当前位置:文档之家› CGDK 使用说明

CGDK 使用说明

CGDK 使用说明
CGDK 使用说明

CGDK:An extensible CorelDRAW VBA program for geological drafting

Jun-Ting Qiu a,b,n,Wan-Jiao Song b,Cheng-Xin Jiang b,Han Wu c,Raymond M.Dong d

a China University of Geosciences,Beijing100083,China

b School of the Earth Sciences and Resources,China University of Geosciences,Beijing100083,China

c Geological Lab Center,China University of Geosciences,Beijing100083,China

d University of Chicago,Chicago,IL60637,United States

a r t i c l e i n f o

Article history:

Received20October2011

Received in revised form

12July2012

Accepted13July2012

Available online5August2012

Keywords:

VBA

CorelDRAW

Excel

Software

CGDK

Geological drafting

a b s t r a c t

Corel Geological Drafting Kit(CGDK),a program written in VBA,has been designed to assist geologists

and geochemists with their drafting work.It obtains geological data from a running Excel application

directly,and uses the data to plot geochemical diagrams and to construct stratigraphic columns.The

software also contains functions for creating stereographic projections and rose diagrams,which can be

used for spatial analysis,on a calibrated geological map.The user-friendly program has been tested to

work with CorelDRAW13–14–15and Excel2003–2007.

&2012Elsevier Ltd.All rights reserved.

1.Introduction

CorelDRAW TM Graphic Suite is a graphic software package

produced by the Canadian Corel Corporation that provides power-

ful tools for drawing geological maps,geological pro?les,cross

sections,and stratigraphic columns.Although CorelDRAW is one

of the most widely used graphic applications in geology,it has

several shortcomings.For example,when constructing a strati-

graphic column,the user must draw,reposition,resize,and?ll

shapes manually,which is both time consuming and inaccurate.

Additionally,because CorelDRAW does not provide features for

plotting diagrams,users must plot diagrams in Microsoft Excel TM

or some other statistical software?rst before copying and pasting

the diagrams to CorelDRAW for modi?cation.Although the above

method is widely used,the diagrams moved from Excel to

CorelDRAW usually contain many redundant or duplicative

shapes and lines,which must be removed before adding com-

ments and explanations to the diagram.

In order to improve the ef?ciency and convenience of geolo-

gical drafting,this paper presents an extensible CorelDRAW VBA

program,Corel Geological Drafting Kit(CGDK)for geologists and

geochemists.The main functions of CGDK include calibrating

geological maps,creating stereographic projections and rose

diagrams,constructing stratigraphic columns and plotting geo-

chemical diagrams.The details of CGDK and several examples of

the program are presented in this paper.

2.Features of CGDK

2.1.Installation

An executable?le named‘‘setup.exe’’is provided for software

installation(Fig.1a).By double-clicking on this?le,users start an

installation procedure in which initially an environment test is

performed automatically to check whether the computer can run

the software.

CGDK requires CorelDRAW13or later and Excel2003or2007

to be installed on users’computer.If these requirements are met,

the test will pass and a green text message will appear in the

lower-left corner of the‘‘Deploy’’window(Fig.1b).Also,the

‘‘Install’’button will become clickable.

After clicking on the‘‘Install’’button(Fig.1b),the program

begins to deploy the software?les.A few seconds later,a message

box will pop up to inform the user of successful deployment

(Fig.1c)and a toolbar with12buttons named‘‘Corel Geological

Drafting Kit’’will be added in the active CorelDRAW workspace

(Fig.1d).The whole procedure will be completed after restarting

the operating CorelDRAW application.

2.2.Acquiring data from a running Excel application

CGDK supports data acquisition from a running Excel applica-

tion.The acquisition procedure can be performed by?rst clicking

on the‘‘Data input’’button(Fig.2a)to open or activate an

Excel?le,then specifying a data range in an Excel spreadsheet

(Fig.2b),and?nally adding this range to CGDK by clicking on the

Contents lists available at SciVerse ScienceDirect

journal homepage:https://www.doczj.com/doc/193654315.html,/locate/cageo

Computers&Geosciences

0098-3004/$-see front matter&2012Elsevier Ltd.All rights reserved.

https://www.doczj.com/doc/193654315.html,/10.1016/j.cageo.2012.07.020

n Corresponding author.Tel.:t8615901022978;fax:t861082326956.

E-mail address:midimyself@https://www.doczj.com/doc/193654315.html,(J.-T.Qiu).

Computers&Geosciences51(2013)34–48

Fig.1.CGDK installation.(a)Setup.exe.(b)Deploy window.(c)Message box that informs users of successful installation.(d)CGDK toolbar.Buttons displayed in CGDK toolbar (from left to right)are ‘‘Calibrate map’’,‘‘Show GPS’’,‘‘Plot on map’’,‘‘Move to’’,‘‘Draw projection’’,‘‘Common tool’’,‘‘Stratigraphic column’’,‘‘Template designer’’,‘‘Geochemical diagram’’,‘‘Series editor’’,‘‘Template manager’’,and

‘‘About’’.

Fig.2.Acquiring Data from Excel.(a)The ‘‘Data input’’button,which is shown as an Excel icon (left)is coupled with a ‘‘Data delete’’button (right).(b)An Excel spreadsheet.(c)Con?rmation box.(d)The address of the data range is displayed in the textbox,indicating that the data have been added successfully.(e)The address of the data range is cleared by the program,indicating the data have been removed.

J-T Qiu et al./Computers &Geosciences 51(2013)34–4835

‘‘OK’’button located in upper-left corner of the screen (Fig.2c).Once a range is added,its address will be automatically displayed in the textbox on the left side of the ‘‘Data input’’button,indicating that the data have been added successfully (Fig.2d).

The ‘‘Data input’’button is always coupled with a ‘‘Data delete’’button on its right side.By clicking on the ‘‘Data delete’’button,a selected range will be removed from CGDK and the address of the selected range will be cleared by the program (Fig.2e).

2.3.Features designed for geochemistry

Geochemical diagrams are basic and convenient geochemical analysis tools,helping geochemists classify rock types (e.g.,Le Maitre,1976;Herron,1988;Frost et al.,2001;Frost and Frost,2008),study crustal evolution (e.g.,Taylor and McLennan,1995;Rollinson,2008),distinguish between different tectonic settings (e.g.,Pearce and Cann,1971,1973;Pearce and Gale,1977;Wood,1980;Brown et al.,1984;Pearce et al.,1984),and interpret the provenance of sediments (e.g.,Belousova et al.,2002).Particularly valuable is the ability to plot data onto an existing diagram or

template (e.g.,MacDonald and Katsura,1964;Kuno,1966;Irvine and Baragar,1971),so users can compare their work with previous works and interpret their own data based on a larger number of statistical results.

CGDK offers three main categories of templates:X –Y scatter plots,triangular plots,and ‘‘spider’’plots.Each category contains a series of templates,such as the total alkalis-silica (TAS)diagram,Alkalis-FeO n -MgO (AFM)diagram,and the primitive mantle normalized diagram.A ‘‘Template manager’’tool is available for template management.References for the templates offered by CGDK are listed in Appendix A1.

Besides the templates offered by CGDK,new templates can be easily developed using the ‘‘Template designer’’tool,which provides a series of features for the establishment of a template coordinate system,and for the creation of template elements.

2.3.1.Saving and loading a template

A diagram template is a group of CorelDRAW standard shapes,which are easy to modify but dif?cult to manage.The manage-ment dif?culty arises in distinguishing a speci?c template

from

Fig.3.Saving and loading a template.(a)CGDK toolbar with the ‘‘Template manager’’button highlighted.(b)The ‘‘Template manager’’window.(c)A selection area which contains all the template elements.(d)The ‘‘Save template’’window,in which users enter the name and description for a template.(e)Select a template from the template list.(f)Place the template on CorelDRAW page.

J-T Qiu et al./Computers &Geosciences 51(2013)34–48

36

another.CGDK solves this problem by offering a ‘‘Template manager’’tool,which divides the templates into different groups by category and purpose.A name list is available for users to browse,and an information box is offered to display template descriptions.

The ‘‘Template manager’’window can be opened by clicking on the ‘‘Template manager’’button in the CGDK toolbar (Fig.3a).A template group can then be selected from the drop-down list at the top of the ‘‘Template manager’’window (Fig.3b).If users need to save a template,they must specify a rectangle selection area on the CorelDRAW page that contains all the template elements (Fig.3c)and click on the ‘‘Save’’button (Fig.3b)to show the ‘‘Save template’’window (Fig.3d)where the template name and the description can be added.After inputting the name and the description,users must click on the ‘‘Save’’button in the ‘‘Save template’’window to ?nish the procedure (Fig.3d).

Users can also load a template by selecting one from the list box and clicking on the ‘‘Load’’button (Fig.3e).After the operation,the mouse cursor changes into a cross,indicating that the program is ready for users to locate the template.By left clicking on a CorelDRAW page,users can place the template on the page (Fig.3f).

2.3.2.Plotting a geochemical diagram with a template

Once a diagram template has been placed on a CorelDRAW page,the ?rst step in creating a plot is to click on the ‘‘Geochem-ical diagram’’button in the CGDK toolbar (Fig.4a)to open the ‘‘Plot geochemistry diagram’’window (Fig.4b).The ‘‘Plot geo-chemistry diagram’’window,whose components change with each template category,has the ability to distinguish between different categories of templates.

After opening the ‘‘Plot geochemistry diagram’’window,a data acquisition procedure is required.The method of adding data has been described in Section 2.2,while the examples of data series used to create different categories of diagrams are displayed in Fig.5.Triangular diagrams need three series of data for the Top,Left,and Right axes (Fig.5a),X –Y scatter diagrams require two series of data for the X and Y axes (Fig.5b),and spider diagrams need only one data series for the Y axes.For spider diagrams,users must specify whether the Y values are arranged in columns (Fig.5c)or in rows (Fig.5d)by selecting the corresponding option button in the ‘‘Plot geochemistry diagram’’window.

After inputting the entire data series for a sample,users must click on the ‘‘Add’’button to add the current sample series into CGDK series list (Fig.4b).Usually,several series of samples may be added,so it is recommended to enter a name for identi?cation before adding the series to the list.Finally,users click on the ‘‘Plot’’(Fig.4b)button to create a geochemical diagram.The results are shown in Fig.5e.

2.3.3.Customizing a sample series

In a default situation,the data points in one sample series are represented by rectangles and organized in a CorelDRAW shape group object (Fig.6a).The ?lling color,border width,line style,and text font of these data points can be easily modi?ed by using the tools offered by CorelDRAW.Additionally,CGDK provides a ‘‘Series editor’’tool to automatically replace rectangles with custom symbols.By clicking on the ‘‘Series editor’’button (Fig.6b)in the CGDK toolbar,users can open the ‘‘Series editor’’window (Fig.6c).Before replacing data,users must set a custom symbol by selecting one (Fig.6d)and clicking on the ‘‘Set symbol’’button located in the ‘‘Series editor’’window (Fig.6c).To

perform

Fig.4.Plotting a geochemical diagram.(a)CGDK toolbar with the ‘‘Geochemical diagram’’button highlighted.(b)The ‘‘Plot geochemistry diagram’’window,in which users input the data series for plotting a diagram.

J-T Qiu et al./Computers &Geosciences 51(2013)34–4837

the replacement,users must select a sample series desired to be replaced (Fig.6e)and click on the ‘‘Replace’’button (Fig.6c).The result is shown in Fig.6f.

2.3.4.Creating a new template

Although several templates are available for geochemical analysis,new ones can be supplemented to handle additional geochemical problems.

Usually,a geochemical diagram contains a frame that de?nes diagram size,a coordinate system,and graphic elements,such as axes,classi?cation lines,data points,and labels.The frame and labels can be created by using the tools provided by CorelDRAW,whereas other elements,including the coordinate system,axes,classi?cation lines,and data points must be created with ‘‘Tem-plate designer’’tool.

The ‘‘Template designer’’window consists of three pages:(1)Coordinate,(2)Axis,and (3)https://www.doczj.com/doc/193654315.html,ers can switch between different pages by clicking on the buttons at the top of the ‘‘Template designer’’window.Once a frame is selected,a calibra-tion procedure can be performed by clicking on the ‘‘Coordinate’’button and de?ning the boundary values.The triangular template requires no boundary value,the X –Y scatter diagram requires four values for the left,right,top,and bottom boundaries,and the spider diagram requires two values for the top and bottom boundaries as well as a series of data obtained from Excel for the normalizing values.After calibration,axes can be added by

clicking on the ‘‘Axis’’button and de?ning the axis interval values in the textbox where commas are employed to separate the values.The classi?cation lines and data marks can be de?ned in the ‘‘Marks’’page.The method of creating classi?cation lines and marks is similar to that of creating axis.

The following example shows how to create a TAS (Le Maitre et al.,1989)template with the ‘‘Template designer’’tool.First,click on the ‘‘Template designer’’button (Fig.7a)to open the ‘‘Template designer’’window and choose a diagram type (Fig.7b)from the drop-down list at the top of the ‘‘Template designer’’window.Here,the second option ‘‘Scatter diagram’’should be selected since TAS is an X –Y scatter diagram.Then,create a template frame by drawing a rectangle on a CorelDRAW page (Fig.7c),build up the coordinate system for the frame by de?ning the left,right,top,and bottom values in the textboxes in the ‘‘Template designer’’window (Fig.7b),and click on the ‘‘Estab-lish’’button (Fig.7b).Next,click on the ‘‘Axis’’button (Fig.7d),enter interval values in X -axis and Y -axis textboxes using commas to separate each number,and click on the ‘‘Draw axis’’button (Fig.7d).Finally,click on the ‘‘Marks’’button,input the coordi-nates of each turning node of a classi?cation line,and click on the ‘‘Draw curve’’button (Fig.7e).Fig.7f shows the relevant informa-tion that has been added for the creation of the classi?cation lines in a TAS https://www.doczj.com/doc/193654315.html,ers can also employ the tools offered by CorelDRAW to add labels to the template (Fig.7g).

In addition,CGDK provides alternative ways to create a diagram template.For example,it allows users to develop templates with

bmp

Fig.5.Examples of geochemical diagrams plotted by CGDK.(a)Data series for plotting a triangular diagram.(b)Data series for plotting an X –Y scatter diagram.(c)and (d)Data series for plotting a spider diagram.(e)The outputs of geochemical diagrams.

J-T Qiu et al./Computers &Geosciences 51(2013)34–48

38

(Bitmap)pictures.The following example shows how to use a bmp format diagram to create a 10,000n Ga/Al vs.Nb template:

First,copy a.bmp image from an article (e.g.,Wong et al.,2009)and paste it to CorelDRAW (Fig.8a).To calibrate the template,?rst draw a frame whose left,right,top,and bottom borders overlap with the original grid lines (Fig.8a).Next,open the ‘‘Template designer’’window,choose a diagram type,input the left,right,top,and bottom values according to the overlapped grid lines,and click on the ‘‘Establish’’button (Fig.8b).Finally,hide the frame and use ‘‘Template manager’’to save the template (Fig.8c).

The method of creating a template with a.bmp image is less time consuming than the former method since an existent diagram is used as a background as opposed to having to create the graphic elements,but depends on the availability of a high-resolution.bmp image.In order to check the accuracy of plotting on the template created by this method,the geochemical data of Baijuhuajian granite (Wong et al.,2009)has been re-plotted on this template.The new plotted data points represented by stars overlap the original data points marked by rectangles.Fig.8d

displays the results and indicates that the calibration of the template is accurate.

2.4.Features designed for stratigraphy

Stratigraphic columns are widely used for stratigraphic unit division and comparison (e.g.,Vogel et al.,1998;Michelsen and Clausen,2002;Vilas et al.,2003).They can also be used to re?ect the changing deposition environment (e.g.,Weissheimer de Borba et al.,2004).In some cases,elements of a stratigraphic column can be drawn by rectangles and ?lled with speci?ed patterns and symbols that represent different rock types.The height of a rectangle normally represents thickness of a rock layer (Miall,1984;Tucker,1988),while the width normally represents the average grain size of the layer (Krumbein and Sloss,1963).

In modern stratigraphic studies,other types of columns and diagrams,such as magnetostratigraphic columns,magnetostrati-graphic diagrams,chronostratigraphic columns,element concen-tration diagrams,and temperature change diagrams are

also

Fig.6.Customizing a series.(a)Use tools offered by CorelDRAW to customize data points.(b)CGDK toolbar with the ‘‘Series editor’’button highlighted.(c)The ‘‘Series editor’’window.(d)Select a legend symbol.(e)Select the sample series desired to be replaced.(f)The rectangles are replaced with stars.

J-T Qiu et al./Computers &Geosciences 51(2013)34–4839

provided along with stratigraphic columns (e.g.,Cirilli et al.,2009;Glen et al.,2009).

2.4.1.Drawing a stratigraphic column

During the process of creating a stratigraphic column,CGDK ?rst reads the thickness and grain size data and creates rectangles with different heights and widths before trying to ?ll each rectangle based on its lithology.A rectangle whose lithology is not registered will automatically be un?lled by the program.The lithology registration can be done in the ‘‘Lithology’’window where there are two list boxes.The right list box displays all the lithologies that have been registered in the previous work,while the left list box displays the lithologies of the rectangles that are going to be ?lled.Registered lithologies in the left list box are marked so they can be distinguished from the unregistered lithologies.To perform a registration,choose an unregistered lithology from the left list box,select a legend shape ?lled with the desired colors or patterns from the CorelDRAW page,and click on the ‘‘Set’’button.The registered lithology will be stored by CGDK for future use.

The following example shows the instructions for creating a stratigraphic column:

First,click on the ‘‘Stratigraphic column’’button in the CGDK toolbar (Fig.9a)to show the ‘‘Draw stratigraphic columns’’

window (Fig.9b).Then,get the thickness,grain size and lithology data from an Excel ?le (Fig.9b).Next,click on the ‘‘Set lithology’’button (Fig.9b)to show the ‘‘Lithology’’window (Fig.9c).Choose an unregistered lithology from the left list box (Fig.9c),select a legend shape from the CorelDRAW page (Fig.9d),and click on the ‘‘Set’’button (Fig.9c).After all legends have been registered,click on the ‘‘OK’’button (Fig.9c).Next,draw a rectangle whose height represents the total thickness of all layers and whose width stands for the maximum grain size of all layers (Fig.9e).Finally,click on the ‘‘Draw’’button (Fig.9b)to build the stratigraphic column (Fig.9e).

2.4.2.Drawing other columns

Besides stratigraphic columns,CGDK provides three other categories of columns,including the polyline,smooth line,and magnetostratigraphic https://www.doczj.com/doc/193654315.html,ers can choose a column type from the drop-down list at the top of ‘‘Draw stratigraphic columns’’window (Fig.10a).

The polyline (Fig.10b)and the smooth line (Fig.10c)columns need two data series for ‘‘Thicknesses’’and ‘‘X values’’,where the ‘‘X ’’may represent grain size,element concentration,or another feature of a layer.For example,if ‘‘X ’’stands for grain size,the columns can be used to re?ect the sea level change during periods of deposition formation (N?rgaard-Pedersen et al.,2006

).

Fig.7.Creating a template.(a)The ‘‘Template designer’’button in CGDK toolbar.(b)The ‘‘Template designer’’window.(c)Draw a rectangle.(d)Create axis intervals.(e)Create the classi?cation lines.(f)Relevant information that has been added on the TAS template (g)Use text tools provided by CorelDRAW to add labels to the template.

J-T Qiu et al./Computers &Geosciences 51(2013)34–48

40

The magnetostratigraphic column (Fig.10d)requires two data series for the thicknesses and polarities.The method of creating a magnetostratigraphic column is similar to that of building a stratigraphic column as described in Section 2.4.1.

2.4.

3.Drawing diagrams

In Sections 2.3.2and 2.3.4we introduced the methods for creating templates and plotting geochemical diagrams,and these methods can also be used to create diagrams for stratigraphic analysis.The following example shows how to create a TOC (Total Organic Carbon)vs.depth diagram.

First,duplicate the rectangle that has been used for creating a stratigraphic column (Fig.11a).Then,open the ‘‘Template designer’’window,choose ‘‘Scatter diagram’’from the drop-down list,input the left,right,bottom and,top values,and click on the ‘‘Establish’’button (Fig.11b).

Next,open the ‘‘Plot geochemical diagram’’window (Fig.11c),enter the X and Y values (Fig.11c and d),click on the ‘‘Add’’button,select the ‘‘Draw connecting curve’’checkbox,and click on the ‘‘Plot’’button to draw the diagram (Fig.11a).

In some studies (e.g.,Brault et al.,2004;Mazumder and Sarkar,2004),rose diagrams are used to indicate paleocurrent directions.A series of rose diagrams along with a stratigraphic column re?ect changes of paleocurrent directions through time (Fig.11e),which is signi?cant for basin analysis.The rose diagram can be created by CGDK,and the methodology will be described in Section 2.5.2.2.5.Features designed for ?eld geology

2.5.1.Convenient tools for ?lling shapes and areas

A geological map is used to show geological features of an area.Rock types and stratigraphic units are shown in different colors,patterns and symbols to indicate where they are exposed in the area.

CorelDRAW provides several widely used tools,such as burette and paint barrel to copy and assign ?lling and outline styles from a legend to a speci?ed shape or area.In some cases,however,users must ?ip between burette and paint barrel frequently,which is both tedious and inconvenient.CGDK provides a smart ?lling tool to solve this problem.The tool can memorize the ?lling and outline styles of a legend when left clicking on the legend with the ‘‘Shift’’key pressed,and can assign the remembered styles to a speci?ed shape or area when clicking on the area with the ‘‘Shift’’key released.The following example shows the procedure:

First,click on the ‘‘Common tool’’button to open the ‘‘Common tools’’window (Fig.12a)where there are two options (‘‘Fill’’and ‘‘Outline’’).With the ?rst option (‘‘Fill’’)selected,the program ?lls the speci?ed area with the memorized ?ll style,and with the second option (‘‘Outline’’)selected,the program assigns the out-line style to the speci?ed shape.Then,click on the ‘‘Smart ?ll’’button (Fig.12b).Next,click on a legend shape with the ‘‘Shift’’key pressed (Fig.12c).Finally,click on an area with the ‘‘Shift’’key released to assign the memorized style to the area (Fig.12d).Continue clicking on the areas desired to be ?lled (Fig.12e)before pressing ‘‘ESC’’key to end the procedure.

Not only can the ‘‘Smart ?lling’’tool be used to ?ll shapes,but it can also be used to modify geological boundaries,such as faults and unconformities (Fig.12f).

2.5.2.Creating stereographic projections and rose diagrams

Stereographic projections and rose diagrams are important tools for structural analysis.The stereographic diagrams of joints,faults,folds,and cleavages along with a geological map help the user determine the stress ?eld of an area (e.g.,Whitaker and Engelder,2005).Rose diagrams of bedding orientations and pebbles re?ect paleocurrent directions (e.g.,Franks et al.,1959)and can thus be used to interpret the evolution of basins and orogenic belts (e.g.,Maejima et al.,2004

).

Fig.8.Developing a template with a BMP picture.(a)Copy a BMP picture from an article and draw a rectangle.(b)Input the coordinate information of the template.(c)Hide the rectangle and save the template with ‘‘Template manager’’.(d)The geochemical data of Baijuhuajian granite are re-plotted on the template and are represented by red stars that overlap the original data points,indicating an accurate calibration of the template.

J-T Qiu et al./Computers &Geosciences 51(2013)34–4841

To create a stereographic projection or rose diagram with CGDK,users need to follow the steps below:

Click on the ‘‘Draw projection’’button (Fig.13a)to open the ‘‘Projection &diagram’’window,obtain azimuth and dip data from an Excel ?le (Fig.13b),and draw a circle (Fig.13c).If a stereographic projection is to be created,users must specify the type of structure (planar or linear)(Fig.13b),whereas if a rose diagram is to be created,users must de?ne the type (strike,azimuth or dip)of rose diagram by selecting the corresponding option in the ‘‘Projection and diagram’’window (Fig.13b).Finally,click on the ‘‘Projection’’or ‘‘Rose diagram’’button to create a stereographic projection or rose diagram (Fig.13b).The results are shown in Fig.13d.

2.5.

3.Calibrating a UTM geological map

The coordinate system in CorelDRAW is orthogonal with the origin located in the lower-left corner of the CorelDRAW page.Positions in this coordinate system are measured in document unit,rather than latitude and longitude.Although linear interpolation

may be used to convert latitudes and longitudes into X and Y coordinates,this method works only on small-sized maps with large scales at low latitudes.

Because the earth is three-dimensional,several map projec-tions (e.g.,Mercator,Gauss–Kruger,Universal Transverse Merca-tor (UTM),and Lambert),and many datum planes (e.g.,WGS84,NAD83,GRS 80,WGS72)have been used to represent its surface on plane maps.As long as we know the map projection informa-tion,the datum plane and several calibration points with latitudes and longitudes,we can use these datasets to calibrate the map and exploit the datasets to represent other positions on the same map.A UTM conversion ?le 1has been revised and used to develop a feature of CGDK that allows users to calibrate a UTM WGS84map with two calibration points.

By clicking on the ‘‘Calibrate map’’button in the CGDK toolbar,users start a calibration procedure during which users are

prompted

Fig.9.Drawing a stratigraphic column.(a)The ‘‘Stratigraphic column’’button in CGDK toolbar.(b)The ‘‘Draw stratigraphic columns’’window.(c)The ‘‘Lithology’’window.(d)Select a legend shape for a lithology.The registered lithology will be stored for future use.(e)The stratigraphic column that is created by CGDK.A legend list is also created along with the stratigraphic column.

1

https://www.doczj.com/doc/193654315.html,/$taylorc/toolbox/geography/geoutm.html .

J-T Qiu et al./Computers &Geosciences 51(2013)34–48

42

to specify two points with different longitudes and latitudes and give their geographic coordinates (Fig.14a).The two calibration points must be in the same UTM zone so that the zone number and central meridian can be determined by CGDK.The map will be calibrated after the point speci?cation and will be available for plotting data and representing other positions.

If users want to obtain the latitude and longitude of an arbitrary point on the map,they can click on the ‘‘Show GPS’’button and move the mouse cursor to the point.The latitude and longitude will be displayed in the ?oating window next to the mouse cursor (Fig.14b).By clicking on the ‘‘Show GPS’’button again,users can close the ?oating window.

The method of plotting data on a calibrated map is similar to that of plotting data on geochemical diagrams.First,click on the ‘‘Plot on map’’button,click on a legend symbol,and click on the ‘‘Set symbol’’button.Next,obtain latitudes and longitudes from an Excel ?le,and click on the ‘‘Plot’’button (Fig.14c).

In order to evaluate the accuracy of the calibration,the geographic coordinates of some guideline intersections have been plotted on a calibrated 1:250,000geological map from USGS 2.The result displayed

in Fig.15shows that the data points are consistent with the guidelines intersections,indicating a good calibration.

3.Advantages of CGDK 3.1.Data acquisition

Other software packages have been developed to plot geo-chemical diagrams,such as Newpet (Clarke,1993),Igpet (Carr,1995),and MinPet (Richard,1997).However,these programs access only plot functionalities without linking to a https://www.doczj.com/doc/193654315.html,ers must convert an Excel ?le into an external ?le with a speci?c format before and after data processing.

By providing an interface for importation directly from Excel to CorelDRAW,CGDK aims to integrate the data storage and manip-ulation advantages of Excel with the powerful vector drawing and editing features of CorelDRAW.This interface has three bene?ts:(1)the program can obtain data without format conversion and avoid importing useless data,(2)users may select data ?exibly (for example,by row,by column,or even from different rows and columns in different sheets),and (3)CGDK obtains data from a running Excel application,which means all the features provided by Excel,such as auto?ll,data sort,and macros can be used during the data acquisition process.

3.2.Plotting geochemical diagrams with graphic-based templates Microsoft Excel is widely used by geochemists for data storage and analysis,but only manual data organization and basic X –Y plots are available for data interpretation (Wang et al.,2008).Although several previous macro programs have been written for plotting triangular and spider plots in Excel (e.g.,Christie and Langmuir,1994;Sidder,1994;Marshall,1996),these programs do not meet present geochemists’needs because they are not capable of adding new diagram types for current geochemical analysis.

GeoPlot (Zhou and Li,2006)and GCDPlot (Wang et al.,2008)are the latest macro programs with powerful functions for plotting triangular and discrimination diagrams,the capability of adding new diagram types,and the friendly user interface.However,the two programs provide data-based templates whose elements,including lines of various classi?cations,data points,and labels are exactly de?ned in VBA macros or con?guration ?les,meaning these templates are dif?cult to update or share.Additionally,the appearances of these templates rarely meet publication requirements,so users must modify them prior to publication.The modi?cations must be repeated every time a new diagram is created.

CGDK introduces the concept of a graphic-based template.In contrast to an abstract data-based template,the graphic-based template is concrete and can be easily modi?ed and updated.The template is a standard CorelDRAW shape group object,which can be stored and shared conveniently.When plotting data on a template that has been optimized to meet publica-tion requirements,users can focus on customizing data points and adding comments and explanations rather than modifying the whole diagram.Additionally,a graphic-based template can be used with ?exibility to create diagrams for other geolo-gical analysis,such as TOC vs.depth diagram for stratigraphic analysis.

3.3.Creating stratigraphic columns along with other columns and diagrams

Since the construction of a stratigraphic column is usually very time consuming,a series of applications have been provided

such

Fig.10.Other available columns provided by CGDK.(a)Polyline column.(b)Smooth line column.(c)Magnetostratigraphic column.

2

https://www.doczj.com/doc/193654315.html,/open-?le/of01-262/PULL-MAP.PDF .

J-T Qiu et al./Computers &Geosciences 51(2013)34–4843

as PRIZM 3,DBSond 4,LogView 5and Winbohr 6to solve this problem.However,these software packages are mostly designed for hydrocarbon exploration companies and many of the func-tions are not useful for many geologists.

StratDraw (Hoelzel,2004)is a simple freeware for building stratigraphic columns.It is written in VBA and runs on the widely distributed application CorelDRAW.Although it draws strati-graphic columns accurately,it has three shortcomings:(1)the data input is cumbersome because users must convert an Excel data sheet into a TXT ?le,(2)it ?lls stratigraphic columns with colors not patterns (Hoelzel,2004),and (3)the color selection is based on grain size,not on lithology,which makes it hard for geologists to distinguish between different rock types accurately.

CGDK can read data from and Excel ?le without data conver-sion.It ?lls stratigraphic columns with different colors,symbols and patterns automatically based on lithologies.Other columns and curves,such as magnetostratigraphic columns,magnetostra-tigraphic curves,chronostratigraphic columns,and element con-centration curves are also available to help geologists understand the history of sedimentary evolution in different dimensions.

4.Conclusion and signi?cance

Stereographic projections,rose diagrams,stratigraphic col-umns,and geochemical diagrams are important tools for geolo-gists and geochemists to interpret the rock characteristics,

structures and sedimentary strata,and to further understand the geological evolution of a region.However,drawing these graphics can often be time consuming.CGDK partly implements the automation of geological drafting in CorelDRAW,which can visualize a large amount of data in a short period of time.The graphics created by CGDK can be fully edited in CorelDRAW.CGDK is written in VBA and runs on CorelDRAW 13or later,which means that VBA can be used not only in Microsoft Of?ce,but can also be implemented in other graphic applications.With VBA,the program can easily facilitate data transportation between two different programs without data conversion or importation as required by most other available programs.

Besides plotting geochemical diagrams on existing templates,CGDK also supports the creation of new templates that can be easily updated,modi?ed,shared,and managed.This feature has not been present in other programs.Additionally,CGDK offers a feature to ?ll stratigraphic columns with colors,symbols or patterns automatically to distinguish different lithologies.Some other columns and diagrams,such as magnetostratigraphic columns and element concentration diagrams for stratigraphic research are available as well.

CorelDRAW is not a GIS program,so it does not support geographic coordinates.CGDK makes up for this shortcoming by providing features for map calibration and coordinate transfor-mation so users can easily ?nd the latitude and longitude of a point.Although this feature presently works only on UTM WGS84maps,the development of the VBA classes for other projection conversions is now being undertaken.These classes will be available in the next version of CGDK.

CGDK is a freeware designed for geochemists and geologists.The software as well as several examples and outputs can be downloaded from our Windows Live group page (https://https://www.doczj.com/doc/193654315.html,/tmgr

).

Fig.11.Constructing diagrams with stratigraphic column.(a)Duplicate a rectangle.(b)Establish coordinate system for the rectangle.(c)Input the X and Y values.Note :‘‘Draw connecting curve’’option must be selected.(d)Data used to create the diagram.Note:Depth is Y axis,while TOC is the X axis.(e)Rose diagrams with a stratigraphic column.

3https://www.doczj.com/doc/193654315.html,/products/default.htm .4https://www.doczj.com/doc/193654315.html,/english/dbsex02.htm .5https://www.doczj.com/doc/193654315.html, .

6

http://www.idat.de/jsfr/index_dj.html .

J-T Qiu et al./Computers &Geosciences 51(2013)34–48

44

Fig.13.Creating projections and rose diagrams.(a)The ‘‘Draw projection’’button.(b)The ‘‘Projection &diagram’’window,in which users enter the azimuth and dip data and chose a diagram type.(c)Draw a circle.(d)Different stereographic projections and rose diagrams created by

CGDK.

Fig.12.Filling areas and modifying geological boundaries.(a)The ‘‘Common tool’’button.(b)The ‘‘Common tools’’window.Selecting the ‘‘Fill’’option will command the program to ?ll a speci?ed area,while clicking the ‘‘Outline’’option will assign an outline style to a speci?ed area.(c)Obtain the ?lling and border style by clicking on the legend with the ‘‘Shift’’key held down.(d)Assign the ?lling style to the speci?ed area by clicking on the area with the ‘‘Shift’’key released.(e)Continue clicking on other areas to ?ll https://www.doczj.com/doc/193654315.html,ers can ?ll more than one area before pressing the ‘‘ESC’’key.(f)Modify a fault by copying and assigning the style of the legend.

J-T Qiu et al./Computers &Geosciences 51(2013)34–4845

Fig.14.Calibrating a UTM WGS84map.(a)Calibrate a map by giving two calibration points.(b)Show GPS coordinate.(c)Plot data on map.Note:users must set a legend before plotting data on the

map.

Fig.15.Result from calibration check.The data points are consistent with the intersections of the guidelines,indicating a good calibration.

J-T Qiu et al./Computers &Geosciences 51(2013)34–48

46

Acknowledgements

We wish to thank Jef Caers for his editorial review,two anonymous reviewers for their useful comments and suggestions, Yuelong Chen,Shangguo Su,Danping Yan,Wei Gan,Liang Qiu, Longlong Zhao,Bo Zhang,Ping Li and Yixi Zhang for testing our software,and C.Michael Lesher(mlesher@laurentian.ca)for correcting and improving our English.

Appendix A.Templates offered by CGDK for trial

See Table A1

References

Belousova,E.A.,Grif?n,W.L.,O’Reilly,S.Y.,Fisher,N.I.,2002.Igneous zircon:trace element composition as an indicator of source rock type.Contributions to Mineralogy and Petrology143,602–622.

Brault,N.,Bourquin,S.,Guillocheau, F.,Dabard,M.P.,Bonnet,S.,Courville,P., Este′oule–Choux,J.,Stepanoff,F.,2004.Mio–Pliocene to Pleistocene paleotopo-graphic evolution of Brittany(France)from a sequence stratigraphic analysis: relative in?uence of tectonics and climate.Sedimentary Geology163, 175–210.

Brown,G.C.,Thorpe,R.S.,Webb,P.C.,1984.The geochemical characteristics of granitoids in contrasting arc and comments on magma sources.Journal of the Geological Society141,411–426.

Carr,M.,1995.IGPET.Software Program.Terra Softa Inc.,Somerset,NJ,USA. Christie,D.M.,Langmuir,C.H.,1994.Automated XY plots from Microsoft Excel.

Computers&Geosciences20(1),47–52.

Cirilli,S.,Marzoli,A.,Tanner,L.,Bertrand,H.,Buratti,N.,Jourdan,F.,Bellieni,G., Kontak, D.,Renne,P.R.,https://www.doczj.com/doc/193654315.html,test Triassic onset of the Central Atlantic Magmatic Province(CAMP)volcanism in the Fundy Basin(Nova Scotia):new stratigraphic constraints.Earth and Planetary Science Letters286,514–525. Clarke, D.,1993.NEWPET Software Program.Department of Earth Sciences, Memorial University of Newfoundland.St.Johns,Newfoundland,Canada. Glen,J.M.G.,Nomade,S.,Lyons,J.J.,Metcalfe,I.,Mundil,R.,Renne,P.R.,2009.

Magnetostratigraphic correlations of Permian-Triassic marine-to-terrestrial sections from China.Journal of Asian Earth Sciences36(6),521–540. Franks,P.C.,Coleman,G.L.,Plummer,N.,Hamblin,W.K.,1959.Vector resultants of cross-strati?cation dip bearings in Dakota Sandstone,Ottawa County,Kansas.

Kansas Geological Survey,Bulletin part6,134,plate1.

Frost, B.R.,Barnes, C.G.,Collins,W.J.,Arculus,R.J.,Ellis, D.J.,Frost, C.D.,2001.

A geochemical classi?cation for granitic rocks.Journal of Petrology42(11),

2033–2048.

Frost,B.R.,Frost,C.D.,2008.A geochemical classi?cation for feldspathic igneous rocks.Journal of Petrology49(11),1955–1969.Herron,M.M.,1988.Geochemical classi?cation of terrigenous sands and shales from core or log data.Journal of Sedimentary Petrology58(5),820–829. Hoelzel,M.,2004.StratDraw:automatic generation of stratigraphic sections from tabulated?eld https://www.doczj.com/doc/193654315.html,puters&Geosciences30,785–789.

Irvine,T.N.,Baragar,W.R.A.,1971.A guide to the chemical classi?cation of the common volcanic rocks.Canadian Journal of Earth Sciences8,523–548. Krumbein,W.C.,Sloss,L.L.,1963.Stratigraphy and Sedimentation.Freeman and Company,San Francisco,CA660pp.

Kuno,H.,https://www.doczj.com/doc/193654315.html,teral variation of basalt magma types across continental margins and island arcs.Bulletin of Volcanology29,195–222.

Le Maitre,R.W.,1976.A new approach to the classi?cation of igneous rocks using the basalt-andesite-dacite-rhyolite suite as an example.Contributions to Mineralogy and Petrology56,191–203.

Le Maitre,R.W.,Bateman,P.,Dudek,A.,Keller,J.,Lameyre,J.,Le Bas,M.J.,Sabine, P.A.,Schmin,R.,Sorensen,H.,Streckeisen,A.,Wooley,A.R.,Zanettin,B.,1989.

A Classi?cation of Igneous Rocks and Glossary of Terms.Blackwell,Oxford. MacDonald,G.A.,Katsura,T.,1964.Chemical composition of Hawaiian lavas.

Journal of Petrology5,83–133.

Michelsen,O.,Clausen,O.R.,2002.Detailed stratigraphic subdivision and regional correlation of the southern Danish Triassic succession.Marine and Petroleum Geology19,563–587.

Maejima,W.,Das,R.,Pandya,K.L.,Hayashi,M.,2004.Deglacial control on sedimentation and basin evolution of Permo-Carboniferous Talchir Formation,Talchir Gondwana Basin,Orissa,India.Gondwana Research7, 339–352.

Marshall,D.,1996.Ternplot:an Excel spreadsheet for ternary https://www.doczj.com/doc/193654315.html,pu-ters&Geosciences22(6),697–699.

Mazumder,R.,Sarkar,S.,2004.Sedimentation history of the Palaeoproterozoic Dhanjori Formation,Singhbhum,eastern India.Precambrian Research130,267–287. Miall,A.D.,1984.Principles of Sedimentary Dasin Analysis.Springer,New York490pp. N?rgaard-Pedersen,N.,Austin,W.E.N.,Howe,J.A.,Shimmield,T.,2006.The Holocene record of Loch Etive,western Scotland:in?uence of catchment and relative sea level changes.Marine Geology228,55–71.

Pearce,J.A.,Cann,J.R.,1971.Ophiolite origin investigated by discriminant analysis using Ti Zr and Y.Earth Planet Science Letter12,339–349.

Pearce,J.A.,Cann,J.R.,1973.Tectonic setting of basic volcanic rocks determined using trace element analysis.Earth Planet Science Letter19,290–300. Pearce,J.A.,Gale,G.H.,1977.Identi?cation of Ore-Deposition Environment from Trace Element Geochemistry of Associated Igneous Host Rocks,7.Geological Society Special Publications14-24.

Pearce,J.A.,Harris,N.B.W.,Tindle, A.G.,1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks.Journal of Petrology 25,956–983.

Richard,L.R.,1997.MinPet.Software Program.MinPet Geological Software, Gatineau,Canada.

Rollinson,H.,2008.Secular evolution of the continental crust:implications for crust evolution models.Geochemistry Geophysics Geosystems9(12),1–14. Sidder,G.B.,1994.PETRO.CALC.PLOT,Microsoft Excel macros to aid petrologic https://www.doczj.com/doc/193654315.html,puters&Geosciences20(6),1041–1061.

Taylor,S.R.,McLennan,S.M.,1995.The geochemical evolution of the continental crust.Reviews of Geophysics33,241–265.

Table A1

Templates offered by CGDK for trial.

Template group Template type Template name Purpose Reference

Rock classi?cation X–Y scatter TAS diagram for volcanic rocks Classify volcanic rocks Le Maitre et al.,1989

Rock classi?cation X–Y scatter TAS diagram for intrusive rocks Classify intrusive rocks Middlemost,1994

Rock classi?cation X–Y scatter Na2O–K2O diagram Classify ultrapotassic,shoshonitic and

calc-alkaline rocks

Le Maitre et al.,1989

Rock classi?cation X–Y scatter SiO2–K2O diagram Classify calc-alkaline and tholeiite rocks Le Maitre et al.,1989;

Rickwood,1989

Rock classi?cation Triangular AFM diagram Classify calc-alkaline and tholeiite rocks Irvine and Baragar,1971 Rock classi?cation X–Y scatter A/NK—A/CNK Diagram Classify metaluminous and peraluminous rocks Maniar and Piccoli,1989 Rock classi?cation Triangular An–Ab–Or diagram Classify granitic rocks Barker,1979

Rock classi?cation X–Y scatter(Nb/Y)—(Zr/Ti)diagram Classify volcanic rocks Winchester and Floyd,1977 Tectonic environment X–Y scatter(YbtTa)-Rb diagram Identify tectonic environment Pearce et al.,1984

Tectonic environment X–Y scatter Y–Nb diagram Identify tectonic environment Pearce et al.,1984

Tectonic environment X–Y scatter Yb–Ta diagram Identify tectonic environment Pearce et al.,1984

Tectonic environment X–Y scatter(YtNb)-Rb diagram Identify tectonic environment Pearce et al.,1984

Tectonic environment Triangular(Ti/100)-Zr-(Y?3)diagram Identify tectonic environment Pearce and Cann,1973 Petrogenesis X–Y scatter(10,000?Al/Ga)-Nb Distinguish A-type,I and S-type granites Whalen et al.,1987 Petrogenesis X–Y scatter(10,000?Al/Ga)-Zr Distinguish A-type,I and S-type granites Whalen et al.,1987 Petrogenesis X–Y scatter K2O–Na2O diagram Distinguish A-type,I-type and S-type granites Collins et al.,1982 Petrogenesis X–Y scatter(Y/Nb)–(Ce–Nb)diagram Subdivision of A-type granitoids Eby,1992

Petrogenesis X–Y scatter206Pb/204Pb–207Pb/204Pb Identify the source of magma Zartman and Doe,1981 Normalized diagram Spider Rare earth element spider diagram REE comparison research Boynton,1984

Normalized diagram Spider Primitive mantle normalized spider diagram Trace element comparison

research Sun and McDonough,1989

J-T Qiu et al./Computers&Geosciences51(2013)34–4847

Tucker,M.E.,1988.Techniques in Sedimentology.Blackwell Scienti?c Publications, Oxford394pp.

Vilas,L.,Martin-Chivelet,J.,Arias,C.,2003.Integration of subsidence and sequence stratigraphic analyses in the cretaceous carbonate platforms of the Prebetic (Jumilla-Yecla Region),Spain.Palaeogeography Palaeoclimatology Palaeoecol-ogy200,107–129.

Vogel,D.C.,Vuollo,J.I.,Alapieti,T.T.,James,R.S.,1998.Tectonic,stratigraphic,and geochemical comparisons between ca.2500–2440Ma ma?c igneous events in the Canadian and Fennoscandian Shields.Precambrian Research199892(2),89–116. Wang,X.R.,Ma,W.F.,Gao,S.,Ke,L.,2008.GCDPlot:an extensible Microsoft Excel VBA program for geochemical discrimination https://www.doczj.com/doc/193654315.html,puters&Geos-ciences34,1964–1969.

Weissheimer de Borba,A.W.,Maraschin,A.J.,Mizusaki,A.M.P.,2004.Stratigraphic analysis and depositional evolution of the Neoproterozoic Marica′formation (Southern Brazil):constraints form?eld data and sandstone petrography.

Gondwana Research7,871–886.

Whitaker,A.E.,Engelder,T.,2005.Characterizing stress?elds in the upper crust using joint orientation distributions.Journal of Structural Geology27(10), 1778–1787.

Wong,J.,Sun,M.,Xing,G.F.,Li,X.H.,Zhao,G.C.,Wong,K.,Yuan,C.,Xia,X.P.,Li,L.M., Wu,F.Y.,2009.Geochemical and zircon U-Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite:extension at125–100Ma and its tectonic signi?cance for South China.Lithos112,289–305.

Wood, D.A.,1980.The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classi?cation and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic provinces.

Earth Planet Science Letter50,11–30.

Zhou,J.B.,Li,X.H.,2006.GeoPlot:an excel VBA program for geochemical data https://www.doczj.com/doc/193654315.html,puters&Geosciences32,554–560.

Appendix References

Barker,F.,1979.Trondhjemites,Dacites and Related Rocks[M].Elsevier Sci.Pub.

Comp.,New York.

Boynton,W.V.,1984.Geochemistry of the rare earth elements:meteorite studies.

In:Henderson,P.(Ed.),Rare Earth Element Geochemistry.Elservier, pp.63–114.Collins,W.J.,Beams,S.D.,White,A.J.R.,Chappell,B.W.,1982.Nature and origin of A-type granites with particular reference to southeastern Australia.Contribu-tions to Mineralogy and Petrology1982,189–200.

Eby,G.N.,1992.Chemical subdivision of the A-type granitoids petrogenetic and tectonic implications.Geology20,641–644.

Irvine,T.N.,Baragar,W.R.A.,1971.A guide to the chemical classi?cation of the common volcanic rocks.Canada Journal of Earth Science8,523–548.

Le Maitre,R.W.,Bateman,P.,Dudek,A.,Keller,J.,Lameyre,J.,Le Bas,M.J.,Sabine, P.A.,Schmin,R.,Sorensen,H.,Streckeisen,A.,Wooley,A.R.,Zanettin,B.,1989.A Classi?cation of Igneous Rocks and Glossary of Terms.Blackwell,Oxford. Maniar,P.D.,Piccoli,P.M.,1989.Tectonic discrimination of granitoids.Geological Society of America Bulletin101,635–643.

Middlemost,EAK,1994.Naming materials in the magma/igneous rock system.

Earth-Science Reviews37,215–224.

Pearce,J.A.,Cann,J.R.,1973.Tectonic setting of basic volcanic rocks determined using trace element analysis.Earth Planet Science Letter19,290–300. Pearce,J.A.,Harris,N.B.W.,Tindle, A.G.,1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks.Journal of Petrology 25,956–983.Pearce,J.A.,Harris,N.B.W.,Tindle,A.G.,1984.Nature and origin of A-type granites with particular reference to southeastern Australia.Contribu-tions to Mineralogy and Petrology80,189–200.

Rickwood,P.C.,1989.Boundary lines within petrologic diagrams which use oxides of major and minor elements.Lithos22,247–263.

Sun,S.-s.,McDonough,W.F.,1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society,London,Special Publications,42:pp.313–345.

Whalen,J.B.,Currie,K.L.,Chappell, B.W.,1987.A-type granites:geochemical characteristics,discrimination and petrogenesis.Contributions to Mineralogy and Petrology95,407–419.

Winchester,J.A.,Floyd,P.A.,1977.Geochemical discrimination of different magma series and their differentiation products-using immobile elements.Chemical Geology20,325–343.

Zartman,R.E.,Doe,B.R.,1981.Plumbotectonics—the model.Tectonophysics75, 135–162.

J-T Qiu et al./Computers&Geosciences51(2013)34–48 48

长高秘籍

首先自我意识很重要,在我查了N多资料后,绝对肯定的是自我意识对增高起着重要作用,千万不要忽视它,哪怕你每天什么都不锻炼光想着长高,时间长了也会有效果,所以建议大家不要去查骨骼闭合了,因为如果真的闭合绝对会打击你的信心,让你没有动力,虽然我觉得即使闭合也能长高,但毕竟科学事实在那,你就当自己还没闭合,只不过是晚长罢了。 我练琴(电吉他)4年多而且训练强度很大最多每天6-8个小时弹琴的都知道左手握住指板需要做很多拉伸性动作和很多跨度大很别扭的动作而右手是拿拨片的没有这么一些动作 我从网上看了一篇关于潜意识增高的文章之后便量了一下两个手的长度和手指的长度一般人双手基本是右手大于左手的而我两只手大小基本一样都是19厘米左手稍微大点这还不足以说服我再看手指的长度左手的手指长度全部比右手的手指长度长差距小的1、2毫米差距大的竟然达到4毫米(无名指)就算天生的手指不齐也不可能左手手指全部比右手长而且我在4年前大于17、8岁的时候早已停止长个 我认为造成手指增长的原因是我在弹琴的过程中手指得到了锻炼并不光是因为做拉伸动作而锻炼了而是当再做这些动作的时候潜意识里感到困难而最好的解决办法就是让手指更长一点 我认为现在大家的增高方法为什么有些人受益甚微就是没有充分利用潜意识这种东西潜意识的力量比意识是大很多很多的如果运动增高失败我认为那是潜意识没有感觉到你要长个没有长个的需要 我认为如果要增高就要让潜意识充分认识到长个的这个需要你可以将平常用的东西放的高一点 或进行摸高练习努力的摸你用上全力可以触及到的东西等不要跳着摸高我认为这些练习能刺激到潜意识而长个大家不妨一试 每天多伸懒腰早上2个鸡蛋,睡前牛奶,我一星期就长这么多,还有晚上睡前躺床上,伸直腿,用手摸自己脚,别摸太久,还有就是经常舒展身子 每天狂吃暴吃穷吃海带,菠菜,骨头汤当水喝!!! 每天晚上对镜子里的“我”说:“我会长高,我会长高,我今碗一定会长高.......(说50次)” 早上起来,对镜子说“我已经长高了,我已经长高了,虽然不太明显,但我真的长高了,我真的长高了(说50次)” 没镜子的,或者在集体宿舍不好意思的,心理默念就好,不要嫌麻烦,因为你个子不高以后更加麻烦

虚拟演播室方案

虚拟演播室是视频技术于计算机技术结合的产物,把计算机图形图像处理技术与传统的色键技术集合起来形成的。是一种新颖的独特的电视节目制作技术。 虚拟演播室技术原理:虚拟演播室技术与色键技术十分相像,他是由前景主持人为主的画面和背景画面,采用色键的方法构成一个整体,产生人物置身于背景中的组合画面。 虚拟演播室工作原理 虚拟演播室装修的总体要求: 建立一个功能完善的虚拟演播室,需要做到如下基本要求: 1、要求演播室的拾音空间首先具有较好的语言清晰度、可懂度,其次是要有良好的声音丰满度, 2、要求演播室内各处要有合适的响度和均匀度,具有相应的满足拾音要求的混响频率特性。 3、抑制影响听、拾音音质的声缺陷,防止出现声聚焦、驻波、颤动回声、低频嗡声等。 4、演播室内墙面的声学装饰考虑在装饰大方美观、造型新颖的基础上对于高中低各频段的声学处理方式,特别是低频段的声学处理方式方法。 演播室的建声指标:混响时间≤0.6S±0.05S;噪声评价曲线NR-30---NR-35。 设计的隔声门隔声量大于35dB并具有好的密封性。 5、演播室声学建声装饰所选用的材料符合国家相应的强制消防要求,要求采用达到B1、B2级标准的材料。 6、演播室声学建声装饰所选用的材料符合国家相应的强制环保要求,特别是要求甲醛的释放量为<0。1mg/m3。墙面装饰层内禁止使用不安全和危害性较高的吸声材料。 7、装饰踢脚线兼做视音频线槽并做屏蔽处理。 8、演播室配置录制指示灯和紧急逃生指示灯。 9、装饰层内的综合布线按要求做穿管处理。 10、演播室现有的位置南边部分为玻璃幕墙,不利于演播室的隔声,所以要对原幕墙部分进行隔断,制作隔声封闭处理,在保证整体装饰的美观性和隔声性的同时,还应保证演播室正常的通风换气。 11、导控室地面用防静电地板,装修过程中做好设备布线(强电,弱电),做好防雷,接地各类设施的设计施工。 12、装修预留好空调位置,并配合本台做好空调,配电等设备的安装施工。

正确使用手机的方法

正确使用手机的方法 手机的广泛使用,使我们被罩在“电子雾”中,无处躲避。很多人都会有这种体会,打手机超过几分钟后,耳朵和脸部都会有发热的感觉。长时间使用手机会影响大脑的功能,造成记忆力减退、失眠,甚至会发生情绪的改变。个别人也可能因为神经细胞和神经胶质细胞的畸变形成恶性脑肿瘤。 这样用手机危害大: 年轻人爱煲电话粥 许多年轻人有意无意的成为煲电话粥的一员,从大学生到社会上的白领阶层,煲电话粥可以说成为一种非常常见的事情。然而长时间的手机辐射会对大脑造成伤害。 热心肠电话变细菌中转站 有些人非常的热心肠,手机常常给别人使用,这样造成的后果就是手机变成细菌的中转站,成为各种病菌的乐园。 大忙人接电话 有些个大忙人,分秒中几百万,所以为了省事就侧着头接电话,长此以往必将危害脊椎,危害大脑,形成健康隐患。 躲起来说悄悄话 有些人打电话害羞,就爱躲到楼梯里避开大家打,可这样的往往让手机的辐射翻倍的增长,对自己的辐射更加厉害。 聊到尽兴充电打 有时候聊的尽兴了,会边充电边打,这样固然能很好的保持气氛,但对健康很不利 打电话性急 有些性急的人拨完号就开始把手机放在耳朵上,其实所有电话在接通状态时辐射都是非常厉害的,所以接电话不用性急。

用质量不好的手机 有些人贪图小便宜用一些非常廉价的手机,这样的手机质量不好,接听电话时往往造成很大的辐射。 正确使用手机的方法 1、在手机呼出时最好先将手机远离头部,以避免手机较大功率发射时对头部的辐射。 2、尽量减少每次使用手机的时间,以及每天使用手机的次数。在必须要较长时间通话时,应左右耳交替或者使用耳机更为科学。 3、当手机信号变弱时,手机会自动提高电磁波的发射功率,此时不要把耳朵紧贴手机。 4、不要在墙角处接打手机,建筑物角落的信号覆盖比较差,因此会在一定程度上使手机的辐射功率增大。基于同样道理,身处电梯等小而封闭的环境时,应慎打手机。 5、接打手机时不要随意走动,频繁移动位置会造成接收信号的强弱起伏,从而引发不必要的短时间高功率发射。

天地伟业网络视频服务器故障快速排查手册

天地伟业网络视频服务器故障快速排查手册 首先感谢您选用天地伟业网络视频产品,在使用之前,请详细阅读网络视频服务器使用说明书,熟悉产品使用方法,如果遇到问题可以按照以下方法进行故障排查。 为保证系统得正常运行,我们必须保证机器达到如下要求: 说明: 现场机器最好达到建议PC的配置,并安装相应硬件最新的驱动,此配置能满足16画面显示的要求,配置越高机器运行越流畅。 1.故障现象: IP搜索器搜索不到服务器 排查步骤: 1.确认网络视频服务器是否正常上电,主机网卡及驱动是否正常,网线是否做的没问题,网络拓扑连接是否通畅; 2.直接用交叉网线直接连接主机和网络视频服务器,如仍不通,给服务器复位再测试; 3.如有备件主机和网络视频服务器都做可更换测试; 4.如仍有问题请与我们联系; 2. 故障现象: IP搜索器能够正常搜索到服务器,但是IE不能正常连接视频 排查步骤: 1.确认主机IP地址和网络视频服务器地址设置在同一网段内,如不在同一网段改为同一网段; 注意:如在不同网段必须保证此两个网段做了路由; 2.确认IE的版本,建议安装IE6.0; 3.确认正常安装显卡驱动和DirectX,建议安装最新的显卡驱动和DirectX; 4.确认开启ActiveX相关插件; 5.暂时关闭杀毒软件自带防火墙测试;如是XP系统,暂时关闭系统自带防火墙; 6.删除之前曾经连接时下载的控件,重新连接测试; 7.更换主机测试; 8.如仍然有问题,请与我们联系; 3. 故障现象: 如果IE连接视频正常,但是软件连接视频不正常 排查步骤: 1.确认软件版本是否正确;如果版本不正确,重新安装正确的版本软件; 2.确认软件中“服务器编辑信息”的“IP地址”和“服务器类型”的正确;在局域望网建议采用“主码流+UDP”方式,广域网建议采用“副码流+TCP”方式; 3.确认在软件的主界面连接了视频; 4.重启软件连接;

关于意念增高方法的全面整理

关于意念增高方法的全面整理 对于一开始大家能在这个不太起眼的意念增高贴吧相遇,不论大家因为长高的目的如何,既然相遇,必定缘分希望大家保持着一颗虔诚的心来面对自我,你的目标是自己定的,保持一颗乐观积极向上的态度,对待感情真挚。。。。。。。希望大家都能在我下面说的里面找到真正属于自己方法,坚持不懈,获得成功,四月面朝大海,春暖花开。。。。。。 下面我把意念增高确认带中的方法再给大家系统说一下,结合我在贴吧的两个帖子。 我要说的是意念增高确认带分的版本也是多样,我也听过几个版本,自己感觉如多单纯从他说的线路来基本都是一样的,我们只是从里面获取自我潜意识拉伸的共鸣罢了。加油。。。。。。。。。。。。。。。 下面开始从开始听音乐注意呼吸关注呼吸放松心平气和完全投入完全放松完全服从腿的放位配合呼吸关节打开——以上是总的过程,下面分别谈谈每个步骤音乐共分3个步骤:第一步:呼吸阶段,从开始到“动一下你的右手大拇指”都应属于这一阶段,这一阶段,你应该注意你的呼吸、关注你的呼吸,你的心应该是平静的,脑中不要刻意去想任何东西。俗话说静心眼观心静,真的分心就感觉呼吸下沉,跟着大叔默念,心放空,这一阶段我要你的心境达到心神合一,无杂念,头脑清醒,能更好的感受自己的身体,大叔为什么一开始让大家从脚趾一直放松到面部细胞这里有两点。一:更好的感受自己的身体是自己的身体,这点特别强调,因为在冥想阶段,想象带动关注的部位是自己的毫无疑问,头脑中想的不要是一个局外人的腿部骨骼的拉伸。二:放松到达属于自己的一种心境,无杂念,安静,置身一个完完全全毫无干扰的意境中。。。。。

第二步:冥想想象阶段,从“开始想象你静静的躺在一张平坦的床上”到“无数的能量充斥你的骨髓”,这一阶段,你应该捕捉拉伸的感觉,你要做的就是完全服从你耳中的声音,你的意识不能有丝毫的对声音的不屑、反抗,你应该集中注意力在声音中,感受你的腿部。比如,他说“你的双腿伸展开来”你就要想着你的腿部伸展开来,不是光在大脑中有个人伸展,而是要你真实的感受、迫使你的腿部伸展。至于想象伸出床尾,完完全是推进伸展到你意念中的床位的,可以结合实体的床位感受加深,腿部伸展了,不要因为没有想象出来就泄气,一泄心就乱了。无形的力量牵引着你的双腿使你的整个身体,我们借用化无形为有形,磁铁异性吸引的法则,感受自己的双腿再被伸展方向的磁铁吸引着牵引着,冲破墙壁,双腿如列车发动完全的推动感配合前面的呼吸下沉助推加强这种感觉,想象你的双腿宛如弹簧皮筋正在被列车的车头带动拉伸撕扯。。。。。。。。。。。 第三部:拉伸阶段,从“你的双腿开始越来越长”到结束,这一阶段,就是你完全发挥你意念的时候了,他每说一个长长,你的脑海应该是配合他震动的,结合你的呼吸。感觉拉伸部位有呼吸,一动动的震颤,用意念压住你的双腿。这个很强调感觉,记住感觉很重要,在这一阶段,你应该是完全集中你的意念,你去拉伸双腿、压你的双腿是用你的意念去压,你会感觉不是你在呼吸,是你的意念在呼吸。你的脑袋会随着音乐震动。而你的有效感觉部位应当是膝盖下内侧3-5公分处,你听得时候应当有拉伸感。还有,关于脚位,呈八字躺,你的双腿可以稍微分开些,不要使腿部显得过于拘谨,你的两个脚掌是一个八字。 拉伸部位指出(黑丝吧盗的图嘿嘿)

虚拟演播室系统方案

VS-VSCENE 虚拟演播室系统方案建议书北京华视恒通系统技术有限公司

北京华视恒通系统技术有限公司 目栩 公司简介................................................................................................................................................................... 3.. . 惊)前悅........................................................................................................................................................................................ 4.. . . 二)系统方案设计.................................................................................................................................................. 4.. . 1、设计原则........................................................................................................................................... 4.. . 2、设计方案........................................................................................................................................... 5.. . 3、系统结构原枞图............................................................................................................................. 7.. . 4、系统功能特点 ................................................................................................................................ 1..0. 5、TOPACK-C抠K 像卡................................................................................................................ 1..2 6、TOPACK-CG/AUD旓IO幕混愃卡 ................................................................................ 1..3 三)软件系统功能................................................................................................................................................. 1..5. 1、系统参数设敢 ................................................................................................................................ 1..5. 2、抠像参数设敢 ................................................................................................................................ 1..7. 3、场景编排.......................................................................................................................................... 1..8. 4、实时控敥.......................................................................................................................................... 2..0. 5、远程旓幕客户端............................................................................................................................ 2..2. 四)设备悪本及效果图........................................................................................................................................ 2..3. 五)系统配敢........................................................................................................................................................................................ 2..4 . 售后服务措施及承诺 ............................................................................................................................................. 2..6.

正确使用说明的方法

恰当使用说明的方法 一、教学目标 1.掌握几种最常见的说明方法。 2.学会运用恰当的说明方法写说明文。 二、教学重点 教师讲解和学生讨论、训练相结合。 三、教学过程 (一)导入新课 师:同学们,现在假设你们面前有一条河,大家到河对岸去,应该怎么去? 生:从桥上走过去。 趟过去。 乘船…… 师:对,大家的方法都很好!但究竟是趟河、是过桥还是乘船呢?这就要根据情况来选择。比如现在是夏天,河水也很浅,你就可以趟过去。但如果河水很深,而河上又没有桥,那你就只有乘船了。总之,到河的对岸,这是我们的目的。现在,如果我把“过河”比作说明的目的,那么我们过河的各种方法就是说明方法。大家想—想:我们写说明文的目的是什么? 生:是为了把事物特征说清楚,或者把事理阐述明白。 师:对!为了达到这个目的,我们在写说明文时就必须运用恰当的说明方法。(板书) (二)讲授新课 师:现在大家回忆一下,我们学过的说明方法有那些? 生:举例子、打比方、列数据、下定义、作比较、作诠释、分类别、摹状貌、画图表。(教师板书) 师:对!那么我们经常用到的说明方法有那些呢? 生:举例子、打比方、列数据。 师:那么,谁能告诉我,“恰当”是什么意思?(指导学生查字典,回答) 生:恰当,是能够恰如其分的说明事物或事理。 师:对!我们写说明文,就是要根据说明对象和写作目的,选用最佳的方法。比如刚上课时为了让大家明白说明方法的重要,我就采用了打比方的说明方法。好,现在大家打开书,回忆一下我们学过的《中国石拱桥》、《万紫千红的花》这两课,看作者都运用丁那些恰当的说明方法。 (学生分组讨论) 生:《中国石拱桥)说“石拱桥的桥洞成弧形,就像虹”,是打比方;说卢沟桥“桥长265米,由11个半圆形的石拱组成,每个石拱长度不一。自16米到21.6米”,是列数据:说桥上的石狮子“有的母子相抱,有的交头接耳,有的像倾听水声,千态万状,惟妙惟肖”,是摹状貌。 师:《万紫千红的花》举了很多大家熟悉的例子,用图表来说明。如果不用这些说明方法行不行?

EasyDecoder视频解码管理软件V3.0T-用户使用说明.

EasyDecoder视频解码管理软件 用户使用说明

目录 目录 (2) 1.系统说明 (5) 1.1概要 (5) 1.2功能简介与特点 (5) 1.3硬件配置 (5) 1.4软件平台与运行环境 (5) 1.5术语 (5) 1.6阅读指导 (6) 2.系统安装 (6) 2.1安装软件 (6) 3.系统主界面 (7) 4.系统运行操作 (7) 4.1进入系统/退出系统 (7) 进入系统 (8) 退出系统 (8) 4.2系统初始化 (8) 4.2.1服务器设置 (9) 4.2.1.1添加服务器 (9) 4.2.1.2智能添加服务器 (10) 4.2.1.3删除服务器 (11) 4.2.1.4修改服务器 (12) 4.2.1.5批量修改服务器 (14) 4.2.1.6反选功能 (14) 4.2.1.7检索服务器 (14) 4.2.1.8修改通道信息 (15) 4.2.2监控点管理 (15)

4.2.3解码器设置 (16) 4.2.3.1手动添加 (16) 4.2.3.2智能添加 (17) 4.2.3.3删除解码器 (17) 4.2.3.4修改解码器名称 (17) 4.2.3.5连接解码器 (18) 4.2.3.6断开解码器 (18) 4.2.3.7解码器设置 (18) 4.2.3.7.1网络设置 (19) 4.2.3.7.2DNS设置 (19) 4.2.3.7.3解码器参数设置 (20) 4.2.3.7.3.1485设置 (20) 4.2.3.7.3.2协议设置 (21) 4.2.3.7.4LOGO设置 (21) 4.2.3.7.5报警设置 (21) 4.2.4联机切换设置 (22) 4.2.4.1添加切换序列 (22) 4.2.4.2删除切换序列 (23) 4.2.4.3连接监控点 (23) 4.2.4.4停止预览 (24) 4.2.4.5打开/关闭音频 (24) 4.2.4.6开始/关闭对讲 (24) 4.2.4.7设备控制 (25) 4.2.4.8开始/停止切换 (26) 4.2.4.9显示模式设置 (26) 4.2.4.10其他 (26) 4.2.4.10.1切换不在线跳过显示 (26)

意念增高使用方法

意念增高使用方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

一眼万年3个月意念增高6CM经验分享方法: 从开始听音乐注意呼吸关注呼吸放松心平气和完全投入完全放松完全服从腿的放位配合呼吸关节打开——以上是总的过程; 下面分别谈谈每个步骤音乐共分3个步骤: 第一步:呼吸阶段,从开始到“动一下你的右手大拇指” 都应属于这一阶段,这一阶段,你应该注意你的呼吸、关注你的呼吸,你的心应该是平静的,脑中不要刻意去想任何东西。提供一种方法,你双眼注视你的鼻尖,过个1分钟,你的心自然而然的静下来。 第二步:想象阶段,从“开始想象你静静的躺在一张平坦的床上”到“无数的能量充斥你的骨髓”,这一阶段,你应该捕捉拉伸的感觉,你要做的就是完全服从你耳中的声音,你的意识不能有丝毫的对声音的不屑、反抗,你应该集中注意力在声音中,感受你的腿部。比如,他说“你的双腿伸展开来” 你就要想着你的腿部伸展开来,不是光在大脑中有个人伸展,而是要你真实的感受、迫使你的腿部伸展。至于想象伸出床尾,我没能想象出来,但是我感觉我的腿部伸展了,我就去感受这种感觉,不要因为没有想象出来就泄气,一泄气你就完了、心就乱了,下面也就别听了。 第三部:拉伸阶段,从“你的双腿开始越来越长”到结束,这一阶段,就是你完全发挥你意念的时候了,他每说一个长长,你的脑海应该是配合他震动的,结合你的呼吸。例如,他说“长长” 你吸气,你应该用你的意念拉伸一下你的双腿,他在说“长长” 你呼气,你应该用意念压住你的双腿。这个很强调感觉,记住感觉很重要,在这一阶段,你应该是完全集中你的意念,你去拉伸双腿、压你的双腿是用你的意念去压,你会感觉不是你在呼吸,是你的意念在呼吸。你的脑袋会随着音乐震动。而你的有效感觉部位应当是膝盖下内侧3-5

罗经使用方法

构造包括:构造包括: (一)中央之透明玻璃小圆盒,内含: (1)带钗形头的磁针。 (2)底盘上之红线,以南北轴的基准。 (1)带钗形头的磁针。 (2)底盘上之红线,以南北轴的基准。 (3)红在线一端之两旁画有两点,两点处即指著北方。 (二)小圆盒外镶一木制转盘,上有各种用途不同之刻度,以供测量定位。 (三)最外一层为一方形盘座,用以固定玻璃小圆盒及木制转盘。 上系二透明垂直之交叉线,以测量时之基准。 平面图 第一层显示方位名称。 第二层即是以地球磁力线为基准者,一般称为地盘,用以测量屋内各种器物之方位。第三层即是地盘之纳音层。

第四层即是以地球子午线为基准者,一般称为人盘,用以测量屋外形势。 第五层即是天盘。 罗经因于应用上的不同,有各种层次。一般少则二、三层多则数十层。 第一层显示东、东南、南、西南、西、西北、北八方,其中 东方包括甲、卯、乙三个字。 东南包括辰、巽、巳三个字。 南方包括丙、午、丁三个字。 西南包括未、坤、申三个字。 西方包括庚、酉、辛三个字。 西北包括戍、乾、亥三个字。 北方包括壬、子、癸三个字。 自甲卯乙至壬子癸共二十四个字、每字占15度即成了第二层。 第二层即以地磁子午线为基准来测量房宅内各种器物之方位。一般称此层为地盘。 第三层为配合第二层使用时,所需考虑的纳音问题。于第二层每一个字下均有三格,包括两种至三种纳音或一空格。 例: 南方丙字下则有丁巳(纳音土)、庚午(纳音土)及一空格。 又例: 西北方戍字下则有丙戍(纳音土)、戊戍(纳音木)及庚戍(纳音金)三种不同之纳音。一般除了确定方位外,还需考虑该方位之纳音是否与出生年之纳音相生或相同。设方向为壬向时,壬字下包括癸亥(纳音水)及甲子(纳音金)。 若出生年之纳音为木时,则当对准癸亥方向为佳。 若出生年之纳音为金时,则当对准甲子方向为佳。 若出生年之纳音为水时,则甲字方向或癸亥方向均可。 若出生年之纳音为土时,则甲字方向尚可用。 若可调于空格处。即调于癸亥与甲字之间。

网友梦想的战斗者总结的增高方法:男女35岁前都可以长高!

网友梦想的战斗者总结的增高方法;记住:男人女人35岁前都可以长高! 首先自我意识很重要,在我查了N多资料后,绝对肯定的是自我意识对增高起着重要作用,千万不要忽视它,哪怕你每天什么都不锻炼光想着长高,时间长了也会有效果,所以建议大家不要去查骨骼闭合了,因为如果真的闭合绝对会打击你的信心,让你没有动力,虽然我觉得即使闭合也能长高,但毕竟科学事实在那,你就当自己还没闭合,只不过是晚长罢了。 我练琴(电吉他)4年多而且训练强度很大最多每天6-8个小时弹琴的都知道左手握住指板需要做很多拉伸性动作和很多跨度大很别扭的动作而右手是拿拨片的没有这么一些动作 我从网上看了一篇关于潜意识增高的文章之后便量了一下两个手的长度和手指的长度一般人双手基本是右手大于左手的而我两只手大小基本一样都是19厘米左手稍微大点这还不足以说服我再看手指的长度左手的手指长度全部比右手的手指长度长差距小的1、2毫米差距大的竟然达到4毫米(无名指)就算天生的手指不齐也不可能左手手指全部比右手长而且我在4年前大于17、8岁的时候早已停止长个 我认为造成手指增长的原因是我在弹琴的过程中手指得到了锻炼并不光是因为做拉伸动作而锻炼了而是当再做这些动作的时候潜意识里感到困难而最好的解决办法就是让手指更长一点 我认为现在大家的增高方法为什么有些人受益甚微就是没有充分利用潜意识这种东西潜意识的力量比意识是大很多很多的如果运动增高失败我认为那是潜意识没有感觉到你要长个没有长个的需要 我认为如果要增高就要让潜意识充分认识到长个的这个需要你可以将平常用的东西放的高一点 或进行摸高练习努力的摸你用上全力可以触及到的东西等不要跳着摸高我认为这些练习能刺激到潜意识而长个大家不妨一试 每天多伸懒腰早上2个鸡蛋,睡前牛奶,我一星期就长这么多,还有晚上睡前躺床上,伸直腿,用手摸自己脚,别摸太久,还有就是经常舒展身子 每天狂吃暴吃穷吃海带,菠菜,骨头汤当水喝!!! 每天晚上对镜子里的“我”说:“我会长高,我会长高,我今碗一定会长高.......(说50次)”早上起来,对镜子说“我已经长高了,我已经长高了,虽然不太明显,但我真的长高了,我真的长高了(说50次)” 没镜子的,或者在集体宿舍不好意思的,心理默念就好,不要嫌麻烦,因为你个子不高以后更加麻烦 这个心理暗示法很有用 如果加上跳绳之类的运动,效果更佳 提醒,吃饭的时候每口最好要嚼20次,让唾液充分和食物混合,吸收效果更佳 我17,本来已经2年没长,15岁时是160,现在用这个方法1个月,长了1.5厘米 我现在不是推销什么药啊,长高器材之类的,信不信由你了。 在加一句,跳绳之类的运动最好半晚5点到6点半之间进行,这个时间段是氧气最多的时候

引导孩子合理使用电子产品的正确方法

引导孩子合理使用电子产品的正确方法 家长朋友们: 大家好,今天和大家交流的话题是:如何引导孩子合理使用电子产品。这是家长很头痛的问题,也是教育部门高度关注的问题。随着信息时代的发展,电子产品已经走进了千家万户。高科技的生活方式,为我们带来便利的同时,也出现了一些难以应对的问题,尤其是电子产品对青少年学生的冲击较大。今天我主要围绕孩子在使用网络及电子产品时产生的问题与大家做个交流。 一、学生使用手机、电脑等电子产品的现状及危害 (一)学生使用电子产品的现状 生活中常见的电子产品,主要包括:电脑、平板电脑、智能手机、智能手表、电视机、摄像机等等。今后随着数字产业的发展和人们生活需求的提高,还会有更多的电子产品融入我们的生活。电子产品的普及,给我们的生活带来便利的同时,也带来了一些不利的影响。虽然说,很多电子产品的利大于弊,但从不利影响来看,主要是网络、手机等电子产品对自制力差的人群,尤其是青少年学生,产生了较大的危害。 目前中小学生使用频率最高的电子产品就是手机了,其次是电脑。作为家长,我们对这些现象并不陌生:孩子放学一回到家就千方百计的想玩手机,好多孩子周末、假期不喜欢到户外活动,宅在家里玩手机、电脑;一群孩子即使聚集在一起,多数也是在组团打网络游戏;亲子相处,即使同处

一室,多数是拿着手机在各自的虚幻世界里遨游。手机更成为我们教育孩子的重要难题:孩子小的时候,为了哄孩子开心,手机无形中成为电子保姆;稍大一点的孩子,可以把玩电脑、玩手机作为和父母谈判的交换条件,甚至会用生闷气、哭闹、威胁的方式对抗父母。父母明知长时间玩电子产品对孩子的健康和心理发展有害,却束手无策。我就亲眼见到一个孩子因为家住深沟无信号,他周末每天起床很早,坐在沟口桥上玩一天手机,不吃不喝,十分投入。 学校对手机也是屡禁不止。学生偷偷把手机带到学校,上课下课钻空子玩,晚上在宿舍偷着玩;甚至有学生半夜从窗户翻进教师办公室玩通宵;有的三五成群蹲坐在教师办公室窗下蹭wifi;有的在课间打开教室里的多媒体设备玩游戏;有的甚至因为老师的批评而顶撞老师,厌学,逃学……这些现象严重影响了学生的成长和师生关系,成为学校教育的难题之一。 在玩电子产品的时间上,专家则建议:4-6 岁,每天大约20-30分钟,7-10 岁每天大约30-45分钟,11-13 岁每天大约60分钟。而据统计,中小学生手机持有率逐年攀升,目前已达到71.1%,用手机上网比较普遍,且年级越高上网的人数越多。有41.07%学生放学回家后,不是先写作业,而是去用电子产品娱乐放松,有46.43%的学生偶尔会这么做;课堂上使用电子产品的占8.93%,在家庭中使用的占83.93%; 16.07%的玩游戏,25%的是聊天,50%看视频听音乐,学习的只有8.93%,使用时间在一小时内占28.57%,1—2小时的占

数字化公检法系统软件便携式标准版V7.1T_用户操作说明书(天地伟业)

数字化公检法系统软件便携 式标准版 用户操作说明书 V7.1

目录 1.审讯中心服务器系统设置说明 (1) 1.1服务器设置 (1) 1.2审讯室设置 (2) 1.3压缩预览参数设置 (3) 1.4用户管理: (4) 1.5设备管理 (8) 1.6日志及文件 (10) 1.7系统安全管理 (10) 2.审讯中心服务器使用操作说明 (11) 2.1登录 (13) 2.2视频显示区 (14) 2.3在线信息显示区 (16) 2.4功能使用 (16) 3.审讯中心服务器各种温湿度叠加器的设置和使用 (19) 3.1温湿度叠加设置方法 (19) 3.2TC-W8667测试软件 (20) 3.3TC-W8901DC (22) 3.4YL-S018SR (23) 3.5TC-H307P (31) 4.审讯终端软件操作使用说明 (33) 4.1登录主机 (33) 4.2添加案件 (34) 4.3审讯功能 (37) 4.4笔录管理 (41) 4.5案卷查询 (43) 4.6资料回放 (43) 5.数字化公检法系统软件便携式标准版安装部分 (44) 5.1卸载旧压缩卡驱程 (44) 5.2开始安装 (44) 5.3安装加密狗驱动 (45) 5.4安装专用数据库 (46) 6.故障查找与排除 (47)

1 感谢您选用我公司数字化公检法系统软件便携式标准版产品。 数字化公检法系统软件便携式标准版是根据最高检颁布的《人民检察院讯问职务犯罪嫌疑人实行全程同步录音录像系统建设规范》文件要求。通过加强计算机技术、图像数字化技术和信息技术的应用,实现司法系统对审讯室的标准化建设,利用现有的网络对审讯的讯问和询问过程进行有效的监督和管理,实现同步录音录像,提高侦查办案、协查办案的效率,加强办案、取证过程的真实性和有效性。 1. 审讯中心服务器系统设置说明 在使用数字化公检法系统软件便携式标准版前需要先初始化系统数据和配置参数,包括服务器设置、审讯室设置、指挥终端设置、压缩预览参数、用户管理、设备管理、日志文件、系统安全管理和短信设备管理。系统设置初始化后可以投入使用,进行审讯录像、电子笔录、远程指挥等操作。 在桌面上点击 图标,显示“系统设置--用户登录”界面,输入正确的用户名密码(系统默认用户名admin ,密码1111),登录系统设置软件。 1.1 服务器设置 系统设置的第一页为【服务器设置】,如下图:

有助于增高的有效方法

有助于增高的有效方法 篇一:真正有效的长高方法 真正有效的长高方法 通过下列医学公式计算出来孩子的遗传身高: 儿子成年身高(cm)=(父亲身高+母亲身高)÷2+6.5 女儿成年身高(cm)=(父亲身高+母亲身高)÷2-6.5 姚明身高2.26米,叶莉身高1.90米,那么,他们无论生男生女身高都能达到2米以上。专家介绍,父母或家族的身高对下一代的生长的确起着重要作用,这一点勿庸置疑。这是医学上存在身高计算公式的原因,也能解释我们看到的显现:大多数人下一代的身高与父母身高相差不多,这种遗传因素占据人身高的70%。 但无论多精确的公式计算,仅是预测出一个遗传的趋势,并不是算命定身高。梁立阳说,有些人的最终身高可与公式相差5厘米以上,因为另外30%的环境因素对身高起了大作用。生活中也常有父母不高,儿女却“出类拔萃”的情况,我们可以从姚明身上找到反例。记者在网上查找到姚明父亲2.08米,母亲1.88米,根据这个公式,姚明的身高应该是2.05米左右,但姚明的身高比这个数字高出22厘米;篮球运动员穆铁柱同样身高有二米多,但从媒体照片看到,他子女身高却与常人无太大差别。

造成这种差异的原因可能是父母双方同时将高基因或者矮基因传给后代,也说明遗传并不是决定人身高的唯一因素。决定身高的另外30%则包括营养、运动、睡眠、生活的环境等。在生活中,睡眠差、肥胖、偏食等均影响身体增长,心情长期受压抑也可影响长高,需要注意的是,当今社会性早熟现象增加,也会使孩子提前停止生长导致矮小。 真正有效的长高方法 姚爸叶妈的高遗传基因够强大,但普罗大众普通父母、普通孩子多的是,如何弥补先天不足,发挥30%的后天作用是广大父母最关心的问题,也给了商家可乘之机。目前市面上有多种以增高为名的增高机、健康食品,有的甚至会对身体带来巨大的危害。梁立阳说,帮助孩子长身高完全有安全的方法。 1.吃:每天一杯乳制品 首先,生活上要注意营养,在儿童生长发育过程中,蛋白质很重要,鱼、虾、瘦肉、禽蛋、花生、豆制品等都富含优质蛋白质,每天一杯乳制品是增高的秘诀。锌是身高增长的关键因素,多摄入相关食物,可预防因锌缺乏而造成的身材矮小。易吸收的含锌类食物是动物性食物,如猪肉、牛肉、羊肉、动物肝脏等。 2.动:伸展运动助长高 其次,运动是刺激长高的有效方法,青少年应该多参加轻巧、伸展的运动,例如跳绳、吊单杠、游泳和各种球类活动。一

虚拟演播室灯光技术说明

虚拟演播室技术说明 由于虚拟演播室系统不同于传统演播室的抠像,它允许几台摄象机在不同的角度分做推、拉、摇、移等动作。为了保证摄象机在蓝箱中拍摄的人物与计算机制作的虚拟场景通过色键组合成系统准确合成,要求虚拟演播室系统中人物的活动空间(蓝箱)要有非常均匀和柔和的照明,不能有硬的影子出现,所以首先应用柔光灯把蓝箱铺满打匀,形成一个基本光。 根据贵台的实际情况,设计方案如下: 1.篮箱立面墙的布光:在灯具的选择上,虽然近年来国内一些灯 光企业相继推出了虚拟演播室专用灯光设备,但是由于大多数 电视台虚拟演播室是在原有传统演播室中设置的,所以虚拟演 播室的布光可利用传统演播室的灯具进行布光。布光时,我们 首先考虑选用冷光源——4×55W三基色柔光灯9台,由于它是 散射型光源,布光面积大,容易将墙体的光布匀。 2.篮箱地面布光:在虚拟演播室节目制作时,画面如果出人物的 全景,出现虚拟的地面时,这时不但主持人身后和两侧的蓝墙 要有均匀的布光,而且蓝箱的地面也要有非常均匀的照明。本 方案我们采用4×55W三基色柔光灯6台,作为地面布光,使 篮箱地面光线均匀; 3.人物布光:虚拟演播室人物的布光基本方法和对光比的要求, 仍采用传统演播室的三点式布光和对光比的要求,但同时要考 虑到虚拟演播室的特点。灯光人员在布光前要使人物的主光方

向与虚拟场景中的主光方向一致,同时使光的强弱、硬柔、色彩也都要与虚拟场景中的主光方向一致。使人和景在画面上融为一体,看起来真实。方案采用冷热光源混合式布光,用2台6×55W三基色柔光灯作为侧光,4×55W、6×55W三基色柔光灯各2台,1KW透射式聚光灯2台,作为人物的主面光和辅助面光,使拍摄人物更加丰满圆润; 4.吊挂系统采用格珊架式悬挂,充分利用室内空间高度,避免拍 摄全景时发生“穿帮”现象; 5.整个虚拟演播室采用冷热混合光源布光,总功率为9KW、色温 3200k、中心照度900Lux,满足贵台的虚拟演播室拍摄需求。

学会正确使用语言的方法

学会正确使用语言的方法 根据"通顺"和"文采"的要求,我们在选择和使用语言时,要注意以下一些问题: ⒈要学会锤炼语言 经过锤炼的语言是被认真筛选并确定的语言,只有这样的语言才能达到“准”、“美”、“生动”的标准。 锤炼语言范围要广,涉及到词语、句子和句群。 在词语的锤炼上要注意同义词词义的细微差别、感情色彩以及语境的要求。写文章首先要选用最能反映事物本质特征的那一个词语,使用词恰当,鲜明生动,富于变化,增添文章的文采。如大家熟悉的鲁迅小说《孔乙己》中的“窃书不算偷”,不用“偷书”而用“窃书”,正是孔乙巳身份和性格的体现,深刻揭示了人物形象。 选用恰当而富有表现力的动词、形容词,力求准确传神。如果平淡无味,只是枯燥地叙述一件事或几件事,就不能给人以艺术美的享受。下面的几个例子就非常传神。 “不必说碧绿的菜畦,光滑的石井栏,高大的皂荚树,紫红的桑枯;也不必说鸣蝉在树叶里长吟,肥胖的黄蜂伏在菜花上,轻捷的叫天子忽然从草间直窜上云霄里去了。” “爷爷站成一轮弯弯的月亮,目送着孙子远去” 在句子的锤炼上,要达到结构完整。一个完整的句子不仅要能够回答“谁,干什么”或“什么,怎么样”,还要能够回答“什么时候,谁,在什么地方,干什么,怎样干”或“什么时候,什么,在什么地方,干什么,怎样干”。 内容要具体生动。例如,同样用到“抚摸”,下面的句子一句比一句生动: ①朝阳抚摸着土地。 ②朝阳柔和地抚摸着土地。 ③深秋的早晨,朝阳柔和地抚摸着一望无际的土地。 ④深秋的早晨;在辽阔的北方平原上,薄薄的雾气正馒馒散去,朝阴柔和地抚摸着一望无际的土地。 角色也要富于变换。同一个词语,可以从不同的角度,按不同的语序来造句,产生不同的意义: ①隋朝大运河依旧拍打着干年的堤岸。 ②隋朝的大运河拍打着堤岸,干年依旧。 ③干年的堤岸,隋朝大运河依旧拍打着。 ④干年依陌,隋朝的大运河拍打着堤岸。。 2.选择生动的词语 语言的生动性,往往是与形象性紧密相连、不可分割的,就如同形与影一样。形象化的语言,它能调动读者的形象思维,引起读者丰富的想像与联想,能给人一种如临其境、如见其物、如闻其声的感觉。苏联作家阿?托尔斯泰曾经指出:语言艺术中最重要的是动词。因为全部生活都是运动的,大凡运动的东西,往往最富有感人的魅力。古人讲究炼字,在许多情况下,是讲究动词的锤炼。例如,“僧敲月下门”中的“敲”、“春风又绿江南岸”中的“绿”、“红杏枝头春意闹”中的“闹”,都是几经斟酌、反复修改才定下来的。由于这几个词用得生动恰当、具有立体感,才使得作品成为千古流传的佳篇。 动词的锤炼一般有下面三个要求: 第一,所使用的动词,必须是唯一准确的动词。 在世界的语言宝库中,无论哪一种语言,描写某一动作的动词,最准确的往往只有一个。在写作时,找到了这个唯一准确的动词,对人物动作的描写,才具有独特性,才最富于表现力和感染力。 ①夏季的豆荚长满门的四周。

天地伟业键盘说明书-5810网络键盘安装使用手册上课讲义

网络键盘安装使用手册

目录 第一章键盘简介 (1) 1.1 功能特点 (1) 1.2 产品外观 (1) 1.3 技术指标 (1) 第二章键盘安装 (2) 2.1 放置 (2) 2.2 接口 (2) 2.3 安装 (2) 第三章键盘设置 (3) 3.1 设置 (3) 3.2 键盘开机 (3) 3.3 键盘登录 (3) 3.4 设置键盘 (4) 3.4.1网络管理 (4) 3.4.2用户管理 (4) 3.4.3 密码管理 (5) 3.4.4 设备管理 (5) 3.4.5 硬件设置 (5) 3.4.6 锁定设置 (5) 3.4.7 硬件检测 (6) 3.4.8摇杆校准 (6) 第四章矩阵控制 (8) 4.1 登录矩阵 (8) 4.2 矩阵操作界面 (8) 4.3 切换操作 (9) 4.4前端控制 (10) 4.5报警控制 (10) 4.6宏操作 (10) 4.7 越权控制 (10) 4.8 码分配器设置 (10) 4.9 锁定 (11) 4.10 列表 (11) 第五章网络升级 (12)

第一章键盘简介网络键盘配合智能网络矩阵使用,功能丰富、操作简单。 1.1 功能特点 ●中文编程操作界面 ●中文硅胶按键 ●大屏幕液晶屏幕 ●详细的矩阵及前端信息 ●以太网通讯 ●二维变速摇杆 ●使用简捷方便 1.2 产品外观 1.3 技术指标 工作温度:-10℃~50℃ 工作湿度:<90% 工作电压:DC12V 功耗:4W 以太网接口:10BaseT UDP(局域网) 外形尺寸(mm):300×160×43(长×宽×高)

第二章键盘安装 2.1 放置 键盘采用工学设计,水平放置控制台面即可。 2.2 接口 网络键盘背部有两个接口:一个为电源接口,外接DC12V电源给键盘供电;另一个为RJ45网络接口,连接智能网络矩阵。 2.3 安装 标准版本的网络键盘硬件只支持控制智能网络矩阵(控制其它监控设备需要在标准版本的硬件基础上稍作调整),所以标准版网络键盘只能将当前设备选择为矩阵。用网线将矩阵接到键盘的网络接口,接上电源,即完成了键盘和矩阵的物理连接。 注:由于智能网络矩阵内置交换机单元,所以网络键盘连接智能网络矩阵采用直通线序的标准网线。

相关主题
文本预览
相关文档 最新文档