当前位置:文档之家› 水力计算表

水力计算表

水力计算表
水力计算表

附录B 水力计算表

《水力计算图表》汇集了给水排水工程设计常用的水力计算图表。内容包括给水工程用钢管、铸铁管、塑料管水力计算表,圆形断面钢筋混凝土输水管水力计算表;圆形、矩形、马蹄形、蛋形断面排水管道水力计算图,以及梯形明渠水力计算图;热水管、钢塑复合管、蒸汽与压缩空气管的流量与压力损失计算表等。为充分发挥实用设计功能以及配合计算机辅助设计的应用,《水力计算图表》配置了上述所有水力计算图表的电子软件,可通过计算机准确、方便、快速地检索、查询和计算。

B.0.1制表说明。

1水力计算表格按公式(4.4.1-1)编制,管道单位长度沿程水头损失为:

i=105C h-1.85dj-4.87q g1.85(B.0.1-1)式中i——管道单位长度水头损失(kPa/m);

d j——管道计算内径(m);

C h——海澄-威廉系数,C h=140;

q g——设计流量(m3/s)。

2建筑给水聚丙烯冷水管水力计算表分别按管系列S5、S4、S3.2和工作水温10℃编制。建筑给水聚丙烯热水管水力计算表分别按管系列 S3.2、S2.5、S2.0和工作水温70℃编制。

i L=0.011dj-4.87q g1.85(B.0.1-2)

i R=0.008dj-4.87q g1.85(B.0.1-3)

式中i L——冷水管单位长度水头损失(kPa/m);

i R——热水管单位长度水头损失(kPa/m);

dj——管道计算内径(m);

q g——设计流量(m3/s)。

B.0.2水力计算表。建筑给水聚丙烯冷水管水力计算表见本附录表B.0.2-1,B.0.2-2,B.0.2-3;

建筑给水聚丙烯热水管水力计算表见本附录表B.0.2-4,B.0.2-5,B.0.2-6。

表B.0.2-1 冷水管S5管系列水力计算

1

1

表B.0.2-2 冷水管S4管系列水力计算

2

2

表B.0.2-3 冷水管S3.2管系列水力计算

3

3

3

3

表B.0.2-4 热水管S3.2管系列水力计算

消防水系统设置计算

第4章建筑消防给水 4-1消火栓给水系统及布置 低层建筑:扑救初期火灾 高层建筑:满足自救需要 一. 设置原则 执行国家《建筑设计防火规范》,《高层民用建筑设计防火规范》。例:第8.4.1条第4款:超过七层的单元式住宅,超过六层的塔式住宅、通廊式住宅、底层设有商业网点的单元式住宅。(应设室内消防给水) 二. 建筑内消火拴给水系统组成、组件及类型 (一)组成及组件 水枪、水龙带、消火拴、消防水喉、消防通道、水箱、消防水泵接合器、增压设备和水源。 1.水枪 喷嘴口径:13,16,19mm 与水龙带接口:用快速螺母连接。 2. 水龙带DN50mm,DN65mm 麻质:抗折叠,质轻,水流阻力大q xh≤3l/s,φ16 橡胶:易老化,质重,水流阻力小q xh>3l/s,φ16,19,DN65 3.消火拴 内扣式快速连接螺母+球形阀,单出口、双出口DN65,DN50 4.消防水喉——小口径拴 25mm,喷嘴,φ6~8mm,L=20,25,30m 工作压力:106Pa=103kPa=1MPa=10kg/cm2 爆破压力:3×106Pa=3MPa=30kg/cm2 5’屋顶检验用拴 5. 消火拴箱——玻璃门 内置:消火拴、水枪、水龙带、水喉、消防报警及启泵装置 设置:承重墙,明、暗、半暗 6.消防水泵接合器 作用:一端接室内消防管网,另一端可供消防车加压供水 组成:闸门、安全阀、止回阀 形式:地面、地下、墙壁式 设置点:便于消防车接管供水地点;周围有15~40m范围内***水池。 7.消防给水管网 环状,立管不变径。低层可生活+消防,高层独立 8.消防贮水设备及加压设备、水源 初期火灾用水(10分钟)水箱,气压给水装置 火灾连续用水水池可与生活贮水合用,但存不动用措施 消防水泵水源 (二)类型 1.不设消防水箱及水泵的消火拴给水系统 室外管网的压力及水量在任何时候均可满足室内消防要求 DN

水力计算表

附录B 水力计算表 《水力计算图表》汇集了给水排水工程设计常用的水力计算图表。内容包括给水工程用钢管、铸铁管、塑料管水力计算表,圆形断面钢筋混凝土输水管水力计算表;圆形、矩形、马蹄形、蛋形断面排水管道水力计算图,以及梯形明渠水力计算图;热水管、钢塑复合管、蒸汽与压缩空气管的流量与压力损失计算表等。为充分发挥实用设计功能以及配合计算机辅助设计的应用,《水力计算图表》配置了上述所有水力计算图表的电子软件,可通过计算机准确、方便、快速地检索、查询和计算。 B.0.1制表说明。 1水力计算表格按公式(4.4.1-1)编制,管道单位长度沿程水头损失为: i=105C h-1.85dj-4.87q g1.85(B.0.1-1)式中i——管道单位长度水头损失(kPa/m); d j——管道计算内径(m); C h——海澄-威廉系数,C h=140; q g——设计流量(m3/s)。 2建筑给水聚丙烯冷水管水力计算表分别按管系列S5、S4、S3.2和工作水温10℃编制。建筑给水聚丙烯热水管水力计算表分别按管系列 S3.2、S2.5、S2.0和工作水温70℃编制。 i L=0.011dj-4.87q g1.85(B.0.1-2) i R=0.008dj-4.87q g1.85(B.0.1-3) 式中i L——冷水管单位长度水头损失(kPa/m); i R——热水管单位长度水头损失(kPa/m); dj——管道计算内径(m); q g——设计流量(m3/s)。 B.0.2水力计算表。建筑给水聚丙烯冷水管水力计算表见本附录表B.0.2-1,B.0.2-2,B.0.2-3; 建筑给水聚丙烯热水管水力计算表见本附录表B.0.2-4,B.0.2-5,B.0.2-6。 表B.0.2-1 冷水管S5管系列水力计算 表

消防水计算公式汇编

消防水专业计算公式汇编 第四章建筑消防(规范第2章) 一、消火栓系统: 1、系统水量和设置场所:见P515~P518 2、消火栓充实水柱: 1)、室外消火栓充实水柱不应小于10m,常压供水应考虑地面到着火点的标高;2)、室内消火栓充实水柱: ·消火栓的水枪充实水柱一般不应小于7m: ·超过100m的高层建筑、高架仓库、高层工业建筑内水枪充实水柱不应小于13m。 ·不超过100m的高层建筑、超过六层的民用建筑,超过四层的厂房、库房、人防工程、停车库、修车库的水枪充实水柱不应小于10m。 3)消火栓充实水柱计算: S k= (H1-H2)/sinα(m) 式中S k——水枪的充实水柱长度,m; H1——室内最高着火点离地面的高度,m; H2——水枪离着火层地面的高度,m;一般取1m; α----水枪上倾角,一般为450,最大不应超过600; 4)、消火栓设置间距; (1)室内消火栓保护半径计算: R=kL d+Ls 式中:R---消火栓保护半径,m; L d——水带的铺设长度; k----水枪弯曲折减系数,宜根据水带的弯曲量取80-90%水带总长 Ls----水枪的充实水柱长度在平面上的投影长度,当水枪倾角为450时,Ls=0.71 S k;(L= Hmcosα) 大空间消火栓设置间距S,应根据消火栓保护半径R和保护间距b,根据勾股定理求得: S=(R-b)1/2 式中S——消火栓间距,m; R——消火栓保护半径,m; b——消火栓最大保护宽度的1/2,m 5)、管网水力计算: (1)、消火栓栓口水压计算: 消火栓栓口最低水压: Hxh= Hq + hd + H k =A d L d q2xh+q2xh/B+H k 式中:Hxh—消火栓栓口最低水压, 0.01Mpa

热力管道水力计算表

热力管道水力计算表

————————————————————————————————作者:————————————————————————————————日期: ?

热力管道水力计算表(一) Kd=0.5mm r=958.4kg/m3 DN 25 32 4050 DN 253240 50 70 D w×δ32×25 38×2.545×2.557×3.5D w×δ32×2.538×2.545×2.557×3.573×3.5 G(t/h) W R W R W R WR G(t/h)W RW R W R W R WR 0.20.1 0. 95 1.250.63 34.2 0.4 2 1 1.6 0.2 9 4.2 0.1 8 1. 34 0.22 0.11 1.1 4 1.3 0. 66 37 0. 44 1 2.6 0.3 4.5 1 0.1 9 1.4 4 0. 11 0. 34 0.24 0.1 2 1.3 5 1.35 0.68 39. 9 0.46 13.6 0.3 1 4. 86 0.2 1 .55 0 .1 1 0.37 0.26 0.13 1.59 1.40 0.7 1 42.9 0. 47 1 4 .6 0.3 2 5.2 1 0.2 1 1. 6 7 0.1 2 0.3 9 0.28 0.1 4 1. 82 1.450.73 46 0.49 15 .7 0.33 5.5 9 0.2 1 1.78 0. 12 0.42 0.30 0. 15 2.0 8 1.50 0. 76 49.2 0 .5 1 16.8 0.3 5 5.9 8 0.2 2 1.91 0.1 3 0.4 5 0.320.1 6 2.3 7 1.55 0.7 9 52.6 0.53 17 .9 0.3 6 6 .3 8 0 .23 2.02 0.13 0.48 0.340.17 2.7 1 1.6 0.8 1 56 0.5 4 19.1 0.3 7 6.8 0.2 4 2.14 0. 13 0.5

PPR水力计算表

建筑给水聚丙烯管道(PP—R)应用技术规程 前言 建筑给水聚丙烯管道(PP—R)是国际上九十年代发展起来的化学建材,它与钢管、铜管相比,具有卫生、质轻、耐压、耐腐蚀、阻力小、隔热保温、连接方便可靠、使用寿命长、废料可回收利用等特点,可广泛用于冷、热水供应系统和纯净水系统,有良好的推广应用前景和显著的社会效益、经济效 益。 本规程是参照国外有关资料和上海市建筑产品推荐性应用标准《建筑给水聚丙烯管道(PP—R)工程技术规程》DBJ/CT501—99基础上编制的。由于经验有限,难免有不足之处,有待在实践中不断完 善。在使用中如有意见和建议,请寄至:广东省南海市松岗镇沙水工业区,南海市彩虹塑胶实业有限公司,邮政编码528234,以便修订时采用。 本规程编写单位及起草人名单如下: 主编单位:广州市建设委员会广东省土木建筑学会广东省给排水技术专业委员会 参编单位:南海市彩虹塑胶实业有限公司广西省土木建筑学会 主要起草人:曲申酉、李大鹏、何枫,郭秀英 参加起草人:劳锦华、陈永昌、杜吉军、张海忠、刘勇、余敏 第一章总则 1.0.1 为了使建筑给水系统中采用聚丙烯管道的工程,在设计、施工及验收中做到技术先进、安全卫生、经济合理、保证质量,特制订本规程。 1.0.2 本规程适用于各种民用建筑和工业建筑中生活给水、生活热水和饮用洁净水的管道系统的设计、施工及验收。本规程规定的系统工作压力不大于0.6MPa,水温不大于70℃。 1.0.3 聚丙烯管道不得用作消防管道。聚丙烯管道用于输送化工流体介质时,应探讨其化学稳定性,应参考有关资料或做试验确定。

1.0.4 本规程采用的聚丙烯管材、管件的规格、尺寸及性能,均应符合南海市彩虹塑胶实业有限公司产品企业标准Q/CHl.1— 1999、Q/CHl.2—1999的要求,该企业标准中管材等同采用德国工业标准 DIN8077—1996及DIN8078—1996中第三类型管的要求。管件等同采用德国工业标准DINl6962E中第5、6、7、8部分的规定。 1.0.5给水聚丙烯管道工程的设计、施工及验收,除执行本规程外,还应符合国家有关标准、规范的规定。 第二章术语 2.0.1 热熔连接由相同热塑性塑料制作的管材与管件互相连接时,采用专用热熔机具将连接部位表面加热,连接接触面处的本体材料互相熔合,冷却后连接成为一个整体。热熔连接有对接式热熔连接、承插式热熔连接和电熔连接。 2.0.2 公称压力管材在介质温度为20℃,使用期限为50年,以MPa为单位的允许压力称为公称压力。 2.0.3 允许压力在某一介质温度下,对应一定的使用年限,管道系统可以承受的最大压力,称为允许压力。 2.0.4 工作压力为确保管道系统在使用期限内安全运行,各公称压力等级的管道,将其允许压力乘以安全系数后确定的压力,称为工作压力。 2.0.5 自然补偿利用管道敷设中自然存在的曲折或加设的曲折,吸收管道因温差产生的变形,称为自然补偿。 2.0.6 自由臂自然补偿时,利用折角管段的悬臂位移,吸收管道自固定点起至转弯处的伸缩变形,该对应的转弯管段称为自由臂。 2.0.7 电熔连接由相同的热塑性塑料管道连接时,插入特制的电熔管件,由电熔连接机具对电熔管件通电,依靠电熔管件内部预先埋设的电阻丝产生所需要的热量进行熔接,冷却后管道与电熔管件连接成为一个整体。 2.0.8 法兰连接件由金属法兰盘及PP—R过渡接头组成,过渡接头与管材用热熔连接套入法兰盘形成法兰连接件。法兰连接件是PP—R管道法兰连接的专用型式,构造示意图如下:

水力计算思路

(一)流量计算: 现分析流量计算步骤及程序如下: 一、首先分析在满足同时使用水枪支数条件下的充实水柱计算: 1、查建筑防火规范:第8.5.2条-室内消火栓用水量应根据同时使用水枪数量和充实水柱长度,由计算决定(可见不是纯粹查表得来的),但不应小于表8.5.2的规定(可见查表所得为规定的最小值,并不一定就是适合你手上建筑的正确值,如果经计算所得你的消火栓用水量大于表格内对应的消防水量,则应取较大的计算值)。 2、计算室内消火栓用水量的已知条件:同时使用水枪数量(可查表得到,一般为2支);未知条件:充实水柱长度 3、如何来计算充实水柱长度? 水枪充实水柱概念:水枪向上垂直射流,在26mm~38mm直径圆断面内、包含全部水量75%~90%的密实水柱长度称为充实水柱长度,以Hm表示(一般控制在7米~15米范围内)。 那么建筑所需充实水柱高度该如何来计算呢?对一定层高h的建筑来说,它所要求的消防要求是:当水柱的倾角控制在45~60度范围时可以喷到天花板上(上层楼板): Hm=(h-1)/sina,这个公式在很多规范及教材中都出现过。 这里我们取a=45度,Hm=√2(h-1) 接下来,我们做一个统计,对由于Hm在7米~15米之间,我们来计算建筑层高控制在多少。 当Hm=7时,h=5.95米,意味着当h小于5.95米时,Hm仍取7米; 当Hm=15时,h=11.6米,意味着当h大于11.6米时,Hm超过15米,需选择其他灭火方式,消火栓系统不适用; 二、现在在满足了建筑防火规范要求的同时使用水枪支数的前提下给出了充实水柱的计算方法,接下来我们要校核,以上得出的充实水柱是否可以满足规范要求的每支水枪最小流量的要求呢?如果在该充实水柱条件下能同时满足规范要求的(1、同时使用水枪支数;2、每支水枪最小流量;)2个要求,那么这个充实水柱高度是正确的。 1、水枪流量对充实水柱有什么影响呢? 根据孔口出流公式:qxh=3.14udf2√2gHq/4=0.003477udf2√Hq,令 B=(0.003477udf2)2,则:qxh=√BHq,

消防水力计算原理参照

计算原理参照《全国民用建筑工程设计技术措施2009》,《建筑给水排水工程》(中国建筑工业出版社) 基本计算公式 1、最不利点消火栓流量: q xh BH q = 式中:q xh -- 水枪喷嘴射出流量(L/s) (依据规范需要与水枪的额定流量进行比较,取较大值) B -- 水枪水流特性系数 H q -- 水枪喷嘴造成一定长度的充实水柱所需水压(mH 2 O ) 2、最不利点消火栓压力: 222++=++=B q q L A H H h H xh xh d d sk q d xh 式中:H xh -- 消火栓栓口的最低水压(0.010MPa) h d --消防水带的水头损失(0.01MPa) h q -- 水枪喷嘴造成一定长度的充实水柱所需水压(0.01MPa) A d -- 水带的比阻 L d -- 水带的长度(m) q xh -- 水枪喷嘴射出流量(L/s) B-水枪水流特性系数 H sk -- 消火栓栓口水头损失,宜取0.02Mpa 3、次不利点消火栓压力: j f xh xh h h H H +++=层高最次 式中:H 层高 -- 消火栓间隔的楼层高(m) H f+j -- 两个消火栓之间的沿程、局部水头损失(m) 4、次不利点消火栓流量: B L A H q d d xh xh 1 2 + -= 次次 (依据规范需要与水枪的额定流量进行比较,取较大值) 5、流速V : 24j xh D q v π= 式中:q xh -- 管段流量L/s D j -- 管道的计算内径(m ) 6、水力坡降: 3.12 00107.0j d v i = 式中:i -- 每米管道的水头损失(mH 20/m )

枝状管网水力计算

9)4.10 3.88 单定压节点树状管网水力分析 某城市树状给水管网系统如图所示,节点(1)处为水厂清水池,向整个管网供水,管段[1]上设有泵站,其水力特性为:s p1=311、1(流量单位:m 3/S,水头单位:m),h e1=42、6,n=1、852。根据清水池高程设计,节点(1)水头为H1=7、80m,各节点流量、各管段长度与直径如图中所示,各节点地面标高见表,试进行水力分析,计算各管段流量与流速、各节点水头与自由水压。 以定压节点(1)为树根,则从离树根较远的节点逆推到离树根较近的节点的顺序就是:(10),(9),(8),(7),(6),(5),(4),(3),(2);或(9),(8),(7),(10),(6),(5),(4),(3),(2);或(5),(4),(10),(9),(8),(7),(6),(3),(2)等,按此逆推顺序求解各管段流量的过程见下表。 ,即: q 1+Q 1=0,所以,Q 1=- q 1=-93、21(L/s) 根据管段流量计算结果,计算管段流速及压降见表。计算公式与算例如下: 采用海曾威廉-公式计算(粗糙系数按旧铸铁管取C w =100)

管道摩阻系数 管段水头损失 泵站扬程按水力特性公式计算: 管段编号[1][2][3][4][5][6][7][8][9] 管段长度(m) 600 300 150 250 450 230 190 205 650 管段直径(mm) 400 400 150 100 300 200 150 100 150 管段流量(L/s) 93、21 87、84 11、04 3、88 60、69 18、69 11、17 4、1 11、26 管段流速(m/s) 0、74 0、70 0、63 0、49 0、86 0、60 0、63 0、52 0、64 管段摩阻系数109、72 54、86 3256、05 39093、49 334、04 1229、92 4124、33 32056、66 14109、56 水头损失(m) 1、35 0、61 0、77 1、34 1、86 0、77 1、00 1、22 3、48 泵站扬程(m) 38、76 0 0 0 0 0 0 0 0 管段压降(m) -37、41 0、61 0、77 1、34 1、86 0、77 1、00 1、22 3、48 以定压节点(1)为树根,则从离树根较近的管段顺推到离树根较远的节点的顺序就是:[1],[2],[3],[4],[5],[6],[7],[8],[9]; 或[1],[2],[3],[4],[5],[9],[6],[7],[8]; 或[1],[2],[5],[6],[7],[8],[9],[3],[4]等,按此顺推顺序求解各定流节点节点水头的过程见下表。 步骤树枝管段号管段能量方程节点水头求解节点水头(m) 1 [1]H 1-H 2 =h 1 H 2 =H 1 -h 1 H 2 =45、21 2 [2]H 2-H 3 =h 2 H 3 =H 2 -h 2 H 3 =44、60 3 [3]H 3-H 4 =h 3 H 4 =H 3 -h 3 H 4 =43、83 4 [4]H 4-H 5 =h 4 H 5 =H 4 -h 4 H 5 =42、49 5 [5]H 3-H 6 =h 5 H 6 =H 3 -h 5 H 6 =40、63 6 [6]H 6-H 7 =h 6 H 7 =H 6 -h 6 H 7 =39、86 7 [7]H 7-H 8 =h 7 H 8 =H 7 -h 7 H 8 =38、86 8 [8]H 8-H 9 =h 8 H 9 =H 8 -h 8 H 9 =37、64 9 [9]H 6-H 10 =h 9 H 10 =H 6 -h 9 H 10 =34、16 节点编号i 1 2 3 4 5 6 7 8 9 10 地面标高(m) 9、80 11、50 11、80 15、20 17、40 13、30 12、80 13、70 12、50 15、00 节点水头(m) 7、80 45、21 44、60 43、83 42、49 40、63 39、86 38、86 37、64 34、16 自由水头(m) —33、71 32、80 28、63 25、09 27、33 27、06 25、16 25、14 19、16

消火栓水力计算表

消火栓水力计算 该建筑物长宽高分别为39.5m , 36.4m, 94.9m,根据要求,消火栓间距应保证同层任何 部位有两个消火栓的水枪充实水柱同时到达,采用串联分区的消防给水方式。 一?低区消火栓水力计算 (1)低区消火栓布置 水带长度取20m,展开弯折系数C取0.85,则消火栓的保护半径为 R C L d h = 0.85 20 3 20(h 取3m) 消火栓采用双排布置,其间距为 S .. R2 b2■. 20210 2 2=l6.0m 据此,在各层布置消火栓位置及个数如各层平面图所示。 (2)水枪水嘴处所需水压计算 查表得,水枪喷嘴口直径选19mm,水枪系数值为0.0097,充实水柱长度H m要求不小于 13m,选H m=13m,水枪实验系数f值为1.22,水枪喷嘴处所需水压为 H q f H m 1 f H m 1.22 13 1 0.0097 1.22 13 18.74mH2o 187.4KPa (3 )水枪喷嘴得出流量计算 喷口直径19mm的水枪水流特性系数B为1.577 q xh .BH; J1.577 18.74 5.44L/s (4)水带阻力计算 19mm水枪配备65mm水带,衬胶水带阻力较小,本工程选用衬胶水带,查表知65mm水带的阻力系数A z为0.00172,水带阻力损失为 2 2 h d A z L d q xh 0.00172 20 5.44 1.02m (5 )消火栓口所需水压计算 消火栓口所需水压为 H xh H q g H k18.74 1.02 2 21.76mH2o 217.6KPa H k2m (6) 校核 设置的消防贮水高位水箱最低水位高程28.00m,最不利点消火栓栓口高程20.60m,则最不 利点消火栓栓口的静水压力为28.00-20.60=7.4 mH?。=74Kpa>50Kpa,按《高层民用建筑设计 防火规范》GB50045 —95第7.47.2条规定,可不设增压设施。 (7) 水力计算 XL-5,出水枪数为2按照最不利点消防竖管和消火栓的流量分配要求,最不利消防竖管为支,相 邻消防竖管为XL-7,出水枪数为2支。

水喷雾水力计算

7 水力计算 7.1 系统的设计流量 7.1.1 q=K10P为通用算式。不同型号的水雾喷头具有不同K值。设计时按生产厂给出的K值计算水雾喷头的流量。 7.1.2 本条规定了保护对象确定水雾喷头用量的计算公式,水雾喷头的流量q按公式(7.1. 1)计算,水雾喷头工作压力取值按防护目的和水雾喷头特性确定。 7.1.3 本条规定水喷雾灭火系统计算流量的要求。 当保护对象发生火灾时,水喷雾灭火系统通过水雾喷头实施喷雾灭火或防护冷却,因此本规范规定系统的计算流量按系统启动后同时喷雾的水雾喷头流量之和确定,而不是按保护对象的保护面积和设计喷雾强度的乘积确定。 针对该系统保护对象火灾危险性大、蔓延迅速、扑救困难的特点,本条采用与《自动喷水灭火系统设计规范》中第7.1.1条规定中要求雨淋、水幕和严重危险级系统水力计算按最不利处作用面积内每个洒水喷头实际流量确定系统流量相同的作法,规定水喷雾灭火系统的计算流量,从最不利点水雾喷头开始,沿程按同时喷雾的每个水雾喷头实际工作压力逐个计算其流量。然后累计同时喷雾的水雾喷头总流量确定为系统流量。 美国标准NFPA一15对水喷雾灭火系统的水力计算有相同的规定:从最不利点水雾喷头开始。沿程向系统供水点推进,并按实际压力逐个计算水雾喷头流量,并以所有同时喷雾水雾喷的总流量确定系统流量,计算应包括管道、阀门、过滤器和所有改变水流方向的接头的水压损失和标高的改变等因素对流量的影响。 7.1.4 本条规定当水喷雾灭火系统利用雨淋阀控制喷雾范围时确定系统 可燃气体和甲、乙、丙类液体贮罐区、输送机皮带、油浸式电力变压器、电缆隧道,以及车间、库房等,具有保护对象数量多、或保护面积大或其细长比大的特点,因此,根据保护对象及其火灾的特点,按保护对象数量或保护面积划分一次火灾的喷雾区域,合理地控制水喷雾系统的喷雾范围,对降低系统造价、节约用水以及减少水害有利,对设计按保护对象或保护面积划分区域局部喷雾的水喷雾系统,其系统的计算流量按各局部喷雾区域中同时喷雾的最大用水量确定。 7.1.5 本条规定水喷雾灭火系统的设计流量按计算流量的1.05~1.10倍确定。鉴于按水喷雾灭火系统喷雾中期水雾喷头实际流量确定的系统计算流量接近设计流量,故系统计算流量的安全系数取较小数值。 7.2 管道水力计算 7.2.1 《自动喷水灭火系统设计规范》在确定管道沿程水头损失计算公式时综合考虑了以下因素: 1.自动喷水灭火系统管道计算与室内给水系统管道计算的一致性; 2.据《美国工业防火手册》介绍“经过实测,自动喷水灭火系统管道在使用20~50年后,其水头损失接近设计值”。在我国30年代安装于工业、民用建筑中的自动喷水灭火管道,至今已有50年以上的历史,有的因锈蚀而堵塞,更多的仍在继续使用,所以管道沿程水头损失的计算公式宜偏于安全。 为了与包括《自动喷水灭火系统设计规范》和《建筑给水排水设计规范》在内的我国有关规范相协调,使各规范消防管道沿程水头损失计算具有一致性,本规范仍采用前苏联Φ·A舍维列夫计算公式。 沿程水头损失的不同公式计算结果比较见表6。

流体输配管网水力计算的目的

第 2 章气体管流水力特征与水力计算 2-1 某工程中的空调送风管网,在计算时可否忽略位压的作用?为什么?(提示:估计位压作用的大小,与阻力损失进行比较。) 答:民用建筑空调送风温度可取在15~35℃(夏季~冬季)之间,室内温度可取在25~20℃(夏季~冬季)之间。取20℃空气密度为1.204kg/m3,可求得各温度下空气的密度分别为: 15℃: ==1.225 kg/m3 ==1.145 kg/m3 35℃: ==1.184 kg/m3 25℃: 因此: 夏季空调送风与室内空气的密度差为 1.225-1.184=0.041kg/m3 冬季空调送风与室内空气的密度差为 1.204-1.145=0.059kg/m3 空调送风管网送风高差通常为楼层层高,可取H=3m,g=9.807 N/m.s2,则

夏季空调送风位压=9.807×0.041×3=1.2 Pa 冬季空调送风位压=9.807×0.059×3=1.7 Pa 空调送风系统末端风口的阻力通常为15~25Pa,整个空调送风系统总阻力通常也在100~300 Pa之间。可见送风位压的作用与系统阻力相比是完全可以忽略的。 但是有的空调系统送风集中处理,送风高差不是楼层高度,而是整个建筑高度,此时H可达50米以上。这种情况送风位压应该考虑。 2-2 如图 2-1-1 是某地下工程中设备的放置情况,热表示设备为发热物体,冷表示设备为常温物体。为什么热设备的热量和地下室内污浊气体不能较好地散出地下室?如何改进以利于地下室的散热和污浊气体的消除? 图2-1-1 图2-1-2

图2-1-3 图2-1-4 答:该图可视为一 U 型管模型。因为两侧竖井内空气温度都受热源影响,密度差很小,不能很好地依靠位压形成流动,热设备的热量和污浊气体也不易排出地下室。改进的方法有多种:(1)将冷、热设备分别放置于两端竖井旁,使竖井内空气形成较明显的密度差,如图 2-1-2 ;(2)在原冷物体间再另掘一通风竖井,如图 2-1-3 ;(3)在不改变原设备位置和另增竖井的前提下,采用机械通风方式,强制竖井内空气流动,带走地下室内余热和污浊气体,如图 2-1-4 。2-3 如图 2-2 ,图中居室内为什么冬季白天感觉较舒适而夜间感觉不舒适? 图2-2 答:白天太阳辐射使阳台区空气温度上升,致使阳台区空气密度比居室内空气密度小,因此空气从上通风口流入居室内,从下通风口流出居室,形成循环。提高了居室内温度,床处于回风区附近,风速不明显,感觉舒适;夜晚阳台区温

城给水管网水力计算程序及例题

给水排水管道工程课程设计指导书

环境科学与工程学院 第一部分城市给水管网水力计算程序及习题一、程序 #define M 18 #define N 6 #define ep 0.01 #include int sgn(double x); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; double f[N+1],r[N+1],dq[N+1]; for(k=0;k<=M-1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M-1;k++) { Q[k]=Q[k]*sgn(io[k]); } ko=0; loop:

for(k=0;k<=M-1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]); } for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M-1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like;

消火栓系统水力计算

计算原理参照《全国民用建筑工程设计技术措施2003》,《建筑给水排水工程》(中国建筑工业出版社) 基本计算公式 1. 最不利点消火栓流量 Qxh = SQRT(B * Hq) 式中: Qxh-水枪喷嘴射出流量(L/s) (依据规范需要与水枪的额定流量进行比较,取较大值) B-水枪水流特性系数 Hq-水枪喷嘴造成一定长度的充实水柱所需水压 2. 最不利点消火栓压力 Hxh = Hd + Hq + Hsk = Ad * Ld * Qxh*Qxh + Qxh*Qxh/B + 2 式中: Hxh -消火栓栓口的最低水压(0.010MPa) Hd-消防水带的水头损失(0.01MPa) Hq-水枪喷嘴造成一定长度的充实水柱所需水压(0.01MPa) Hd-消防水带的水头损失(0.01MPa) Ad-水带的比阻 Ld-水带的长度(m) Qxh-水枪喷嘴射出流量(L/s) B-水枪水流特性系数 Hsk-消火栓栓口水头损失,宜取0.02Mpa 3. 次不利点消火栓压力 Hxh次= Hxh最+ H层高+ Hfj 式中: H层高-消火栓间隔的楼层高(m) Hfj-两个消火栓之间的沿程、局部水头损失(m) 4. 次不利点消火栓流量 Qxh次= sqrt((Hxh次- 2) / (Ad*Ld + 1/B)) (依据规范需要与水枪的额定流量进行比较,取较大值) 5. 流速V V = (4 * Q) / (π * Dj * Dj) 式中: Q-管段流量L/s Dj-管道的计算内径(m) 6. 水力坡降 i = 0.00107 * V * V / (pow(Dj, 1.3) 式中: i-每米管道的水头损失(m H20/m) V-管道内水的平均流速(m/s) Dj-管道的计算内径(m) 7. 沿程水头损失 h = i * L 式中: L-管段长度m 消火栓系统水力计算书第1页共3页

临时高压喷淋系统中水力计算和高位消防水箱架设高度的探讨

临时高压喷淋系统中水力计算和高位消防水箱架设高度的探讨 临时高压喷淋系统中水力计算和高位消防水箱架设高度的探讨 【摘要】:现行规范对临时高压喷淋系统中的水力计算以及高位消防水箱架设高度的要求不明确,实际工程中较难执行,提出建议的设计方法。 【关键词】:临时高压,喷淋系统,消防水箱高度 中图分类号: TU761.1+1 文献标识码: A 文章编号: 一喷淋系统水力计算问题: 1 相关条文的阐述和说明 在此先将下面要阐述的《自动喷水灭火系统设计规范》GB 50084-2001 (2005年版)(以下简称《喷规05》中的条文说明:第7.1.2条直立型、下垂型喷头的布置,包括同一根配水支管上喷头的间距及相邻配水支管的间距,应根据系统的喷水强度、喷头的流量系数和工作压力确定,并不应大于表7.1.2的规定,且不宜小于2.4m。 第9.1.4条系统设计流量的计算,应保证任意作用面积内的平均喷水强度不低于本规范表5.0.1和表5.0.5-1~表5.0.5.6的规定值。最不利点处作用面积内任意四只喷头围合范围内的平均喷水强度,轻危险级、中危险级不应低于本规范表5.0.1规定值的85%;严重危险级和仓库危险级不应低于本规范表5.0.1和表5.0.5-1~表5.0.5.6的规定值。 2 在实际工程设计中遇到的问题 笔者曾设计过上海地区一单层通用厂房(厂房按中危险级Ⅱ级设计),其喷淋系统供水由靠近厂区主入口的的室外泵房内的喷淋泵供给。当时考虑到结构梁、柱的间距,喷头的布置采用间距为3.2m的正方形布置,距墙1.6m。最不利点处喷头(K=80)采用的工作压力为0.08MPa。经计算最不利点处作用面积内任意四只喷头围合范围内的平均喷水强度达到87%。但有同仁提出了异议,认为在喷头工作压力为0.08MPa时按照《喷规05》条文说明第7.1.2条说明中介绍的

消防设施计算公式

消防设施计算公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-

正方形布置喷头间距 或 S -喷头呈正方形布置时的间距(m);A1-每只喷头的保护面积( m2) R -喷头设计喷水保护半径(m)。 矩形或平行四边形布置喷头间距 S -喷头呈矩形或平行四边形布置时的长边长度(m); A1-每只喷头的保护面积(m2)。 单排布置喷头时的布置间距 S -单排布置喷头时的布置间距(m);R -喷头设计喷水保护半径(m): b -走道的宽度(m)。 第三章水喷雾灭火系统 水雾喷头的流量(领会) q-水雾喷头的流量(L/min); P-水雾喷头的工作压力( MPa); K-水雾喷头的流量系数,取值由生产厂提供,一般K=16-102。保护对象的水雾喷头设置数量(领会) (下方为q)N-保护对象的水雾喷头设置数量;S-保护对象的保护面积(m2); W-保护对象的设计喷雾强度 [ L/( min·m2)]; q-水雾喷头的流量( L/min)。 水雾系统的计算流量(领会) Qj-系统的计算流量(L/s); n -系统启动后同时喷雾的水雾喷头数量(个); qi-水雾喷头的流量(L/min)。 水雾系统的设计流量(简单应用)Qs-系统的设计流量( L/s); k -安全系数,应取1. ; Qj-系统的计算流量(L/s), 系统灭火面积及冷却面积

F -冷却面积( Ill2): B -最大油舱的宽度( m); L -最大油舱的纵向长度( m);fmax-最大油舱的面积( mz)。 水炮系统的设计流量 Qs -水炮的设计流量( L/s); Qs0-水炮的额定流量(L/s)。 泡沫混合液初始流量的计(简单应用) Q -泡沫炮系统的泡沫混合液设计流量(L/min); A3-泡沫炮系统的最大保护面积 (m3); R3-泡沫炮系统泡沫混合液供给强度[ L/( min·m2)]。 泡沫混合液设计用量(综合应用) V-泡沫炮系统扑救一次火灾的泡沫混合液设计用量(L);q-单台泡沫炮的泡沫混合液流量(L/s); t-泡沫炮系统的泡沫混合液连续供给时间(s); P-泡沫炮的进口压力(MPa); K-泡沫炮的流量特性系数。 第六章泡沫灭火系统 储罐中所需泡沫混合液流量用下式计算 Q-泡沫混合液设计流量(L/min);R-泡沫混合液供给强度 [ L/( min·m2)]; A-燃烧面积(m2)。 , A-燃烧面积(1112); D-储罐直径(m)。 系统的泡沫混合液设计用量 包括三部分:罐内用量、辅助管枪用量和管道剩余量。

给水管网水力计算

管网水力计算 ?管网水力计算都是新建管网的水力计算。 ?对于改建和扩建的管网,因现有管线遍布在街道下,非但管线太多,而且不同管径交接,计算时比新设计的管网较为困难。其原因是由于生活和生产用水量不断增长,水管结垢或腐蚀等,使计算结果易于偏离实际,这时必须对现实情况进行调查研究,调查用水量、节点流量、不同材料管道的阻力系数和实际管径、管网水压分布等。

1§树状网计算 树状网特点 1)管段流量的唯一性 ?无论从二级泵站起顺水流方向推算或从控制点起向二级泵站方向推算,只能得出唯一的管段流量,或者可以说树状网只有唯一的流量分配。每一节点符合节点流量平衡条件q i+∑q ij=0

2)干线与支线的区分 ?干线:从二级泵站到控制点的管线。一般是起点(泵站、水塔)到控制点的管线,终点水压已定,而起点水压待求。 ?支线:起点的水压标高已知,而支线终点的水压标高等于终点的地而标高与最小服务水头之和。 ?划分干线和支线的目的在于两者确定管径的方法不同: ?干线——根据经济流速 ?支线——水力坡度充分利用两点压差? ? ? ??=D v f i

【例】某城市供水区用水人口5万人,最高日用水量定额为150L/(人·d),要求最小服务水头为16m。节点4接某工厂,工业用水量为400m3/d,两班制,均匀使用。城市地形平坦,地面标高为5.00m,管网布臵见图。 水泵水塔 01 2 3 48 5 67 450 300 600 205 650

总用水量 ?设计最高日生活用水量: 50000×0.15=7500m3/d=312.5m3/h=86.81L/s ?工业用水量: 两班制,均匀用水,则每天用水时间为16h 工业用水量(集中流量)=400/16=25m3/h=6.94L/s ?总水量: ∑Q=86.81+6.94=93.75L/s

03-2消火栓给水系统的水力计算

第3章建筑消防系统3.2消火栓给水系统的水力计算

消火栓给水系统的水力计算 消火栓给水系统水力计算的主要任务是根据规范规定的消防用水量及要求使用的水枪数量和水压确定 管网的管径,系统所需的水压,水池、水箱的容积和 水泵的型号等。我国规范规定的各种建筑物消防用水 量及要求同时使用的水枪数量可查表3-4、表3-5。

3.2.1消火栓口所需的水压 k d q xh H h H H ++=消火栓口所需的水压按下列公式计算 式中H xh ——消火栓口的水压,kPa ; H q ——水枪喷嘴处的压力,kPa ; h d ——水带的水头损失,kPa ; H k ——消火栓栓口水头损失,按20 kPa 计算。

g v H q 22 =f f f q H g v d K H H H ??=-=?22 1理想的射流高度(即不考虑空气对射流的阻力)为: 式中υ——水流在喷嘴口处的流速,m/s ;g ——重力加速度,m/s 2; 实际射流对空气的阻力为:

式中a f ——实验系数=1.19+80(0.01·H m )4,可查表3-7。 水枪喷嘴处的压力与充实水柱高度的关系为: 水枪在使用时常倾斜45°~60°角,由试验得知充实水柱长度 几乎与倾角无关,在计算时充实水柱长度与充实水柱高度可视为相等。 m f f H a H =m f m f q H a H a H ??-??=?110 K Pa 水枪充实水柱高度H m 与垂直射流高度H f 的关系式由下列公式表示:

式中q xh ——水枪的射流量,L/s ; μ——孔口流量系统,采用; B ——水枪水流特性系数,与水枪喷嘴口径有关,可查表3-8; 式中q d ——水带水头损失,kPa ; L d ——水带长度,m ;A Z ——水带阻力系数,见表3-10。 q xh BH q =102??=xh d z d q L A h 水带水头损失应按下列公式计算: 水枪射出流量与喷嘴压力之间的关系可用下列公式计算:

给水管网水力计算基础

给水管网水力计算基础-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

给水管网水力计算基础 为了向更多的用户供水,在给水工程上往往将许多管路组成管网。管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。 管网内各管段的管径是根据流量Q 和速度v 来决定的,由于 v d Av Q )4/(2π==所以管径v Q v Q d /13.1/4==π。但是,仅依靠这个公式还不能完全解决问题,因为在流量Q 一定的条件下,管径还随着流速v 的变化而变化。如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。 图 1管网的形状 (a)枝状管网;(b)环状管网 因此,在确定管径时,应该作综合评价。在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。 应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为: ——当直径d =100~400mm ,经济流速v =-1.0ms ; ——当直径d>400mm ,经济流速v=~1.4m/s 。 一、枝状管网 枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。它的特点是管网内任一点只能由一个方向供水。若在管网内某一点断流,则该点之后的各管段供水就有问题。因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。 技状管网的水力计算.可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。 1.新建给水系统的设计 对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。 自由水头由用户提出需要,对于楼房建筑可参阅下表。 表 自由水头Hz 值

消防给水系统设计计算说明书

一、工程概况 锦怡酒店位于重庆市大杨石组团九龙镇,杨家坪城市核心商业区,该建筑属餐饮、办公、酒店类建筑,分1#楼和2#楼,1#楼为酒店,共十七层,2#楼为办公楼,共20层。地下三层为设备层、车库,地下二层车库,地下一层为酒店配套的餐饮等。1#楼一层为大堂,二层至四层为咖啡、餐饮等,五层以上为客房;2#楼一层以上均为办公。建筑绝对标高74.55m。 二、设计范围 根据设计任务书要求,主要针对该建筑室内消火栓系统进行设计。 三、设计依据 1.建设单位提供的地形图,选址位置; 2.建筑专业图纸; 3.《建筑设计防火规范》GB50016-2006; 4.《高层民用建筑设计防火规范》GB50045-95 (2005年版); 5.《汽车库、修车库、停车场设计防火规范》GB50067-97 6.《建筑给水排水设计手册》(第2册建筑给水排水第二版) 7.《中国消防工程手册》蒋永琨主编 8.国家强制执行的标准,法规及有关规定 四、设计内容 4.1设计方案 本建筑为一类高层建筑,耐火等级为一级,市政给水压力为0.35MPa,不能满足高层建筑防火给水所需压力,所以本系统采用临时高压消防给水系统,着火前10min灭火是由水箱供水,以后供水是由地下室的消防水泵从消底层贮水池抽水加压供水。 方案一:分区消防给水给水系统 1#楼-3~8层为低区消火栓系统,9~17层为高区消火栓系统;2#楼-3~10 楼为低区火栓系统,11~20层为高区消火栓系统。 方案二:不分区消防给水系统 不进行分区,直接由消防水泵供给整个建筑消火栓系统。

消防分区能更好利用市政给水压力,减小泵的负荷,更加节能。消火栓出口压力得到较好控制。但本建筑高度74.55m (不算塔楼),最底层所承受静压力不大于1.00MPa ,根据规范可不分区,但底部几层消火栓出口压力可能超过0.5MPa ,所以要采取减压措施。综上,整个消火栓系统由消防泵、消防管网、减压设备、消防栓、水泵接合器、底层贮水池和屋顶水箱组成。 4.2消防设备及附件设计 4.2.1消火栓 (1)消火栓充实水柱长度确定 根据《建筑设计防火规范》GB 50016—2006(下文简称《低规》)第8.4.3条规定,水枪的充实水柱应经计算确定,甲、乙类厂房、层数超过6层的公共建筑和层数超过4 层的厂房(仓库),不应小于10m ;故本建筑的充实水柱长度不应小于10m ,即0k S ≥10m 。本设计取充实水柱长度12m 。 (2)消火栓保护半径的确定 消火栓保护半径按下式计算: d s R L L =+ 式中 R ——消火栓保护半径,m ; L d ——水带有效长度,考虑水带的转弯,取折减系数为0.8; L s ——水枪充实长度在平面上的投影长度,水枪高度1.1m ,喷射高度 2.1m ,11.8m S L ==。 代入数据得,d s R L L =+=0.8×25+11.8=31.8m ,即保护半径为31.8m ,。 (3)消火栓间距的确定 室内按一排消火栓布置,且应保证两支水枪充实水柱同时到达室内任何部位,消火栓间距按下式计算: S = 式中 S ——两股水柱时的消火栓间距,m ; R ——消火栓保护半径,m ; b ——消火栓最大保护高度,取10.85m 。 代入数据得:

相关主题
文本预览
相关文档 最新文档