当前位置:文档之家› 抽象函数的性质问题解析

抽象函数的性质问题解析

抽象函数的性质问题解析
抽象函数的性质问题解析

抽象函数的性质问题解析

抽象函数是高中数学的一个难点,也是近几年来高考的热点。考查方法往往基于一般函数,综合考查函数的各种性质。本节给出抽象函数中的函数性质的处理策略,供内同学们参考。

1、 定义域:解决抽象函数的定义域问题——明确定义、等价转换。

材料一:若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=x

f y 的定义域。

解析:由)1(+=x f y 的定义域为)3,2[-,知1+x 中的)3,2[-∈x ,从而411<+≤-x ,对函数)21(+=x

f y 而言,有1124x

-≤+<,解之得:),21(]31,(+∞--∞∈ x 。 所以函数)21(+=x f y 的定义域为),21(]31,(+∞--∞ 总结:函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围),如本题中的1+x 与21+x 的范围等同。

2、 值域:解决抽象函数的值域问题——定义域、对应法则决定。

材料二:若函数)1(+=x f y 的值域为]1,1[-,求函数)23(+=x f y 的值域。

解析:函数)23(+=x f y 中定义域与对应法则与函数)1(+=x f y 的定义域与对应法则完全相同,故函数)23(+=x f y 的值域也为]1,1[-。

总结:当函数的定义域与对应法则不变时,函数的值域也不会改变。

3、 对称性:解决抽象函数的对称问题——定义证明是根本、图象变换是捷径、特值代入是妙法。

材料三:设函数)(x f y =定义在实数集上,则函数)1(-=x f y 与)1(x f y -=的图象关于( )

A 、直线0=y 对称

B 直线0=x 对称

C 直线1=y 对称

D 直线1=x 对称 解法一(定义证明):设点),(00y x P 是函数)1(-=x f y 的图象上的任意一点,则)1(00-=x f y ,),(00y x P 关于直线m x =的对称点为),2(00/y x m P -,要使点),2(00/y x m P -在函数)1(x f y -=的图象上,则)21()]2(1[000m x f x m f y -+=--=,应有121-=-m ,故1=m ,

所以函数)1(-=x f y 与)1(x f y -=的图象关于直线1=x 对称。

解法二(图象变换法):由函数)(x f y =的图象向右平移1个单位得到函数)1(-=x f y 的

图象;由函数)(x f y =的图象关于y 轴对称得到函数)(x f y -=的图象,再向右平移1个单位,得到)1()]1([x f x f y -=--=的图象。如图所示,选D 。

解法三(特值代入法):由已知可得点))1(,0(-f P 在函数)1(-=x f y 的图象上,点))1(,2(-f Q 在函数)1(x f y -=的图象上,又点P 、Q 关于直线1=x 对称,选D 。

总结:了解一些简单结论对解题也是很有好处的。如:函数)(x f y =满足)()(x b f x a f -=+,则函数)(x f y =的自对称轴为2

b a x +=

;函数)(x a f y +=与)(x b f y -=的互对称轴为x b x a -=+,即2a b x -= 4、 周期性:解决抽象函数的周期性问题——充分理解与运用相关的抽象式是关键。

材料四:设)(x f y =是定义在R 上的奇函数,其图象关于直线1=x 对称。证明)(x f y =是周期函数。

证明:由)(x f y =的图象关于直线1=x 对称,得)()2(x f x f -=+,

又)(x f y =是定义在R 上的奇函数,所以)()(x f x f -=-

∴)()2(x f x f -=+,则)()]([)2()]2(2[)4(x f x f x f x f x f =--=+-=++=+ 由周期函数的定义可知4是它的一个周期。

总结:一般地,)()(x f T x f -=+,)

(1)(x f T x f ±=+均可断定函数的周期为2T 。 5、 奇偶性:解决抽象函数的奇偶性问题——紧扣定义、合理赋值。

材料五:已知)(x f y =是定义在R 上的不恒为零的函数,且对于任意的R b a ∈,,都满足:)()()(a bf b af b a f +=?。判断)(x f y =的奇偶性,并证明你的结论。

解析:令1==b a ,则)1(1)1(1)11(f f f ?+?=?,得0)1(=f ;

令1-==b a ,则)1()1()1()1()]1()1[(-?-+-?-=-?-f f f ,得0)1(=-f ; 令1-=a ,x b =得)1()()1(])1[(-?+?-=?-f x x f x f ,得)()(x f x f -=-

因此函数)(x f y =为奇函数。

总结:赋值是解决多变量抽象函数的重要手段。

6、 单调性:解决抽象函数的单调性问题——紧密结合定义、适当加以配凑。

材料六:设)(x f y =是定义在[-1,1]上的奇函数,且对于任意的]1,1[,-∈b a ,当0

≠+b a

时,都有:0)()(>++b

a b f a f 。若b a >,试比较)(a f 与)(b f 的大小。 解析:)]([)

()()()()()()(b a b a b f a f b f a f b f a f -+?-+-+=-+=-, b a >,∴0>-b a ,又0)()(>++b

a b f a f , ∴0)()(>-b f a f ,即)()(b f a f >。 总结:本题实质上是证明函数的单调性,有时也用到

1)()(12>x f x f (或1)

()(12

7、 可解性:由抽象式求解析式问题——视)(x f 为未知数,构造方程(组)。 材料七:设函数)(x f 满足x x

x f x f +=-+1)1(

)(……①)10(≠≠x x 且,求)(x f 。 解析:以x x 1-代x ,得x

x x f x x f 12)11()1(-=--+-,……② 以11--x 代x ,得1

2)()11(--=+--x x x f x f ,……③ ①+③-②得:x x x x x x f 12121)(2----++= 所以)

1(21)(23---=x x x x x f )10(≠≠x x 且 总结:在所给的抽象式中紧紧围绕)(x f ,将其余的式子替换成)(x f ,构造一个或几个方程,然后设法求解。

8、 凹凸性:解决函数的凹凸性问题——捕捉图象信息,数形结合。

材料八:如图所示,)(x f i )4,3,2,1(=i 是定义在[0,1]上的四个函数,其中满足性质:“对

[0,1]中任意的1x 和2x ,任意]1,0[∈λ,)()1()(])1([2121x f x f x x f λλλλ-+<-+恒成立”的只有( )

A 、)(1x f

B 、)(2x f

C 、)(3x f

D 、)(4x f 解析:令21=λ,则不等式变为2

)()()2(2121x f x f x x f +<+,可知函数)(x f i 是一个凹函数,故只有)(1x f 正确,选A 。

总结:函数的凹凸性在高中阶段没有专门研究,但也逐渐走入高考殿堂。

总之,因为抽象函数密切联系函数的单调性、奇偶性、周期性、对称性等诸多性质,加上本身的抽象性、多变性,使得抽象函数这一难点更加扑朔迷离。因此应不断挖掘隐含,灵活运

用上述解题策略,定会收到良好的效果。

课外练习:

函数()f x 是定义域在[0,1]上的增函数,满足()2()2

x

f x f =且(1)1f =,在每个区间1

11(

,]22i i -(1,2,)i =上,()y f x =的图象都是斜率为同一常数k 的直线的一部分。 (1)、求(0)f 、1()2f 及1()4f 的值,并归纳出1()2

i f (1,2,)i =的表达式; (2)、直线12i x =,112i x -=,x 轴及()y f x =的图象围成的图形的面积为i a (1,2,)i =,记12()lim()n x S k a a a →∞=+++,求()S k 的表达式,并写出其定义域和最小值。(04,北京,18)

解析:(1)为了求(0)f ,只需在条件()2()2x f x f =中

,令0x =,即有(0)2(0f f =(0)0f ?=。由1(1)2()2f f =及(1)1f =,得111()(1)222

f f ==。同理1111()()4224f f ==。归纳11()22

i i f =(1,2,)i =。 (2)、11122i i x -<≤时,1111()()22

i i f x k x --=+-, 1111211111111[()]()(1)22222242

i i i i i i i i k a k -----=++--=-(1,2,)i =。 故{}n a 是首项为1(1)24k -,公比为14

的等比数列,所以12()lim()n x S k a a a →∞=+++1(1)22

4(1)3414

k k -==--。()S k 的定义域是01k <≤,当1k =时取得最小值12。

高中数学函数的解析式和抽象函数定义域练习题

高中数学函数的解析式和抽象函数定义域练习题 1、分段函数已知???>-≤+=) 0(2)0(1)(2x x x x x f 则 (1)若=)(x f 10,则x= ;(2))(x f 的值域为 _____. 2、画出下列函数的图象(请使用直尺) (1) Z x x y ∈-=,22且 2≤x (2) x x y -=2 3、动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A , 试写出线段AP 的长度y 与P 点的行路程x 之间的函数关系式。 4、根据下列条件分别求出函数)(x f 的解析式 观察法(1)221)1(x x x x f +=+ 方程组法x x f x f 3)1(2)()2(=+ 换元法(3)13)2(2++=-x x x f D P C P A P B

待定系数法 (4)已知()x f 是一次函数,且满足()()1721213+=--+x x f x f ,求()x f 。 (复合函数的解析式)---代入法 (5)已知1)(2-=x x f ,1)(+=x x g ,求)]([x g f ]和)]([x f g 的解析式。 5、抽象函数的定义域的求解 1、若函数)(x f 的定义域为]2,1[-,则函数)1(-x f 的定义域为 。 2、若函数)1(2-x f 的定义域为]2,1[-,则函数)1(+x f 的定义域为 。 练习:1、若x x x f 2)1(+=+,求)(x f 。 2、函数)(x f 满足条件10)()(+-=x xf x f ,求)(x f 的解析式。 3、已知)(x f 是二次函数,且满足()10=f ,()()x x f x f 21=-+,求()x f 的表达式。 4、若()32+=x x f ,)()2(x f x g =+,求函数)(x g 的解析式 5、已知二次函数()h x 与x 轴的两交点为(2,0)-,(3,0),且(0)3h =-,求()h x ;

抽象函数的性质问题解析

抽象函数的性质问题解析 抽象函数是高中数学的一个难点,也是近几年来高考的热点。考查方法往往基于一般函数,综合考查函数的各种性质。本节给出抽象函数中的函数性质的处理策略,供内同学们参考。 1、 定义域:解决抽象函数的定义域问题——明确定义、等价转换。 材料一:若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=x f y 的定义域。 解析:由)1(+=x f y 的定义域为)3,2[-,知1+x 中的)3,2[-∈x ,从而411<+≤-x ,对函数)21(+=x f y 而言,有1124x -≤+<,解之得:),21(]31,(+∞--∞∈ x 。 所以函数)21(+=x f y 的定义域为),21(]31,(+∞--∞ 总结:函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围),如本题中的1+x 与21+x 的范围等同。 2、 值域:解决抽象函数的值域问题——定义域、对应法则决定。 材料二:若函数)1(+=x f y 的值域为]1,1[-,求函数)23(+=x f y 的值域。 解析:函数)23(+=x f y 中定义域与对应法则与函数)1(+=x f y 的定义域与对应法则完全相同,故函数)23(+=x f y 的值域也为]1,1[-。 总结:当函数的定义域与对应法则不变时,函数的值域也不会改变。 3、 对称性:解决抽象函数的对称问题——定义证明是根本、图象变换是捷径、特值代入是妙法。 材料三:设函数)(x f y =定义在实数集上,则函数)1(-=x f y 与)1(x f y -=的图象关于( ) A 、直线0=y 对称 B 直线0=x 对称 C 直线1=y 对称 D 直线1=x 对称 解法一(定义证明):设点),(00y x P 是函数)1(-=x f y 的图象上的任意一点,则)1(00-=x f y ,),(00y x P 关于直线m x =的对称点为),2(00/y x m P -,要使点),2(00/y x m P -在函数)1(x f y -=的图象上,则)21()]2(1[000m x f x m f y -+=--=,应有121-=-m ,故1=m , 所以函数)1(-=x f y 与)1(x f y -=的图象关于直线1=x 对称。 解法二(图象变换法):由函数)(x f y =的图象向右平移1个单位得到函数)1(-=x f y 的

函数的基本性质解析

1 第二讲 函数的性质(一) 一、函数的单调性 1.单调函数的定义 增函数 减函数 定义 设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2 当x 1f (x 2) ,那么就说函数f (x )在区间D 上是减函数 图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是 或,则称函数y =f (x )在这一区间上具有(严格的)单调性, 叫做y =f (x )的单调区间. 3、单调性的判定方法 (1)定义法: 利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤: ○ 1 任取x 1,x 2∈D ,且x 1

抽象函数解题方法与技巧

抽象函数解题方法与技巧 函数的周期性: 1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x-a)(或f(x-2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数; 2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a-b|的周期函数; 3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数; 4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a-b|的周期函数; 5、若函数y=f(x)满足f(a+x)=f(a-x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ; 6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x)()1()f x a f x ??+= ???或()1()f x a f x ??+=- ???或,则y=f(x)是周期为2|a|的周期函数; 7、若()()()1 1 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数; 8、若()() ()11 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。 (7、8应掌握具体推导方法,如7) 函数图像的对称性: 1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线2 a b x +=对称; 2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a 对称; 3、若函数y=f(x)满足f(a+x)+f(b-x)=c ,则y=f(x)的图像关于点,2 2a b c +?? ??? 成中心对称图形; 4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a-x,2b-y)=0; 5、形如()0,ax b y c ad bc cx d += ≠≠+的图像是双曲线,由常数分离法 d ad ad a x b b a c c c y d d c c x c x c c ??+-+-+ ???==+????++ ? ???? ?知:对称中心是点,d a c c ??- ???; 6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线2b a x -=对称; 7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。 一、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f(1+sinx)=2+sinx+cos 2x , 求f(x) ()()()()()()()1 1 11212112()() 11 f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++

求抽象函数解析式的几种方法及适用范围

求抽象函数解析式的几种方法及适用范围 Last revised by LE LE in 2021

求函数的解析式的几种方法 一: 方法名称:配凑法 适用范围:已知f(g(x))的解析式,求f(h(x))的解析式 方法步骤:1把f(g(x))内的g(x)当做整体,在解析式的右端整理成只含有 g(x)的形式 2再把g(x)用h(x)代替 例: 的解析式。 已知求的解析式。 已知f(x+1)=x-3,求f(x)的解析式。 已知,求的解析式。 二: 方法名称:换元法 适用范围:已知f(g(x))的解析式,求f(h(x))的解析式 方法步骤:1先把形如f(g(x))内的g(x)设为t(换元后要确定新元t的取值范围) 2在用一个只含有t的式子把x表示出来 3然后把这个式子在解析式的右端的x中,使右边只含有t 4再把t用h(x)代替。 例题: 已知求的解析式。 已知f()=x2+5x,则f(x)的解析式。 三 方法名称:待定系数法 适用范围:已知对应法则f(x)的函数模型(如一次函数,二次函数等)

方法步骤:1先设出函数解析式(如f(x)=ax+b) 2把解析式的左端用这个函数模型表示出来 4求出函数模型的系数 例: 四 方法名称:方程组法 适用范围:一般等号左边有两个抽象函数(如f(x),f(-x))。等号右边也含有变量x。 方法步骤:将左边的两个抽象函数看成两个变量。变换变量构造一个方程,与原方程组成一个方程组,利用消元法求f(x)的解析式 例: 设f(x)满足关系式,求函数的解析式. 五: 方法名称:赋值法 适用范围:一般包含一句话“对任意实数满足” 方法步骤:一般的,已知一个关于x,y的抽象函数,利用特殊值去掉一个未知数x或者y,得出关于x或者y的解析式。 例:

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴) (1 )(x f x f = - 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数 (4)f(x)·f(2x-x 2 )=f[x+(2x-x 2 )]=f(-x 2 +3x)又1=f(0), f(x)在R 上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0

知识讲解_指数函数及其性质_基础

指数函数及其性质 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域; 2.掌握指数函数图象: (1)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质; (2)掌握底数对指数函数图象的影响; (3)从图象上体会指数增长与直线上升的区别. 3.学会利用指数函数单调性来比较大小,包括较为复杂的含字母讨论的类型; 4.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 5.通过对指数函数的研究,要认识到数学的应用价值,更善于从现实生活中发现问题,解决问题. 【要点梳理】 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>??≤??x x 时,a 恒等于, 时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释:

(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1 x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1) ① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1, a a a a ?-+=?>≠?且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断;

抽象函数常见解法及意义总结

含有函数记号“ ()f x ”有关问题解法 由于函数概念比较抽象,学生对解有关函数记号 ()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地 掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出 ()f x ,这也是证某些公式或等式常用的方法,此法解培养学生 的灵活性及变形能力。 例1:已知 ( )211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴ 2()1x f x x -= - 2.凑合法:在已知 (())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁, 还能进一步复习代换法。 例2:已知 33 11()f x x x x +=+,求 ()f x 解:∵ 22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11 ||||1|| x x x x +=+≥ ∴ 23()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设 ()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22 222()24ax bx a c x x +++=++比较系数得2()4 1321 ,1,2222 a c a a b c b +=??=?===??=? ∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵ ()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵ ()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0 x x f x x x +≥?=?--

函数的基本性质(考点加经典例题分析)

函数的基本性质(考点加经典例题分析)

函数的基本性质 函数的三个基本性质:单调性,奇偶性,周期性 一、单调性 1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值2 1 ,x x ,当 2 1x x <时,都有))()()(()(2 1 2 1 x f x f x f x f ><或,那么就 说函数)(x f y =在这个区间上是增(或减)函数。 2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。) 3.二次函数的单调性:对函数c bx ax x f ++=2 )() 0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2-=的左侧单调减小,右侧单调增加; 当0

6.函数的单调性的应用: 判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。 例4:求函数12-=x y 在区间]6,2[上的最大值和最小值. 二、奇偶性 1.定义: 如果对于f(x)定义域内的任意一个x,都有)()(x f x f =-,那么函数f(x)就叫偶函数; (等价于:0)()()()(=--?=-x f x f x f x f ) 如果对于f(x)定义域内的任意一个x,都有)()(x f x f -=-,那么函数f(x)就叫奇函数。 (等价于:0)()()()(=+-?-=-x f x f x f x f ) 注意:当0)(≠x f 时,也可用1)()(±=-x f x f 来判断。 2.奇、偶函数的必要条件:函数的定义域在数轴上所示的区间关于原点对 称。 若函数)(x f 为奇函数,且在x=0处有定义,则0)0(=f ; 3.判断一个函数的奇偶性的步骤

抽象函数是指函数的三种表示法(经典)

抽象函数是指函数的三种表示法:列表法、图象法、解析法均未给出,只给出函数记号f(x)的一类函数.这类函数解决起来较抽象,但却能有效地反映学生对知识的掌握、理解、应用及迁移的能力,对培养、提高学生的发散思维和创造思维等能力有很好的促进作用。因此,这类问题在高中数学的各类考试中经常出现。下面谈谈这类问题常见的几种解法: 一、赋值法 先以特殊值作尝试,在探索中发现题中条件遵循某些规律或特点,从而使问题得以解决。这类问题经常出现,要认真理解其解题的要领和方法。 例1设函数f(x)的定义域为自然数集,若f(x+y) = f(x)+f(y)+x 对任意自然数x,y恒成立,且f(1) = 1,求f(x)的解析式。 分析:当令y=1时,可得f(x+1)=f(x)+x+1,这相似于数列中的递推关系,再利用相应的递推关系可求出函数的解析式。 解:令y = 1, 则f(x+1) = f(x)+f(1)+x = f(x)+x+1, ∴ f(1) = 1 f(2)= f(1) +2 f(3) = f(2) +3 … f(n) = f(n-1) +n 各式相加得:f(n) = 1+2+3+…+n = ∴ f(x) = 例2已知函数f(x)满足f(x+y)+f(x-y) = 2 f(x) · f(y),x∈R, y∈R,且f(0)≠0,求证:f(x)是偶函数。 分析: 当令 x=y=0时,可得f(0)=1,再利用题中条件变形求解。 证明:令x = y = 0 ∴ f(0) +f(0) = 2f 2 (0) ∵ f(0) ≠ 0, ∴ f(0) = 1 令 x = 0 , 则 f(y) + f(-y) = 2f(0) · f(y) ∴ f(-y) = f(y), ∵ y∈R, ∴ f(x)是偶函数 例3 已知函数f(x)的定义域为(0 , + ∞ ),对任意x > 0, y> 0 恒有f(xy) = f(x) + f(y) 求证:当x > 0时, f( ) = -f(x) 分析:当令x=y=1时,可得f(1)=0,再灵活运用f(1)=f(x·)可求得。 证明:令x = y = 1,则f(1) = f(1) + f(1),∴ f(1) = 0 又令y = ,x > 0,则 f(1) = f(x) + f( ) ∴ f(x) + f( ) = 0 即f( ) = -f(x) 二定义法 在熟练掌握函数的定义、性质的基础上,对题中抽象函数给出的条件进行分析研究,运用定义、性质进行化简、变形,寻找解决问题的方法。 例4函数f(2x)的定义域是[-1,1],则f(x)定义域为 x)定义域为___________ f(log 2

高中数学最全必修一函数性质详解及知识点总结及题型详解

(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解 分析 一、函数的概念与表示 1、映射:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射 集合A ,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:(x,y)→(x 2+y 2,xy),求象(5,2)的原象. 3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11 -x ,则集合A 中的元素最多有几个?写出元素最多时的集合A. 2、函数。构成函数概念的三要素 ①定义域②对应法则③值域 函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知221 )1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式

五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过 解方程组求得函数解析式。例5 设,)1 (2)()(x x f x f x f =-满足求)(x f 例6 设)(x f 为偶函数,)(x g 为奇函数,又,1 1 )()(-= +x x g x f 试求)()(x g x f 和的解析式 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f 七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。 例8 设)(x f 是+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求 )(x f 1、求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3 2(1) ()x 已知f 的定义域是[-2,5],求f(2x+3)的定义域。 (2) (21)x x 已知f -的定义域是[-1,3],求f()的定义域 1求函数值域的方法 ①直接法:从自变量x 的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; ③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式; ④分离常数:适合分子分母皆为一次式(x 有范围限制时要画图); ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数

高中数学抽象函数专题含答案-教师版

抽象函数周期性的探究(教师版) 抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难,所以特探究一下抽象函数的周期性问题. 利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期. (2)函数y=f(x)满足f(x+a)= 1 () f x ,则f(x)是周期函数,且2a是它的一个周期. (3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期. : 命题2:若a、b(a b )是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期. (2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期. 命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a是它的一个周期. (2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a是它的一个周期. 【 我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基本类似. 设条件A: 定义在R上的函数f(x)是一个偶函数. 条件B: f(x)关于x=a对称 条件C: f(x)是周期函数,且2a是其一个周期. 结论: 已知其中的任两个条件可推出剩余一个. 证明: ①已知A、B→ C (2001年全国高考第22题第二问) ∵f(x)是R上的偶函数∴f(-x)=f(x) 又∵f(x)关于x=a对称∴f(-x)=f(x+2a) ) ∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期

函数的性质综合应用

一、选择题 1.(2016·广西桂林中学高一期中上)下列函数中,既是单调函数又是奇函数的是( ) A .y =log 3x B .y =3|x | C .y =x 1 2 D .y =x 3 2.(2016·荆州模拟)已知f (x )是定义在R 上的周期为2的奇函数,当x ∈(0,1)时,f (x )=3x -1,则f ????2 0152等于( ) +1 -1 C .-3-1 D .-3+1 3.(2016·西安模拟)设f (x )是定义在实数集上的函数,且f (2-x )=f (x ),若当x ≥1时,f (x )=ln x ,则有( ) A .f ????130的解集为( )

A .{x |x >2或x <-2} B .{x |-24} D .{x |0

抽象函数问题分类解析

抽象函数问题分类解析 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难.但由于此类试题即能考查函数的概念和性质,又能考查学生的思维能力,所以备受命题者的青睐,那么,怎样求解抽象函数问题呢,我们可以利用特殊模型法,函数性质法,特殊化方法,联想类比转化法,等多种方法从多角度,多层面去分析研究抽象函数问题, 一:函数性质法 函数的特征是通过其性质(如奇偶性,单调性周期性,特殊点等)反应出来的,抽象函数也是如此,只有充分挖掘和利用题设条件和隐含的性质,灵活进行等价转化,抽象函数问题才能转化,化难为易,常用的解题方法有:1,利用奇偶性整体思考;2,利用单调性等价转化;3,利用周期性回归已知4;利用对称性数形结合;5,借助特殊点,布列方程等. 二:特殊化方法 1在求解函数解析式或研究函数性质时,一般用代换的方法,将x 换成-x 或将x 换成等 2在求函数值时,可用特殊值代入 3研究抽象函数的具体模型,用具体模型解选择题,填空题,或由具体模型函数对综合题,的解答提供思路和方法. (1)、线性函数型抽象函数f (x )=kx (k ≠0)-------f (x ±y )=f (x )±f (y ) (2)、二次函数型抽象函数m a x k x f +-=2 )()(——— )()(x a f x a f -=+ (3)、指数函数型的抽象函数 f (x )=a x ------ f (x +y )=f (x )f (y );f (x -y )=) () (y f x f (4)、对数函数型的抽象函数 f (x )=lo g a x (a >0且a ≠1)-----f (x ·y )=f (x )+f (y );f ( y x )= f (x )-f (y ) 三:例题分析 1. 求定义域 这类问题只要紧紧抓住:将函数f g x [()]中的g x ()看作一个整体,相当于f x ()中的x 这一特性,问题就会迎刃而解。 例1. 函数y f x =()的定义域为(]-∞,1,则函数y f x =-[log ()]222的定义域是___。 分析:因为log ()22x 2-相当于f x ()中的x ,所以log ()2221x -≤,解得 22<≤x 或-≤<-22x 。 例2. 已知f x ()的定义域为(0),1,则y f x a f x a a =++-≤()()(||)1 2 的定义域是______。 分析:因为x a +及x a -均相当于f x ()中的x ,所以 010111<+<<-

求抽象函数表达式常见五种方法

求抽象函数表达式常见五种方法 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法 解培养学生的灵活性及变形能力。 例1:已知 ()211 x f x x =++,求()f x . 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。 例2:已知3311()f x x x x +=+,求()f x 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知 ()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 例5.一已知 ()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 5.赋值法:给自变量取特殊值,从而发现规律,求出()f x 的表达式 例6:设()f x 的定义域为自然数集,且满足条件(1)()()f x f x f y xy +=++,及(1)f =1,求()f x

参考答案: 例1:解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x -=- 例2:解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11 ||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1) 例3.解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22222()24ax bx a c x x +++=++比较系数得2()4 1321,1,22 22a c a a b c b +=??=?===??=?∴ 21 3 ()22f x x x =++ 例4.解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0 x x f x x x +≥?=?--

高中数学函数的解析式和抽象函数定义域练习题

1、分段函数已知???>-≤+=) 0(2)0(1)(2x x x x x f 则 (1)若=)(x f 10,则x= ;(2))(x f 的值域为 _____. 2、画出下列函数的图象(请使用直尺) (1) Z x x y ∈-=,22且 2≤x (2) x x y -=2 3、动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A , 试写出线段AP 的长度y 与P 点的行路程x 之间的函数关系式。 4、根据下列条件分别求出函数)(x f 的解析式 观察法(1)221)1(x x x x f +=+ 方程组法x x f x f 3)1(2)()2(=+ D P C P A P B

换元法(3)13)2(2++=-x x x f 待定系数法 (4)已知()x f 是一次函数,且满足()()1721213+=--+x x f x f ,求()x f 。 (复合函数的解析式)---代入法 (5)已知1)(2-=x x f ,1)(+=x x g ,求)]([x g f ]和)]([x f g 的解析式。 5、抽象函数的定义域的求解 1、若函数)(x f 的定义域为]2,1[-,则函数)1(-x f 的定义域为 。 2、若函数)1(2-x f 的定义域为]2,1[-,则函数)1(+x f 的定义域为 。 练习:1、若x x x f 2)1(+=+,求)(x f 。 2、函数)(x f 满足条件10)()(+-=x xf x f ,求)(x f 的解析式。 3、已知)(x f 是二次函数,且满足()10=f ,()()x x f x f 21=-+,求()x f 的表达式。 4、若()32+=x x f ,)()2(x f x g =+,求函数)(x g 的解析式 5、已知二次函数()h x 与x 轴的两交点为(2,0)-,(3,0),且(0)3h =-,求()h x ;

相关主题
文本预览
相关文档 最新文档