当前位置:文档之家› 实验(1)PWM电机调速实验报告

实验(1)PWM电机调速实验报告

实验(1)PWM电机调速实验报告
实验(1)PWM电机调速实验报告

PWM电机调速

班级:09应电(5)班

姓名:

学号:0906020122

指导老师

时间:2011年10月20日

目录

一、实验名称 (2)

二、实验设计的目的和要求 (2)

三、预习要求 (2)

四、电路原理图 (4)

五、电路工作原理 (4)

六、 PCB图 (5)

七、实验结果 (6)

·

八、实验中出现的问题以及解决方法 (13)

九、实验心得 (13)

十、参考文献 (14)

十一、元件清单 (14)

一、实验名称:PWM电机调速

二、实验设计的目的和要求

1)学习用LM339内部四个电压比较器产生锯齿波、直流电压、PWM脉宽;

2)掌握脉宽调制PWM控制模式;

3)掌握电子系统的一般设计方法;

4)培养综合应用所学知识来指导实践的能力;

5)掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法进一步掌握制版、电路调试等技能。

三、预习要求

3.1关于LM339器件的特点和一些参数

图3-1 LM339管脚分配图

1)电压失调小,一般是2mV;

2)共模范围非常大,为0v到电源电压减1.5v;

3)他对比较信号源的内阻限制很宽;

4)LM339 vcc电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;

5)输出端电位可灵活方便地选用;

6)差动输入电压范围很大,甚至能等于vcc。

3.2 分析PWM电机调速电路的系统组成原理,画出每一级电路输出的波形

1)由1、6、7管脚构成的电压比较器,通过RC积分电路调节可调变阻器R5(203),产生锯齿波

图3-2 锯齿波

2) 由8、9、14管脚构成的比较器,通过8管脚接入前一个比较器1管脚产生的锯齿波信号与调节R7(103)取样得到的9管脚电压做比较通过比较器14管脚输出的是PWM脉宽

图3-3 脉冲波(pwm)

3)PWM电机调速电路中有两个三极管,是具有耦合放大作用的

4)另外电路中的输入4、5管脚和10、11管脚的两个电压比较器在整个电路中具有欠压保护和过流保护

四、电路原理图

图4-1 PWM电机调速原理图

五、电路工作原理

直流电机的PWM调速原理是通过调节驱动电压脉冲宽度的方式,并与电路中一些相应的储能元件配合,改变了输送到电枢电压的幅值,从而达到改变直流电机转速的目的。它的调制方式是调幅。

PWM的占空比决定输出到直流电机的平均电压,PWM的意思是脉宽调节;也就是调节方波高电平和低电平的时间比,一个20%占空比波形,会有20%的高电平时间和80%的低电平时间,而一个60%占空比的波形则具有60%的高电平时间和40%的低电平时间,占空比越大,高电平时间越长,则输出的脉冲幅度越高,即电压越高;如果占空比为0%,那么高电平时间为0,则没有电压输出.如果占空比为100%;那么输出全部电压,所以通过调节占空比,可以实现调节输出电压的目的,而且输出电压可以无级连续调节。.

1)锯齿波脉冲形成

参见图3-2和图4-1,该控制器的锯齿波脉冲由内的比较器A,定时元件R1~R5,以及C1等组成的施密特振荡器产生。

2)PWM脉冲形成

参见图3-3和图4-1,PWM脉冲形成电路以LM339内的比较器U2C为核心构成。

由锯齿波形成电路输出的锯齿波脉冲加到比较器的反相输入端8脚,与同相输入端9脚输入的直流电压比较后,就可在它的输出端14脚输出矩形的调宽脉冲电压。

3)信号放大

参见图,4-1,矩形脉冲信号放大电路由驱动电路和功率放大电路两部分构成。驱动电路采用了9012和9013三极管组成的推挽放大电路;功率放大电路采用了大功率场效应管以获得足够大的电流和功率。

当矩形脉冲为高电平时,9012(Q2)截止、9013(Q1)导通,经9013(Q1)射随放大后从E极输出,再经电阻R18驱动效应管TRF530导通,此时电源提供的电压通过电机、效应管TRF530的G/S极、R17到地构成回路,回路中的电流驱动电机旋转。当矩形脉冲为低电平时,9013(Q1)截止、9012(Q2)导通,将效应管TRF530栅极存储的电压迅速对地释放,以免效应管TRF530因存储效应不能及时关断而产生过大的功耗。效应管TRF530截止后,流过电机绕组的导通电流消失,使绕组产生反相的电动势。为了防止这个电动势导致效应管TRF530过压损坏,在效应管TRF530的G极与供电之间设置了泄放二极管D4。R14是驱动电路的上拉电阻。

4)保护电路

为了防止场效应管IRF640过流损坏,该电路设置了过流保护电路。该保护电路由内的比较器U1D和取样电路构成。比较器U1D的同相输入端11管脚通过R11和R12采样得到正电压。,而它的反相输入端通过脚接R13反馈电阻取得取样电阻R17的取样电压,当电机运转正常,流过效应管IRF640的S极电流正常时,R17产生的上正下负的压降较小,5V电压,于是13脚输出高电平控制电压,不影响PWM调制器的工作,控制器正常工作。一旦电机运转不正常等原因导致效应管IRF640过流,使R17两端的压降增大,通过R13使脚电位变为低电平后,13脚输出低电平电压,使电位变为低电平,于是14脚输出低电平电压,致使9013截止、9012导通,于是效应管IRF640截止,电机停转,实现了过流保护。

六、PCB图

图6-1 PWM电机调速PCB图

七、实验结果

1) 电源端分别接15V和24V和5V

2) 当可调电阻R7(103)电阻和R5(203)电阻都不动的时候,电机两端的输出电压

Uo=9V;LM339芯片6、9、14管脚输出波形分别如下所示

图7-1 管脚6波形

图7-2 9管脚电压值

图7-3 管脚14波形

3) 当可调电阻R5(203)不动;R7(103)调大的时候,电机两端的输出电压Uo=10V;LM339

芯片管脚6、9、14输出波形分别如下图所示

图7-4 管脚6波形

图7-5 管脚9波形

图7-6 管脚14的波形

4)当可调电阻R5(203)不动;R7(103)调小的时候,电机两端的输出电压Uo=9V;LM339芯

片管脚6、9、14输出波形分别如下图所示

图7-7 管脚6波形

图7-8 管脚9波形

图7-9 管脚14波形

5)当可调电阻R7(103)不动;R5(203)调大的时候,电机两端的输出电压Uo=9V;LM339芯

片管脚6、9、14输出波形分别如下图所示

图7-10 管脚6波形

图7-11 管脚9波形

图7-12 管脚14波形

6)当可调电阻R7(103)不动;R5(203)调大的时候,电机两端的输出电压Uo=9V;LM339芯

片管脚6、9、14输出波形分别如下图所示

图7-13 管脚6波形

图1-14 管脚9波形

图7-15 管脚14波形

八、实验中出现的问题以及解决方法

在制作PCB电路板时,由于三极管封装有误,导致Q2(9013)损坏,后经改造电路连接,把三极管接正,电路得以正常

在调试电路板的时候,当我把可调电阻103和203调到最下或最大的时候,14管脚波形和输出Uo波形出现一条直线,当时我以为是电路是不是电路出错,就开始调可调电阻103或203,结果波行发生了变化,于是就想也许是由于我把可调电阻调的太小或太大了,所以才会出现这样的波形,现象出现后老师得知就是因为我把电阻调到了最大或最小,所以才出现波形式一条直线的现象

九、实验心得

通过这次试验我学会了LM339,IRF530,三极管,可调电阻等元器件的应用,当电路发下时,通过分析电路图、画板、做板、焊板、调试更加熟悉的学会电路的设计和制作,在画PCB时候由于对三极管管脚的连接不熟悉,导致电路出现问题,所以以后我会更加认真画图,在焊接电路板时要仔细放置元件,做调试时候会注意接线安全。

在调试过程中也得到一些同学和老师的帮助,学会互相帮助,为此感谢!

十、参考文献

王川主编/实用电源技术-重庆大学出版社2000.8 十一、元件清单(单位都是一个)

插槽DIP40

芯片A1D LM339D

电容C1 33nF

C2 4.7uF

C3 100nF

二极管D1 1N4148

D4 DIODE

电机J111 CON2

三极管Q1 2N222A

Q2 2N2907

场效应管Q3 IRF530

电阻R1 22k

R2 3.0k

R3 10k

R4 20k

R5 20k

R6 4.7k

R7 10k

R8 4.7k

R9 10k

R10 10k

R11 500k

R12 3.9k

R13 10k

R14 10k

R17 0.33

R18 150

R19 4.7k

直流伺服电机实验报告

实验六 直流伺服电机实验 一、实验设备及仪器 被测电机铭牌参数: P N =185W ,U N =220V ,I N =1.1A , 使用设备规格(编号): 1.MEL 系列电机系统教学实验台主控制屏(MEL-I 、MEL-IIA 、B ); 2.电机导轨及测功机、转速转矩测量(MEL-13); 3.直流并励电动机M03(作直流伺服电机); 4.220V 直流可调稳压电源(位于实验台主控制屏的下部); 5.三相可调电阻900Ω(MEL-03); 6.三相可调电阻90Ω(MEL-04); 7.直流电压、毫安、安培表(MEL-06); 二、实验目的 1.通过实验测出直流伺服电动机的参数r a 、e κ、T κ。 2.掌握直流伺服电动机的机械特性和调节特性的测量方法。 三、实验项目 1.用伏安法测出直流伺服电动机的电枢绕组电阻r a 。

2.保持U f=U fN=220V,分别测取U a =220V及U a=110V的机械特性n=f(T)。3.保持U f=U fN=220V,分别测取T2=0.8N.m及T2=0的调节特性n=f(Ua)。4.测直流伺服电动机的机电时间常数。 四、实验说明及操作步骤 1.用伏安法测电枢的直流电阻Ra

表中Ra=(R a1+R a2+R a3)/3; R aref=Ra*a ref θ θ + + 235 235 (3)计算基准工作温度时的电枢电阻 由实验测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温。按下式换算到基准工作温度时的电枢绕组电阻值: R aref=Ra a ref θ θ + + 235 235

电动机实验报告doc

电动机实验报告 篇一:电机实验报告 黑龙江科技大学 综合性、设计性实验报告 实验项目名称电机维修与测试 所属课程名称电机学 实验日期 XX年5.6—5.13 班级电气11-13班 学号 姓名 成绩 电气与信息工程学院实验室 篇二:电机实验报告 实验报告本 课程名称:电机拖动基础班级:电气11-2 姓名田昊石泰旭孙思伟 指导老师:_史成平 实验一单相变压器实验 实验名称:单相变压器实验 实验目的:1.通过空载和短路实验测定变压器的变比和参数。

2.通过负载实验测取变压器的运行特性。 实验项目:1. 空载实验测取空载特性U0=f(I0), P0=f(U0)。 2. 短路实验测取短路特性Uk=f(Ik), Pk=f(I)。 3. 负载实验保持U1=U1N,cos?2?1的条件下,测取U2=f(I2)。 (一)填写实验设备表 (二)空载实验 1.填写空载实验数据表格 2. 根据上面所得数据计算得到铁损耗PFe、励磁电阻Rm、励磁电抗Xm、电压比k (三)短路实验 1. 填写短路实验数据表格 O (四)负载实验 1. 填写负载实验数据表格 表3 cos?2=1 (五)问题讨论 1. 在实验中各仪表量程的选择依据是什么? 根据实验的单相变压器额定电压、额定电流、额定容量、空载电压,单 相变压器电源电压和频率、线圈匝数、磁路材质及几何尺寸等。 2. 为什么每次实验时都要强调将调压器恢复到

起始零位时方可合上电源开关或断开电源开关? 防止误操作造成人身伤害、防止对变压器及其它仪器仪表等设备过压过 流而损坏。 3. 实验的体会和建议 1.电压和电流的区别:空载试验在低压侧施加额定电压,高压侧开路;短路 试验在高压侧进行,将低压侧短路,在高压侧施加可调的低电压。2.测量范围的不同:空载试验主要测量的是铁芯损耗和空载电流, 而短路试 验主测量的是短路损耗和短路电阻。3.测量目的不同:空载试验主要测量数据反映铁芯情况,短路试验反映的是线圈方面的问题。 4.试验时,要注意电压线圈和电流线圈的同名端,要避免接错线。选择的导 线应该是高压导线,要不漏线头要有绝缘外皮保护。5.通过负载试验可以知道变压器的阻抗越小越好。阻抗起着限制变压器的电 流的作用,在设计时我们要考虑这些。 篇三:直流电动机实验报告 电机 实验报告 课程名称:______电机实验_________指导老师:___

计算机控制实验报告4(电机调速实验)

班级:座号:姓名成绩: 课程名称:计算机控制技术实验项目:电机调速实验 实验预习报告(上课前完成) 一、实验目的 1.了解直流电机调速系统的特点。 2.研究采样周期T对系统特性的影响。 3.研究电机调速系统PID控制器的参数的整定方法。 二、实验仪器 1.EL-AT-II型计算机控制系统实验箱一台 2.PC计算机一台 3.直流电机控制实验对象一台 三、控制的基本原理 1.系统结构图示于图8-1。 图8-1 系统结构图 图中 Gc(s)=Kp(1+Ki/s+Kds) Gh(s)=(1-e-TS)/s Gp(s)=1/(Ts+1) 2.系统的基本工作原理 整个电机调速系统由两大部分组成,第一部分由计算机和A/D&D/A卡组成,主要完成速度采集、PID运算、产生控制电枢电压的控制电压,第二部分由传感器信号整形,控制电压功率放大等组成。电机速度控制的基本原理是:通过D/A输出-2.5v~+2.5v的电压控制7812的输出,以达到控制直流电机电枢电压的目的。速度采集由一对红外发射、接收管完成,接收管输出脉冲的间隔反应了电机的转速。

第二部分电路原理图 3.PID递推算法: 如果PID调节器输入信号为e(t),其输送信号为u(t),则离散的递推算法如下:Uk=Kpek+Kiek2+Kd(ek-ek-1) 其ek2是误差累积和。 四、实验内容: 1、设定电机的速度在一恒定值。 2、调整P、I、D各参数观察对其有何影响。 五、实验步骤 1.启动计算机,在桌面双击图标[Computerctrl]或在计算机程序组中运行[Computerctrl]软件。 2.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使通信正常后才可以继续进行实验。 3. 20芯的扁平电缆连接实验箱和炉温控制对象,检查无误后,接通实验箱电源。 开环控制 4.选中[实验课题→电机调速实验→开环控制实验]菜单项,鼠标单击将弹出参数设置窗口。在参数设置窗口设置给定电压,及电机控制对象的给定转速,点击确认在观察窗口观

直流他励电动机实验报告记录

直流他励电动机实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

电机学实验报告——直流他励电动机实验 姓名:张春 学号:2100401332

实验三直流他励电动机实验 一、实验目的 1.掌握用实验方法测取直流他励电动机的工作特性和机械特性。 2.掌握直流他励电动机的调速方法。 二、实验内容 1.工作特性和固有机械特性 保持和不变,时,测取工作特性、、及 固有机械特性。 2.调速特性 (1)改变电枢电压调速 保持电动机不变,常数,测取。 (2)改变励磁电流调速 保持,常数,时,测取。 3.观察能耗制动过程 三、实验说明及操作步骤 1.他励直流电动机的工作特性和固有机械特性 按图3-4接线,电阻选用挂箱上的阻值为、电流为 的可调电阻,作为直流并励电动机的起动电阻,电阻选用挂箱上的阻值为的可调电阻. 并接上励磁电流表(mA)和电枢电流表(A)。

(1)打开设备开关和设置好各个按钮状态,将电动机励磁回路电阻调至阻值最 小,电枢回路起动电阻调至阻值最大。 (2)调节直流稳压电源上的“电压调节”旋钮,使电动机输入电压为,电动机电枢回路起动电阻调至最小值,增加电动机磁场调节电阻,使电动机转速达额定值。 (3)调出电动机的额定运行点,确定电动机的额定励磁电流。 (4)在保持,不变的条件下,逐次减小电动机的负载,在额定负载到 空载范围内,测取电动机电枢电流,转速和输出转矩,共取组数据,记录于表3-1中。 表中:电动机输入功率P1=U a I a+U f I fn,输出功率P2=0.105nT2 效率 表3-1 工作特性和固有机械特性实验数据 实 验 数 据 1.10 1.0 0.9 0.8 0.4 0.3 0. 2 16 638 169 3 171 17 34 1.18 1.08 0.9 7 0.8 6 0.4 0.2 8 0. 15 计 算 数 260 .96 238 .96 216 .96 194 .96 106 .96 84. 96 62.9 6 19818216514771.50.27.3

变压器实验报告汇总

四川大学电气信息学院 实验报告书 课程名称:电机学 实验项目:三相变压器的空载及短路实验专业班组:电气工程及其自动化105,109班实验时间:2014年11月21日 成绩评定: 评阅教师: 电机学老师:曾成碧 报告撰写:

一、实验目的: 1 用实验方法求取变压器的空载特性和短路特性。 2 通过空载及短路实验求取变压器的参数和损耗。 3 计算变压器的电压变化百分率和效率。 4掌握三相调压器的正确联接和操作。 5 复习用两瓦特法测三相功率的方法。 二.思考题的回答 1.求取变压器空载特性外施电压为何只能单方向调节?不单方向调节会出现什么问题? 答:因为当铁磁材料处于交变的磁场中时进行周期性磁化时存在磁滞现象。如果不单方向调节变压器外施电压,磁通密度并不会沿原来的磁化曲线下降,所以会影响实验结果的准确性。 2.如何用实验方法测定三相变压器的铜、铁损耗和参数?实验过程中作了哪些假定? 答:变压器的空载实验中认为空载电流很小,故忽略了铜耗,空载损耗近似等于变压器铁耗Fe P P ≈0,同时忽略了绕组的电阻和漏抗。空载时的铁耗可以直接用两瓦特法测得,根据公式2 003/I P r m ≈可以求得励磁电阻,由003/I U Z m ≈可以求得励磁阻抗,由2 2 k m m r Z X -=可以求得励磁电抗值。 在变压器的短路实验中,由于漏磁场分布十分复杂,故在T 形等效电路计算时,可取k x x x 5.0'21==σσ,且k r r r 5.0'21==。同时由于外加电压低,忽略了铁耗,故假设短路损耗等于变压器铜耗。短路损耗k P 可直接由两瓦特法测得,有公式k k k I P r 2/=可得k r ,k k k I U Z 3/=,故k k k r Z x 22-=。 3.空载和短路实验中,为减小测量误差,应该怎样联接电压接线?用两瓦特表法测量三相功率的原理。 答:变压器空载实验中应当采用电流表内接法。因为空载实验测量的是励磁阻抗,阻抗值较大,若采用电流表外接法,电压表会有明显的分流作用,从而产生较大的误差。 变压器短路实验应当采用电流表外接法。因为短路实验中测量的是漏阻抗,

基于STM32的直流电机PWM调速控制

电动摩托车控制器中的电机PWM调速 摘要:随着“低碳”社会理念的深入,新型的电动摩托车发展迅速,逐渐成为人们主要的代步工具之一,由于直流无刷电机的种种优点,在电动摩托车中也得到了广泛应用,因此,本文控制部分主要介绍一种基于STM32F103芯片的新型直流无刷电机调速控制系统,这里主要通过PWM技术来进行电机的调速控制,且运行稳定,安全可靠,成本低,具有深远的意义。 1.总体设计概述 1.1 直流无刷电机及工作原理 直流无刷电机(简称BLDCM),由于利用电子换向取代了传统的机械电刷和换向器,使得其电磁性能可靠,结构简单,易于维护,既保持了直流电机的优点又避免了直流电机因电刷而引起的缺陷,因此,被广泛应用。另外,由于直流无刷电机专用控制芯片价格昂贵,本文介绍了一种基于STM32的新型直流无刷电机控制系统,既可降低直流无刷电机的应用成本,又弥补了专用处理器功能单一的缺点,具有重要的现实意义和发展前景。 工作原理:直流无刷电机是同步电机的一种,其转子为永磁体,而定子则为三个按照星形连接方式连接起来的线圈,根据同步电机的原理,如果电子线圈产生一个旋转的磁场,则永磁体的转子也会随着这个磁场转动因此,驱动直流无刷电机的根本是产生旋转的磁场,而这个旋转的磁场可以通过调整A、B、C三相的电流来实现,其需要的电流如图1所示 随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。 1.2 总体设计方案 总体设计方案的硬件部分详细框图如图1所示。

实验(1)PWM电机调速实验报告

PWM电机调速 班级:09应电(5)班 姓名: 学号:0906020122 指导老师 时间:2011年10月20日

目录 一、实验名称 (2) 二、实验设计的目的和要求 (2) 三、预习要求 (2) 四、电路原理图 (4) 五、电路工作原理 (4) 六、 PCB图 (5) 七、实验结果 (6) · 八、实验中出现的问题以及解决方法 (13) 九、实验心得 (13) 十、参考文献 (14) 十一、元件清单 (14)

一、实验名称:PWM电机调速 二、实验设计的目的和要求 1)学习用LM339内部四个电压比较器产生锯齿波、直流电压、PWM脉宽; 2)掌握脉宽调制PWM控制模式; 3)掌握电子系统的一般设计方法; 4)培养综合应用所学知识来指导实践的能力; 5)掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法进一步掌握制版、电路调试等技能。 三、预习要求 3.1关于LM339器件的特点和一些参数 图3-1 LM339管脚分配图 1)电压失调小,一般是2mV; 2)共模范围非常大,为0v到电源电压减1.5v; 3)他对比较信号源的内阻限制很宽; 4)LM339 vcc电压范围宽,单电源为2-36V,双电源电压为±1V-±18V; 5)输出端电位可灵活方便地选用; 6)差动输入电压范围很大,甚至能等于vcc。

3.2 分析PWM电机调速电路的系统组成原理,画出每一级电路输出的波形 1)由1、6、7管脚构成的电压比较器,通过RC积分电路调节可调变阻器R5(203),产生锯齿波 图3-2 锯齿波 2) 由8、9、14管脚构成的比较器,通过8管脚接入前一个比较器1管脚产生的锯齿波信号与调节R7(103)取样得到的9管脚电压做比较通过比较器14管脚输出的是PWM脉宽 图3-3 脉冲波(pwm) 3)PWM电机调速电路中有两个三极管,是具有耦合放大作用的 4)另外电路中的输入4、5管脚和10、11管脚的两个电压比较器在整个电路中具有欠压保护和过流保护

电动机试验报告

设备名称;#3炉一次风机试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉二次风机试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 四、交流耐压: 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉引风机A试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉引风机B试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#1机电动给水泵A试验性质预试试验日期:2009 年04月14 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:GΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、任国东

设备名称;#1机电动给水泵B试验性质预试试验日期:2009 年04月14 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:GΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、任国东

直流电机PWM调速

直流电机转速的PWM控制测速 王鹏辉 姬玉燕

摘要 本设计采用PWM的控制原理来完成对直流电机的正转、反转以及其加速、减速过程的控制,在此过程中是通过单片机的定时器加上中断的方式产生不同时长的高低电压脉冲信号来完成。并通过霍尔传感器对直流电机的转速进行测定,最后将实时测定的转速数值1602液晶屏上。 关键词: PWM控制直流电机霍尔传感器 1602液晶显示屏 L298驱动 一、设计目的: 了解直流电机工作原理,掌握用单片机来控制直流电机系统的硬件设计方法,熟悉直流电机驱动程序的设计与调试,能够熟练应用PWM方法来控制直流电机的正反转和加减速,提高单片机应用系统设计和调试水平。 1.1系统方案提出和论证 转速测量的方案选择,一般要考虑传感器的结构、安装以及测速范围与环境条件等方面的适用性;再就是二次仪表的要求,除了显示以外还有控制、通讯和远传方面的要求。本说明书中给出两种转速测量方案,经过我和伙伴查资料、构思和自己的设计,总体电路我们有两套设计方案,部分重要模块也考虑了其它设计方法,经过分析,从实现难度、熟悉程度、器件用量等方面综合考虑,我们才最终选择了一个方案。下面就看一下我们对两套设计方案的简要说明。 1.2 方案一:霍尔传感器测量方案 霍尔传感器是利用霍尔效应进行工作的?其核心元件是根据霍尔效应原理制成的霍尔元件。本文介绍一种泵驱动轴的转速采用霍尔转速传感器测量。霍尔转速传感器的结构

原理图如图3.1, 霍尔转速传感器的接线图如图3.2 。 传感器的定子上有2 个互相垂直的绕组A 和B, 在绕组的中心线上粘有霍尔片HA 和HB ,转子为永久磁钢,霍尔元件HA 和HB 的激励电机分别与绕组A 和B 相连,它们的霍尔电极串联后作为传感器的输出。 图3.1 霍尔转速传感器的结构原理图 方案霍尔转速传感器的接线图 缺点:采用霍尔传感器在信号采样的时候,会出现采样不精确,因为它是靠磁性感应才采集脉冲的,使用时间长了会出现磁性变小,影响脉冲的采样精度。 1.3方案二:光电传感器 整个测量系统的组成框图如图3.2所示。从图中可见,转子由一直流调速电机驱

电机实验报告一

西华大学实验报告(理工类) 开课学院及实验室: 电气与电子信息学院 6A-214 实验时间 :2018年12月01日 一、实验目的 1.熟悉他励直流电动机的启动、调速和改变转向的方法。 2.用实验方法测取他励直流电动机的工作特性和机械特性。 3.学习测取他励直流电动机调速特性的方法。 二、实验内容 1.他励直流电动机的启动、调速和改变转向的方法。 2.他励直流电动机额定工作点的求取和测取他励直流电动机的工作特性n =f (P 2)、 T =f (P 2)、 =f (P 2),机械特性n =f (T )。 3.测取他励直流电动机调速特性。 4.他励直流电动机的能耗制动实验。 三、实验线路 直流机电枢电源 同步机励磁电源 接触注:LDSP 为转矩/转速测量仪表 图1-1 他励直流电动机实验线路原理图 图1-2 他励直流电动机能耗制动原理图 直流机电枢电源

说明: 1.为了测量直流电机的转矩和转速大小,转矩/转速测量仪表LDSP的I a+、I a-必须串接到直流电机的电枢回路,U a+、U a-要并接到直流电机的电枢绕组两端,并且测量仪表的接线正负极性要与使用说明书中的规定一致。 2.接线时注意选择合适量程的仪表。 3.多功能表的接线详见附录二(后续实验同此)。 四、实验说明 在通电实验之前,请仔细阅读附录中有关直流电源和转矩/转速表LDSP的使用说明。 1.他励直流电动机的启动和改变转向 实验步骤: (1)请参照实验线路图1-1正确接线。检查ZDL-565多功能表为三相四线制接线方式,具体操作见附录。 (2)合上“总电源”开关,对应总电源指示灯亮,再合上“操作电源”空开,对应操作电源指示灯亮。按下“操作电源开关”合闸按钮,对应的红色指示灯亮;检查台面上所有的按钮处于断开位置,均为绿灯亮;所有数字表显示无错误。 (3)按下实验台直流机励磁电源合闸按钮,按下ZL-Ⅱ微机型直流电机励磁电源机箱面板上的“启动”按钮,面板上的“合闸”指示灯将会亮。点击“增加电压”按钮将直流电动机的励磁电压调到电机额定励磁电压值220V; (4)按下实验台直流电机电枢电源合闸按钮,点击“增加电压”按钮将电枢电压从零逐渐升高,观察“LDSP转矩/转速表”上的直流电机转速显示值,通过调节电枢电压的大小使电机的转速逐渐上升至其额定转速(约1500r/min)。启动电机时注意使电机的转向应与标定转向相同。 如果希望改变他励直流电动机的转向,只须改变电动机的电磁转矩方向,同学们自拟改变转向的方法。 2.额定工作点求取和测取他励电动机工作特性与机械特性 实验步骤: (1)实验接线参考图1-1,启动直流电动机步骤参考实验1。 (2)按下实验台同步电机励磁电源合闸按钮,点击“增加电压”按钮将同步发电机端电压逐渐升高,因为发电机以灯泡作负载,实验时其线电压不要超过额定电压380V。 (3)合上实验台交流接触器接通发电机负荷箱回路,依次将实验负荷箱上KM1~KM7按钮按下;注意每投入一组负载,需要同时调节直流电动机的电枢电压或励磁电流以便保持电动机转速为额定转速。同样,由于负荷的变化,同步发电机机端电压也会发生变化,需要随时调节同步发电机励磁电流,以保证机端电压基本不变。直流电动机的负载为同步发电机,改变同步发电机的输出功率,即可改变电动机的负载大小,电动机负载变化影响转速变化,因此需要相

电机学实验报告

湖北理工学院 实验报告 课程名称: 专业: 班级: 学号: 学生姓名: 电气与电子信息工程学院

实验一 直流电动机的运行特性 实验时间: 实验地点: 同组人: 一、实验目的: 1、掌握用实验方法测取直流并励电动机的工作特性和机械特性。 2、掌握直流并励电动机的调速方法。 二、预习要点 1、如何正确选择使用仪器仪表。特别是电压表电流表的量程。 2、直流电动机起动时,为什么在电枢回路中需要串接起动变阻器? 不串接会产生什么严重后果? 3、直流电动机起动时,励磁回路串接的磁场变阻器应调至什么位置? 为什么? 若励磁回路断开造成失磁时,会产生什么严重后果? 4、直流电动机调速及改变转向的方法。 三、实验主要仪器与设备: 序号 型 号 名 称 数 量 1 DD03 导轨、测速发电机及转速表 1台 2 DJ23 校正直流测功机 1台 3 DJ15 直流并励电动机 1台 4 D31 直流电压、毫安、电流表 2件 5 D42 三相可调电阻器 1件 6 D44 可调电阻器、电容器 1件 7 D51 波形测试及开关板 1件 四、实验原理 工作特性:电源电压一定,励磁电阻一定时,η、n 、T em =f(P 2)的关系曲线。 (一)并励电动机 (U N I fN 条件下)(并励电动机励磁绕组绝对不能断开) 1. 速率特性n=f(P 2) φ e a a C R I U n -= 转速调整率 %1000?-= ?N N n n n n

02020260 2T n P T P T T T em +=+Ω = +=π 3. 效率特性η=f(P 2) (75~95)% 实验原理图见图1-1 图1-1 直流并励电动机接线图 五、实验内容及步骤 1、实验内容: 工作特性和机械特性 保持U=U N 和I f =I fN 不变,测取n 、T 2、η=f (I a )、n=f (T 2)。 2、实验步骤: (1)并励电动机的工作特性和机械特性 1)按图1-1接线。校正直流测功机 MG 按他励发电机连接,在此作为直流电动机M 的负载,用于测量电动机的转矩和输出功率。R f1选用D44的1800Ω阻值。R f2 选用D42的900Ω串联900Ω共1800Ω阻值。R 1用D44的180Ω阻值。R 2选用D42的900Ω串联900Ω再加900Ω并联900Ω共2250Ω阻值。 2)将直流并励电动机M 的磁场调节电阻R f1调至最小值,电枢串联起动电阻R 1调至最大值,接通控制屏下边右方的电枢电源开关使其起动,其旋转方向应符合转速表正向旋转的要求。 3)M 起动正常后,将其电枢串联电阻R 1调至零,调节电枢电源的电压为220V ,调节校正直流测功机的励磁电流I f2为校正值(50mA 或100 mA ),再调节其负载电阻R 2和电动机的磁场调节电阻R f1,使电动机达到额定值:U =U N ,I =I N ,n =n N 。此时M 的励磁电流I f 即为额定励磁电流I fN 。 4)保持U =U N ,I f =I fN ,I f2为校正值不变,逐次减小电动机负载。测取电动机电枢输入电流I a ,转速n 和校正电机的负载电流I F 。 表1-1 U =U N = 220 V I f =I fN = 100 mA I f2= 81.4 mA

控制步进电机调速系统实验报告

华北科技学院计算机系综合性实验 实验报告 课程名称微机原理及应用 实验学期 2011 至 2012 学年第二学期学生所在系部电子信息工程学院 年级 2009 专业班级 学生姓名学号 任课教师 实验成绩 计算机系制

《微机原理及应用》课程综合性实验报告 开课实验室:计算机接口实验室2012年5月29日 实验题目微机控制步进电机调速系统 一、实验目的 1、了解计算机控制步进电机原理 2、掌握步进电机正转反转设置方法 3、掌握步进电机调速工作原理及程序控制原理 二、设备与环境 TPC-2003A 微机。 Vc++编译器。 三、实验内容 硬件接线图参考实验指导书。 软件编程在TPC-2003A自带的VC++编译环境下使用。 在通用VC++下编程,需要拷贝相关的库文件。 用汇编语言编写控制程序需注明原理。 四、实验结果及分析 1、实验步骤 1、按如下实验原理图连接线路,利用8255输出脉冲序列,开关K0~K6控制步进电机转速,K7控制步进电机转向。8255 CS接288H~28FH。PC0~PC3接BA~BD;PA口接逻辑电平开关。 2、编程:当K0~K6中某一开关为“1”(向上拨)时步进电机启动。K7向上拨电机正转,向下拨电机反转。 实验原理图

2.实验结果 按照实验步骤连接实验电路,检查无误后运行程序。可以看到,当开关k0到k6依次为高电平时,电机转速越来越慢,k0闭合时速度最快,k6闭合时速度最慢,当k0到k6的低位有闭合时,步进电机按最低位的转速运行,因为程序中的查询方式是从k0-k6,即在程序的优先级别中k0的级别是最高的而k7的优先级别是最低的。k7控制电机的正转与反转。 3.实验分析 (1)步进电机的工作原理: 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点,使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 步进电机驱动原理是通过对每相线圈中的电流的顺序切换来使电机作步进式旋转。驱动 电路由脉冲信号来控制,所以调节脉冲信号的频率便可改变步进电机的转速。 如图(b)所示:本实验使用的步进电机用直流+5V 电压,每相电流为0.16A,电机线圈 由四相组成:即: φ1(BA) φ2(BB) Φ3(BC) Φ4(BD) 驱动方式为二相激磁方式,各线圈通电顺序如下表所示。图(b) 表中首先向φ1 线圈-φ2 线圈输入驱动电流,接着φ2-φ3,φ3-φ4,φ4-φ1,又返回到φ1-φ2,按这种顺序切换,电机轴按顺时针方向旋转。 实验可通过不同长度的延时来得到不同频率的步进电机输入脉冲,从而得到多种步进速度。

电机设计实验报告

一、实验内容 某一磁化曲线为 二、实验要求 1、画框图 2、编制c 语言程序 3、输出计算结果 三、实验项目 (一)、利用线性插值法求解 1、实验原理 (x)=f( )+(x-) 2、实验框图 3、试验程序 #include main() { static float X[10]={0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.2};

static float Y[10]={0.96,1.48,2.54,4.14,7.30,19.4,67.0,230.0,700.0,2280}; int i; float B; float H; printf("Please input the B:"); scanf("%f",&B); for(i=1;i<=10;i++) { if(B<=X[i]) break; } H=Y[i]+(Y[i+1]-Y[i])*(B-X[i])/(X[i+1]-X[i]); printf("H=%f\n",H); } 4、输出计算结果 (二)、利用抛物线插值法求解 1、实验原理 (x)= ++ 2、实验框图

3、试验程序 #include main() { static float X[10]={0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.2}; static float Y[10]={0.96,1.48,2.54,4.14,7.30,19.4,67.0,230.0,700.0,2280}; int i; float B; float H; printf("Please input the B:"); scanf("%f",&B); for(i=2;i<=9;i++) { if(B<=X[i+1]&&B>=X[i-1]) break; } H=(B-X[i])*(B-X[i+1])*Y[i-1]/(X[i-1]-X[i])*(X[i-1]-X[i+1]) +(B-X[i-1])*(B-X[i+1])*Y[i]/(X[i]-X[i-1])*(X[i]-X[i+1]) +(B-X[i-1])*(B-X[i])*Y[i+1]/(X[i+1]-X[i-1])*(X[i+1]-X[i]); printf("H=%f\n",H); } 4、输出计算结果

电机学实验报告

电机学实验报告 学院:核技术及其自动化工程专业:电气工程及其自动化 教师:黄洪全 姓名:许新 学号:200706050209

实验一异步电机的M-S曲线测绘 一.实验目的 用本电机教学实验台的测功机转速闭环功能测绘各种异步电机的转矩~转差曲线,并加以比较。 二.预习要点 1.复习电机M-S特性曲线。 2.M-S特性的测试方法。 三.实验项目 1.鼠笼式异步电机的M-S曲线测绘测。 2.绕线式异步电动机的M-S曲线测绘。 >T m, (n=0) 当负载功率转矩 当S≥S m 过读取不同转速下的转矩,可描绘出不同电机的M-S曲线。

四.实验设备 1.MEL 系列电机系统教学实验台主控制屏。 2.电机导轨及测功机、转矩转速测量(MEL-13、MEL-14)。 3.电机起动箱(MEL-09)。 4.三相鼠笼式异步电动机M04。 5.三相绕线式异步电动机M09。 五.实验方法 1 被试电动机M04法。 G 功机,与按图线,实验步骤: (1)按下绿色“闭合”按钮开关,调节交流电源输出调节旋钮,使电压输出为220V ,起动交流电机。观察电机的旋转方向,是之符合要求。 (2)逆时针缓慢调节“转速设定”电位器经过一段时间的延时后,M04电机的负载将随之增加,其转速下降,继续调节该电位器旋钮电机由空载逐渐下降到200转/分左右(注意:转速低于200转/分时,有可能造成电机转速不稳定。) (3)在空载转速至200转/分范围内,测取8-9组数据,其中在最大转矩附近多测几点,填入表5-9。

(4)当电机转速下降到200转/分时,顺时针回调“转速设定”旋钮,转速开始上升,直到升到空载转速为止,在这范围内,读出8-9组异步电机的转矩T,转速n,填入表5-10。 2.绕线式异步电动机的M-S曲线测绘

基于单片机的直流电机PWM调速控制系统的设计

基于单片机的直流电机PWM调速控制系统的设计 第一章:前言 1.1前言: 直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。 近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过PWM方式控制直流电机调速的方法就应运而生。 采取传统的调速系统主要有以下的缺陷:模拟电路容易随时间飘移,会产生一些不必要的热损耗,以及对噪声敏感等。而用PWM技术后,避免上述的缺点,实现了数字式控制模拟信号,可以大幅度减低成本和功耗。并且PWM调速系统开关频率较高,仅靠电枢电感的滤波作用就可以获得平滑的直流电流,低速特性好;同时,开关频率高,快响应特性好,动态抗干扰能力强,可获很宽的频带;开关元件只需工作在开关状态,主电路损耗小,装置的效率高,具有节约空间、经济好等特点。 随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。 1.2本设计任务: 任务: 单片机为控制核心的直流电机PWM调速控制系统 设计的主要内容以及技术参数: 功能主要包括: 1)直流电机的正转; 2)直流电机的反转; 3)直流电机的加速; 4)直流电机的减速; 5)直流电机的转速在数码管上显示; 6)直流电机的启动; 7)直流电机的停止; 第二章:总体设计方案 总体设计方案的硬件部分详细框图如图一所示。

电机实验报告

步进电机控制报告 目录 引言 0 一系统技术指标 (1) 二总体方案 (1) 2.1 任务分析 (1) 2.2 总体方案 (1) 三硬件电路设计 (2) 3.1 单片机控制单元 (2) 3.2 nokia5110液晶显示单元 (3) 3.3 电机的选择 (4) 3.3.1 反应式步进电机(VR) (4) 3.3.2 永磁式步进电机(PM) (4) 3.3.3 混合式步进电机(HB) (4) 3.3.4 电机确定 (5) 3.4 驱动电路方案选择 (5) 3.4.1 单电压功率驱动 (5) 3.4.2 双电压驱动功率驱动 (6) 3.4.3 高低压功率驱动 (6) 3.4.4 斩波恒流功率驱动 (7) 3.4.5 集成功率驱动 (8)

3.4.6 驱动电路方案确定 (9) 3.5 键盘电路 (9) 四软件设计 (11) 五测试结果 (13) 六误差分析 (13) 七操作规范 (13)

引言 本系统是基于MSP430的步进电机控制系统,能够实现精密工作台位移、速度(满足电机的加、减速特性)、方向、定位的控制。用MSP430F449作为控制单元,通过矩阵键盘实现对步进电机转动开始与结束、转动方向、转动速度的控制。并且将步进电机的转动方向,转动速度,以及位移动态显示在LCD液晶显示屏上。硬件主要包括单片机系统、电机驱动电路、矩阵键盘、LCD显示等。

一系统技术指标 系统为开环伺服系统,执行元件为步进电动机,传动机构为丝杠螺母副。工作台脉冲当量:δ=0.01 mm /脉冲;最大运动速度=1.2m/min;定位精度=±0.01 mm;空载启动时间=25ms。 二总体方案 2.1 任务分析 本系统要求脉冲当量为δ=0.01 mm /脉冲,而工作台丝杠螺母副导程4mm,即电机转动一周需要400个脉冲,所以电机的步距选择0.9度;最大速度要求为1.2m/min(20mm/s),所以单片机输出的脉冲频率最大为2000Hz;空载启动时间为25ms,所以电机的启动频率为40Hz。 2.2 总体方案 根据系统要求,经过分析,可对MSP430F449单片机编程,实现按键控制和nokia5110液晶屏显示。由于MSP430F449的I/O的电压是3.3V,不符合L298驱动芯片的输入电压要求,固通过光耦隔离芯片TLP521-4,将I/0的3.3V 电压提升至5V,然后接进L298来控制电机的定位,加减速,正反转来实现精确系统总体框图如图1所示:

电机学实验报告

课程名称:电机学实验指导老师:章玮成绩:__________________ 实验名称:异步电机实验实验类型:______________同组学生:旭东 一、实验目的和要求(必填)二、实验容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、测定三相感应电动机的参数 2、测定三相感应电动机的工作特性 二、实验项目 1、空载试验 2、短路试验 3、负载试验 三、实验线路及操作步骤 电动机编号为D21,其额定数据:P N=100W,U N=220V,I N=0.48A,n N=1420r/min,R=40Ω,定子绕组△接法。 1、空载试验 (1)所用的仪器设备:电机导轨,功率表(DT01B),交流电流表(DT01B),交流电压表(DT01B)。 (2)测量线路图:见图4-4,电机绕组△接法。 (3)仪表量程选择:交流电压表250V,交流电流表0.5A,功率表250V、0.5A。(4)试验步骤: 安装电机时,将电机和测功机脱离,旋紧固定螺丝。 试验前先将三相交流可调电源电压调至零位,接通电源,合上起动开S1,缓缓升高电源电压使电机起动旋转,注意观察电机转向应符合测功机加载的要求(右视机组,电机旋转方向为顺时针方向),否则调整电源相序。注意:调整相序时应将电源电压调至零位并切断 电源。

接通电源,合上起动开关S1,从零开始缓缓升高电源电压,起动电机,保持电动机在额定电压时空载运行数分钟,使机械损耗达到稳定后再进行试验。 调节电源电压由1.2倍(264V~66V)额定电压开始逐渐降低,直至电机电流或功率显著增大为止,在此围读取空载电压、空载电流、空载功率,共读取7~9组数据,记录于表4-3中。注意:在额定电压附近应多测几点。 试验完毕,将三相电源电压退回零位,按下电源停止按钮,停止电机。 表4-3 2、短路试验 (1)所用的仪器设备:同空载试验 (2)测量线路图:见图4-4,电机绕组△接法。 (3)仪表量程选择:交流电压表250V,交流电流表1A,功率表250V、2A。

直流电机PWM调速系统参考论文

毕业论文 基于51单片机的直流电机PWM调速控制系统设计 所在学院 专业名称 年级 学生姓名、学号 指导教师姓名、职称 完成日期

摘要 本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。本文中采用了三极管组成了PWM信号的驱动系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。另外,本系统中使用了霍尔元件对直流电机的转速进行测量,经过处理后,将测量值送到液晶显示出来。 关键词:PWM信号,霍尔元件,液晶显示,直流电动机 I

目录 目录 ................................................................................................................................ III 1 引言 (1) 1.1 课题背景 (1) 1.1.2 开发背景 (1) 1.1.3 选题意义 (2) 1.2 研究方法及调速原理 (2) 1.2.1 直流调速系统实现方式 (4) 1.2.2 控制程序的设计 (5) 2 系统硬件电路的设计 (6) 2.1 系统总体设计框图及单片机系统的设计 (6) 2.2 STC89C51单片机简介 (6) 2.2.1 STC89C51单片机的组成 (6) 2.2.2 CPU及部分部件的作用和功能 (7) 2.2.3 STC89C51单片机引脚图 (8) 2.2.4 STC89C51引脚功能 (8) 3 PWM信号发生电路设计 (11) 3.1 PWM的基本原理 (11) 3.2 系统的硬件电路设计与分析 (11) 3.3 H桥的驱动电路设计方案 (12) 5 主电路设计 (14) 5.1 单片机最小系统 (14) 5.2 液晶电路 (14) 5.2.1 LCD 1602功能介绍 (15) 5.2.2 LCD 1602性能参数 (16) 5.2.3 LCD 1602与单片机连接 (18) 5.2.4 LCD 1602的显示与控制命令 (19) 5.3 按键电路 (20) 5.4 霍尔元件电路 (21) III

三相异步电动机的起动与调速实验报告

实验五三相异步电动机的起动与调速 一.实验目的 通过实验掌握异步电动机的起动和调速的方法。 二.预习要点 1.复习异步电动机有哪些起动方法和起动技术指标。 2.复习异步电动机的调速方法。 三.实验项目 1.异步电动机的直接起动。 2.异步电动机星形——三角形(Y-△)换接起动。 3.绕线式异步电动机转子绕组串入可变电阻器起动。 4.绕线式异步电动机转子绕组串入可变电阻器调速。 四.实验设备及仪器 1.SMEL电力电子及电气传动教学实验台主控制屏。 2.电机导轨及测功机、转矩转速测量(NMEL-13F)。 3.电机起动箱(NMEL-09)。 5.鼠笼式异步电动机(M04)。 6.绕线式异步电动机(M09)。 7.开关板(NMEL-0B5)。 五.实验方法 1.三相笼型异步电动机直接起动试验。 按图5-1接线,电机绕组为△接法。 起动前,把转矩转速测量实验箱(NMEL-13F) 中“转矩设定”电位器旋钮逆时针调到底,“转速控 制”、“转矩控制”选择“转矩控制”,检查电机导 轨和NMEL-13F的连接是否良好。 a.把三相交流电源调节旋钮逆时针调到底,合 上绿色“闭合”按钮开关。调节调压器,使输出电 图5-1 异步电动机直接启动接线图压达电机额定电压220伏,使电机起动旋转。(电机 起动后,观察NMEL-13F中的转速表,如出现电机转向不符合要求,则须切断电源,调整次序,再重新起动电机。)

b .断开三相交流电源,待电动机完全停止旋转后,接通三相交流电源,使电机全压起动,观察电机起动瞬间电流值,读取电压值U K 、电流值I K 、转矩值T K ,填入表5-1中。 U N :电机额定电压,V ; 测 量 值 U K (V ) I K (A ) T K () 图5-3 绕线式异步电动机转子绕组串电阻启动接线图 2.星形——三角形(Y-△)起动 按图5-2接线,电压表、电流表的选择 同前,开关S 选用MEL-05。 a .起动前,把三相调压器退到零位, 三刀双掷开关合向右边(Y )接法。合上电 源开关,逐渐调节调压器,使输出电压升高 至电机额定电压U N =220V ,断开电源开关, 待电机停转。 b .待电机完全停转后,合上电源开关, 观察起动瞬间的电流,然后把S 合向左边(△ 接法),电机进入正常运行,整个起动过程结束,观察起动瞬间电流表的显示值以与其它起动方法作定性比较。 3.绕线式异步电动机绕组串入可变 电阻器调速 实验线路如图5-3,电机定子绕组Y 形 接法。转子串入的电阻由刷形开关来调节, 调节电阻采用NMEL-09的绕线电机起动电阻 (分0,2,5,15,∞五档) 实验线路同前。NMEL-13F 中“转矩控制” 和“转速控制”选择开关扳向“转矩控制”, “转矩设定”电位器逆时针到底MEL-09“绕 线电机起动电阻”调节到零。 a .合上电源开关,调节调压器输出电压至U N =220伏,使电机空载起动。 b .调节“转矩设定”电位器调节旋钮,使电动机输出功率接近额定功率并保持输出转矩T 2不变,改变转子附加电阻,分别测出对应的转速,记录于表5-2中。 2R st (Ω) 0 2 5 15 n (r/min ) 1478 1470 1461 1430 图5-2 异步电动机星-三角启动 图5-3 绕线式异步电动机转子串电阻起动

相关主题
文本预览
相关文档 最新文档