当前位置:文档之家› 轴向柱塞变量泵A11VO

轴向柱塞变量泵A11VO

轴向柱塞变量泵A11VO
轴向柱塞变量泵A11VO

CY系列柱塞泵资料

出售CY系列5CY 10CY 25CY 40CY 63CY 80CY 160CY 250CY 400CY 全系列柱塞滑靴产品系列: 本厂专业生产CY14-1B系列各种定量/变量形式的轴向柱塞泵型号: (1)MCY14-1B(定量轴向柱塞泵)、 (2)SCY14-1B(手动变量轴向柱塞泵)、 (3)YCY14-1B (恒功率变量轴向柱塞泵) (4)MYCY14-1B(定级变量轴向柱塞泵) (5)PCY14-1B(恒压变量轴向柱塞泵)、 (6)BCY14-1B(电液比例变量轴向柱塞泵) 1)流量:2.5-400MCY14-1B(定量轴向柱塞泵)具体型号如下: 2.5MCY14-1B、5MCY14-1B、10MCY14-1B、16MCY14-1B、25MCY14-1B、32MCY14-1B、40MCY14-1B、63MCY14-1B、80MCY14-1B、160MCY14-1B、250MCY14-1B、400MCY14-1B;2)流量:10-400SCY14-1B(手动变量轴向柱塞泵)具体型号如下: 10SCY14-1B、16SCY14-1B、25SCY14-1B、32SCY14-1B、40SCY14-1B、63SCY14-1B、80SCY14-1B、160SCY14-1B、250SCY14-1B、400SCY14-1B;3)流量:10-400YCY14-1B(恒功率变量轴向柱塞泵)具体型号如下: 10YCY14-1B、16YCY14-1B、25YCY14-1B、32SCY14-1B、40YCY14-1B、63YCY14-1B、80YCY14-1B、160YCY14-1B、250YCY14-1B、400YCY14-1B;4)流量:10-160MYCY14-1B(定级变量轴向柱塞泵)具体型号如下: 10MYCY14-1B、16MYCY14-1B、25MYCY14-1B、32MYCY14-1B、40MYCY14-1B、63MYCY14-1B、80MYCY14-1B、160MYCY14-1B;5)流量:10-400PCY14-1B(恒压变量轴向柱塞泵)具体型号如下: 10PCY14-1B、16PCY14-1B、25PCY14-1B、32PCY14-1B、40PCY14-1B、63PCY14-1B、80PCY14-1B、160PCY14-1B、250PCY14-1B、400PCY14-1B;6)流量:25-400BCY14-1B(电液比例变量轴向柱塞泵)具体型号如下: 25BCY14-1B、63BCY14-1B、160BCY14-1B、250BCY14-1B、400BCY14-1B YCY14-1B斜盘式压力补偿变量柱塞泵/马达 工作原理 主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。压力补偿变量泵的出口流量随出口压力的大小近似地在一定范围内按恒功率曲线变化。当来自主体部分的高压油通过通道(a)、(b)、(c)进入变量壳体下腔(d)后,油液经通道(e)分别进入通道(f)和(h),当弹簧的作用力大于由油道(f)进入伺服活塞下端环形面积上的液压推力时,则油液经(h)到上腔(g),推动变量活塞向下运动,使泵的流量增加。当作用于伺服活塞下端环形面积上的液压推力大于弹簧的作用力时,则伺服活塞向上

A V系列斜轴式变量柱塞泵

A7V系列斜轴式变量柱塞泵 A7V型变量柱塞泵具有压力高、体积小、重量轻、转速高、耐冲击等优点,传动轴能承受一定的径向负荷。吸油压力(开式)为0.09~0.15MPa。适用于工程机械以及轧钢、锻压、矿山、起重、船舶等各种机械的开式液压系统。它有恒功率变量(LV)、恒压(DR)、电控比例变量(EP)、液控变量(HD)、手动变量(MA)五种变量型式。 产品特点: ①斜轴式轴向柱塞变量泵,用于开式回路静压传动。流量、转速与排量成正比,在恒定转速下可实现无级变量。 ②转子与分油盘之间为球面配油,在运转中能自动对中,周速较低,效率较高,驱动轴能承受径向负荷。 订货示例: GY-A7V160LV2.0LZFOO A7V变量泵,规格160,带恒功率LV控制,2.0结构系列,逆时针旋转L。德标花键Z,侧面法兰连接,无辅助元件。 A7V2.0 5.1斜轴式轴向柱塞变量泵——结构剖视 型号说明 A7V2.0 5.1斜轴式轴向柱塞变量泵==《技术数据》

下泵转速均不得超过吸油口S在0.15MPa下的最高转速,但对Vgmin>0的规格:28-20、55-40、80-58可通过减小排量(Vg

变量柱塞泵

今天给大家讲讲自己对EH油泵——轴向恒压变量柱塞泵——的小小分析,由于能力有限,请大家不吝赐教。 图1 我厂EH油泵 1、图中所示是C型变量控制器的轴向柱塞恒压变量柱塞泵:所谓轴向:工作活塞的行程方向与传动轴平行,与此相对的是径向柱塞泵;所谓恒压变量:完全恒压是不可能的,流量高了,压力会有微降;流量低了,压力会有微小提高(具体多少呢,例如升负荷4号高调门打开的时候,仔细观察下泵的电机电流、EH油压力、还有就地的流量计的变化量)——但这些都是有个前提:流量在柱塞泵设定的最大流量的范围内,若是超过,嘿嘿,一泻千里,压力狂降,降得有多厉害呢,EH油管爆管,或者内漏非常严重的时候,就能观察下降多少了。附送一张性能曲线图,大家自己看看吧 图2 C型变量调压控制器的柱塞泵Q-P曲线

下面来了解下内部的结构

图3 轴向柱塞泵内部结构示意图及实物图

2、该泵通过柱塞在腔体内的反复运动进行工作,从入口吸入油,转至出口时再压出,通过改变斜盘的倾斜角可以改变流量和压力,斜盘的最大倾斜角通过最大限位调节螺钉设置。倾斜角越大,流量越高;反之,流量越低。斜盘的倾斜角还可以通过变量控制器调节 图3中最大限位调节螺钉,是调节泵的最大流量,当系统流量超出这个范围,压力就会不受控制的下降。上面的压力控制器分为C/F/L型,C型的只有下面的红色框框部分,而F/L 型则包含上面的部分。这是泵的压力控制部分。 这里的控制是个难点,我花了不少功夫研究,见下图: 图4 C型变量控制器 这是C型控制器的:1、启泵时“滑阀”在“预紧弹簧”的作用下,被压到右边,则“腔体2”内的“调节压力的控制油”和“泵体泄压油路”连通,压力低,则“腔体1”在“内部弹簧”的作用下压到最右边,泵的柱塞斜盘以最大的倾斜角开始启动。 2、启泵后,泵出口压力逐渐提高,“滑阀”右侧的油压大于“预紧弹簧”的弹力和摩擦力,逐渐把“滑阀”压向左边,“泵出口油压”和“调节压力的控制油”连通,“调节压力的控制油”压力升高,将“腔体2”压向左边,然后顶住“腔体1”向左边移动,减少斜盘的倾斜角度,泵的出口流量开始降低,压力逐渐升高,然后达到稳定的平衡。 3、当系统EH油需求量增大时(如升负荷,调门开大),EH油压的反应速度快于流量变化(这里可以这样理解,例如某个调门要开启,EH油管路突然敞开一个油路,分流走EH油,则系统油压会快速反应,先下降一点),然后“泵出口油压”降低,“滑阀”向右移动,“调节压力的控制油”也会降低,“腔体1”在弹簧的作用下也跟着向右移动,斜盘的倾斜角增大,泵出口流量增加,满足系统需求,但是压力也是会有微小下降的。

轴向柱塞泵的结构特点

第六节径向柱塞泵 1.径向柱塞泵的工作原理 由于径向柱塞泵径向尺寸大,结构复杂,自吸能力差,且配油轴受到径向不平衡液压力的作用,易于磨损,从而限制了它的转速和压力的提高。 2.径向柱塞泵的流量计算 径向柱塞泵的排量为:

液压泵的选用 选择液压泵的原则是:根据主机工况、功率大小和系统对工 作性能的要求,首先确定液压泵的类型,然后按系统所要求的压力、 流量大小确定其规格和型号。 1. 液压泵的类型选择 2. 液压泵的工作压力 3. 液压泵的流量 第一节液压马达 液压马达的分类及特点 高速液压马达:额定转速高于500r/min的属于高速液压马达; 低速液压马达:额定转速低于500r/min的则属于低速液压马达。 高速液压马达的基本形式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是:转速较高,转动惯量小,便于起动和制动,调节(调速和换向)灵敏度高。通常高速液压马达的输出扭矩不大,仅几十Nm到几百Nm,所以又称为高速小扭矩液压马达。 低速液压马达的基本形式是径向柱塞式,例如多作用内曲线式、单作用曲轴连杆式和静压平衡式等。低速液压马达的主要特点是:排量大,体积大,转速低,有的可低到每分钟几转甚至不到一转。通常低速液压马达的输出扭矩较大,可达几千到几万,所以又称为低速大扭矩液压马达。 液压马达与泵的相同点 从原理上讲,马达和泵是可逆的。泵-用电机带 动,输出的是压力能(压力和流量);马达-输入压力油,输出的是机械能(转矩和转速)。 从结构上看,马达和泵是相似的。

马达和泵的工作原理均是利用密封工作容积的变 化吸油和排油的。泵-工作容积增大时吸油,减小时排出高压油;马达-工作容积增大时进入高压油,减小时排出低压油。 泵和马达的不同点 泵是能源装置,马达是执行元件。 泵的吸油腔一般为真空(为改善吸油性和抗气蚀耐力),通常进口尺寸大于出口,马达排油腔的压力稍高于大气压力,没有特殊要求,可以进出油口尺寸相同。 泵的结构需保证自吸能力,而马达无此要求。 马达需要正反转(内部结构需对称),泵一般是单向旋转。 马达的轴承结构,润滑形式需保证在很宽的速度范围内使用,而泵的转速虽相对比较高,但变化小,,故无此苛刻要求。 马达起动时需克服较大的静摩擦力,,因此要求起动扭矩大,扭矩脉动小,内部摩擦小(如齿轮马达的齿数不能象齿轮泵那样少)。 泵-希望容积效率高;马达-希望机械效率高。 叶片泵的叶片倾斜安装,叶片马达的叶片则径向安装(考虑正反转)。 叶片马达的叶片依靠根部的扭转弹簧,使其压紧在定子表面上,而叶片泵的叶片则依靠根部的压力油和离心力压紧在定子表面上。 液压马达的容积效率比泵低,通常泵的转速高。而马达输出较低的转速。 液压泵是连续运转的,油温变化相对较小,经常空转或停转,受频繁的温度冲击。 泵与原动机装在一起,主轴不受额外的径向负载。而马达直接装在轮子上或与皮带、链轮、齿轮相连接时,主轴将受较高的径向负载。 二、工作参数及使用性能 液压马达的相关概念

A7V系列变量柱塞泵产品说明

SYA7V系列变量柱塞泵产品说明开式回路 规格20???500 2.0/5.1系列 额定电压高达35MPa 峰值压力为40MPa到 特征: - SYA7AO斜轴的轴向开环液压驱动计量泵。 - 作业机械或工业区 - 输出流量和驱动器的速度和位移是成正比的恒定速度无级变速。 - 多种规格,以配合实际的驱动器 - 有利的功率/重量比 - 紧凑型,经济 - 优化的容积效率 - 球形转子和点之间的油底壳油,自动操作,圆周速度低。 - 更高的效率,传动轴承受径向负荷。 Y-A7V2.1剖视图规格为20-160

SY-A7V5.1剖视图规格250至500

型号说明

技术参数:●工作压力范围: 出A口或B口压力: 额定压力---------- PN =35MPa 最大压力---------- P最大=为40MPa

吸端口S绝对压力: pabs分钟----------0.08兆帕 pabs最大----------0.2兆帕 ●油温度范围:-25℃至80℃ ●粘度范围: tmin-----------10平方毫米/ S的 tmax分别为-----------(短期)千mm/s的 最佳工作粘度:----16?25毫米2 /秒 油的选择:40号低倒液压油 ●液压油过滤器: 过滤10μm的建议,或25?40μm的 使用寿命长10微米(减少磨损) ●流动顺时针:S到B逆时针:S到一个 ●安装位置: 此端口可选,泵必须充满液压油R口塞泵安装在油箱时,应删除,应该是在顶部。 90°弯头,以减少噪音油口螺丝。 垂直安装传动轴: 这个模型必须订购的U1和U2(文字:“与出油口U1和U2)。最低液位不得低于”A“的线路如图1所示。 在油箱的顶部安装 在油箱顶部安装一个特定的安装A7V变量泵,只有在一定条件下。 1)与各种泵控制只能泵的最大摆角(Vgmax)开始。调整最小排量Vgmin的敞开式泵(Vgmin= 0泵),最小流量限位螺钉必须转移到Vmax增加最大尿流率≥5%的最低流量,以防止泵运行在零流,使吸水管排气。 2)在油箱安装上述要求的顺序文本的顶部安装在坦克“

几种轴向柱塞式液压马达的变量调节原理

几种轴向柱塞式液压马达的变量调节原理 2014-8-7 10:18:13点击:3129 引言 液压马达的功率输出,取决于马达的流量和压差。液压马达的输出功率直接正比于转速。采用变量马达,可以达到功率匹配节能降耗的目的。此外,为了在不增加管路阻力的条件下提高液压马达的速度,也有必要为减少液压马达的排量而采用变量马达。这里,仅以轴向变量柱塞马达为研究对象,重点讨论几种液压马达的变量调节方式。 1 HD型液压控制调节原理 这是一种与先导压力相关的液压控制方式,马达的排量随液控先导压力信号无级变化,主要适用于行走的或固定的机械设备。图1为HD液压控制变量马达的工作原理图,液压马达起始排量为最大排量,排量随着X口先导控制压力在最大和最小之间无级变化。其原理为:向液压马达的A,B工作油口的任一油口提供压力油时,压力油都能通过单向阀2或3进入变量缸7的有杆腔,即变量缸小腔常通高压。当X口先导控制压力升高,先导控制压力油作用在先导压力控制伺服阀1阀芯上的力将克服调压弹簧4和反馈弹簧5的合力,推动先导压力控制伺服阀阀芯向右移动,当先导控制压力升高至液压马达变量起始压力时,阀1将处于中位。如果先导控制压力继续升高,伺服阀芯将进一步右移,伺服阀1处于左位机能,液压马达工作压力油经伺服阀1. 进入变量缸无杆腔。由于变量缸7中活塞两端面积不相等,当两端都受压力油作用时,变量缸7中活塞将向左运动,固定在变量活塞上的反馈杆6将带动配流盘及缸体摆动,使缸体与主轴之间的夹角减小,从而使液压马达排量减小。同时,反馈杆6压缩反馈弹簧5,迫使伺服阀1的阀芯向左移动直到伺服阀1回到中位,变量缸无杆腔的油道被封闭,液压马达停止变量将处于一个与先导控制压力相对应的排量位置。这属于位移—力反馈,利用变量活塞的位移,通过弹簧反馈使控制阀芯在力平衡条件下关闭阀口,从而使变量活塞定位。

柱塞泵设计与计算(斜盘式)

目录 第1章绪论 第2章斜盘式轴向柱塞泵工作原理与性能参数2.1 斜盘式轴向柱塞泵工作原理 2.2 斜盘式轴向柱塞泵主要性能参数 第3章斜盘式轴向柱塞泵运动学及流量品质分析3.1 柱塞运动学分析 3.1.1 柱塞行程s 3.1.2 柱塞运动速度v 3.1.3 柱塞运动加速度a 3.2 滑靴运动分析 3.3 瞬时流量及脉动品质分析 3.3.1 脉动频率 3.3.2 脉动率 第4章柱塞受力分析与设计 4.1 柱塞受力分析 4.1.1 柱塞底部的液压力P b 4.1.2 柱塞惯性力P g 4.1.3 离心反力P l 4.1.4 斜盘反力N 4.1.5 柱塞与柱塞腔壁之间的接触力P 1和P 2 4.1.6 摩擦力p 1f和P 2 f 4.2 柱塞设计 4.2.1 柱塞结构型式 4.2.2 柱塞结构尺寸设计 4.2.3 柱塞摩擦副比压p、比功pv验算第5章滑靴受力分析与设计 5.1 滑靴受力分析 5.1.1 分离力P f 5.1.2 压紧力P y 5.1.3 力平衡方程式 5.2 滑靴设计 5.2.1 剩余压紧力法 5.2.2 最小功率损失法 5.3 滑靴结构型式与结构尺寸设计 5.3.1 滑靴结构型式 5.3.2 结构尺寸设计 第6章配油盘受力分析与设计 6.1 配油盘受力分析 6.1.1 压紧力P y 6.1.2 分离力P f 6.1.3 力平横方程式 6.2 配油盘设计 6.2.1 过度区设计 6.2.2 配油盘主要尺寸确定 6.2.3 验算比压p、比功pv 第7章缸体受力分析与设计

7.1 缸体地稳定性 7.1.1 压紧力矩M y 7.1.2 分离力矩M f 7.1.3 力矩平衡方程 7.2 缸体径向力矩和径向支承7.2.1 径向力和径向力矩7.2.2 缸体径向力支承型式7.3 缸体主要结构尺寸的确定 7.3.1 通油孔分布圆半径R f ′和面积F α 7.3.2 缸体内、外直径D 1、D 2 的确定 7.3.3 缸体高度H 结论 摘要 斜盘式轴向柱塞泵是液压系统中的主要部件,斜盘式轴向柱塞泵是靠柱塞在柱塞腔内的往复运动,改变柱塞腔内容积实现吸油和排油的,是容积式液压泵,对于斜盘式轴向柱塞泵柱塞、滑靴、配油盘缸体是其重要部分,柱塞是其主要受力零件之一,滑靴是高压柱塞泵常采用的形式之一,能适应高压力高转速的需要,配油盘与缸体直接影响泵的效率和寿命,由于配油盘与缸体、滑靴与柱塞这两对高速运动副均采用了一静压支承,省去了大容量止推轴承,具有结构紧凑,零件少,工艺性好,成本低,体积小,重量轻,比径向泵结构简单等优点,由于斜盘式轴向柱塞泵容易实现无级变量,维修方便等优点,因而斜盘式轴向柱塞泵在技术经济指标上占很大优势。 关键词斜盘柱塞泵滑靴缸体 Abstract The inclined dish type and axial pump with a pillar is a main part in liquid press system,The inclined dish type and axial pump with a pillar is a back and forth movement by pillar to fill the inside of the pillar cavity,in order to change the pillar fills the contents of cavity to realize the oil of inhaling with line up oily,Is a capacity type liquid to press the pump .Fill to pillar to pump for the inclined dish type stalk the pillar fill, slip the boots and go together with the oil dish an is its importance part. The pillar fills is it suffer the one of the dint spare parts primarily. The slippery boots is one of the form that high pressure pillar fill the pump to often adopt. It can adapt to the high demand turning soon in high pressure dint, go together with the oil dish and the efficiency of the direct influence in a pump with life span. Because of going together with the oil dish fills ,pillar and a slippery boots these two rightness of high speeds the sport the vice- all adopting a the static pressure accepts. The province went to the big capacity push the bearings, have the construction tightly packed, the spare parts is little, the craft is good, the cost is low, the physical volume is small, the weight is light, comparing the path face to pump the construction simple etc. Because the inclined dish type stalk fills to pillar the pump to realizes to have no easily the class changes the deal, maintain convenience and so on.

负载敏感斜盘式轴向柱塞变量泵静动态特性研究

硕士学位论文 目录 摘要 ....................................................................................................... I Abstract .................................................................................................... II 第1章绪论 .. (1) 1.1课题背景 (1) 1.2负载敏感斜盘式轴向柱塞变量泵的国内外研究现状 (2) 1.2.1 柱塞泵斜盘振动特性的研究 (2) 1.2.2柱塞泵变量机构控制特性的研究 (3) 1.3负载敏感斜盘式轴向柱塞变量泵的发展趋势 (5) 1.4本课题研究意义 (6) 1.5 本文主要研究内容 (6) 第2章斜盘偏置结构负载敏感轴向柱塞变量泵斜盘力矩分析 (7) 2.1 负载敏感斜盘式轴向柱塞变量泵的工作原理 (7) 2.2 负载敏感泵斜盘力矩分析 (8) 2.2.1 斜盘偏置结构及斜盘力矩公式 (9) 2.2.2 对称结构零遮盖配流盘斜盘力矩分析 (12) 2.2.3 非对称有减震槽结构配流盘斜盘力矩分析 (13) 2.3 斜盘合力轨迹 (16) 2.4 本章小结 (19) 第3章斜盘偏置结构负载敏感轴向柱塞变量泵数学建模及稳态分析 (21) 3.1负载敏感斜盘式轴向柱塞变量泵静动态特性的分析方法 (21) 3.2负载敏感斜盘式轴向柱塞变量泵线性化数学模型 (21) 3.2.1 负载敏感阀阀芯力平衡方程 (22) 3.2.2 变量控制缸及斜盘的动态方程 (22) 3.2.3 变量控制缸控制腔流量连续性方程 (23) 3.2.4 负载敏感泵流量输出连续性方程 (27) 3.3 负载敏感泵稳态分析和稳态工作点参数的求解 (28) 3.3.1负载敏感泵稳态模型 (28) 3.3.2负载敏感泵变量控制缸控制腔稳态压力的计算 (30) 3.3.3稳态负载敏感阀阀芯位移和稳态负载压力的数值计算 (32) 3.4 本章小结 (35) 第4章斜盘偏置结构负载敏感轴向柱塞变量泵控马达负载敏感系统动态分析 (37) 4.1负载敏感系统的频域模型 (37) 4.1.1负载敏感阀的频域模型 (37) 4.1.2负载敏感泵斜盘的频域模型 (38) i 万方数据

PVH变量柱塞泵使用说明书

PVH变量柱塞泵使用说明书 PVP柱塞泵是一种大流量、高性能的变量直轴式柱塞泵。在汽轮机DEH控制系统中,它作为高压供油装置中的主要动力元件,可为系统提供稳定、充足的液压动力油。 1工作原理 PVH柱塞泵采用的是斜盘直轴结构(如图1所示), 图1 泵中的缸体由驱动轴通过电机驱动,装在缸体孔中的柱塞连着柱塞滑靴和滑靴压板,所以滑靴顶在斜盘上。当缸体转动时,柱塞滑靴沿斜盘滑动,使柱塞沿平行于缸体的旋转轴线作往复运动。配流盘上的油

口布置成当柱塞被拉出时掠过进口,当柱塞被推入时掠过出口。泵的排量取决于柱塞的尺寸、数量及行程。而柱塞行程则取决于斜盘倾角。改变斜盘倾角可加大或减小柱塞行程。斜盘倾角可用下述任何一种方法调整,如手动控制、伺服控制、压力补偿控制及负载传感加限压器控制等。图1所示即为压力补偿器控制的泵。 2压力补偿器控制工作原理 压力补偿器工作原理如图2所示。 图2 该补偿器包括一个壳体,内含控制阀芯、加载弹簧、端盘和加载弹簧机构。通过调整加载弹簧的预紧力,可以确定泵的设定压力。 系统压力(泵出口压力)作用于控制阀芯的左端,只要系统压力低于加载弹簧设定值,控制阀芯就被弹簧推向左端,从而使得伺服活塞连接于泵体泄油口,伺服弹簧则把泵保持于全排量。当泵出口压力升高到设定压力时,控制阀芯克服弹簧力向右端移动,使伺服活塞连接于泵的压力进口。该压力克服伺服弹簧力使伺服活塞移动并减小泵

的斜盘倾角。随着系统压力升高斜盘倾角减小从而减小柱塞行程直到泵的输出流量减小到刚好把系统压力维持于设定值所需要的流量。 3 技术参数(PVP74) 3.1最大排量: 74cc/REW 3.2最大流量:约100l/min(电机转速1450r/min) 3.3压力范围: 1050-3625PSI(70-250Par) 3.4 转向:顺时针(从轴端看) 3.5密封材料:氟橡胶 3.6带可调排量止档(出厂时已设定为最大) 3.7 驱动电机功率: 30KW 4 注意事项 4.1 严禁在无油和空吸状况下启泵。 4.2 首次启泵前应按泵的旋转方向手动旋转油泵,排出吸油泵芯内的空气。 4.3 首次启泵时,应先点动电机,确认泵的转向正确(从电机端看为顺时针方向)。 4.4 油温低于18℃严禁启泵。 4.5 进入油泵的液压油,油温低于60℃。 4.6 油泵启动前液压管路及油箱内液压油清洁度应优于ISO标准17/14级或NAS标准8级。 4.7油泵应在卸荷状况下启动。

变量泵的原理及应用汇总

1.1液压变量泵(马达)的发展简况、现状和应用 1.1.1 简述 液压变量泵及变量马达能在变量控制装置的作用下能够根据工作的需要在一定范围内调整输出特性,这一特点已被广泛地应用在众多的液压设备中,如:恒流控制、恒压控制、恒速控制、恒转矩控制、恒功率控制、功率匹配控制等。采用变量泵(马达)系统,具有显著的节能效果,近年来使用越来越广泛,而且新的结构和控制方式发展迅速,各个生产厂也在不断改进设计,用以满足液压系统自动控制的不断发展需要。 使用液压系统的目的在于可使某一执行对象以预定的速度向正反两个方向运动。此时,为调节速度需进行节流,致使能量有所损失,并导致系统效率降低,为此需采用变量泵实现容积控制。使用变量泵进行位置和速度控制时,能量损耗最小。正确地使用和调节泵的流量,可使其只排出满足负载运动速度需要的流量,而使用定量泵时只有部分流量供给负载,其余的流量需要旁通至油箱。 此外,为了在不增加管路阻力的条件下提高液压马达的速度,也有必要为减少液压马达的排量而采用变量马达。 表1-1 三大类泵的主要应用现状

排量类型型式模型样式容积排量 图1-1 三大类泵的变量调节 1.1.2 叶片变量泵(马达)的研发历史和发展 根据密封工作容积在转子旋转一周吸、排油次数的不同,叶片泵分为两类,即完成一次吸、排油的单作用叶片泵和完成两次吸、排油的双作用叶片泵。根据叶片泵输出流量是否可调,又可分为定量叶片泵和变量叶片泵,双作用叶片泵均为定量泵。根据叶片变量泵的工作特性不同可分为限压式、恒压式和恒流量式三类,其中限压式应用较多。 恒压式变量泵一般系单作用泵。该泵的定子可以沿一定方向作平衡运动,以改变定子与转子之间的偏心距,即改变泵的流量。它的变量机能由泵内的压力反馈伺服装置控制,能自动适应负载流量的需要并维持恒定的工作压力。在工作中,还可根据要求调节其恒定压力值。因此,在使用该泵的系统中,实际工况相当于定量泵加溢流阀,且没有多余的油液从系统中流过,使能耗和温升都大大降低,缩小了泵站的体积。该泵如与比例电磁阀匹配,可以在系统中实现多工作点自动控制。 限压式变量叶片泵有内反馈式和外反馈式两种。内反馈式变量泵的操纵力来自泵本身的排油压力,外反馈式是借助于外部的反馈柱塞实现反馈的。 限压式变量叶片泵具有压力调整装置和流量调整装置。泵的输出流量可根据负载变化自动调节,当系统压力高于泵调定的压力时流量会减少,使功率损失降为最低,其输出功率与负载工作速度和负载大小相适应,具有高效、节能、安全可靠等特点,特别适用于作容积调速液压系统中的动力源。先导式带压力补偿的变量叶片泵允许根据系统要求自动调节其流量,可在满足工作要求的同时降低能耗。压力补偿的工作原理是:在先导压力作用下,被控柱塞移动,从而使泵的定子在某一位置平衡。当输出压力与先导压力相等时,定子向中心移动,并使输出流量满足工作要求。在输出流量

变量柱塞泵知识讲解

变量柱塞泵

变量柱塞泵 1、变量柱塞泵概述及工作原理 变量柱塞泵的压力油经泵体、泵壳变量壳体中的通油孔通过单向阀进入变量壳体的下腔,当拉杆向下运动时,推动伺服活塞向下移动,伺服阀的上阀口打开,变量壳体下腔的压力油经变量活塞中的通油孔进入变量壳体上腔,由于上腔面积大于下腔,液压力推动活塞向下运动,带动销轴使变量头绕钢球中心旋转,改变变量头的倾斜角(增大),柱塞泵的流量随之增大。反之拉杆向上运动,变量头的倾斜角向相反方向变化,泵的流量也随之变化。当倾斜角度变至零以后,则变量头向负偏角方向变化,液流产生换向,泵的进出油口变换。编 2、变量柱塞泵常见故障 1.液压泵输出流量不足或不输出油液 (1)吸入量不足。原因是吸油管路上的阻力过大或补油量不足。如泵的转速过大,油箱中液面过低,进油管漏气,滤油器堵塞等。 (2)泄漏量过大。原因是泵的间隙过大,密封不良造成。如配油盘被金属碎片、铁屑等划伤,端面漏油;变量机构中的单向阀密封面配合不好,泵体和配油盘的支承面有砂眼或研痕等。可以通过检查泵体内液压油中混杂的异物判别泵被损坏的部位。(3)倾斜盘倾角太小,泵的排量少,这需要调节变量活塞,增加斜盘倾角。 2.中位时排油量不为零

变量式轴向柱塞泵的斜盘倾角为零时称为中位,此时泵的输出流量应为零。但有时会出现中位偏离调整机构中点的现象,在中点时仍有流量输出。其原因是控制器的位置偏离、松动或损伤,需要重新调零、紧固或更换。泵的角度维持力不够、倾斜角耳轴磨损也会产生这种现象。 3.输出流量波动 输出流量波动与很多因素有关。对变量泵可以认为是变量机构的控制不佳造成,如异物进入变量机构,在控制活塞上划出阶痕、磨痕、伤痕等,造成控制活塞运动不稳定。由于放大器能量不足或零件损坏、含有弹簧的控制活塞的阻尼器效能差,都会造成控制活塞运动不稳定。流量不稳定又往往伴随着压力波动。这类故障一般要拆开液压泵,更换受损零部件,加大阻尼,提高弹簧刚度和控制压力等。 4.输出压力异常 泵的输出压力是由负载决定的,与输入转矩近似成正比。输出压力异常有两种故障。(1)输出压力过低 当泵在自吸状态下,若进油管路漏气或系统中液压缸、单向阀、换向阀等有较大的泄漏,均会使压力升不上去。这需要找出漏气处,紧固、更换密封件,即可提高压力。溢流阀有故障或调整压力低,系统压力也上不去,应重新调整压力或检修溢流阀。如果液压泵的缸体与配流盘产生偏差造成大量泄漏,严重时,缸体可能破裂,则应重新研磨配合面或更换液压泵; (2)输出压力过高若回路负载持续上升,泵的压力也持续上升,当属正常。若负载一定,泵的压力超过负载所需压力值,则应检查泵以外的液压元

MCY14斜盘式定量柱塞泵马达

MCY14-1B:斜盘式定量柱塞泵/马达-----系列规格 在公称压力为31.5MPa下,还派生有1.25、5、13、16、32、100ml/r排量规格

<< Q**CY14-1B:斜盘式手动变量柱塞泵/马达-----功率计算 N=QP/(60η) (Kw ) 实际使用的电机功率 Q——流量 L/min(实际使用流量) P——压力 MPa(实际使用压力) η——总效率可取0.85 用户可按实际使用负荷照上列公式计算后选用电机。 Q**CY14-1B:斜盘式手动变量柱塞泵/马达-----使用须知 1、安装联接方法 CY型轴向柱塞泵系单向旋转泵,一般均为正向旋转(从轴端看顺时针方向,反之为反向;用户若需反向旋转泵请在订货时说明)。因此,安装时应首先注意旋转方向,进出油口接管也应符合泵上标记要求。注意在泵使用前要向回油口(朝上)内加满油。 油泵可以用支架或法兰安装,泵和原动机应采用共同的基础支座。支架、法兰和基础都就有足够的刚性,以免油泵运转时产生振动。对于流量大于或等于1 60L/min的泵,由于原动机功率较大,建议不要安装在油箱上。泵的传动轴与原动机的输出轴安装的同轴度误差及其找正方法如下: (1)支架安装:原动机输出轴与支架安装精度的检查方法见下图; 左图中,同轴度误差为Ф0.05;右图中,垂直度误差为Ф0.05(R为泵安装螺孔分布圆半径);

(2)法兰安装:在这种安装形式中,如果原动机与泵之间是采用联轴器联接,则其安装精度检查方法同上图。如果将泵轴直接插入原动机输出轴内,则其安装精度检查方法见下图。

泵和原动机传动轴之间应尽可能采用弹性联轴器联接,所用弹性联轴器也应符合有关标准。推荐采用梅花形联轴器或弹性圆柱销联轴器。以免泵轴承受径向力。推荐用户使用本厂生产的CY-Y型油泵电机组。既方便实用,又可以提高泵的使用寿命。 在工作环境震动不大,原动机工作又平稳(如电动机)的情况下可直接采用弹性联轴器联接。若原动机震动较大(如柴油机或采用皮带轮、齿轮传动者)建议按右图方式安装。泵安装支架和原动机的公共基础要有足够的刚 度。 液压管道安装前应严格清洗,一般钢管应进行酸洗,并经中和处理。清洗工

CY14-1B型轴向柱塞泵参数型号说明

名称:YCY14-1B 压力补偿变量 描述描述:: CY14-1B 型轴向柱塞泵,是采用配油盘、缸体旋转的轴向柱塞泵。由于滑靴和变量头之间、配油盘和缸体之间采用了液压力平衡结构,因而与其它类型的泵相比较,它具有结构简单、体积小、效率高、寿命长、重量轻、自吸能力强等优点。它适用于机床、锻压、冶金、工程、矿山等机械及其液压传动系统中。 型号说明型号说明:: 6363 Y C Y 1414 - 1B 1B F 1 2 3 4 5 6 7 1、 公称排量(ml/r) 2、 变量形式:M-定量,S-手动变量,D-电动变量,C-伺服变量,Y-压力补偿变量,MY-定级压力补偿变量,P-恒压变量,LZ-零位对中液动变量 3、 公称压力:C 为31.5Mpa,G 为24.5Mpa 4、 Y 表示泵,M 表示马达 5、 结构形式:缸体旋转轴向柱塞泵(马达) 6、 结构设计序号 7、 转向(从轴端看):无标记为正旋转泵,F 为反转泵(逆时针) 性能参数性能参数:: *CY *CY((CM CM))1414--1B 轴向柱塞泵轴向柱塞泵((马达马达))的系列参数的系列参数 公称流量L/min 最大传动功率KW 型号 公称压力Mpa 公称排量ml/r 1000r/min1500r/min1000r/min1500r/min 最大理论扭矩 Nm 重量Kg 1.25MCY (M)14-1B 31.5 1.25 1.25 1.88 0.7 1.1 6.3 6.9 2.5MCY(M)14-1B 31.5 2.5 2.5 3.75 1.43 2.2 12.6 7.2 10*CY(M)14-1B 31.5 10 10 15 6.2 9.3 56 16.4-26

AR系列变量柱塞泵

M O Spool Control Piston Pivot Journal Bearing Shaft Yoke Slipper Retainer Piston Ass'y Spring Cylinder Block Port Plate Flow Adj. Screw Pressure Adj. Screw Pressure Compensator Valve Graphic Symbol A16,32 Design 263.5(10.37)Fully Extended 240(9.45)Fully Extended 130(5.188(7.187(7.36)190(7.48)AR16,20 Design Drain Port 3 Up to 16 MPa (2320 PSI), 22.2 cm /rev (1.35 CU.IN./rev) No.1 "AR" SERIES PISTON PUMPS Variable Displacement-Single Pumps Pressure Compensator Type,AR16 / AR22-FR01Pub. EC-0104 Smaller in Size and Lighter in Mass As indicated in the dimensional comparison presented below, the AR16 is smaller than the A16 (32 design). Also, the mass of AR16 is substantially lighter than the A 16.Features Low Noise The noise level of AR16 has been reduced by 1-2 dB (A) at full flow and full cut-off compared with that of the excellent A16 quiet pump. [Comparison of "AR16" with "A16"] DIMENSIONS I N MILLIMETRES (INCHES)

斜盘式轴向柱塞泵设计说明书

(2016届) 本科生毕业设计说明书轴向柱塞泵设计 20 12年6月

长沙学院本科生毕业设计63ZCY14-1B轴向柱塞泵设计 系(部):机电工程系 专业:机械设计制造及其自动化 学号:2008011427 学生姓名:李跃 指导教师:伍先明教授 2012年6月

摘要 ZCY14-1B轴向柱塞泵是液压系统中的动力元件,轴向柱塞泵是靠柱塞在(柱塞腔)缸体内的往复运动,改变柱塞腔内容积实现吸油和排油的,是容积式液压泵。本文首先通过给定的设计参数,得出了柱塞的直径和回程盘上的分布圆半径,利用柱塞的尺寸以及受力和经验公式可以得出滑靴的基本尺寸。利用分布圆半径从而确定的配流盘上的内封油、吸排油窗口等主要尺寸。利用轴的尺寸来计算出缸体的内径,再根据柱塞的分布以及缸体的壁厚算出缸体的外径,根据柱塞的行程来算出缸体的长度,然后再校核强度。最后对柱塞泵的变量机构进行选型以及一些参数的计算,最后总装出柱塞泵。 关键词:轴向柱塞泵,配流盘,缸体,变量机构

ABSTRACT ZCY14-1B axial piston pump in the hydraulic system, power components, axial piston pump is to rely on the plunger (piston chamber) cylinder reciprocating motion, and change the plunger cavity volume suction and discharge of oil,is a positive displacement hydraulic pump. Firstly, the given design parameters obtained distribution on the radius of the diameter of the plunger and backhaul panel plunger size and the force and the empirical formula can draw the basic size of the slipper. Distribution radius in order to determine the valve plate on the inner seal oil, the main dimensions of the suction oil window. Shaft size to calculate the inner diameter of the cylinder, according to the distribution of the plunger and the cylinder wall thickness calculated cylinder diameter, stroke of the plunger to calculate the length of the cylinder, and then check the strength. Finally, the piston pump variable institutions by the line selection, as well as some of the parameters of the calculation, the final assembly of the piston pump. Keywords:Axial piston pump,Valve plate ,Cylinder,Variables agencies

Rexroth轴向变量柱塞泵

Rexroth 轴向变量柱塞泵 A10V(S)O轴向变量柱塞泵应用于开式油路,排量从18ml/r到140ml/r,系列号31,名义压力280bar,峰值压力350bar。 一、工作压力范围 1、进口S(A)压力最小0.8bar,最大30bar。 2、出口B最大280bar,峰值350bar。 3、泄油口L(L1)压力2bar,若比进口压力高,最大不超过0.5bar。 二、噪音特性(以排量100mm/r为例) 三、功率和流量特性(以排量100mm/r为例)

四、DR—压力控制 压力控制方式适合让液压系统保持常压,液压泵只提供执行元件需要的流量,压力可以在控制阀上无级调节。 静态特性曲线如下(转速1500RPM,油温50℃):

典型应用之一:S摆管液压泵。 当主驱动液压油缸工作时,液压泵一直保持在最高设定压力,无流量输出。当S 摆管转换时,液压泵以最大流量输出,压力瞬间降低。 典型应用之二:泵料斗里面搅拌器液压泵。 正常情况下,液压泵以最大流量输出,所以搅拌器是恒速转动。只有当工作压力超过设定压力,泵才无流量输出,则搅拌器停止转动,即被卡死。 五、DFR/DFR1压力-流量控制 DFR1的控制阀中,控制口X与油箱之间的节流孔被堵死。 液压泵流量可以根据执行元件的需要来改变大小,主要原理是流量调节阀前后出口的压

差可以改变泵斜盘的角度。 静态特性曲线(转速1500RPM,油温50℃)如下: 液压泵的调节阀如下图。 压差△p:标准设定为14bar,若需不同设定,请在文件中明确注明。 当泵出口B关闭,控制油口X与油箱相通,会得到一个零流量的压力,即standby压力,p=18±2bar(取决于△p)。 典型应用:THS螺旋喂料机或SHS螺旋卸料机。 当调节速度控制阀时,THS螺旋喂料机或SHS螺旋卸料机会以不同速度去运行。在某一速度下运行时,转速不会因压力的改变而改变。当压力超过压力限制阀的设定压力,液压泵无流量输出,THS或SHS停止转动,即被卡死。 六、DFLR压力/流量/功率控制 为了得到恒定的驱动转矩,则工作压力不同时,液压泵的斜盘角度和流量输出也随之改变,以保证压力和流量的乘积保持恒定。 液压泵的功率控制设定,就是为了防止在高速度高压力情况下出现系统过载。

相关主题
文本预览
相关文档 最新文档