转速 n = 500 r/min ,轮 A 为主动轮,输入功率 P A = 70 kW ,

轮 B ,轮 C 与轮 D 为从动轮,输出功率分别为 P B = 10 kW , P C = P D = 30 kW 。

(1)求轴内的最大扭矩;

(2)若将轮 A 与轮 C 的位置对调,试分析对轴的受力是否有利。

(a)

(b)

解 (1) M B = 9549 ?

P B

n

10 500 P A 70

n 500

= 9549 ? = 573 N ⊕ m

πd1

π d 2 ? = < ? max 2

M D = M C = 9549 ? 用截面法如图(b)所示:P C

n

30

500

AB段AC段CD段T1 = M B = 191 N ⊕ m

T2 = M B ? M A = ?1146 N ⊕ m T3 = ?M D = ?573 N ⊕ m

由以上结果得

T max = ?1146 N ⊕ m

(2)若将轮A与轮C位置对调,则T1,T3值不变,而

T2 = M B + M C = 764 N ⊕ m

T max = 764 N ⊕ m

其绝对值比第(1)种情况小,即对轴的受力有利。

3-3 试绘出图示截面上切应力的分布图,其中T为截面的扭矩。

(a1) (b1) (c1)

3-4 图示圆截面轴,AB与BC段的直径分别为d1与d 2,且d1 = 4d 2 / 3。求轴内的最大扭转切应力。

解BC段

? max 2 = M e

W p2 = 16M e

πd 23

AB段

? max1 = 2M e

W p1

= 16 ? 2M e

3

= 32M e

4 ?

3 ?

3

13.5M e

πd 23

( ? ? 40 ? / π ? 42 ? 10 ? '1 ? ? ∞

≤ ?

M e = 189 MPa

41 ?

?1?10 2π 75 ?10

= 2.52 ?10 rad 8 ?1.5 ?10 3 ? 50 ?10 ?3 ? 4 ? + 2 ?

= 458 MPa 8FD (4c + 2) 8

(4c ? 3) 解 (1)? max = = 50

πd

[? ]

= 373 MPa < [? ],安全。

8FD 8 ?1.5 ?10 3 ? 50 ?10 ?3

? max = ? max 2 =

16M e

πd 23

3-5

一受扭等截面薄壁圆管,外径 D = 42 mm ,内径

d = 40 mm ,两端受扭力矩 M

e = 500 N ⊕ m ,切变模量 G = 75 GPa 。试计算圆管横截面与纵截面上的扭转切应力,并

计算管表面纵线的倾斜角。

解 (1)? max =

M e W p

=16M e

πD 3 1 ? ? 4

)

=

16 ? 500

3 ?9

4

' ? 42 ? ∞ = 194 MPa

(2)若考虑薄壁 ,可求其平均扭转切应力

? =

讨论:误差

=2πR 2?

194 ? 189

194

194 ? 189

194 500 2

9

2 ? ? 100% = 2.6% < 5%

?100% = 2.6% < 5%

故薄壁管一般均用简化公式求平均切应力。

(3) ? = ? G = 189 ?10 6

9

3

3-6 设有 1 密圈螺旋弹簧,承受轴向载荷 F = 1.5 kN 作用。设弹簧的平均直径

D = 50 mm ,弹簧丝的直径 d = 8 mm ,弹簧丝材料的许用切应力 [? ] = 450 MPa ,试校核弹

簧的强度。

50 ?

3

π ? 83 ?10 ?9 ? ? 4 ? ? 3

8 ?

= ? 100% = 1.78% < 5% 450

强度满足(工程中误差小于 5%,认为技术满足要求)。

(2)用简化公式

= πd 3 π ? 83 ?10 ?9

讨论:由于 c = D d = 50 8 = 6.25 < 10 ,故应用解(1)中修正公式计算((1)(2)计算

值相差较大)。

3-7

一圆截面等直杆试样,直径

d = 20 mm ,两端承受外力偶矩 M

e = 150 N ⊕ m 作用。

设由试验测得标距 l 0 = 100 mm 内轴的相对扭转角 ∏ = 0.012 rad ,试确定切变模量 G 。

∏ = Tl 0 GI p =M e l 0 GI p

许用切应力 [? ] = 80 MPa ,单位长度许用扭转角 [? ] = 1.0 / m ,切变模量 G = 80 GPa 。试

T = 9549 ? = 9549 ? = 2546 N ⊕ m

δ [? ] πd π G [? ] = 6.56 ? 10 m = 65.6 mm [? ] = 80 MPa , G = 80 GPa , [? ] = 1.2 / m 。试校核轴的强度和刚度。

[? ]

πD d 4 80 4

G =

M e l 0

∏I p

=

M e l 0 ∏ ⊕ πd

4

150 ? 0.1? 32 0.012π ? 20 4 ?10 ?12

= 79.6 GPa

3-8

设有 1 圆截面传动轴,轴的转速

n = 300 r/min ,传递功率 P = 80 kW ,轴材料的

?

设计轴的直径。

解 G I p π P 80

n 300 T 180?

G ⊕T 4 32

? 180?

π δ [? ] d ε 4

32T ? 180?

2

= 4

32 ? 2546 ? 180?

π 2 ? 80 ? 10 9 ? 1.0

2

装轴承处直径可取 d = 65 mm ,其它部位若考虑轴肩应按设计规范加大。

3-9

图示为 1 阶梯形圆轴,其中 AE 段为空心圆截面,外径 D = 140 mm ,内径

d = 80 mm ; BC 段为实心圆截面,直径 d 1 = 100 mm 。受力如图所示,外力偶矩分别为

M e A = 20 kN ⊕ m , M e B = 36 kN ⊕ m , M e C = 16 kN ⊕ m 。 已 知 轴 的 许 用 切 应 力

?

(a)

(b)

扭矩图如图(b)。

(1)强度

? BC max = T 1 W p1

= T 1 πd 1 =

16T 1 πd 1 = 16 ?16 ?10 3 π ? 0.13 = 81.5 ?10 6 = 81.5 MPa 16

= ? 100% = 1.88% < 5% , BC 段强度基本满足。

80

T T 20 ?10 3 ?16

6

(2)刚度

∏ T

1

180

o

l GI p1 π 16 ?10 3 ?180 o 4 80 ?10 9 ?

32

⊕ π

o

BC 段刚度基本满足。

AE 段:

? =

∏ l T 2 GI p 2 180 o π

20 ?10 3 ?180

π ? 0.14 4 4 4

32 7

= 0.426 o < [? ]

AE 段刚度满足,显然 EB 段刚度也满足。

3-10

一薄壁等截面圆管,两端承受扭力矩 M e 作用。设管的平均半径为 R 0 ,壁厚为 ? ,

管长为 l ,切变模量为

G ,证明薄壁圆管两端相对扭转角为

∏ =

M e l 2G π R 03?

I p = +A R 0 d A = +s R 0 ?d s = + 2 π

R 02? ⊕ R 0 d ? = 2π?R 03

∏ = Tl GI p = M e l 3

M e l 2G πR 03?

3-11

图(a)所示圆锥形薄壁轴 AB ,两端承受扭力矩 M e 作用。设壁厚为 ? ,横截面 A

与 B 的平均直径分别为 d A 和 d B ,轴长为 l ,切变模量为 G 。证明截面 A 和 B 间的相对扭

转角为

∏ AB =

2M e l (d A + d B ) 2

= 41.5 ?10 = 41.5 MPa < [? ],故强度满足。

BC 段:? = = ? =

π ? 0.1

= 1.17 / m < [? ]

? =

80 ?10 9 ?

⊕ [1 ? ( ) ]π

2 2

G ⊕ 2π?R 0

π G ? d A B d

(b)

由图(b)得

d (x ) = d B ? d A

l x + d A , I P (x ) 参看题 3-10 证明

35

M e d x d (x ) ?

+ 0 d 3 (x ) = π?G + 0 ? d ? d x + d

4M e l π?G d B A d B A x + d A ?

+ 0 ? d ? d B A x + d A ? ⊕ ? ? ?? B A x + d A ? 4M e l ? 1 ?? d ? d ? π?G d B A ? 2 ?? 2M e l (d A + d B ) π?Gd A B

2 d F a l

(F ? F 1 )al (F ? F 1 )a l 2 F 1a l

∏ AB = +

l 0 GI p (x )

= + l 0

M e d x G ⊕ 2π? ? ?

2 ?

3

4M e l d x 4M e l d x π?G ? B A

l ?

3

= ⊕ d d ? d ? l ? l ? l ?

3 = ⊕ =

2

d l ? 2 l 0

3-12

图(a)所示等圆截面杆 AB 和 CD 的尺寸相同。

AB 为钢杆, CD 为铝杆,两种材 料的切变模量之比为 3:1。若不计 BE 和 ED 两杆的变形,问力 F 的影响将以怎样的比例分 配于 AB 和 CD 两杆?

解 设 AB 长 l ,则

(a)

(b)

? E = a ∏ AB = a

T 1l G 1 I p

2

= 1

G 1 I p

(a )

再考虑 CDE

? E = a ∏ CD = a

T 2l

G 2 I p

= a G 2 I p G 2 I p

=

(b )

由式(a ),(b )得

2

G 1 I p

(F ? F 1

)a l

2

G 2 I p

F 1

G 1 =F ? F 1 G 2 , F 1 3G 2 =F ? F 1

G 2 F 1 = 3(F ? F 1 ) , 4F 1 = 3F , F 1 =

F F 2 = F ? F 1 =

4

3

4

F 3-13 已知扭力矩

M e1 = 400 N ⊕ m , M e2 = 600 N ⊕ m ,许用切应力 [? ] = 40 MPa ,单

位长度的许用扭转角

[? ] = 0.25 / m ,切变模量 G = 80 GPa 。试确定图(a)所示轴的直径。

M A ? 0.5 (M A ? M e1 )? 0.75 M B ?1.25 T max 180? π G ? 0.25? ?

(a)

(b)

(c)

解 图(b),由平衡得

M B ? M e 2 + M e1 ? M A = 0

即 M B ? M A = 200 N ⊕ m

变形谐调(图(a))

∏ AB = ∏ AC + ∏ CD + ∏ DB = 0

+ + GI p GI p GI p

4M A + 3(M A ? M e1 ) + 5M B = 0

7M A + 5M B = 1 200 N ⊕ m

解式(a ),(b )得

M B = 216.7 N ⊕ m , M A = 16.7 N ⊕ m T max = 383.3 N ⊕ m = 0

(a )

(b )

? = GI p π

⊕ δ [? ], I p =

πd 4 32 32T max ?180?

2

δ d 4

3-14

图示两端固定阶梯形圆轴,承受扭力矩 M e 作用。已知许用切应力为 [? ],为使 轴的重量最轻,试确定轴径 d 1与 d 2 。

(a)

(b)

解 由图(b)平衡

δ [? ],? 2 max = δ [? ]

)

)

)

M 1 = M 2 + M e

变形谐调

(a )

∏12 =

M 1a GI p1 M 2 ? 2a GI p2 = 0

M 1 =

2I p1 I p2

M 2

(b )

代入式(a )得

M 2 = ?

I p2 2I p1 + I p2

M e ,M 1 = ?

2I p1 2I p1 + I p2

M e

(c )

? 1max = M 1 W p1 M 2

W p2

(d )

M 1 W p1 =M 2

W p2

式(c )代入得

(2I

2I p1M e

p1

+ I p2 W p1

(2I

I p2 M e

p1

+ I p2 W p2

2I p1 W p1

=

I p2

W p2

2d 1 = d 2

代入式(d )得

(2I

2I p1M e

p1

+ I p2 W p1

δ [? ], d 1 ε 3

16M e 9[? ]π 最后取

d 1 = 3

16M e 9[? ]

, d 2 ε 2 ? 3

16M e 9[? ]

3-15

图示两端固定的圆截面轴,承受外力偶矩 M e 作用。设其扭转刚度 GI p 为已知常

量。求约束力偶矩。

(a1)

解 图(a1),由平衡

M A + M B = M e

(a )

变形谐调 ∏ AB = 0 ,即

= A ? mx ) + (M

m + 0

M A a

GI p

M B ? 2a GI p

M A = 2M B

代入式(a )得

(b )

M B =

1 3 M e , M A =

2 3

M e

(b1)

(b2)

解 图(b1),由平衡

M A + M B = ml

图(b2)

(a )

T x = M A ? mx l T x d x 0 GI p

l (M 0

GI p

d x = 0 即

l

A

mx )d x = 0

1 l

(M A ? mx )d (M A ? mx ) = 0

1 2m

(M A ? mx )2 l 0

= 0 , M A =

ml

2

代入(a )得

M B =

ml 2

3-16 图 a 所示直径

d = 25 mm 的钢轴上焊有两凸台,凸台上套有外径 D = 75 mm ,

壁厚 ? = 1.25 mm 的薄壁管,当轴承受外力偶矩 M e = 73.6 N ⊕ m 时,将薄壁管与凸台焊在

一起,然后再卸去外力偶。假定凸台不变形,薄壁管与轴的材料相同,切变模量 G = 40 GPa 。

试:

(1)分析卸载后轴和薄壁的横截面上有没有内力,二者如何平衡? (2)确定轴和薄壁管横截面上的最大切应力。

M x l

2

M T

'1 ? ( ) ∞ = '1 ? ( 75 ) ∞ ?10 73.6 ? ?10 ?3

M x d I p2 ⊕ T d 73.6 ? ? 393922 ?10 ?3

解(1)均有内力,内力值见下面解答中式(4),(5)。(2)设轴受T = 73.6 N·m 时,相对扭转角为 ∏0,且

d∏ 0 d x =

T

GI p 1

(1)

T撤消后,管受相对扭转角 ∏ 2,则轴受相对扭转角 ∏1 = ∏ 0 ? ∏ 2(图b),此时轴、管受扭矩大小相等,方向相反,整个系统平衡。

∏1 + ∏ 2 = ∏0 (2)

Tl GI p 1 = +

GI p 1

M x2 l

GI p 2

(3)

M x = M x (4)

M x =

I p 2

I p1 + I p2

T (5)

? h max = = ⊕

= W p2I p1 + I p2 W p2I p1 + I p2 ⊕

D

2

(6)

I p1 = πd 4

32

=

32

(25) 4 ? 10 ?12 = 38349.5 ? 10 ?12

I p2 = πD 4

32

?

D ? 2? 4 /

D ?

π? 75 4 ?72.5 4 /

32 ≤ ?

12 = 393922 ?10 ?12 m4

将I p1,I p2值代入(6)得

管: ? h max =

75

2

(38349.5 + 393922) ?10 ?12

= 6.38 MPa

轴: ? s max = ⊕ =

I p1 2 I p1 (I p1 + I p 2 ) 2 ⊕ =

25

2

(38349.5 + 393922) ? 38349.5 ?10 ?12

= 21.86 MPa

*3-17横截面面积、杆长与材料均相同的两根轴,截面分别为正方形与h / b = 2的矩形。试比较两轴的扭转刚度。

解a 2 = hb = 2b 2

刚度比

I p1 I p2 ?1a ⊕ a 3

3

0.141a 4

0.229 ? 2b 4

0.141? 2

0.229

= 1.21

3-18受外力偶如图所示的90 mm×60 mm 矩形截面轴,已知轴的许用切应力[? ] = 80 MPa,切变模量G = 80 GPa,求许用M e和截面B的相应扭转角。

= δ [? ] M e δ ?hb 2 [? ] = ? 0.231? 90 ? 60 2 ?10 ?9 ? 80 ?10 6 = 2.0 kN ⊕ m

I t = ?hb 3 = 0.196 ? 90 ? 60 3 ? 10 ?12 = 3.81? 10 m 4

M e ? 0.4 3M e ? 0.4

T max = M A = 3M e ? max =

T max

W t

3M e

αhb 2

1 1

3 3

[M e

] = 2.0 kN ⊕ m

6

∏ B = ∏ BA = ∏ BC + ∏ CA =

GI t GI t

+ = 1.6M e

GI t

1.6 ? 2 ?10 3 80 ?10 9 ? 3.81?10 ?6 = 0.0105 rad

材料力学性能课后题参考答案(DOC)

《工程材料力学性能》课后题参考答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 一、解释下列名词 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 1、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 2、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 3、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 4、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 6、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】

材料力学试题及答案

一、判断题(正确打“√”,错误打“X ”,本题满分为10分) 1、拉杆伸长后,横向会缩短,这是因为杆有横向应力的存在。( ) 2、圆截面杆件受扭时,横截面上的最大切应力发生在横截面离圆心最远处。( ) 3、两梁的跨度、承受载荷及支承相同,但材料和横截面面积不同,因而两梁的剪力图和弯矩图不一定相同。( ) 4、交变应力是指构件内的应力,它随时间作周期性变化,而作用在构件上的载荷可能是动载荷,也可能是静载荷。( ) 5、弹性体的应变能与加载次序无关,只与载荷的最终值有关。( ) 6、单元体上最大切应力作用面上必无正应力。( ) 7、平行移轴公式表示图形对任意两个相互平行轴的惯性矩和惯性积之间的关系。( ) 8、动载荷作用下,构件内的动应力与材料的弹性模量有关。( ) 9、构件由突加载荷所引起的应力,是由相应的静载荷所引起应力的两倍。( ) 10、包围一个点一定有一个单元体,该单元体各个面上只有正应力而无切应力。( ) 二、选择题(每个2分,本题满分16分) 1.应用拉压正应力公式A F N =σ的条件是( )。 A 、应力小于比例极限; B 、外力的合力沿杆轴线; C 、应力小于弹性极限; D 、应力小于屈服极限。 2.梁拟用图示两种方式搁置,则两种情况下的最大弯曲正应力之比 ) (m ax )(m ax b a σσ 为 ( )。 A 、1/4; B 、1/16; C 、1/64; D 3、关于弹性体受力后某一方向的应力与应变关系有如下论述:正确的是 。 A 、有应力一定有应变,有应变不一定有应力; B 、有应力不一定有应变,有应变不一定有应力; C 、有应力不一定有应变,有应变一定有应力; D 、有应力一定有应变,有应变一定有应力。 4、火车运动时,其轮轴横截面边缘上危险点的应力有四种说法,正确的是 。 A :脉动循环应力: B :非对称的循环应力; C :不变的弯曲应力;D :对称循环应力 5、如图所示的铸铁制悬臂梁受集中力F 作用,其合理的截面形状应为图( ) (a) (b)

材料力学试题以及答案

学号;姓名:班级:..........................................................密.......................................................封...........................................................线.......................................................... 专业年级班20 ~20 学年第学期材料力学课试卷试卷类型:卷

材料力学 试题卷(A )答案 一、错 2. 错 3. 错 4.错 5. 对 二、1.A 2.D 3. D 4.D 5. A 三、1、试件沿轴线方向的线应变ε=( -4105? )、 横截面上的应力σ=( 100MPa ) 及所受拉力F =( 7.85kN ) 2、应力状态的主应力( 52.2 MPa )、( 50 MPa )、 (-42.2 MPa ) 3、 A=( 224 R R π - ) 对y 轴的惯性矩Iy=( ??? ??16-31πR 4 ) 对z 轴的惯性矩Iz=( ?? ? ??16-31πR 4 ) 4、 应力幅=( 80 ) 循环特征r=( 0.2 ) 四、 解 1.求支反力 由平衡方程式 ∑=0B M 及∑=0A M ,得 kN 5.14=A F ,kN 5.3=B F 利用平衡方程式 ∑=0y F 对支反力计算结果进行检验,得 可见,A F 及B F 的解答是正确的。 2. 列Q F 、M 方程式 将梁分为CA 、AD 、DB 三段。利用外力直接列出Q F 、M 方程。 CA 段 AD 段 DB 段 3. 绘Q F 、M 图 由上述各段剪力方程和弯矩方程分别画出Q F 、M 图,如图6-12)(b 、)(c 所示。在AD 段上,)(2x M 有极值,由0) (2 2=dx x dM ,得 解得m 83.42=x 处,弯矩有极值。代入式)(d 得 AD 段内的最大弯矩为 五、解:(1)校核钢杆的强度 ① 求轴力 ② 计算工作应力 2 21814.325.033333mm N A N BD BD BD ??= = σ 2-21 ③ 因为以上二杆的工作应力均未超 过许用应力170MPa ,即][σσ≤AC ;][σσ≤BD ,所以AC 及 BD 杆的强度足够,不会发生破

工程材料力学性能课后习题答案

《工程材料力学性能》(第二版)课后答案 第一章材料单向静拉伸载荷下的力学性能 一、解释下列名词 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料 能够完全弹性恢复的最高应力。 比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限 (σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服 强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包申格效应,如何解释,它有什么实际意义? 答案:包申格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。

材料力学标准试卷及答案

扬州大学试题纸 ( 200 - 200 学年 第 学期) 水利科学与工程 学院 级 班(年)级课程 材料力学 ( )卷 一、选择题(10分) 1.关于材料的冷作硬化现象有以下四种结论,正确的是( ) (A )由于温度降低,其比例极限提高,塑性降低; (B )由于温度降低,其弹性模量提高,泊松比减小; (C )经过塑性变形,其弹性模量提高,泊松比减小; (D )经过塑性变形,其比例极限提高,塑性降低。 2.关于低碳钢材料在拉伸试验过程中,所能承受的最大应力是( ) (A )比例极限 p σ;(B )屈服极限 s σ;(C )强度极限 b σ;(D )许用应力 ][σ。 3.两危险点的应力状态如图,由第四强度理论比较其危险程度,正确的是( )。 (A))(a 点应力状态较危险; (B))(b 应力状态较危险; (C)两者的危险程度相同; (D)不能判定。 4.图示正方形截面偏心受压杆,其变形是( )。 (A)轴向压缩和斜弯曲的组合; (B)轴向压缩、平面弯曲和扭转的组合; (C)轴向压缩和平面弯曲的组合; (D)轴向压缩、斜弯曲和扭转的组合。 5.图示截面为带圆孔的方形,其截面核心图形是( )。 (a) (b)

二、填空题(20分) 1.一受扭圆轴,横截面上的最大切应力 MPa 40max =τ,则横截面上点A 的切应力 =A τ____________。 1题图 2题图 2.悬臂梁受力如图示,当梁直径减少一倍,则最大挠度w max 是原梁的____________倍,当梁长增加一倍,而其他不变,则最大转角θmax 是原梁的____________倍。 3.铆接头的连接板厚度为δ,铆钉直径为d 。则铆钉切应力=τ____________,最大挤压应力 bs σ为____________。 3题图 4题图 4.由同一种材料组成的变截面杆的横截面面积分别为2A 和A ,受力如图示,弹性模量为E 。截面D 水平位移为____________。 5.阶梯轴尺寸及受力如图所示,AB 段的最大切应力m ax ,1τ与BC 段的最大切应力 m ax ,2τ之 比 = max ,2max ,1ττ____________。 (a) (b) (c) (mm)

很经典的几套材料力学试题及答案

考生注意:舞弊万莫做,那样要退学,自爱当守诺,最怕错上错,若真不及格,努力下次过。 材料力学试题A 成绩 课程名称 材料力学 考试时间 2010 年 7 月 日 时 分至 时 分 教 研 室 工程力学 开卷 闭卷 适用专业班级 08 机自1、2、3、4 班 提前 期末 班 级 姓名 学号 一、单选题(每小题2分,共10小题,20分) 1、 工程构件要正常安全的工作,必须满足一定的条件。下列除( )项,其他各项是必须满足的条件。 A 、强度条件 B 、刚度条件 C 、稳定性条件 D 、硬度条件 2、内力和应力的关系是( ) A 、内力大于应力 B 、内力等于应力的代数和 C 、内力是矢量,应力是标量 D 、应力是分布内力的集度 3、根据圆轴扭转时的平面假设,可以认为圆轴扭转时横截面( )。 A 、形状尺寸不变,直径线仍为直线。 B 、形状尺寸改变,直径线仍为直线。 C 、形状尺寸不变,直径线不保持直线。 D 、形状尺寸改变,直径线不保持直线。 4、建立平面弯曲正应力公式z I My =σ,需要考虑的关系有( )。 A 、平衡关系,物理关系,变形几何关系; B 、变形几何关系,物理关系,静力关系; C 、变形几何关系,平衡关系,静力关系; D 、平衡关系, 物理关系,静力关系; 5、利用积分法求梁的变形,不需要用到下面那类条件( )来确定积分常数。 A 、平衡条件。 B 、边界条件。 C 、连续性条件。 D 、光滑性条件。 6、图示交变应力的循环特征r 、平均应力m σ、应力幅度a σ分别为( )。 A -10、20、10; B 30、10、20; C 31- 、20、10; D 31- 、10、20 。 ---------------------------------------------------------------------- 装--------------------订 --------------------线 ------------------------------------------------------------- 试 题 共 3 页 第 1 页

材料力学课后习题答案

材料力学课后习题答案 欢迎大家来到,本人搜集整理了材料力学课后习题答案供大家查阅,希望大家喜欢。 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成1

个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的1种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些? 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 2、试述韧性断裂与脆性断裂的区别。为什么脆性断裂

材料力学性能课后答案(时海芳任鑫)

第一章 1.解释下列名词①滞弹性:金属材料在弹性围快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力 ⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移, 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。 2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度);(3)ζ b (抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率) 4.常用的标准试样有5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。

5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。试分析这两种故障的本质及改变措施。答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。 6.今有45、40Cr、35CrMo 钢和灰铸铁几种材料,应选择哪种材料作为机床机身?为什么?答:应选择灰铸铁。因为灰铸铁循环韧性大,也是很好的消振材料,所以常用它做机床和动力机器的底座、支架,以达到机器稳定运转的目的。刚性好不容易变形加工工艺朱造型好易成型抗压性好耐磨损好成本低 7.什么是包申格效应?如何解释?它有什么实际意义?答:(1)金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包申格效应。(2)理论解释:首先,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,背应力反作用于位错源,当背应力足够大时,可使位错源停止开动。预变形时位错运动的方向和背应力方向相反,而当反向加载时位错运动方向和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。(3)实际意义:在工程应用上,首先,材料加工成型工艺需要考虑包申格效应。例如,大型精油输气管道管线的UOE 制造工艺:U 阶段是将原始板材冲压弯曲成U 形,O 阶段是将U 形板材径向压缩成O 形,再进行周边焊接,最后将管子径进行扩展,达到给定大小,

材料力学__试卷及答案

适用专业班级: 任课教师 教研室主任(签字) 试卷编号 A 考生专业: 年级: 班级: 姓 名: 学 号: 注:(1)不得在密封线以下书写班级、姓名。(2)必须在密封线以下答题,不得另外加纸。 ……………………………………………………… 密 封 线 ……………………………………………………… 一.是非题(正确的在题后的括号内用“√”表示,错误的在题后的括号内用“×”表示,每小题2分,共10分) 1.应力公式A N = σ的使用条件是,外力沿杆件轴线,且材料服从胡克定律。 ( f ) 2.截面尺寸和长度相同两悬梁,一为钢制,一为木制,在相同载荷作用下,两梁中的最正大应力和最大挠度都相同。 ( t ) 3. 卡氏第一定律的适用于弹性体,卡氏第二定律的适用于非弹性体。 ( f ) 4. 悬臂架在B 处有集中力作用,则AB ,BC 都产生了位移,同时AB ,BC 也都发生了变形。 ( f ) 5. 在各种受力情况下,脆性材料都将发生脆性断裂而破坏。 ( f ) 二、选择题:(每小题3分,共24分) 1、危险截面是__C____所在的截面。 A.最大面积; B .最小面积; C . 最大应力; D . 最大内力。 2、低碳钢整个拉伸过程中,材料只发生弹性变形的应力范围是σ不超过_B_____。 A .σb ; B .σe ; C .σp ; D .σs 第 1 页 (共 4 页) C ’

考生专业:年级:班级:姓名:学号: 注:(1)不得在密封线以下书写班级、姓名。(2)必须在密封线以下答题,不得另外加纸。………………………………………………………密封线……………………………………………………… 3.偏心拉伸(压缩)实质上是____B___的组合变形。 A.两个平面弯曲;B.轴向拉伸(压缩)与平面弯曲; C.轴向拉伸(压缩)与剪切;D.平面弯曲与扭转。 4.微元体应力状态如图示,其所对应的应力圆有如图示四种,正确的是___A____。 5.几何尺寸、支承条件及受力完全相同,但材料不同的二梁,其__A____。 A. 应力相同,变形不同; B. 应力不同,变形相同; C. 应力与变形均相同; D. 应力与变形均不同; 6.一铸铁梁,截面最大弯矩为负,其合理截面应为___C___。 A.工字形; B.“T”字形; C.倒“T”字形; D.“L”形。 7.两端铰支的圆截面压杆,长1m,直径50mm。其柔度为___C____。 ;;;。 8.梁的正应力公式是在“平面弯曲”前提下推导得到的,“平面弯曲”即___D____。 A.梁在平面力系作用下产生的弯曲; B. 梁的内力只有弯矩没有剪力的弯曲; C.梁的横截面变形后仍为平面的弯曲; D.梁的轴线弯曲变形后仍为(受力平面内)平面曲线的弯曲。 2页(共 4 页) 河南工业大学课程材料力学试卷

材料力学试题及答案

一、回答下列各题(共4题,每题4分,共16分) 1、已知低碳钢拉伸试件,标距mm l 1000=,直径mm d 10=,拉断后标距的长度变为mm l 1251=,断口处的直 径为mm d 0.61 =,试计算其延伸率和断面收缩率。 答:延伸率%25%100100 100 125%100001=?-=?-= l l l δ 断面收缩率%64%100))(1(%100211=?-=?-= d d A A A δ 2、试画出图示截面弯曲中心的位置。 3、梁弯曲剪应力的计算公式z z bI QS = τ,若要计算图示矩形截面A 点的剪应力,试计算z S 。 232 3 )84(41bh h h hb S z =+= 4、试定性画出图示截面截面核心的形状(不用计算)。 二、绘制该梁的剪力、弯矩图。(15分) 矩形 圆形 矩形截面中间 挖掉圆形 圆形截面中间 挖掉正方形 h b 4/h A

三、图示木梁的右端由钢拉杆支承。已知梁的横截面为边长等于0.20m 的正方形,q=4OKN/m,弹性模量 E 1=10GPa ;钢拉杆的横截面面积A 2=250mm 2 ,弹性模量E 2=210GPa 。试求拉杆的伸长l ?及梁中点沿铅垂方向的位移?。(14分) 解:杆受到的拉力kN q F N 402 2== m EA l F l N 00228.010 25010210310406 93=?????==?- 梁中点的挠度: m I E ql A E l F w l N c 00739.012 2 .0101038421040500114.0384521214 94 314122=? ?????+ =+=+?=?四、砖砌烟窗高m h 30=,底截面m m -的外径m d 31=,内径m d 22=,自重kN P 20001=,受 m kN q /1=的风力作用。试求:(1)烟窗底截面m m -的最大压应力;(2)若烟窗的基础埋深m h 40=, 基础及填土自重按kN P 10002=计算,土壤的许用压应力MPa 3.0][=σ,圆形基础的直径D 应为多大?(20分) 注:计算风力时,可略去烟窗直径的变化,把它看成是等截面的。 F s M m kN q /20=kN 20m kN ?160A B C m 10m 2112kN 88kN 20kN 5.6m 40kNm 150.3kNm 160kNm

材料力学课后习题答案

8-1 试求图示各杆的轴力,并指出轴力的最大值。 (1) 用截面法求内力,取1-1、2-2截面; (2) 取1-1 (3) 取2-2 (4) 轴力最大值: (b) (1) 求固定端的约束反力; (2) 取1-1 (3) 取2-2截面的右段; (4) 轴力最大值: (c) (1) 用截面法求内力,取1-1、2-2、 3-3截面; (2) 取1-1 (3) 取2-2截面的左段; (4) 取3-3截面的右段; (c) (d) N 1 F R F N 1 F R F N 2 F N 1 N 2

(5) 轴力最大值: (d) (1) 用截面法求内力,取1-1、2-2截面; (2) 取1-1 (2) 取2-2 (5) 轴力最大值: 8-2 试画出8-1所示各杆的轴力图。 解:(a) (b) (c) (d) 8-5 段的直径分别为d 1=20 mm 和d 2=30 mm F 2之值。 解:(1) (2) 求1-1、2-2截面的正应力,利用正应力相同; 8-6 题8-5图所示圆截面杆,已知载荷F 1=200 kN ,F 2=100 kN ,AB 段的直径d 1=40 mm ,如欲 使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。 解:(1) 用截面法求出1-1、2-2截面的轴力; (2) 求1-1、2-2截面的正应力,利用正应力相同; 8-7 图示木杆,承受轴向载荷F =10 kN 作用,杆的横截面面积A =1000 mm 2 ,粘接面的方位角 θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。 F N 3 F N 1 F N 2

材料力学性能课后习题答案

1弹性比功: 金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性: 金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性: 金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.xx效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面: 这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性: 金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性: 指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶: 当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样: 解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。 9.解理面: 是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂: 穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂: 裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变: 具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性: 理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答: 主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。 1、试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么?

材料力学试卷及答案7套

材料力学试卷1 一、绘制该梁的剪力、弯矩图。 (15分) 二、梁的受力如图,截面为T 字型,材料的许用拉应力[+]=40MPa ,许用压应力[-]=100MPa 。试按正应力强度条件校核梁的强度。(20分) m 8m 2m 230 170 30 200 2 m 3m 1m Q M

三、求图示单元体的主应力及其方位,画出主单元体和应力圆。(15分) 四、图示偏心受压柱,已知截面为矩形,荷载的作用位置在A点,试计算截面上的最大压应 力并标出其在截面上的位置,画出截面核心的形状。(15分)

五、结构用低碳钢A 3制成,A 端固定,B 、C 为球型铰支,求:允许荷载[P]。已知:E=205GPa ,s =275MPa ,cr =,,p =90,s =50,强度安全系数n=2,稳定安全系数n st =3,AB 梁为N 016工字钢,I z =1130cm 4,W z =141cm 3,BC 杆为圆形截面,直径d=60mm 。 (20分) 六、结构如图所示。已知各杆的EI 相同,不考虑剪力和轴力的影响,试求:D 截面的线位移和角位移。

(15分) 材料力学2 一、回答下列各题(共4题,每题4分,共16分) 1、已知低碳钢拉伸试件,标距mm l 1000=,直径mm d 10=,拉断后标距的长度变为mm l 1251=, 断口处的直径为mm d 0.61 =,试计算其延伸率和断面收缩率。 2、试画出图示截面弯曲中心的位置。 3、梁弯曲剪应力的计算公式z z QS = τ,若要计算图示矩形截面A 点的剪应力,试计算z S 。 a a 4/h

材料力学试题及答案全

材料力学试题 一、填空题(共15分) 1、 (5分)一般钢材的弹性模量E = 210 GPa ;吕材的弹性模量E = 70 GPa 2、 (10分)图示实心圆锥杆受扭转外力偶作用,材料的剪切弹性模量为G ,该杆的 man τ 1、(5(A )各向同性材料;(B )各向异性材料; (C 正确答案是 A 。 2、(5分)边长为d 杆(1)是等截面,杆(2荷系数d k 和杆内最大动荷应力d σ论: (A )()(,)()(1max 21d d d k k σ<<(B )()(,)()(1max 21d d d k k σ><(C )()(,)()(1max 21d d d k k σ<>(D )1max 21()(,)()(d d d k k σ>>正确答案是 A 。 三、计算题(共75分) 1、(25 应力相等, 求:(1)直径比21/d d ; (2)扭转角比AB φ解:AC 轴的内力图: (105);(10355M Nm M BC AB ?=?= 由最大剪应力相等: 8434.05/3/16 /1050016/103003 213 23313max ==?=?==d d d d W M n n ππτ 由 ; 594.0)(23232;4122124 2 4 1 1=??=?=?∴?=d M M M d G d G a M GI l M n n n n BC AB P n ππφφφ (2)

2、( 3、(15分)有一厚度为6mm 的钢板在板面的两个垂直方向受拉,拉应力分别为150Mpa 和 55Mpa ,材料的E=2.1×105 Mpa ,υ =0.25。求钢板厚度的减小值。 解:钢板厚度的减小值应为横向应变所产生,该板受力后的应力状态为二向应力状态,由广义胡克定律知,其Z 向应变为: 0244.010)55150(101.225.0)(69 -=?+?-=+-=y x z E σσνε 则 mm t Z Z 146.0-=?=?ε

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 7、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 8、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 9、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。【P32】 答: 2 12?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。

材料力学试卷及答案

一、低碳钢试件的拉伸图分为 、 、 、 四个阶段。(10分) 二、三角架受力如图所示。已知F =20kN,拉杆BC 采用Q235圆钢,[钢 ]=140MPa,压杆AB 采用横 截面为正方形的松木,[木 ]=10MPa ,试用强度条件选择拉杆BC 的直径d 和压杆AB 的横截面边长a 。 n =180 r/min ,材料的许用切应 四、试绘制图示外伸梁的剪力图和弯矩图,q 、a 均为已知。(15分) 五、图示为一外伸梁,l =2m ,荷载F =8kN ,材料的许用应力[]=150MPa ,试校核该梁的正应力强度。(15分) q a a 22 qa A B F C A B

六、单元体应力如图所示,试计算主应力,并求第四强度理论的相当应力。(10分) 七、图示矩形截面柱承受压力F 1=100kN 和F 2=45kN 的作用,F 2与轴线的偏心距e =200mm 。 b =180mm , h =300mm 。求 max 和 min 。(15分) 八、图示圆杆直径d =100mm ,材料为Q235钢,E =200GPa , p =100,试求压杆的临界力F cr 。(10 σx =100MPa τx =100MPa σy =100MPa l l l F A B D C 4F 100m m 100mm 60mm

分) 《材料力学》试卷(1)答案及评分标准 一、 弹性阶段、屈服阶段、强化阶段、颈缩断裂阶段。 评分标准:各 2.5分。 二、 d =15mm; a =34mm . 评分标准:轴力5分, d 结果5分,a 结果5分。 三、 =87.5MPa, 强度足够. 评分标准:T 3分,公式4分,结果3分。 四、 评分标准:受力图、支座反力5分,剪力图5分,弯矩图5分。 五、max =155.8MPa >[]=100 MPa ,但没超过许用应力的5%,安全. 评分标准:弯矩5分,截面几何参数 3分,正应力公式5分,结果2分。 六、(1)1=141.42 MPa ,=0,3=141.42 MPa ;(2)r 4=245 MPa 。 评分标准:主应力5分,相当应力5分。 七、max =0.64 MPa ,min =-6.04 MPa 。 评分标准:内力5分,公式6分,结果4分。 F cr d 3m 1..5qa F S 图 M 图 F S 图 — — + M 图 qa 2 qa 2/2

材料力学试题及答案

一、一结构如题一图所示。钢杆1、2、3的横截面面积为A=200mm 2,弹性模量E=200GPa ,长度l =1m 。制造时3杆短了△=0.8mm 。试求杆3和刚性梁AB 连接后各杆的内力。(15分) 二、题二图所示手柄,已知键的长度30 mm l =,键许用切应力[]80 MPa τ=,许用挤压应力bs []200 MPa σ=,试求许可载荷][F 。(15分) 三、题三图所示圆轴,受e M 作用。已知轴的许用切应力[]τ、切变模量G ,试求轴直径d 。 (15分) 五、分)

六、如题六图所示,变截面悬臂梁受均布载荷q 作用,已知q 、梁长l 及弹性模量E 。试用积分法求截面A 的挠度w A 和截面C 的转角θC 。(15分) 七、如图所示工字形截面梁AB ,截面的惯性矩672.5610z I -=?m 4 ,求固定端截面翼缘和腹 板交界处点a 的主应力和主方向。(15分) 一、(15分) (1)静力分析(如图(a )) F F F 图(a ) ∑=+=231,0N N N y F F F F (a ) ∑==31,0N N C F F M (b ) (2)几何分析(如图(b )) 50kN A B 0.75m

1 l ?2 l ?3 l ? 图(b ) ?=?+?+?3212l l l (3)物理条件 EA l F l N 11= ?,EA l F l N 22=?,EA l F l N 33=? (4)补充方程 ?=++EA l F EA l F EA l F N N N 3212 (c ) (5)联立(a )、(b )、(c )式解得: kN F kN F F N N N 67.10,33.5231=== 二、(15分) 以手柄和半个键为隔离体, S 0, 204000O M F F ∑=?-?= 取半个键为隔离体,bs S 20F F F == 由剪切:S []s F A ττ=≤,720 N F = 由挤压:bs bs bs bs [][], 900N F F A σσ=≤≤ 取[]720N F =。 三、(15分) e A B M M M += 0AB ?=, A B M a M b ?=? 得 e B a M M a b =+, e A b M M a b =+ 当a b >时 d ≥b a >时 d ≥ 。 四、(15分) F

材料力学性能课后习题答案

材料力学性能课后答案(整理版) 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些? 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 2、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 3、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同? 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。5、论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论 的局限性。

相关主题
文本预览
相关文档 最新文档