当前位置:文档之家› 溶解焓的测定预习报告

溶解焓的测定预习报告

溶解焓的测定预习报告
溶解焓的测定预习报告

溶解焓的测定预习报告

实验目的要求:

1.学会用量热法测定盐类的积分溶解焓。

2.掌握作图外推法求真实温差的方法。

实验基本原理:

溶解过程的温度变化用温度传感器测定。当把某种盐溶于瓶内一定量的水中时,若测得溶解过程的温度变化为ΔT ,可列出如下的平衡式:

式中,m sol H ?为盐在溶液温度及浓度下的积分溶解焓,

1J -mol 、1m 、2m 分别为水和溶质的质量,kg ;M 为溶质的摩尔

质量,1-kgmol ;1C 、2C 分别为溶剂水、溶质的比热容,1J -kg ;T ?为溶解过程中的真实温差,K ;C 为量热计的热容,1-JK ,也称热量计常数。本实验通过测定已知积分溶解焓的标准物质KCl 的T ?,标定出量热计热容C 的值。

根据实验数据作温度(或温差)--时间曲线,如图中PABQ 所示。图中EF 段所代表的温差为校正后的真实温度△T=T F -T E

22211sol m TM ])[(Δ?++-=C C m C m H

m

实验主要仪器名称:

仪器:NDRH-2S型溶解焓测定实验装置一套(包括数字式温

度温差测量仪1台,300mL简单量热计1只,电磁搅拌器1台); 250mL容量瓶1个;秒表1块;电子天平1台(公用)

试剂: KCl(AR) ;

KNO(AR) ; 蒸馏水

3

实验步骤:

1、量热计热容C的测定

(1)如下图连好实验仪器,打开仪器电源,预热;

(2)取一定量分析纯的KCl于瓷研体中,研细;

(3)按KCl与水1:200的比例计算出溶于250ml

蒸馏水所需KCl的质量,记为m2,并准确称量,

备用;

(4)在干净干燥的量热计中准确放入250ml室温

下蒸馏水,将温度传感器插入液体中;

(5)打开搅拌器开关,保持一定的搅拌速度,待温度变化基本稳定后,读取温度t1,作为基温;

(6)“温度温差”键→“温差”档;1min记录一次差值,连续记录8次,将(3)中m2 KCl经

漏斗全部迅速倒入量热计中,盖好;每隔15s记

录一次数据;直到温度基本不变,再每隔1min

记录8组数据即可停止;

(7)“温度温差”键→“温差”档,测出量热计中溶液的温度,记为t2,计算t1、t2的平均值,

作为系统温度,清洗量热计;

2、KNO3溶解焓的测定

(1)取一定量分析纯的KNO3于瓷研体中,研细到一定程度;

(2)按摩尔比KNO3:H2O=1:400计算出溶于250ml蒸馏水所需KNO3的质量,记为m2’并准确称量已经

研细的KNO3,代替步骤1中KCl并重复步骤1中

的(4)~(7)。

实验数据记录:

1、KCl溶解过程记录:

KCl质量:. . 平均温度:. .

2、KNO3溶解过程记录:

KNO3质量:. . 平均温度:. .

实验注意事项:

1、试剂称量前要进行研磨,否则可能会因为试剂颗粒太

大而影响溶解时间;

2、倒掉废液时注意先把搅拌子拿出来,以防丢失;

3、不要开电磁搅拌器的加热开关;

电动势的测定及其应用(实验报告)

实验报告 电动势的测定及其应用 一.实验目的 1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。 2.学会制备银电极,银~氯化银电极,盐桥的方法。 3.了解可逆电池电动势的应用。 二.实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。 电池除可用作电源外,还可用它来研究构成此电池的化学反应的热力学性质,从化学热力学得知,在恒温、恒压、可逆条件下,电池反应有以下关系: △r G m =-nFE 式中△r G m 是电池反应的吉布斯自由能增量;n 为电极反应中电子得失数;F 为法拉第常数;E 为电池的电动势。从式中可知,测得电池的电动势E 后,便可求得△r G m ,进而又可求得其他热力学参数。但须注意,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液接界。同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。 为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。 附【实验装置】(阅读了解) UJ25型电位差计 UJ25型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或 mV V 17110-μ(1K 置10?档) 。使用V V 4.6~7.5外接工作电源,标准电池和 灵敏电流计均外接,其面板图如图5.8.2 所示。调节工作电流(即校准)时分别调节1p R (粗调)、2p R (中调)和3p R (细 调)三个电阻转盘,以保证迅速准确地调 节工作电流。n R 是为了适应温度不同时标准电池电动势的变化而设置的,当温 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

实验1 溶解热的测定 操作步骤

实验1 溶解热的测定 注意事项: 1.本实验应确保样品充分溶解,因此实验前必须充分研磨样品。已进行研磨和烘干处理的样品位于靠窗口 的烘箱中。实验中每位同学使用完样品后必须及时研磨好足够的样品,并放入靠窗口的烘箱进行烘干处理,以备下一位同学使用。 2.硝酸钾加入快慢的控制,是实验成败的关键。加得太快,会使温差过大,体系与环境的热交换加快,测 得的溶解热偏低,另外加样太快会致使磁子陷住不能正常搅拌。加得太慢,一旦温度升到一个较高的值,即使加入所有硝酸钾也无法使温差回到零度以下,导致实验失败。一般ΔT控制在-0.3℃左右为宜,最低不要超过-0.5℃,但要始终为负值。实验中要时刻注意温差的变化,掌握好加料的时间和量。在每组实验完后,温差回升到0℃以上,此时升温较快,需要及时加入较多的硝酸钾,否则温差可能再无法回到负值。 3.实验时需控制合适的搅拌速度。搅拌太快,会以功的形式向系统中引入能量;搅拌太慢,会因水的传热 性差而导致Q s值偏低,而且硝酸钾难以完全溶解,若实验结束发现有未溶解的硝酸钾,应重做实验。 4.数据采集过程中,切记不要进行任何其它操作,否则需要重新采集数据。 5.将仪器放置在无强电磁场干扰的区域内。 6.不要将仪器放置在通风的环境中,尽量保持仪器附近的气流稳定。 实验步骤: 1.称硝酸钾26 g。(已进行研磨和烘干处理),放入干燥器中。 2.将8个称量瓶编号。在台称上称量,依次加入约2.5、1.5、2.5、 3.0、3.5、 4.0、4.0、和4.5 g硝酸钾, 再用分析天平称出准确数据,把称量瓶依次放入干燥器中待用。 3.量取200 mL去离子水于保温杯内,打开反应热测量数据采集接口装置的电源,将温度传感器擦干置于 空气中,预热3 min,但不要打开恒流源及搅拌器电源。 4.4个菜单项:1)参数矫正; 2)开始实验;3)数据处理;4)退出。 1)参数矫正 参数矫正菜单中有‘电压参数矫正’和‘电流参数矫正’两个子菜单项,电压参数和电流参数一般情况下不需矫正。 2)开始实验 首先选择串口com 1 搅拌器电源,把保温杯放在磁力搅拌器上,调节磁子的转速,将带有加热器及漏斗的盖子放好,测量加热器功率,并调节恒流源,使加热器功率在2.25~2.3 W之间,同时将温度传感器也放入其内。按下回车键,测量水温。(注意温度传感器探头不要与搅拌磁子和加热电阻丝相接触)。这时不要再调节功率。

燃烧焓的测定_物化实验

图1 量热氧弹 实验四 燃烧焓的测定 冷向星 2010011976 材03班(同组实验者:琦) 实验日期:2012-4-5 带实验的老师:春 1 引言 有机化合物的生成焓难以直接从实验中测定,然而有机化合物易于燃烧,含碳、氢和氧等三种元素的有机化合物完全燃烧时生成二氧化碳和水。从有机化合物燃烧的热效应数据也可以估算反应热效应。 通常燃烧焓在等容条件下测定(即称为“氧弹”的不锈钢容器中燃烧),所得数据为值,经换算后可得出值。 1.1实验目的 1.使用弹式量热计测定萘的燃烧焓。 2.了解量热计的原理和构造,掌握其使用方法。 3.掌握热敏电阻测温的实验技术。 1.2实验原理 当产物的温度与反应物的温度相同,在反应过程中只做体积功而不做其它功时,化学反应吸收或放出的热量,称为此过程的热效应,通常亦称为“反应热”。热化学中定义:在指定温度和压力下,一摩尔物质完全燃烧成指定产物的焓变,称为该物质在此温度下的摩尔燃烧焓,记作ΔC H m 。通常,C 、H 等元素的燃烧产物分别为CO 2(g)、H 2O(l)等。由于上述条件下ΔH=Q p ,因此ΔC H m 也就是该物质燃烧反应的等压热效应Q p 。 在实际测量中,燃烧反应常在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Q V (即燃烧反应的摩尔燃烧能变ΔC U m )。若反应系统中的气体物质均可视为理想气体,根据热力学推导,ΔC H m 和ΔC U m 的关系为: p V Q Q nRT =+? (1) 测量热效应的仪器称作量热计,量热计的种类很多,一般测量燃烧焓用弹式量热计。本实验是用氧弹式量热计进行萘的燃烧焓的测定,结构如图1。实验过程中外水套保持恒温,水桶与外水套之间以空气隔热。同时,还把水桶的外表面进行了电抛光。这样,水桶连同其中的氧弹、测温器件、搅拌器和水便近似构成了一 个绝热系统。 将待测燃烧物质装入氧弹中,充入足够的氧气。氧弹放入装有一定量 水的桶中,盖好外桶盖。以电控部分各开关控制搅拌并实现燃烧点火,用 热敏电阻作为测温元件,用电子自动平衡记录仪连续记录桶水温度的变化。 当某样品连同辅助物质棉线、金属丝燃烧后,下式成立:

溶解热的测定实验报告

溶解热测定 姓名 学号 班级 实验日期 1 实验目的 (1)了解电热补偿法测定热效应的基本原理。 (2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或作图求出硝酸钾在水中的微分溶解热、积分溶解热和微分冲淡热。 (3)掌握用微机采集数据、处理数据的实验方法和实验技术。 2 实验原理 溶解热:恒温恒压下,物质的量为2n 的溶质溶于物质的量为1n 的溶剂(或溶于某浓度溶液)中产生的热效应,用Q 表示。 积分溶解热:恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。用s Q 表示。 微分溶解热:恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以1 2n n Q ???? ????表示。 冲淡热:恒温恒压下,一定量的溶剂A 加到某浓度的溶液使之稀释所产生的热效应。 积分冲淡热:恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液的过程中产生的热效应,以d Q 表示。 微分冲淡热:恒温恒压下,1mol 溶剂加入到某一浓度无限量的溶液中所发生的热效应, 以21n n Q ???? ????或2 0n s n Q ???? ????表示。 它们之间关系可表示为: s Q n Q =2 令021n n n = 2 1002n s n s n Q n n Q Q ???? ????+???? ????= ()()0201n s n s d Q Q Q -= 积分溶解热s Q 可由实验测得,其他三种热效应则可通过0n Q s -曲线求得,曲线某点的切线的斜率为该浓度下的摩尔微分稀释热,切线与纵坐标的截距,为该浓度下的摩尔微分溶解热 (即OC )。显然,图中A 点的摩尔溶解热与B 点的摩尔溶解热之差为该过程的摩尔积分稀释热(即BE )。

原电池电动势的测定实验报告

实验九 原电池电动势的测定及应用 一、实验目的 1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC -Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=- (9-1) 式中G ?是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -?);E 为电池的电动势。所以测出该电池的电动势E 后,进而又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就

可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22() ()2Zn Zn s Zn a e ++-+ 正极起还原反应: 22()2()Cu Cu a e Cu s ++-+ 电池总反应为: 2222()()()()Cu Zn Zn s Cu a Zn a Cu s ++++++ 电池反应的吉布斯自由能变化值为: 22ln Cu Zn Zn Cu a a G G RT a a ++?=?- (9-2) 上述式中G ?为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221Cu Zn a a ++==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn Cu a RT E E nF a + + =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1 ln 2Cu Cu Cu RT F a ??+ + += - (9-6) 22,1 ln 2Zn Zn Zn RT F a ??+ + -= - (9-7) 式中2,Cu Cu ? +和2,Zn Zn ?+是当221Cu Zn a a ++==时,铜电极和锌电极的标准电极电势。 对于单个离子,其活度是无法测定的,但强电解质的活度与物质的平均质量摩尔浓度和

溶解热的测定

实验七 溶解热的测定 一、实验目的 1.掌握采用电热补偿法测定热效应的基本原理。 2.用电热补偿法测定硝酸钾在水中的积分溶解热,并用作图法求出硝酸钾在水中的微分溶解热、积分稀释热和微分稀释热。 3.掌握溶解热测定仪器的使用。 二、实验原理 物质溶解过程所产生的热效应称为溶解热,可分为积分溶解热和微分溶解热两种。积分溶解热是指定温定压下把1mol 物质溶解在n 0mol 溶剂中时所产生的热效应。由于在溶解过程中溶液浓度不断改变,因此又称为变浓溶解热,以△sol H 表示。微分溶解热是指在定温定压下把1mol 物质溶解在无限量某一定浓度溶液中所产生的热效应,以表示.在溶解过程中浓度可视为不变,因此又称为定浓度 溶解热,以0 ,,)(n p T sol n H ???表示,即定温、定压、定溶剂状态下,由微小的溶质增 量所引起的热量变化。 稀释热是指溶剂添加到溶液中,使溶液稀释过程中的热效应,又称为冲淡热。它也有积分(变浓)稀释热和微分(定浓)稀释热两种。积分稀释热是指在定温定压下把原为含1mol 溶质和n 01mol 溶剂的溶液冲淡到含n 02mol 溶剂时的热效应,它为两浓度的积分溶解热之差。微分稀释热是指将1mol 溶剂加到某一浓度的无 限量溶液中所产生的热效应,以n p T sol n H ,,0 )(???表示,即定温、定压、定溶质状态 下,由微小的溶剂增量所引起的热量变化。 积分溶解热的大小与浓度有关,但不具有线性关系。通过实验测定,可绘制出一条积分溶解热△sol H 与相对于1mol 溶质的溶剂量n 0之间的关系曲线,如图1所示,其他三种热效应由△sol H~n 0曲线求得。 设纯溶剂、纯溶质的摩尔焓分别为H m1和H m2,溶液中溶剂和溶质的偏摩尔焓分别为H 1和H 2,对于由n 1mol 溶剂和n 2mol 溶质组成的体系,在溶质和溶剂未混合前,体系总焓为: 图1

燃烧焓的测定-2006030027

燃烧焓的测定 吴大维 2006030027 生64 同组实验者:王若蛟 实验日期:2008年3月7日提交报告日期:2008年3月21日 助教:卢晋 1引言 1.1 实验目的 1.使用弹式量热计测定萘的燃烧焓。 2.了解量热计的原理和构造,掌握其使用方法。 3.掌握热敏电阻测温的实验技术。 1.2 实验原理 当产物的温度与反应物的温度相同,在反应过程中只做体积功而不做其它功时,化学反应吸收或放出的热量,称为此过程的热效应,通常亦称为“反应热”。热化学中定义:在指定温度和压力下,一摩尔物质完全燃烧成指定产物的焓变,称为该物质在此温度下的摩尔燃烧焓,记作ΔC H m。通常,C、H等元素的燃烧产物分别为CO2(g)、H2O(l)等。由于上述条件下ΔH=Q p,因此ΔC H m也就是该物质燃烧反应的等压热效应Q p。 在实际测量中,燃烧反应常在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Q V(即燃烧反应的摩尔燃烧内能变ΔC U m)。若反应系统中的气体物质均可视为理想气体,根据热力学推导,ΔC H m和ΔC U m的关系为: (1)式中,T为反应温度(K);ΔC H m为摩尔燃烧焓(J·mol-1);ΔC U m为摩尔燃烧内能变(J·mol-1);v B(g)为燃烧反应方程中各气体物质的化学计量数。产物取正值,反应物取负值。通过实验测得Q V值,根据上式就可计算出Q p,即燃烧焓的值ΔC H m。 测量热效应的仪器称作量热计,量热计的种类很多,一般测量燃烧焓用弹式量热计。本实验是用氧弹式量热计进行萘的燃烧焓的测定,结构如上图。

实验过程中外水套保持恒温,内水桶与外水套之间以空气隔热。同时,还把内水桶的外表面进行了电抛光。这样,内水桶连同其中的氧弹、测温器件、搅拌器和水便近似构成了一个绝热系统。 量热仪的外桶盖为提升式。将其向上提到限位高度,顺时针旋转约90度,便可停放住。点火电极的上电极触头、内水桶搅拌器及测温器件均固定在外桶盖上,当把桶盖旋转到适当位置降下时,它们便都处于预定位置。搅拌器的马达也固定在外桶盖上,其电源线及点火电极连线经桶盖内部与量热仪的电控部分连通。氧弹的另一极经弹杯、内水桶及外水套与电控部分连通。 将待测燃烧物质装入氧弹时,充入足够的氧气。氧弹放入装有一定量水的内桶中,盖好外桶盖。以电控部分各开关控制搅拌并实现燃烧点火,用热敏电阻作为测温元件,用电子自动平衡记录仪连续记录内桶水温度的变化。 当温度变化不大时,可以认为热敏电阻阻值变化与温度变化成正比;当阻值变化不大时,电桥的不平衡电势U 与阻值变化成正比。所以U ∞?T 由于U 与记录仪的记录曲线峰高?h 成正比,故 ?T=a ?h (2) 式中a 为比例常数。设系统(包括所有内水桶中的物质)的热容C 为常数,则当某样品连同辅助物质棉线、金属丝燃烧后,下式成立: B c B B m U C T Ca h K h M ??=?=?=?∑ (3) 式中:c B U ?--------物质B 的摩尔燃烧内能变,J ·mol -1 B m ---------物质B 的质量 ,kg B M ---------物质B 的摩尔质量 ,kg ·mol -1 C-----------系统热容,也称能当量或水当量 J ·K -1 K-----------仪器常数,J ·mm -1 h ?---------记录仪记录曲线峰高, mm 先燃烧已知燃烧焓的物质(如苯甲酸),标定仪器常数K ,再燃烧未知物质,便可由上式计算出摩尔燃烧内能变。 2 实验操作 2.1 实验药品、仪器型号及测试装置示意图 实验仪器: GR3500型弹式量热计1套; 热敏电阻1支(约2k Ω); 大学化学实验计算机接口; 温度计1支; 2000ml ,1000ml 容量瓶各1个; 3000ml 装水盆1个; 镊子1把。 压片机、镍丝、棉线、万用表、台秤、分析天平、剪刀、尺子、氧气瓶功用。

物理化学实验报告_溶解热的测定

物理化学实验报告 溶解热的测定 实验时间:2018年4月日 姓名:刘双 班级: 学号: 1.实验目的 (1)了解电热补偿法测量热效应的基本原理。 (2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或者作图求出硝酸钾在水中的微分溶解热、积分冲淡热和微分冲淡热。 (3)掌握微机采集数据、处理数据的实验方法和实验技术。 2.实验原理 物质溶解于溶剂过程的热效应称为溶解热,物质溶解过程包括晶体点阵的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等过程,这些过程热效应的代数和就是溶解过程的热效应,溶解热包括积分(或变浓)溶解热和微分(或定浓)溶解热。把溶剂加到溶液中使之稀释,其热效应称为冲淡热。包括积分(或变浓)冲淡热和微分(或定浓)冲淡热。 溶解热Q:在恒温、恒压下,物质的量为n2的溶质溶于物质的量为n1的溶剂(或溶于某浓度的溶液)中产生的热效应。 积分溶解热Qs:在恒温、恒压下,1mol溶质溶于物质的量为n1的溶剂中产生的热效应。 微分溶解热(ee ee2)e 1 :在恒温、恒压下,1mol溶质溶于某一确定浓度的无限量的溶液中 的热效应。 冲淡热:在恒温、恒压下,物质的量为n1的溶剂加入到某浓度的溶液中产生的热效应。 积分冲淡热Q d:在恒温、恒压下,把原含1mol溶质和n02mol溶剂的溶液冲淡到含溶剂为n01mol时的热效应,为某两浓度的积分溶解热之差。 微分冲淡热(ee ee1) e2 或(eee ee0 ) e2 :在恒温、恒压下,1mol溶剂加入到某一确定浓度的无 限量的溶液中产生的热效应。 它们之间的关系可表示为:

dQ=(ee ee1) e2 ee1+( ee ee2 ) e1 ee2 上式在比值e1 e2 恒定下积分,得: e=(ee ee1 ) e2 e1+( ee ee2 ) e1 e2 ee2=ee,令:e1 n2 =e0,则有: ( ?Q ?n1 )=[ ?(n2Q s ?(n2n0) ]=( ?Q s ?n0 ) Q d=(ee)e01?(ee)e02 其中积分溶解热ee可以直接由实验测定,其他三种可以由ee?e0曲线求得。 欲求溶解过程中的各种热效应,应先测量各种浓度下的的积分溶解热。可采用累加的方法,先在纯溶剂中加入溶质,测出热效应,然后再这溶液中再加入溶质,测出热效应,根据先后加入的溶质的总量可计算出n0,而各次热效应总和即为该浓度下的溶解热。本实验测量硝酸钾溶解在水中的溶解热,是一个溶解过程中温度随反应的进行而降低的吸热反应,故采用电热补偿法测定。先测定体系的初始温度T,当反应进行后温度不断降低时,由电加热法使体系复原到起始温度,根据所耗电能求出热效应Q。 3.仪器和试剂 反应热测量数据采集接口装置: NDRH-1型,温度测量范围0~40℃,温度测量分辨率0.001℃,电压测量范围0~20V,电压测量分辨率0.01V,电流测量范围0~2A,电流测量分辨率0.01A。 精密稳流电源:YP-2B型。 微机、打印机。 量热计(包括杜瓦瓶,搅拌器,加热器,搅拌子)。 称量瓶8只,毛笔,研钵。 硝酸钾(A.R.) 4.实验操作 (1)取8个称量瓶,分别编号。 (2)取KNO3于研钵中,研磨充分。 (3)分别称量约 2.5、1.5、2.5、3.0、3.5、4.0、4.0、4.5g 研磨后的硝酸钾,放入 8 个称量瓶中,并精确称量瓶子与药品的总质量。记录下所称量的数据。

原电池电动势的测定与应用物化实验报告

原电池电动势的测定及热力学函数的测定 一、实验目的 1) 掌握电位差计的测量原理和测量电池电动势的方法; 2) 掌握电动势法测定化学反应热力学函数变化值的有关原理和方法; 3) 加深对可逆电池,可逆电极、盐桥等概念的理解; 4) 了解可逆电池电动势测定的应用; 5) 根据可逆热力学体系的要求设计可逆电池,测定其在不同温度下的电动势值,计算电池 反应的热力学函数△G 、△S 、△H 。 二、实验原理 1.用对消法测定原电池电动势: 原电池电动势不能能用伏特计直接测量,因为电池与伏特计连接后有电流通过,就会在电极上发生生极化,结果使电极偏离平衡状态。另外,电池本身有内阻,所以伏特计测得的只是不可逆电池的端电压。而测量可逆电池的电动势,只能在无电流通过电池的情况下进行,因此,采用对消法。对消法是在待测电池上并联一个大小相等、方向相反的外加电源,这样待测电池中没有电流通过,外加电源的大小即等于待测电池的电动势。 2.电池电动势测定原理: Hg | Hg 2Cl 2(s) | KCl( 饱和 ) | | AgNO 3 (0.02 mol/L) | Ag 根据电极电位的能斯特公式,正极银电极的电极电位: 其中)25(00097.0799.0Ag /Ag --=+ t ?;而+ ++-=Ag Ag /Ag Ag /Ag 1 ln a F RT ?? 负极饱和甘汞电极电位因其氯离子浓度在一定温度下是个定值,故其电极电位只与温度有关,其关系式: φ饱和甘汞 = 0.2415 - 0.00065(t – 25) 而电池电动势 饱和甘汞理论—??+=Ag /Ag E ;可以算出该电池电动势的理论值。与测定值 比较即可。 3.电动势法测定化学反应的△G 、△H 和△S : 如果原电池内进行的化学反应是可逆的,且电池在可逆条件下工作,则此电池反应在定温定

物化实验报告燃烧热的测定

华南师范大学实验报告 一、实验目的 1、明确燃烧热的定义,了解定压燃烧热与定容燃烧热的差别。 2、掌握量热技术的基本原理;学会测定萘的燃烧热 3、了解氧弹量热计的主要组成及作用,掌握氧弹量热计的操作技术。 4、学会雷诺图解法校正温度改变值。 二、 实验原理 通常测定物质的燃烧热,是用氧弹量热计,测量的基本原理是能量守恒定律。一定量被测物质样品在氧弹中完全燃烧时,所释放的热量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值T ?,就能计算出该样品的燃烧热。 ()p V Q Q RT n g =+? (1) ()V W W Q Q C W C M +=+样品21总铁丝铁丝水水(T -T ) (2) 用已知燃烧热的物质(本实验用苯甲酸)放在量热计中燃烧,测其始末温度,求出T ?。 便可据上式求出K ,再用求得的K 值作为已知数求出待测物(萘)的燃烧热。 三、仪器和试剂 1.仪器 SHR-15氧弹量热计1台;贝克曼温度计;压片机 2台;充氧器1台;氧气钢瓶1个;1/10℃温度计;万能电表一个;天平 2.试剂 铁丝;苯甲酸(AR);萘(AR );氧气 四、实验步骤 1、测定氧氮卡计和水的总热容量 (1)样品压片:压片前先检查压片用钢模,若发现钢模有铁锈油污或尘土等,必须擦净后,才能进行压片,用天平称取约0.8g 苯甲酸,再用分析天平准确称取一根铁丝质量,从模具的上面倒入己称好的苯甲酸样品,徐徐旋紧 压片机的螺杆,直到将样品压成片状为止。抽出模底的托板,再继续向下压,使模底和样品一起脱落,然后在分析天平上准确称重。 分别准确称量记录好数据,即可供燃烧热测定用。 (2)装置氧弹、充氧气:拧开氧弹盖,将氧弹内壁擦净,特别是电极下端的不锈钢接线柱更应擦十净,将点火丝的两端分别绑紧在氧弹中的两根电极上,选紧氧弹盖,用万用表欧姆档检查两电极是否通路,使用高压钢瓶时必须严格遵守操作规则。将氧弹放在充氧仪台架上,拉动板乎充入氧气。 (3)燃烧温度的测定:将充好氧气后,再用万用表检查两电极间是否通路,若通路将氧弹放入量热计内简。用量筒称3L 自来水,倒入水桶内,装好搅拌轴,盖好盖子,将贝克曼温度计探头插入水中,此时用普通温度计读出水外筒水温和水桶内的水温。接好电极,盖上盖了,打开搅拌开关。待温度温度稳定上升后,每个半分钟读取贝克曼温度计一次,连续记

原电池电动势的测定实验报告

实验九原电池电动势的测定及应用 一、实验目的 1.测定Cu-Zn电池的电动势和Cu、Zn电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC-Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=-(9-1) 式中G ?是电池反应的吉布斯自由能增量;n为电极反应中得失电子的数目;F为法拉第常数(其数值为965001 ?);E为电池的电动势。所以测出该电池的电动势E后,进而 C mol- 又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计 测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就

可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22()()2Zn Zn s Zn a e ++ - + 正极起还原反应: 22()2()C u C u a e C u s + +- + 电池总反应为: 2222()()()()C u Zn Zn s C u a Zn a C u s ++++ ++ 电池反应的吉布斯自由能变化值为: 22ln C u Zn Zn C u a a G G RT a a ++?=?- (9-2) 上述式中G ? 为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221C u Zn a a + +==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn C u a R T E E nF a ++ =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1ln 2C u C u C u RT F a ??+ ++=- (9-6) 22,1ln 2Zn Zn Zn RT F a ??+ + -=- (9-7) 式中2,Cu Cu ?+ 和2,Zn Zn ?+ 是当221C u Zn a a + +==时,铜电极和锌电极的标准电极电势。 对于单个离子,其活度是无法测定的,但强电解质的活度与物质的平均质量摩尔浓度和

物化实验报告:溶解热的测定-KCl、KNO3

华南师范大学实验报告 课程名称 物理化学实验 实验项目 溶解热的测定 【实验目的】 1.用量热计简单测定硝酸钾在水中的溶解热。 2.掌握贝克曼温度计的调节和使用。 【实验原理】 盐类的溶解往往同时进行着两个过程:一是晶格破坏,为吸热过程;二是离子的溶剂化,为放热过程。溶解热是这两种热效应的总和。最终是吸热还是放热,则由这两种热效应的相对大小来决定。 本实验在定压、不做非体积功的绝热体系中进行时,体系的总焓保持不变,根据热平衡,即可计算过程所涉及的热效应。 T C C W C W W M H m sol ??++-=?][322111 )( (3.1) 式中: m Sol H ?为盐在溶液温度和浓度下的积分溶解热,单位:kJ ·mo1–1; 1W 为溶质的质量,单位:kg ; T ?为溶解过程的真实温差,单位:K ; 2W 为水的质量,单位:kg ; M 为溶质的摩尔质量,单位:kg ·mo1–1 ; 21C C 、分别为溶质和水的比热,单位:11--?K kg kJ ; 度升 3C 为量热计的热容(指除溶液外,使体系温高1℃所需要的热量) ,单位:kJ 。 实验测得W 1、W 2、ΔT 及量热计的热容后,即 可按 图3.1溶解热测定装配图 1.磁力搅拌器; 2.搅拌磁子; 3.杜瓦瓶; 4.漏斗; 5.传感器; 6.SWC —IIC 数字贝克曼温度仪.

(3.1)式算出熔解热m Sol H 。 【仪器与药品 】 溶解热测量装置一套(如图3.1所示);500ml 量筒一个;KCl(A.R.) ;KNO 3(A.R.) 【实验步骤】 1.量热计热容的测定: 本实验采用氯化钾在水中的溶解热来标定量热计热容3C 。为此,先在干净的量热计中装入500m1蒸馏水,将与贝克曼温度计接好的传感器插入量热计中,放在磁力搅拌器上,启动搅拌器, 保持60-90转/分钟的搅拌速度,此时,数字显示应在室温附近,至温度变化基本稳定后,每分钟准确记录读数一次,连续8次后,打开量热计盖,立即将称量好的10克氯化钾(准确至0.01克)迅速加入量热计中,盖上盖,继续搅拌,每分钟记录一次读数,读取12次即可停止。然后用普通水银温度计测出量热计中溶液的温度,倒掉溶液。 2.硝酸钾溶解热的测定:用硝酸钾代替氯化钾重复上述实验,区别是称取硝酸钾的质量为7克(准确至0.01g)。完成一次实验后,溶液不倒掉。同样连续读数8次后,再向溶液中加入7克硝酸钾,再读取12次温度完成第二次测量。实验结束,倒掉溶液 【数据的处理】 1.各样品溶解前后温差的雷诺校正图

燃烧热的测定实验报告

浙江万里学院生物与环境学院化学工程实验技术实验报告 实验名称:燃烧热的测定

一、 实验预习(30分) 1. 实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2. 实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3. 预习报告(10分) 指导教师______(签字)成绩 (1) 实验目的 1.用氧弹量热计测定蔗糖的燃烧热。 2.掌握恒压燃烧热与恒容燃烧热的概念及两者关系。 3.了解氧弹量热计的主要结构功能与作用;掌握氧弹量热计的实验操作技术。 4.学会用雷诺图解法校正温度变化。 (2) 实验原理 标准燃烧热的定义是:在温度T 、参加反应各物质均处标准态下,一摩尔β相的物质B 在纯氧中完全燃烧时所放出的热量。所谓完全燃烧,即组成反应物的各元素,在经过燃烧反应后,必须呈显本元素的最高化合价。如C 经燃烧反应后,变成CO 不能认为是完全燃烧。只有在变成CO 2时,方可认为是完全燃烧。同时还必须指出,反应物和生成物在指定的温度下都属于标准态。如苯甲酸在298.15K 时的燃烧反应过程为: (液)(气)(气)(固)O H CO O COOH H C 22 256372 15 +?+ 由热力学第一定律,恒容过程的热效应Q v ,即ΔU 。恒压过程的热效应Q p ,即ΔH 。它们之间的相互关系如下: nRT Q Q V P ?+= (1) 或nRT U H ?+?=? (2) 其中Δn 为反前后气态物质的物质的量之差。R 为气体常数。T 为反应的绝对温度。本实验通过测定蔗糖完全燃烧时的恒容燃烧热,然后再计算出蔗糖的恒压燃烧ΔH 。在计算蔗糖的恒压

有机物燃烧焓的测定。实验报告

有机物燃烧焓的测定 一.实验目的 1.明确燃烧焓的定义,了解恒压热效应与恒容热效应的关系。 2.掌握有关热化学实验的一般知识和技术。 3.用氧弹式量热计测定有机物的燃烧焓。 二.实验原理 热化学中定义:在指定温度和压力下,一摩尔物质完全燃烧成指定产物的焓变,称为该物质在此温度下的摩尔燃烧焓,记作ΔC H m 。通常,C 、H 等元素的燃烧产物分别为CO 2(g)、H 2O(l)等。由于上述条件下ΔH=Q p ,因此ΔC H m 也就是该物质燃烧反应的等压热效应Q p,m 。 在适当的条件下,许多有机物都能迅速而完全地进行氧化反应,这就为准确测定它们的燃烧焓创造了有利条件。 在实际测量中,燃烧反应常在恒容条件下进行,如在弹式量热计中进行,这样直接测得的是反应的恒容热效应Q V (即燃烧反应的热力学能变ΔC U )。若将应系统中的气体物质视为理想气体,根据热力学推导可得ΔC H m 和ΔC U m 的关系为: )(g RT U H B B m c m c ν∑+?=? 或 )(,,g RT Q Q B B m v m p ν∑== (1) 式中,T 为反应温度(K);ΔC H m 为摩尔燃烧焓(J·mol -1);ΔC U m 为摩尔燃烧热力学能变(J·mol -1 );v B (g)为燃烧反应方程中各气体物质的化学计量数,规定生产物取正值,反应物取负值。 通过实验测得Q V,m (J·mol -1 )值,根据上式就可计算出Q p,m (J·mol -1 ),即燃烧焓的值ΔC H m 。 本实验是用氧弹式量热计进行萘的燃烧焓的测定。量热计结构如图1所示,氧弹结构如图2所示。 实 验中,设质量为m a (g )的待测物质(恒容燃烧热为Q v,m )和质量为m b (g )的点火丝(恒容燃烧热为q ,J·g -1 )在氧弹中燃烧,放出的热可使质量为w m 的水(比热容为c w ,J·K -1 ·g -1 )及量热器本身(热容为C m ,J·K -1)的温度由T 1升高到T 2,则根据能量守恒定律可得到热平衡关系 )()]().[(1212,T T K T T w c C m q M m Q m w m b a m -?=-?+-=?+? ν (2) 式中,M 为该待测物的摩尔质量;规定系统放热时Q 取负数;K= -( C m +c w · w m ),同一套仪器、当内筒中的水量一定时,K 值恒定,称K 为仪器常数或水当量(J·K -1 ),常用已知燃烧热值Q v 的苯甲酸来测定。求

冰的熔解热的测定实验报告

实验名称测定冰的熔解热 一、前言 物质从固相转变为液相的相变过程称为熔解。一定压强下晶体开始熔解时的温度称为该晶体在此压强下的熔点。对于晶体而言,熔解是组成物质的粒子由规则排列向不规则排列的过程,破坏晶体的点阵结构需要能量,因此,晶体在熔解过程中虽吸收能量,但其温度却保持不变。物质的某种晶体熔解成为同温度的液体所吸收的能量,叫做该晶体的熔解潜热。 二、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 三、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统A和一个已知热容的系统B混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统C (C=A+B).这样A(或B)所放出的热量,全部为B(或A)所吸收。因为已知热容的系统在实验过程中所传递的热量Q,是可以由其温度的改变△T 和热容C计算出来,即Q = C△T,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块, 冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为Q 放 ,冰吸热溶成水, 继续吸热使系统达到热平衡温度,设吸收的总热量为Q 吸 。 因为是孤立系统,则有Q 放= Q 吸 (1) 设混合前实验系统的温度为T1,其中热水质量为m1(比热容为c1),内筒的质量为m2(比热容为c2),搅拌器的质量为m3(比热容为c3)。冰的质量为M(冰的温度和冰的熔点均认为是0℃,设为T0),数字温度计浸入水中的部分放出的热量忽略不计。设混

燃烧热的测定实验报告

实验二 燃烧热的测定 一、目的要求 1.用氧弹量热计测定萘的燃烧热。 2.了解氧弹量热计的原理、构造及使用方法。 二、实验原理 1摩尔物质完全氧化时的反应热称为燃烧热。所谓完全氧化是指C 变为CO 2(气),H 变为H 2O(液),S 变为SO 2(气),N 变为N 2(气),如银等金属都变成为游离状态。 例如:在25℃、1.01325×105Pa 下苯甲酸的燃烧热为-3226.9kJ/mol ,反应方程式为: 1.01325105165222225C H COOH()+7O ()7CO H O Pa s g g l ??????→℃ ()+3() 3226.9kJ/mol c m H O ?=- 对于有机化合物,通常利用燃烧热的基本数据求算反应热。燃烧热可在恒容或恒压条件下测定,由热力学第一定律可知:在不做非膨胀功的情况下,恒容燃烧热V Q U =?,恒压燃烧热p Q H =?。在体积恒定的氧弹式量热计中测得的燃烧热为Q V ,而通常从手册上查得的数据为Q p ,这两者可按下列公式进行换算 ()p V Q Q RT n g =+? (2-1) 式中,Δn(g)——反应前后生成物和反应物中气体的物质的量之差; R ——气体常数; T ——反应温度,用绝对温度表示。 通常测定物质的燃烧热,是用氧弹量热计,测量的基本原理是能量守恒定律。一定量被测物质样品在氧弹中完全燃烧时,所释放的热

量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值T ?,就能计算出该样品的燃烧热。 ()V W W Q Q C W C M + =+样品 21总铁丝铁丝水水(T -T ) (2-2) 式中,W 样品,M ——分别为样品的质量和摩尔质量; Q V ——为样品的恒容燃烧热; W 铁丝,铁丝Q ——引燃用的铁丝的质量和单位质量的燃烧热 (-16.69kJ g Q =?铁丝); C W 水水,——分别为水的比热容和水的质量; C 总——是量热计的总热容(氧弹、水桶每升高1K ,所需的总 热量); 21T T -——即T ?,为样品燃烧前后水温的变化值。 若每次实验时水量相等,对同一台仪器C 总不变,则(C W C +总水水)可视为定值K ,称为量热计的水当量。 水当量K 的求法是:用已知燃烧热的物质(本实验用苯甲酸)放在量热计中燃烧,测其始末温度,求出T ?,便可据式2-2求出K 。 三、仪器和药品 1.仪器 SHR-15氧弹量热计1台;SWC-ⅡD 精密温度温差仪1台;压片机 1台;充氧器1台;氧气钢瓶1个。部分实验仪器如图2.1和图2.2所示。

《测定电池的电动势和内阻》实验报告范例

测定电池的电动势和内阻 日期: 年 月 日 实验小组成员: 【实验目的】 1.掌握测定电池电动势和内阻的方法; 2.学会用图象法分析处理实验数据。 【实验原理】 1.如图1所示,当滑动变阻器的阻值改变时,电路中路端电压和电流也随之改变.根据闭合电路欧姆定律,可得方程组: r r 2211I U I U +=+=εε。 由此方程组可求出电源的电动势和内阻 2 11 221I I U I U I --= ε,2112I I U U r --=。 2.以I 为横坐标,U 为纵坐标,用测出的几组U 、I 值画出U -I 图象,将所得的直线延长,则直线跟纵轴的交点即为电源的电动势值,图线斜率的绝对值即为内阻r 的值;也可用直线与横轴的交点I 短与ε求得短 I r ε =。 【实验器材】 干电池1节,电流表1只(型号: ,量程: ),电压表1只(型号: ,量程: ),滑动变阻器1个(额定电流 A ,电阻 Ω),开关1个,导线若干。 【实验步骤】 1.确定电流表、电压表的量程,按电路图连接好电路。 图1 实验电路图

2.将滑动变阻器的阻值调至最大。 3.闭合开关,调节变阻器,使电流表有明显示数,记录电流表和电压表的示数。 4.用与步骤3同样的方法测量并记录6-8组U、I值. 5.断开开关,整理好器材。 6.根据测得的数据利用方程求出几组ε、r值,最后算出它们的平均值。 7.根据测得的数据利用U-I图象求得ε、r。 【数据记录】 表1 电池外电压和电流测量数据记录 【数据处理】 1.用方程组求解ε、r 表2 电池的电动势ε和内阻计r算记录表 2.用图象

法求出ε、r(画在下面方框中) 图2 电池的U-I图象 【实验结论】 由U-I图象得:电池的电动势ε= V,r= Ω。 【误差分析】 1.系统误差 以实验电路图1进行原理分析。根据闭合电路欧姆定律:E=U+Ir,本实验电路中电压表的示数是准确的,而电流表的示数比通过电源的实际电流小,所以本实验的系统误差是由电压表的分流引起的。为了减小这个系统误差,滑动变阻器R的阻值应该小一些,所选用的电压表的内阻应该大一些。

相关主题
文本预览
相关文档 最新文档