当前位置:文档之家› 面板数据建模步骤

面板数据建模步骤

面板数据建模步骤
面板数据建模步骤

面板数据建模步骤

步骤一:分析数据的平稳性(单位根检验)

按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。

单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et

al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。

由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。

其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square 统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统计量、Breitung t统计量的原假设为存在普通的单位根过程,lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程,Hadri Z统计量的检验原假设为不存在普通的单位根过程。

有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验LLC(Levin-Lin-Chu)检验和不同根单位根检验Fisher-ADF 检验(注:对普通序列(非面板序列)的单位根检验方法则常用ADF 检验),如果在两种检验中均拒绝存在单位根的原假设则我们说此序列是平稳的,反之则不平稳。

如果我们以T(trend)代表序列含趋势项,以I(intercept)代表序列含截距项,T&I代表两项都含,N(none)代表两项都不含,那么我们可以基于前面时序图得出的结论,在单位根检验中选择相应

检验模式。

但基于时序图得出的结论毕竟是粗略的,严格来说,那些检验结构均需一一检验。具体操作可以参照李子奈的说法:ADF检验是通过三个模型来完成,首先从含有截距和趋势项的模型开始,再检验只含截距项的模型,最后检验二者都不含的模型。并且认为,只有三个模型的检验结果都不能拒绝原假设时,我们才认为时间序列是非平稳的,而只要其中有一个模型的检验结果拒绝了零假设,就可认为时间序列是平稳的。

此外,单位根检验一般是先从水平(level)序列开始检验起,如果存在单位根,则对该序列进行一阶差分后继续检验,若仍存在单位根,则进行二阶甚至高阶差分后检验,直至序列平稳为止。我们记I(0)为零阶单整,I(1)为一阶单整,依次类推,I(N)为N阶单整。

步骤二:协整检验或模型修正

情况一:如果基于单位根检验的结果发现变量之间是同阶单整的,那么我们可以进行协整检验。协整检验是考察变量间长期均衡关系的方法。所谓的协整是指若两个或多个非平稳的变量序列,其某个线性组合后的序列呈平稳性。此时我们称这些变量序列间有协整关系存在。因此协整的要求或前提是同阶单整。

但也有如下的宽限说法:如果变量个数多于两个,即解释变量个数多于一个,被解释变量的单整阶数不能高于任何一个解释变量的单整阶数。另当解释变量的单整阶数高于被解释变量的单整阶数时,则必须至少有两个解释变量的单整阶数高于被解释变量的单整阶数。如果只

含有两个解释变量,则两个变量的单整阶数应该相同。

也就是说,单整阶数不同的两个或以上的非平稳序列如果一起进行协整检验,必然有某些低阶单整的,即波动相对高阶序列的波动甚微弱(有可能波动幅度也不同)的序列,对协整结果的影响不大,因此包不包含的重要性不大。而相对处于最高阶序列,由于其波动较大,对回归残差的平稳性带来极大的影响,所以如果协整是包含有某些高阶单整序列的话(但如果所有变量都是阶数相同的高阶,此时也被称作同阶单整,这样的话另当别论),一定不能将其纳入协整检验。

协整检验方法的文献综述:(1)Kao(1999)、Kao and Chiang(2000)利用推广的DF和ADF检验提出了检验面板协整的方法,这种方法零假设是没有协整关系,并且利用静态面板回归的残差来构建统计量。

(2)Pedron(1999)在零假设是在动态多元面板回归中没有协整关系的条件下给出了七种基于残差的面板协整检验方法。和Kao的方法不同的是,Pedroni的检验方法允许异质面板的存在。(3)Larsson et al(2001)发展了基于Johansen(1995)向量自回归的似然检验的面板协整检验方法,这种检验的方法是检验变量存在共同的协整的秩。

我们主要采用的是Pedroni、Kao、Johansen的方法。

通过了协整检验,说明变量之间存在着长期稳定的均衡关系,其方程回归残差是平稳的。因此可以在此基础上直接对原方程进行回归,此时的回归结果是较精确的。

这时,我们或许还想进一步对面板数据做格兰杰因果检验(因果检验的前提是变量协整)。但如果变量之间不是协整(即非同阶单整)的

话,是不能进行格兰杰因果检验的,不过此时可以先对数据进行处理。引用张晓峒的原话,“如果y和x不同阶,不能做格兰杰因果检验,但可通过差分序列或其他处理得到同阶单整序列,并且要看它们此时有无经济意义。”

下面简要介绍一下因果检验的含义:这里的因果关系是从统计角度而言的,即是通过概率或者分布函数的角度体现出来的:在所有其它事件的发生情况固定不变的条件下,如果一个事件X的发生与不发生对于另一个事件Y的发生的概率(如果通过事件定义了随机变量那么也可以说分布函数)有影响,并且这两个事件在时间上又有先后顺序(A 前B后),那么我们便可以说X是Y的原因。考虑最简单的形式,Granger检验是运用F-统计量来检验X的滞后值是否显著影响Y(在统计的意义下,且已经综合考虑了Y的滞后值;如果影响不显著,那么称X不是Y的“Granger原因”(Granger cause);如果影响显著,那么称X是Y的“Granger原因”。同样,这也可以用于检验Y是X的“原因”,检验Y的滞后值是否影响X(已经考虑了X的滞后对X自身的影响)。

Eviews好像没有在POOL窗口中提供Granger causality test,而只有unit root test和cointegration test。说明Eviews是无法对面板数据序列做格兰杰检验的,格兰杰检验只能针对序列组做。也就是说格兰杰因果检验在Eviews中是针对普通的序列对(pairwise)而言的。你如果想对面板数据中的某些合成序列做因果检验的话,不妨先导出相关序列到一个组中(POOL窗口中的Proc/Make Group),再来试试。

情况二:如果如果基于单位根检验的结果发现变量之间是非同阶单整的,即面板数据中有些序列平稳而有些序列不平稳,此时不能进行协整检验与直接对原序列进行回归。但此时也不要着急,我们可以在保持变量经济意义的前提下,对我们前面提出的模型进行修正,以消除数据不平稳对回归造成的不利影响。如差分某些序列,将基于时间频度的绝对数据变成时间频度下的变动数据或增长率数据。此时的研究转向新的模型,但要保证模型具有经济意义。因此一般不要对原序列进行二阶差分,因为对变动数据或增长率数据再进行差分,我们不好对其冠以经济解释。难道你称其为变动率的变动率?

步骤三:面板模型的选择与回归

面板数据模型的选择通常有三种形式:

一种是混合估计模型(Pooled Regression Model)。如果从时间上看,不同个体之间不存在显著性差异;从截面上看,不同截面之间也不存在显著性差异,那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS)估计参数。

一种是固定效应模型(Fixed Effects Regression Model)。如果对于不同的截面或不同的时间序列,模型的截距不同,则可以采用在模型中添加虚拟变量的方法估计回归参数。

一种是随机效应模型(Random Effects Regression Model)。如果固定效应模型中的截距项包括了截面随机误差项和时间随机误差项的平均效应,并且这两个随机误差项都服从正态分布,则固定效应模型就变成了随机效应模型。

在面板数据模型形式的选择方法上,我们经常采用F检验决定选用混合模型还是固定效应模型,然后用Hausman检验确定应该建立随机效应模型还是固定效应模型。

检验完毕后,我们也就知道该选用哪种模型了,然后我们就开始回归:在回归的时候,权数可以选择按截面加权(cross-section weights)的方式,对于横截面个数大于时序个数的情况更应如此,表示允许不同的截面存在异方差现象。估计方法采用PCSE(Panel Corrected Standard Errors,面板校正标准误)方法。Beck和Katz(1995)引入的PCSE估计方法是面板数据模型估计方法的一个创新,可以有效的处理复杂的面板误差结构,如同步相关,异方差,序列相关等,在样本量不够大时尤为有用。

第3讲MATLAB数据建模方法(上)常用方法

第3讲MATLAB数据建模方法(上):常用方法 作者:卓金武, MathWorks 中国 以数据为基础而建立数学模型的方法称为数据建模方法,包括回归、统计、机器学习、深度学习、灰色预测、主成分分析、神经网络、时间序列分析等方法,其中最常用的方法还是回归方法。本讲主要介绍在数学建模中常用几种回归方法的MATLAB实现过程。 根据回归方法中因变量的个数和回归函数的类型(线性或非线性)可将回归方法分为:一元线性、一元非线性、多元回归。另外还有两种特殊的回归方式,一种在回归过程中可以调整变量数的回归方法,称为逐步回归,另一种是以指数结构函数作为回归模型的回归方法,称为Logistic回归。本讲将逐一介绍这几个回归方法。 3.1 一元回归 3.1.1 一元线性回归 【例3-1】近10年来,某市社会商品零售总额与职工工资总额(单位:亿元)的数据见表3-1,请建立社会商品零售总额与职工工资总额数据的回归模型。 表3-1 商品零售总额与职工工资总额 回归方法建立他们之间的回归模型了,具体实现的MATLAB代码如下: (1)输入数据 (2)采用最小二乘回归

据的散点图,这样就可以从图形上判断这些数据是否近似成线性关系。当发现它们的确近似在一条线上后,再用线性回归的方法进行回归,这样也更符合我们分析数据的一般思路。 图3-1 职工工资总额和商品零售总额关系趋势图 (3)采用LinearModel.fit函数进行线性回归 运行结果如下: (4)采用regress函数进行回归

运行结果如下: 只要根据自己的需要选用一种就可以了。函数LinearModel.fit 输出的内容为典型的线性回归的参数。关于regress ,其用法多样,MATLAB 帮助中关于regress 的用法,有以下几种: b = regress(y,X) [b,bint] = regress(y,X) [b,bint,r] = regress(y,X) [b,bint,r,rint] = regress(y,X) [b,bint,r,rint,stats] = regress(y,X) [...] = regress(y,X,alpha) 输入y (因变量,列向量),X (1与自变量组成的矩阵)和(alpha ,是显著性水平, 缺省时默认0.05)。 输出01 ??(,)b ββ=,bint 是01ββ,的置信区间,r 是残差(列向量),rint 是残差的置信区间,s 包含4个统计量:决定系数2R (相关系数为R ),F 值,F(1,n-2)分布大于F 值的概率p ,剩余方差2s 的值。2s 也可由程序sum(r.^2)/(n-2)计算。其意义和用法如下:2R 的值越接近1,变量的线性相关性越强,说明模型有效;如果满足1(1,2)F n F α--<,则认为变量y 与x 显著地有线性关系,其中1(1,2)F n α--的值可查F 分布表,或直接用MATLAB 命令finv(1-α,1, n-2)计算得到;如果p α<表示线性模型可用。这三个值可以相互印证。2s 的值主要用来比较模型是否有改进,其值越小说明模型精度越高。 3.1.2 一元非线性回归 在一些实际问题中,变量间的关系并不都是线性的,此时就应该用非线性回归。用用非线性回归首先要解决的问题是回归方程中的参数如何估计。下面通过一个实例来说明如何利用非线性回归技术解决实例的问题。 【例3-2】 为了解百货商店销售额x 与流通率(这是反映商业活动的一个质量指标,指每元商品流转额所分摊的流通费用)y 之间的关系,收集了九个商店的有关数据(见表3-2)。请建立它们关系的数学模型。 表3-2 销售额与流通费率数据

数据库建模经验总结

数据库如何建模 笔者从98年进入数据库及数据仓库领域工作至今已经有近八年的时间,对数据建模工作接触的比较多,创新性不敢谈,本文只是将工作中的经验总结出来,供大家一同探讨和指正。 提起数据建模来,有一点是首先要强调的,数据建模师和DBA有着较大的不同,对数据建模师来说,对业务的深刻理解是第一位的,不同的建模方法和技巧是为业务需求来服务的。而本文则暂时抛开业务不谈,主要关注于建模方法和技巧的经验总结。 从目前的数据库及数据仓库建模方法来说,主要分为四类。 第一类是大家最为熟悉的关系数据库的三范式建模,通常我们将三范式建模方法用于建立各种操作型数据库系统。 第二类是Inmon提倡的三范式数据仓库建模,它和操作型数据库系统的三范式建模在侧重点上有些不同。Inmon的数据仓库建模方法分为三层,第一层是实体关系层,也即企业的业务数据模型层,在这一层上和企业的操作型数据库系统建模方法是相同的;第二层是数据项集层,在这一层的建模方法根据数据的产生频率及访问频率等因素与企业的操作型数据库系统的建模方法产生了不同;第三层物理层是第二层的具体实现。 第三类是Kimball提倡的数据仓库的维度建模,我们一般也称之为星型结构建模,有时也加入一些雪花模型在里面。维度建模是一种面向用户需求的、容易理解的、访问效率高的建模方法,也是笔者比较喜欢的一种建模方式。 第四类是更为灵活的一种建模方式,通常用于后台的数据准备区,建模的方式不拘一格,以能满足需要为目的,建好的表不对用户提供接口,多为临时表。

下面简单谈谈第四类建模方法的一些的经验。 数据准备区有一个最大的特点,就是不会直接面对用户,所以对数据准备区中的表进行操作的人只有ETL工程师。ETL工程师可以自己来决定表中数据的范围和数据的生命周期。下面举两个例子: 1)数据范围小的临时表 当需要整合或清洗的数据量过大时,我们可以建立同样结构的临时表,在临时表中只保留我们需要处理的部分数据。这样,不论是更新还是对表中某些项的计算都会效率提高很多。处理好的数据发送入准备加载到数据仓库中的表中,最后一次性加载入数据仓库。 2)带有冗余字段的临时表 由于数据准备区中的表只有自己使用,所以建立冗余字段可以起到很好的作用而不用承担风险。 举例来说,笔者在项目中曾遇到这样的需求,客户表{客户ID,客户净扣值},债项表{债项ID,客户ID,债项余额,债项净扣值},即客户和债项是一对多的关系。其中,客户净扣值和债项余额已知,需要计算债项净扣值。计算的规则是按债项余额的比例分配客户的净扣值。这时,我们可以给两个表增加几个冗余字段,如客户表{客户ID,客户净扣值,客户余额},债项表{债项ID,客户ID,债项余额,债项净扣值,客户余额,客户净扣值}。这样通过三条SQL就可以直接完成整个计算过程。将债项余额汇总到客户余额,将客户余额和客户净扣值冗余到债项表中,在债项表中通过(债项余额×客户净扣值/客户余额)公式即可直接计算处债项净扣值。

单面板和双面板制作流程

概述PCB(Printed Circuit Board),中文名称为印制线路板,简称印制板,是电子工业的重要部件之一。几乎每种电子设备,小到电子手表、计算器,大到计算机,通讯电子设备,军用武器系统,只要有集成电路等电子元器件,为了它们之间的电气互连,都要使用印制板。在较大型的电子产品研究过程中,最基本的成功因素是该产品的印制板的设计、文件编制和制造。印制板的设计和制造质量直接影响到整个产品的质量和成本,甚至导致商业竞争的成败。 印制电路在电子设备中提供如下功能: 提供集成电路等各种电子元器件固定、装配的机械支撑。 实现集成电路等各种电子元器件之间的布线和电气连接或电绝缘。 提供所要求的电气特性,如特性阻抗等。 为自动焊锡提供阻焊图形,为元件插装、检查、维修提供识别字符和图形。 有关印制板的一些基本术语 在绝缘基材上,按预定设计,制成印制线路、印制元件或由两者结合而成的导电图形,称为印制电路。 在绝缘基材上,提供元、器件之间电气连接的导电图形,称为印制线路。它不包括印制元件。 印制电路或者印制线路的成品板称为印制电路板或者印制线路板,亦称印制板。 印制板按照所用基材是刚性还是挠性可分成为两大类:刚性印制板和挠性印制板。今年来已出现了刚性-----挠性结合的印制板。按照导体图形的层数可以分为单面、双面和多层印制板。 导体图形的整个外表面与基材表面位于同一平面上的印制板,称为平面印板。 有关印制电路板的名词术语和定义,详见国家标准GB/T2036-94“印制电路术语”。 电子设备采用印制板后,由于同类印制板的一致性,从而避免了人工接线的差错,并可实现电子元器件自动插装或贴装、自动焊锡、自动检测,保证了电子设备的质量,提

大数据与建模

大数据与建模 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

1、SQL用于访问和处理数据库的标准的计算机语言。用来访问和操作数据库系统。SQL语句用于取回和更新数据库中的数据。SQL可与数据库程序系统工作。比如MS Access,DB2,Infermix,MS SQL Server,Oracle,Sybase以及其他数据库系统。SQL可以面向数据库执行查询,从数据库取回数据,在数据库中插入新的记录,更新数据库中的数据,从数据库删除记录,创建新数据库,在数据库中创建新表,在数据库中创建存储过程,在数据库中创建视图和设置表、存储过程和视图的权限等。 2、Hadoop是一个能够对大量数据进行分布式处理的软件框架。但是Hadoop是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop是可好的,因为他假设计算单元和存户会失败,因此他维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop是高效的,因为他以并行的方式工作,通过并行处理加快处理速度。Hadoop还是可伸缩的,能够处理PB级数据。此外,Hadoop

依赖于社区服务器,因此他的成本较低,任何人都可以使用。 3、HPCC(high performance computinggand communications)高性能计算与通信的缩写。1993年,由美国科学、工程技术联邦协调理事会向国会提交了“重大挑战项目”高性能计算与通信的报告,也就是被称为HPCC计划的报告,及美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。 4、Strom是自由的开源软件,一个分布式的、容错的实时计算系统。Strom可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量出具,Strom很简单,支持许多种编程语言,使用起来非常有趣。Strom由Twitter开元而来,其他知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、Admaster等等。Strom有许多应用领域:实时分析、在线机器学习、不停顿的计算,分布式RPC(员过程调用协议,一种通过网络

CAESAR ii 数据输入及建模

第一部分支架形式模拟 (2) 1.0 普通支架的模拟 (2) 1.1 U-band (2) 1.2 承重支架 (3) 1.3 导向支架 (3) 1.4 限位支架 (7) 1.5 固定支架 (7) 1.6 吊架 (8) 1.7 水平拉杆 (8) 1.8 弹簧支架模拟 (9) 2.0 附塔管道支架的模拟 (11) 3.0弯头上支架 (13) 4.0 液压阻尼器 (14) 5.0 CAESARII可模拟虾米弯,但变径虾米弯不能模拟 (15) 第二部分管件的模拟 (15) 1.0 法兰和阀门的模拟 (15) 2.0 大小头模拟 (17) 3.0 安全阀的模拟 (18) 4.0 弯头的模拟 (19) 5.0 支管连接形式 (20) 6.0 膨胀节的模拟 (21) 6.1 大拉杆横向型膨胀节 (22) 6.2 铰链型膨胀节 (34) 第三部分设备模拟 (42) 1.0 塔 (42) 1.1 板式塔的模拟 (42) 1.2 填料塔的模拟 (44) 1.3 除了模拟塔体的温度,还需模拟塔裙座的温度 (47) 2.0 换热器,再沸器 (48) 2.1 换热器模拟也分两种情况 (48)

3.0 板式换热器 (51) 4.0 空冷器 (52) 4.1 空冷器进口管道和出口管道不在同一侧 (52) 4.2 空冷器进口管道和出口管道在同一侧 (54) 5.0 泵 (56) 6.0 压缩机,透平 (58) 第四部分管口校核 (59) 1.0 WRC107 (59) 2.0 Nema 23 (62) 3.0 API617 (64) 4.0 API610 (65) 第五部分工况组合 (68) 1.0 地震 (69) 2.0 风载 (70) 3.0 安全阀起跳工况 (72) 4.0 沉降 (74) 第一部分支架形式模拟 1.0 普通支架的模拟 1.1 U-band

【数据分析技术系列】之用户画像数据建模方法

【数据分析技术系列】 之用户画像数据建模方法 目录 一、什么是用户画像? (1) 二、为什么需要用户画像 (1) 三、如何构建用户画像 (2) 3.1数据源分析 (2) 静态信息数据 (3) 动态信息数据 (3) 3.2目标分析 (3) 3.3数据建模方法 (4) 四、总结: (6)

从1991年Tim Berners-Lee发明了万维网(World Wide Web)开始到2011年,互联网真正走向了一个新的里程碑,进入了“大数据时代”。经历了12、13两年热炒之后,人们逐渐冷静下来,更加聚焦于如何利用大数据挖掘潜在的商业价值,如何在企业中实实在在的应用大数据技术。伴随着大数据应用的讨论、创新,个性化技术成为了一个重要落地点。相比传统的线下会员管理、问卷调查、购物篮分析,大数据第一次使得企业能够通过互联网便利地获取用户更为广泛的反馈信息,为进一步精准、快速地分析用户行为习惯、消费习惯等重要商业信息,提供了足够的数据基础。伴随着对人的了解逐步深入,一个概念悄然而生:用户画像(UserProfile),完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。 一、什么是用户画像? 男,31岁,已婚,收入1万以上,爱美食,团购达人,喜欢红酒配香烟。 这样一串描述即为用户画像的典型案例。如果用一句话来描述,即:用户信息标签化。 如果用一幅图来展现,即: 二、为什么需要用户画像 用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜

欢红酒的人群中,男、女比例是多少?也可以做数据挖掘工作:利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌?利用聚类算法分析,喜欢红酒的人年龄段分布情况? 大数据处理,离不开计算机的运算,标签提供了一种便捷的方式,使得计算机能够程序化处理与人相关的信息,甚至通过算法、模型能够“理解” 人。当计算机具备这样的能力后,无论是搜索引擎、推荐引擎、广告投放等各种应用领域,都将能进一步提升精准度,提高信息获取的效率。 三、如何构建用户画像 一个标签通常是人为规定的高度精炼的特征标识,如年龄段标签:25~35岁,地域标签:北京,标签呈现出两个重要特征:语义化,人能很方便地理解每个标签含义。这也使得用户画像模型具备实际意义。能够较好的满足业务需求。如,判断用户偏好。短文本,每个标签通常只表示一种含义,标签本身无需再做过多文本分析等预处理工作,这为利用机器提取标准化信息提供了便利。 人制定标签规则,并能够通过标签快速读出其中的信息,机器方便做标签提取、聚合分析。所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。 3.1 数据源分析 构建用户画像是为了还原用户信息,因此数据来源于:所有用户相关的数据。 对于用户相关数据的分类,引入一种重要的分类思想:封闭性的分类方式。如,世界上分为两种人,一种是学英语的人,一种是不学英语的人;客户分三类,高价值客户,中价值客户,低价值客户;产品生命周期分为,投入期、成长期、成熟期、衰退期…所有的子分类将构成了类目空间的全部集合。 这样的分类方式,有助于后续不断枚举并迭代补充遗漏的信息维度。不必担心架构上对每一层分类没有考虑完整,造成维度遗漏留下扩展性隐患。另外,不同的分类方式根据应用场景,业务需求的不同,也许各有道理,按需划分即可。 本文将用户数据划分为静态信息数据、动态信息数据两大类。

最新CAESARii数据输入及建模要点

第一部分支架形式模拟 (3) 1 1.0 普通支架的模拟 (3) 2 1.1 U-band (3) 3 1.2 承重支架 (5) 4 1.3 导向支架 (5) 5 1.4 限位支架 (8) 6 1.5 固定支架 (9) 7 1.6 吊架 (9) 8 1.7 水平拉杆 (10) 9 1.8 弹簧支架模拟 (11) 10 2.0 附塔管道支架的模拟 (15) 11 3.0 弯头上支架 (18) 12 4.0 液压阻尼器 (20) 13 5.0 CAESARII可模拟虾米弯,但变径虾米弯不能模拟 (21) 14 第二部分管件的模拟 (21) 15 1.0 法兰和阀门的模拟 (21) 16 2.0 大小头模拟 (23) 17 1.

3.0 安全阀的模拟 (25) 18 4.0 弯头的模拟 (25) 19 5.0 支管连接形式 (27) 20 6.0 膨胀节的模拟 (29) 21 6.1 大拉杆横向型膨胀节 (30) 22 6.2 铰链型膨胀节 (45) 23 第三部分设备模拟 (56) 24 1.0 塔 (56) 25 1.1 板式塔的模拟 (57) 26 1.2 填料塔的模拟 (58) 27 1.3 除了模拟塔体的温度,还需模拟塔裙座的温度 (61) 28 2.0 换热器,再沸器 (62) 29 2.1 换热器模拟也分两种情况 (62) 30 3.0 板式换热器 (65) 31 4.0 空冷器 (67) 32 4.1 空冷器进口管道和出口管道不在同一侧 (67) 33 4.2 空冷器进口管道和出口管道在同一侧 (69) 34 5.0 泵 (72) 35 2.

6.0 压缩机,透平 (73) 36 第四部分管口校核 (74) 37 1.0 WRC107 (75) 38 2.0 Nema 23 (80) 39 3.0 API617 (82) 40 4.0 API610 (85) 41 第五部分工况组合 (88) 42 1.0 地震 (89) 43 2.0 风载 (91) 44 3.0 安全阀起跳工况 (93) 45 4.0 沉降 (95) 46 47 第一部分支架形式模拟 48 49 1.0 普通支架的模拟 50 51 1.1 U-band 52 53 54 3.

大数据挖掘的用户画像应用方案

在大数据时代,机器要学会从比特流中解读用户,构建用户画像就变得尤其重要。本文介绍了用户画像的理论和实践,以及在实际中的应用。如何根据用户画像进行精准营销?将用户画像应用于个性化推荐?一起来寻找答案吧~ 首先看一下大数据与应用画像的关系,现在大数据是炙手可热,相信大家对大数据的四个V都非常了解,大数据应该说是信息技术的自然延伸,意味着无所不在的数据。 我们先看下数据地位发生转变的历史,在传统的IT时代,TI系统围绕业务服务,在这个服务的过程中沉淀了很多数据,再在数据的基础上做一些分析。但是到了DT时代不一样了,数据是现实世界的虚拟化表现,数据本身构成了一个虚拟世界,IT系统构建在虚拟系统上,变得更加智能。

大数据无处不在体现在几个方面 第一个就是说我们社会信息化的建设越来越发达。 第二个是随着可穿戴设备的发展,人产生了越来越多的数据,接入网络当中,同时人和人之间沟通的方式也不仅仅是传统的面对面,传统理解人、与人沟通的方式发生了根本的变革,因此我们要学会从比特流中去认识人类,因此构建用户画像这件事就变得更加重要。 而且现在机器也变得很智能了,所以我们还要教会机器来认识人类,这样才能在画像的基础上构建应用,譬如个性化推荐、精准广告、金融征信等等。之前我一直是在从事这方面的应用开发,因此知道用户画像对于这些应用的重要性。 如果大家是来自互联网公司的话,我们经常会提到这些词:用户画像、标签、360度用户视图等等,有不少人甚至就是做这面的研发工作,但是这些概念让你感觉有一点似是而非,我以前也有这样的感觉,就是说没有从根本上把这些概念弄清楚,因此有必要把这些概念从根本上弄清楚。 首先看一下我们生活中的用户画像

大数据建模与分析挖据课程大纲

时 间 内容提要授课详细内容实践训练 第一天业界主流的 数据仓库工 具和大数据 分析挖掘工 具 1.业界主流的基于Hadoop和Spark的大数据分析挖掘项目 解决方案 2.业界数据仓库与数据分析挖掘平台软件工具 3.Hadoop数据仓库工具Hive 4.Spark实时数据仓库工具SparkSQL 5.Hadoop数据分析挖掘工具Mahout 6.Spark机器学习与数据分析挖掘工具MLlib 7.大数据分析挖掘项目的实施步骤 配置数据仓库工具 Hadoop Hive和 SparkSQL 部署数据分析挖掘 工具Hadoop Mahout 和Spark MLlib 大数据分析 挖掘项目的 数据集成操 作训练 1.日志数据解析和导入导出到数据仓库的操作训练 2.从原始搜索数据集中抽取、集成数据,整理后形成规范 的数据仓库 3.数据分析挖掘模块从大型的集中式数据仓库中访问数 据,一个数据仓库面向一个主题,构建两个数据仓库 4.同一个数据仓库中的事实表数据,可以给多个不同类型 的分析挖掘任务调用 5.去除噪声 项目数据集加载 ETL到Hadoop Hive 数据仓库并建立多 维模型 基于Hadoop 的大型数据 仓库管理平 台—HIVE数 据仓库集群 的多维分析 建模应用实 践 6.基于Hadoop的大型分布式数据仓库在行业中的数据仓库 应用案例 7.Hive数据仓库集群的平台体系结构、核心技术剖析 8.Hive Server的工作原理、机制与应用 9.Hive数据仓库集群的安装部署与配置优化 10.Hive应用开发技巧 11.Hive SQL剖析与应用实践 12.Hive数据仓库表与表分区、表操作、数据导入导出、客 户端操作技巧 13.Hive数据仓库报表设计 14.将原始的日志数据集,经过整理后,加载至Hadoop + Hive 数据仓库集群中,用于共享访问 利用HIVE构建大型 数据仓库项目的操 作训练实践 Spark大数据 分析挖掘平 台实践操作 训练 15.Spark大数据分析挖掘平台的部署配置 16.Spark数据分析库MLlib的开发部署 17.Spark数据分析挖掘示例操作,从Hive表中读取数据并 在分布式内存中运行

用户画像数据建模方法

用户画像数据建模方法 从1991年Tim Berners-Lee发明了万维网(World Wide Web)开始,到20年后2011年,互联网真正走向了一个新的里程碑,进入了“大数据时代”。经历了12、13两年热炒之后,人们逐渐冷静下来,更加聚焦于如何利用大数据挖掘潜在的商业价值,如何在企业中实实在在的应用大数据技术。伴随着大数据应用的讨论、创新,个性化技术成为了一个重要落地点。相比传统的线下会员管理、问卷调查、购物篮分析,大数据第一次使得企业能够通过互联网便利地获取用户更为广泛的反馈信息,为进一步精准、快速地分析用户行为习惯、消费习惯等重要商业信息,提供了足够的数据基础。伴随着对人的了解逐步深入,一个概念悄然而生:用户画像(UserProfile),完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。 一、什么是用户画像? 男,31岁,已婚,收入1万以上,爱美食,团购达人,喜欢红酒配香烟。 这样一串描述即为用户画像的典型案例。如果用一句话来描述,即:用户信息标签化。 如果用一幅图来展现,即: 二、为什么需要用户画像 用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少? 也可以做数据挖掘工作:利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌?利用聚类算法分析,喜欢红酒的人年龄段分布情况? 大数据处理,离不开计算机的运算,标签提供了一种便捷的方式,使得计算机能够程序化处理与人相关的信息,甚至通过算法、模型能够“理解” 人。当计算机具备这样的能力后,无论是搜索引擎、推荐引擎、广告投放等各种应用领域,都将能进一步提升精准度,提高信息获取的效率。 三、如何构建用户画像

单面板PCB图设计方法

单面板PCB图设计方法 一.创建PCB工程 1.创建PCB工程 1.1执行菜单命令File>New>Project>Pcb Project创建PCb工程文档。 1.2执行菜单命令File>New>Pcb 创建PCb文档。 2.文件命名保存 2.1点击左下角Project标签出现左图对话框 2.2左键点击选择需要命名保存的文件>选中后点击右键出现下拉菜单>选择Save As选项2.3出现Windows软件常见的保存窗口,可重命名(PCB工程文件、PCB文件命名与SCH 文件一致)并保存文件。 2.4打开的SCH、PCB文件可以左键拖动到相应的工程文件下。 二.PCB设计基本设置 1.明确的结构设计要求 1.1板型尺寸、固定孔大小位置的要求。 1.2接口位置、PCB的高度要求、 1.3其它特殊要求,例如散热片的尺寸、位置要求。 2.PCB板形设置 2.1重新设置图纸原点执行菜单命令Edit>Origin>Set>(PCB板的左下角)。 2.2点击快捷键Q可使默认单位由Mil变为MM,再次单击可变回默认设置。 2.3在Keep-out Layer设置PCB板形:根据结构人员提供尺寸、固定孔位置等设置设计尺寸。 执行菜单命令Place>Line(以原点为PCB设计的左下角,线宽采用默认值0.254MM/10mil)设置PCB板形状大小。板形确定后勾选锁定选项(如果勾选Keepout 选项则变为禁止布线设置,不能作为板形设置),避免以后误操作移动改变原有设置。 三.PCB设计 1.设计的导入 1.1原理图、PCB文件必须在同一个工程下 1.2工程文件、SCH、PCB文件必须已保存 1.3执行菜单命令Design inport Changes 1.4弹出对话框选择Execute Changes 1.5如果有错误可勾选Only Show Errors选项,查看错误信息(一般为封装或连接问题)1.6可去掉Add Rooms 选项 1.7点击关闭退出 2.基本布局 2.1按照原理图把器件按照实现功能(各个功能模块)分类; 2.2从整个系统的角度,分析各个模块信号的性质,确定其在整个系统中占据的地位,从而确定模块在布局布线的优先级;

大数据风控建模标准流程

大数据风控建模标准流程 一、风控建模标准过程 (一)数据采集汇总 2、评估数据真实性和质量,数据质量好的变量进入后续步骤 (二)模型设计 1、时间窗和好坏客户定义 时间窗:根据获取数据的覆盖周期,将数据分为用来建模的观察期数据,和后面用来验证表现的表现期数据; 好坏客户定义:分析客户滚动和迁移率,来定义什么程度逾期的为“坏客户”,例如定义M3为坏客户就是定义逾期3个月的才是坏 客户; 2、样本集切分和不平衡样本处理 样本集切分:切分为训练集和测试集,一般7/3或8/2比例; 不平衡样本:最理想样本为好坏各50%,实际拿到的样本一般坏 客户占比过低,采取过采样或欠采样方法来调节坏样本浓度。 3、模型选择 评分卡模型以逻辑回归为主。 (三)数据预处理及变量特征分析 1、变量异常值、缺失值处理:使用均值、众数等来平滑异常值,来填补缺失,缺失率过高的变量直接丢弃; 2、变量描述性统计:看各个变量的集中或离散程度,看变量的 分布是否对样本好坏有线性单调的相关性趋势; (四)变量筛选

1、变量分箱:变量取值归入有限个分组中,一般5个左右的分 箱数量,来参加后面的算法模型计算。分箱的原则是使得各箱内部 尽量内聚,即合并为一箱的各组坏样本率接近;使得相邻分箱的坏 样本率呈现单调趋势。从方法上一版采取先机器分箱,后人工微调。 2、定量计算变量对于识别坏样本的贡献度(WOE和IV) (1)WOE是统计一个变量的各分箱区间之间的好占总好比值坏 占总坏之比,不同分箱之间差异明显且比例成单调趋势,说明分箱 的区分度好; (2)IV是在WOE基础上进一步加权计算这个变量整体上对于区 分好坏样本的识别度,也就是变量影响因子。数越大说明用这个变 量进行区分的效果越好,但IV值过大容易引起模型过拟合,即模型 过于依赖单一变量,造成使用过程中平衡性健壮性不好; 3、计算变量之间的相关性或多重共线性,相关性高于0.5甚至0.7的两个变量里,就要舍弃一个,留下iv值较高的那个。例如 “近一个月查询次数”、“近三个月查询次数”、“近六个月查询 次数”这三个变量显然明显互相相关度高,只保留其中一个变量进 入模型即可。 (五)变量入模计算 1、以最终选定的若干变量,进入回归模型算法,机器自动计算 其中每一个X就是一种变量,这个计算就是为了算出每种变量的最终权重,也就是算出所有的b。 2、客户违约概率映射为客户分数。以上公式一旦计算确定,则 给出一个确定的客户,就可以算出其违约概率,下面公式是把概率 进一步再映射计算成一个客户总评分。 3、计算确定每种变量每个分箱所应该给的得分 某一变量在一个分箱的得分该组WOE 1、模型区分好坏客户能力评价

如何运用CRM的数据分析,完善企业用户画像模型

销帮帮CRM:用CRM的数据分析,完善企业用户画像模型 对一家企业最重要的是什么,没错,是客户,那么你对目标客户的了解有多深? 进入大数据时代,人群信息越来越多,企业没有精力去触达到每个用户去一一追踪验证,这就需要企业对用户进行大数据分析,将目标人群的信息根据需要划分成不同维度,让信息标签化,提炼出个体或整体的用户画像模型,为企业决策指明方向,助力企业迅速找到目标用户,从而转化成更多的价值。 互联网时代,客户的信息散乱、庞大,运用人工的统计成本太大,这就需要利用更高效更精准的平台来进行统计分析,C RM重要的作用之一就是大数据分析,建立企业CRM不仅可以实现高效的销售管理,更重要的是可以帮助企业更快更深的了解客户。 CRM,是一个可以将客户所有信息整合的系统,运用一段时间后,系统内就会积累大量的用户信息数据,那么如何将这些数据提炼成用户画像模型从而转化成价值呢? 1、用成交客户模型指导潜在客户 对于成交客户,可用CRM挖掘出他们的共性特征,由此来指导对潜在客户的行为。 在初始使用CRM时,客户可自定义用户的标签,比如地域、所处阶段、来源等等。成交客户积累一定数量后,CRM会对成交的客户进行阶段平均周期、行业、来源、产品等共性方面统计,形成用户画像模型,让企业了解到哪个行业或地域机会最多,哪种产品最受客户喜爱......

这些共性特征,可用来对潜在客户进行更好的挖掘和服务。例如,在CRM机会分析应用中,直接对销售漏斗阶段进行了呈现,通过大量数据计算出每个阶段的平均停留时间,由此时间点来安排对潜在客户的跟进对策,更快赢单。 在营销推广应用中,CRM可以统计成交客户来源数据,通过和最终转化率相比对,提炼出合适的推广渠道,进行精准营销,让利益更大化。 2、个性特征指导个性化服务 对成交客户,要研究每个客户的自身数据,如对购买频率、产品购买喜好等进行分析,挖掘出客户购买行为规则,个性化为客户服务,提升客户的满意度和黏性,延长与客户的合作周期。 对未成交客户,对客户列表信息、跟进记录等整体情况仔细研究,挖掘出客户顾虑点,更好的为客户服务。 用户画像的核心就是数据,如果通过人力进行数据分析,会增加企业的人工、时间成本。CRM可帮助企业实现科学化数据管理,深度认识企业的目标客户,不断完善客户模型,减少目标客户的流失率。 企业数据化的实现,CRM是非常关键的一步。

单面板布线技巧

第二篇:提高篇 第十一章:单面PCB板绘图技巧 第一节:绘制单面板的意义 第二节:单面PCB板的绘图条件 1、元件对电路布通率的影响 2、电路结构对电路布通率的影响 3、网络布线对电路布通率的影响 4、合理使用跳线 第三节:成品单面印制板的层面 第四节:绘制单面PCB板使用的层面 第五节:绘制复合元件单面板PCB图 第六节:绘制动态显示数码管单面板PCB图 第七节:绘制静态显示数码管单面板PCB图 第八节:绘制跳线

第十一章:单面PCB板绘图技巧 第一节:绘制单面板的意义 单面板,就是只有单面铜膜走线的电路板,用Protel绘制单面板是非常有意义的,下面就从4个方面说明绘制单面板的意义: 1、降低电路制作成本 按制版费和单位面积制作费用两方面计算,单面板的制作成本比双面板的制作成本低2-3倍。对于企业,可以降低产品的成本,从实际应用来看,除了某些高频电路、贴片元件电路、面积要求小的电路或者太复杂的电路不适合用单面板以外,其余的电路都可以使用单面板,像电视机、录音机、收音机、功放等消费量很大的电子产品电路,想方设法地把电路绘制为单面板,以降低制作成本。 2、降低电路开发成本 定型一个电路,通常需要多次改进,每改一次,就浪费一次制版费,这还不仅仅是电路的电气连接错误,还有电路结构方面的调整,都需要制版验证。另外,大量使用贴片元件的电路多数需要双面板,但是,贴片元件的电路在定型期间的调整和测试比较麻烦,先用单面板和普通元件做测试,不但可以降低试验费用,而且用单面板和普通元件做成的电路改贴片元件,成功率极高,只需要更改原理图元件封装为贴片元件,重新绘制PCB板就可以了,尽管有些高频电路用普通元件不好测试,但是,大多数控制电路用普通元件和单面板是可以验证的,当然,这要求电路绘图水平和绘图速度很高。 3、缩短电子产品开发周期 开发电子产品,制作线路板是比较头疼的环节之一,当急需定型一个电子产品,快速制作电路板是关键。单面的印制板,只要方法得当,手工都可以制作,手工制作一个没有字符和阻焊的单面板,只需一小时左右。 4、降低初学者学习电子技术入门费用 曾经有电子刊物把制作电路板称为初学者学习电子技术的“拦路虎”,这一点也不夸张,还刊登了各种手工制作单面印制板的方法,那

大数据建模与挖掘应用

关于举办“大数据建模与分析挖掘应用”实战培训班的通知地点北京上海 时间12月 23-26 1月 12-15 一、课程简介 大数据建模与分析挖掘技术已经逐步地应用到新兴互联网企业(如电子商务网站、搜索引擎、社交网站、互联网广告服务提供商等)、银行金融证券企业、电信运营等行业,给这些行业带来了一定的数据价值增值作用。 本次课程面向有一定的数据分析挖掘算法基础的工程师,带大家实践大数据分析挖掘平台的项目训练,系统地讲解数据准备、数据建模、挖掘模型建立、大数据分析与挖掘算法应用在业务模型中,结合主流的Hadoop与Spark大数据分析平台架构,实现项目训练。 结合业界使用最广泛的主流大数据平台技术,重点剖析基于大数据分析算法与BI技术应用,包括分类算法、聚类算法、预测分析算法、推荐分析模型等在业务中的实践应用,并根据讲师给定的数据集,实现两个基本的日志数据分析挖掘系统,以及电商(或内容)推荐系统引擎。 本课程基本的实践环境是Linux集群,JDK1.8, Hadoop 2.7.*,Spark 2.1.*。 学员需要准备的电脑最好是i5及以上CPU,4GB及以上内存,硬盘空间预留50GB(可用移动硬盘),基本的大数据分析平台所依赖的软件包和依赖库等,讲师已经提前部署在虚拟机镜像(VMware镜像),学员根据讲师的操作任务进行实践。 本课程采用技术原理与项目实战相结合的方式进行教学,在讲授原理的过程中,穿插实际的系统操作,本课程讲师也精心准备的实际的应用案例供学员动手训练。 二、培训目标 1.本课程让学员充分掌握大数据平台技术架构、大数据分析的基本理论、机器学习的常用算法、国内外主流的大数据分析与BI商业智能分析解决方案、以及大数据分析在搜索引擎、广告服务推荐、电商数据分析、金融客户分析方面的应用案例。 2.本课程强调主流的大数据分析挖掘算法技术的应用和分析平台的实施,让学员掌握主流的基于大数据Hadoop和Spark、R的大数据分析平台架构和实际应用,并用结合实际的生产系统案例进

绘制pcb板步骤

一、电路版设计的先期工作 1、利用原理图设计工具绘制原理图,并且生成对应的网络表。当然,有些特殊情况下,如电路版比较简单,已经有了网络表等情况下也可以不进行原理图的设计,直接进入 PCB设计系统,在PCB设计系统中,可以直接取用零件封装,人工生成网络表。 2、手工更改网络表将一些元件的固定用脚等原理图上没有的焊盘定义到与它相通的网络上,没任何物理连接的可定义到地或保护地等。将一些原理图和PCB 封装库中引脚名称不一致的器件引脚名称改成和PCB封装库中的一致,特别是 二、三极管等。 二、画出自己定义的非标准器件的封装库 建议将自己所画的器件都放入一个自己建立的PCB库专用设计文件。 三、设置PCB设计环境和绘制印刷电路的版框含中间的镂空等 1、进入PCB系统后的第一步就是设置PCB设计环境,包括设置格点大小和类型,光标类型,版层参数,布线参数等等。大多数参数都可以用系统默认值,而且这些参数经过设置之后,符合个人的习惯,以后无须再去修改。 2、规划电路版,主要是确定电路版的边框,包括电路版的尺寸大小等等。 在需要放置固定孔的地方放上适当大小的焊盘。对于3mm勺螺丝可用6.5~8mm 的外径和3.2~3.5mm内径的焊盘对于标准板可从其它板或PCBizard中调入。 注意:在绘制电路版地边框前,一定要将当前层设置成KeepOut层,即禁止布线层。 四、打开所有要用到的PCB库文件后,调入网络表文件和修改零件封装 这一步是非常重要的一个环节,网络表是PCB自动布线的灵魂,也是原理图设计与印象电路版设计的接口,只有将网络表装入后,才能进行电路版的布线。在原理图设计的过程中,ERC佥查不会涉及到零件的封装问题。因此,原理图设计时,零件的封装可能被遗忘,在引进网络表时可以根据设计情况来修改或补充零件的封装。 当然,可以直接在PCB内人工生成网络表,并且指定零件封装。 五、布置零件封装的位置,也称零件布局 Protel99可以进行自动布局,也可以进行手动布局。如果进行自动布局,运行"Tools"下面的"AutoPlace",用这个命令,你需要有足够的耐心。布线的关键是布局,多数设计者采用手动布局的形式。用鼠标选中一个元件,按住鼠标左键不放,拖住这个元件到达目的地,放开左键,将该元件固定。Protel99在布局 方面新增加了一些技巧。新的交互式布局选项包含自动选择和自动对齐。使用自 动选择方式可以很快地收集相似封装的元件,然后旋转、展开和整理成组,就可以移动到板上所需位置上了。当简易的布局完成后,使用自动对齐方式整齐地展开或缩紧一组封装相似的元件。 提示:在自动选择时,使用Shift+X或丫和Ctrl+X或丫可展开和缩紧选定组件的X、丫方向。 注意:零件布局,应当从机械结构散热、电磁干扰、将来布线的方便性等方面综合考虑。先布置与机械尺寸有关的器件,并锁定这些器件,然后是大的占位置的器件和电路的核心元件,再是外围的小元件。 六、根据情况再作适当调整然后将全部器件锁定 假如板上空间允许则可在板上放上一些类似于实验板的布线区。对于大板子,应在中

用户画像数据建模方法

从1991年Tim Berners-Lee发明了万维网(World Wide Web)开始,到20年后2011年,互联网真正走向了一个新的里程碑,进入了“大数据时代”。经历了12、13两年热炒之后,人们逐渐冷静下来,更加聚焦于如何利用大数据挖掘潜在的商业价值,如何在企业中实实在在的应用大数据技术。伴随着大数据应用的讨论、创新,个性化技术成为了一个重要落地点。相比传统的线下会员管理、问卷调查、购物篮分析,大数据第一次使得企业能够通过互联网便利地获取用户更为广泛的反馈信息,为进一步精准、快速地分析用户行为习惯、消费习惯等重要商业信息,提供了足够的数据基础。伴随着对人的了解逐步深入,一个概念悄然而生:用户画像(UserProfile),完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。 一、什么是用户画像 男,31岁,已婚,收入1万以上,爱美食,团购达人,喜欢红酒配香烟。 这样一串描述即为用户画像的典型案例。如果用一句话来描述,即:用户信息标签化。 如果用一幅图来展现,即: 二、为什么需要用户画像 用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少喜欢红酒的人群中,男、女比例是多少也可以做数据挖掘工作:利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌利用聚类算法分析,喜欢红酒的人年龄段分布情况

大数据处理,离不开计算机的运算,标签提供了一种便捷的方式,使得计算机能够程序化处理与人相关的信息,甚至通过算法、模型能够“理解” 人。当计算机具备这样的能力后,无论是搜索引擎、推荐引擎、广告投放等各种应用领域,都将能进一步提升精准度,提高信息获取的效率。三、如何构建用户画像 一个标签通常是人为规定的高度精炼的特征标识,如年龄段标签:25~35岁,地域标签:北京,标签呈现出两个重要特征:语义化,人能很方便地理解每个标签含义。这也使得用户画像模型具备实际意义。能够较好的满足业务需求。如,判断用户偏好。短文本,每个标签通常只表示一种含义,标签本身无需再做过多文本分析等预处理工作,这为利用机器提取标准化信息提供了便利。人制定标签规则,并能够通过标签快速读出其中的信息,机器方便做标签提取、聚合分析。所以,用户画像,即:用户标签,向我们展示了一种朴素、简洁的方法用于描述用户信息。 数据源分析 构建用户画像是为了还原用户信息,因此数据来源于:所有用户相关的数据。 对于用户相关数据的分类,引入一种重要的分类思想:封闭性的分类方式。如,世界上分为两种人,一种是学英语的人,一种是不学英语的人;客户分三类,高价值客户,中价值客户,低价值客户;产品生命周期分为,投入期、成长期、成熟期、衰退期…所有的子分类将构成了类目空间的全部集合。 这样的分类方式,有助于后续不断枚举并迭代补充遗漏的信息维度。不必担心架构上对每一层分类没有考虑完整,造成维度遗漏留下扩展性隐患。另外,不同的分类方式根据应用场景,业务需求的不同,也许各有道理,按需划分即可。 本文将用户数据划分为静态信息数据、动态信息数据两大类。 静态信息数据

大数据与建模

1、SQL用于访问和处理数据库的标准的计算机语言。用来访问和操作数据库系统。SQL语句用于取回和更新数据库中的数据。SQL可与数据库程序系统工作。比如MS? Access,DB2,Infermix,MS SQL Server,Oracle,Sybase以及其他数据库系统。SQL可以面向数据库执行查询,从数据库取回数据,在数据库中插入新的记录,更新数据库中的数据,从数据库删除记录,创建新数据库,在数据库中创建新表,在数据库中创建存储过程,在数据库中创建视图和设置表、存储过程和视图的权限等。 2、Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是Hadoop是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop是可好的,因为他假设计算单元和存户会失败,因此他维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop是高效的,因为他以并行的方式工作,通过并行处理加快处理速度。Hadoop还是可伸缩的,能够处理PB级数据。此外,Hadoop依赖于社区服务器,因此他的成本较低,任何人都可以使用。 3、HPCC(high performance? computinggand

communications)高性能计算与通信的缩写。1993年,由美国科学、工程技术联邦协调理事会向国会提交了“重大挑战项目”高性能计算与通信的报告,也就是被称为HPCC计划的报告,及美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。 4、Strom是自由的开源软件,一个分布式的、容错的实时计算系统。Strom可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量出具,Strom很简单,支持许多种编程语言,使用起来非常有趣。Strom由Twitter开元而来,其他知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、Admaster等等。Strom有许多应用领域:实时分析、在线机器学习、不停顿的计算,分布式RPC(员过程调用协议,一种通过网络从远程计算机程序上请求服务)、ETL(Extraction? Transformation? Lcading 的缩写,即数据抽取、转换和加载)等等。Strom的处理速度惊人:经测

相关主题
文本预览
相关文档 最新文档