当前位置:文档之家› 2020届高考物理二轮复习 专题四 电路与电磁感应 提升训练15 电磁感应的综合问题

2020届高考物理二轮复习 专题四 电路与电磁感应 提升训练15 电磁感应的综合问题

2020届高考物理二轮复习 专题四 电路与电磁感应 提升训练15 电磁感应的综合问题
2020届高考物理二轮复习 专题四 电路与电磁感应 提升训练15 电磁感应的综合问题

提升训练15 电磁感应的综合问题

1.一实验小组想要探究电磁刹车的效果。在遥控小车底面安装宽为L、长为

2.5L的N匝矩形线框,线框电阻为R,面积可认为与小车底面相同,其平面与水平地面平行,小车总质量为m。其俯视图如图所示,小车在磁场外行驶时的功率保持P不变,且在进入磁场前已达到最大速度,当车头刚要进入磁场时立即撤去牵引力,完全进入磁场时速度恰好为零。已知有界磁场PQ和MN间的距离为2.5L,磁感应强度大小为B,方向竖直向上,在行驶过程中小车受到地面阻力恒为F f。求:

(1)小车车头刚进入磁场时,线框的感应电动势E;

(2)电磁刹车过程中产生的焦耳热Q;

(3)若只改变小车功率,使小车刚出磁场边界MN时的速度恰好为零,假设小车两次与磁场作用时间相同,求小车的功率P'。

2.(2017浙江义乌高三模拟)如图所示,固定在上、下两层水平面上的平行金属导轨MN、M'N'和OP、O'P'间距都是l,二者之间固定有两组竖直半圆形轨道PQM和P'Q'M',它们是用绝缘材料制成的,两轨道间距也均为l,且PQM和P'Q'M'的竖直高度均为4R,两组半圆形轨道的半径均为R。轨道的QQ'端、MM'端的对接狭缝宽度可忽略不计,图中的虚线为绝缘材料制成的固定支架。下层金属导轨接有电源,当将一金属杆沿垂直导轨方向搭接在两导轨上时,将有电流从电源正极流出,经过导轨和金属杆流回电源负极。此时金属杆将受到导轨中电流所形成磁场的安培力作用而运动。运动过程中金属杆始终与导轨垂直,且接触良好。当金属杆由静止开始向右运动4R到达水平导轨末端PP'位置时其速度大小v P=4。已知金属杆质量为m,两轨道间的磁场可视为匀强磁场,其磁感应强度与电流的关系为B=kI(k为已知常量),金属杆在下层导轨的运动可视为匀加速运动,运动中金属杆所受的摩擦阻力、金属杆和导轨的电阻均可忽略不计。

(1)求金属杆在下层导轨运动过程中通过它的电流大小。

(2)金属杆由PP'位置无碰撞地水平进入第一组半圆轨道PQ和P'Q',又在狭缝Q和Q'无碰撞地水平进入第二组半圆形轨道QM和Q'M'的内侧。求金属杆由PP'处到MM'处过程中动量的增量。

(3)金属杆由第二个半圆轨道的最高位置MM'处,以一定的速度在M和M'处沿对接狭缝无碰撞地水

平进入上层金属导轨后,能沿着上层金属导轨滑行。设上层水平导轨足够长,其右端连接的定值电

阻阻值为r,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中(不计此时导轨中电流产生的磁场的影响)。求金属杆在上层水平金属导轨上滑行过程中通过导体横截面的电荷量。

3.如图所示,虚线框内为某种电磁缓冲车的结构示意图,其主要部件为缓冲滑块K和质量为m的缓

冲车厢。在缓冲车的底板上,沿车的轴线固定着两个光滑水平绝缘导轨PQ、MN。缓冲车的底部,安

装电磁铁(图中未画出),能产生垂直于导轨平面的匀强磁场,磁场的磁感应强度为B。导轨内的缓冲滑块K由高强度绝缘材料制成,滑块K上绕有闭合矩形线圈abcd,线圈的总电阻为R,匝数为n,ab

边长为L。假设缓冲车以速度v0与障碍物C碰撞后,滑块K立即停下,此后线圈与轨道的磁场作用力使缓冲车厢减速运动,从而实现缓冲,一切摩擦阻力不计。

(1)求滑块K的线圈中最大感应电动势的大小;

(2)若缓冲车厢向前移动距离L后速度为零,则此过程线圈abcd中通过的电荷量和产生的焦耳热各是多少?

(3)若缓冲车以v0速度与障碍物C碰撞后,滑块K立即停下,求此后缓冲车厢的速度v随位移x的变化规律?

(4)若缓冲车以v0速度与障碍物C碰撞后,要使导轨右端不碰到障碍物,则缓冲车与障碍物C碰撞前,导轨右端与滑块K的cd边距离至少多大?

4.(2017浙江七彩阳光联盟高三期初)如图所示,两根足够长的光滑金属导轨G1、G2放置在倾角为

α的斜面上,导轨间距为l,电阻不计。在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡。整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直。现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止开始释放,经过时间t0,两灯泡开始并保持正常发光。金属棒下落过程中保持与导轨垂直,且与导轨接触良好。重力加速度为g。求:

(1)磁感应强度B的大小;

(2)灯泡正常发光时导体棒的运动速率v;

(3)在t=0至t=t0期间,两小灯泡产生的焦耳热。

5.(2018浙江4月选考,23)如图所示,在竖直平面内建立xOy坐标系,在0≤x≤0.65 m、y≤0.40 m 范围内存在一具有理想边界、方向垂直纸面向里的匀强磁场区域。一边长l=0.10 m、质量m=0.02 kg、电阻R=0.40 Ω的匀质正方形刚性导线框abcd处于图示位置,其中心的坐标为(0,0.65 m)。现将线框以初速度v0=2.0 m/s水平向右抛出,线框在进入磁场过程中速度保持不变,然后在磁场中运动,最后从磁场右边界离开磁场区域,完成运动全过程。线框在全过程中始终处于xOy平面内,其ab边与x轴保持平行,空气阻力不计,g取10 m/s2。求:

(1)磁感应强度B的大小;

(2)线框在全过程中产生的焦耳热Q;

(3)在全过程中,cb两端的电势差U c b与线框中心位置的x坐标的函数关系。

6.(2016浙江杭州模拟)如图甲所示,在水平面上固定有长为L=2 m、宽为d=1 m的U形金属导轨,

在U形导轨右侧l=0.5 m范围内存在垂直纸面向里的匀强磁场,且磁感应强度随时间变化规律如图乙所示,在t=0时刻,质量为m=0.1 kg的导体棒以v0=1 m/s的初速度从导轨的左端开始向右运动,

导体棒与导轨之间的动摩擦因数为μ=0.1,导轨与导体棒单位长度(1 m)的电阻均为λ=0.1 Ω/m,不计导体棒与导轨之间的接触电阻及地球磁场的影响(g取10 m/s2)。

(1)通过计算分析4 s内导体棒的运动情况;

(2)计算4 s内回路中电流的大小,并判断电流方向;

(3)计算4 s内回路产生的焦耳热。

7.如图所示,宽度为L的光滑平行金属导轨PQ和P'Q'倾斜放置,顶端QQ'之间连接一个阻值为R的电阻和开关S,底端PP'处通过一小段平滑圆弧与一段光滑水平轨道相连。已知水平轨道离地面的

高度为h,两倾斜导轨间有一垂直于导轨平面向下的匀强磁场,磁感应强度为B;有两根长均为L、质量均为m、电阻均为R的金属棒AA'、CC'。当金属棒CC'放置在水平轨道右端时,两水平轨道间就

会出现竖直方向的磁感应强度为B1的匀强磁场,此时开关S处于断开状态;而如果金属棒CC'一离开水平轨道,水平轨道间的磁场就马上消失,同时开关S马上闭合。现把金属棒CC'放在光滑水平轨道上右端,金属棒AA'离水平轨道高为H的地方以较大的初速度v0沿轨道下滑,在极短时间内金属棒CC'就向右离开水平轨道,离开水平轨道后在空中做平抛运动,落地点到抛出点通过的水平距离为x1,金属棒AA'最后也落在水平地面上,落地点到抛出点的水平距离为x2;不计导轨电阻,忽略金属棒经

过PP'处的机械能损失,不计空气阻力,已知重力加速度为g,则:

(1)判断B1的方向;

(2)求通过CC'的电荷量q;

(3)求整个运动过程中金属棒AA'产生的焦耳热Q。

8.(2016浙江慈溪中学月考)如图所示,“凸”字形硬质金属线框质量为m,相邻各边互相垂直,且处于同一竖直平面内,ab边长为l,cd边长为2l,ab与cd平行,间距为2l。匀强磁场区域的上、下边界均水平,磁场方向垂直于线框所在平面。开始时,cd边到磁场上边界的距离为2l,线框由静止释放,从cd边进入磁场直到ef、pq边进入磁场前,线框做匀速运动,在ef、pq边离开磁场后,ab边离开磁场之前,线框又做匀速运动。线框完全穿过磁场过程中产生的热量为Q。线框在下落过程中始终处于原竖直平面内,且ab、cd边保持水平,重力加速度为g。求:

(1)线框ab边将离开磁场时做匀速运动的速度大小是cd边刚进入磁场时的几倍;

(2)磁场上、下边界间的距离H。

9.

如图所示,两根相同平行金属直轨道竖直放置,上端用导线接一阻值为R的定值电阻,下端固定在水平绝缘底座上。底座中央固定一根绝缘弹簧,长L、质量为m的金属直杆ab通过金属滑环套在轨道上。在直线MN的上方分布着垂直轨道面向里、磁感应强度为B的足够大匀强磁场。现用力压直杆ab使弹簧处于压缩状态,撤去力后直杆ab被弹起,脱离弹簧后以速度v1穿过直线MN,在磁场中上升高度h时到达最高点。随后直杆ab向下运动,离开磁场前做匀速直线运动。已知直杆ab与轨道的摩擦力大小恒等于杆重力的k倍(k<1),回路中除定值电阻外不计其他一切电阻,重力加速度为g。求:

(1)杆ab向下运动离开磁场时的速度v2;

(2)杆ab在磁场中上升过程经历的时间t。

10.如图所示,粗糙斜面的倾角θ=37°,半径r=0.5 m的圆形区域内存在着垂直于斜面向下的匀强磁场。一个匝数n=10匝的刚性正方形线框abcd,通过松弛的柔软导线与一个额定功率P=1.25 W的小灯泡A相连,圆形磁场的一条直径恰好过线框bc边。已知线框质量m=2 kg,总电阻R0=1.25 Ω,边长L>2r,与斜面间的动摩擦因数μ=0.5。从t=0时起,磁场的磁感应强度按B=2-t(T)的规律变化。开始时线框静止在斜面上,在线框运动前,灯泡始终正常发光。设最大静摩擦力等于滑动摩擦力,g取10 m/s2,sin37°=0.6,cos37°=0.8。求:

(1)小灯泡正常发光时的电阻R;

(2)线框保持不动的时间内,小灯泡产生的热量Q。

提升训练15电磁感应的综合问题

1.答案 (1)(2)-

2.5F f L

(3)

解析 (1)小车刚进入磁场时的速度设为v0,则v0=,

感应电动势E=NBLv0=。

(2) 由动能定理,可得

2.5F f L+Q=

解得Q=-2.5F f L=-2.5F f L。

(3)以小车刚要进入到恰好穿出磁场为研究过程,由动量定理,可得

F f t+2NBI'Lt=F f t+2NBLq=mv0' ①

q==N②

当功率为P时,小车进入磁场时间为t,由动量定理得F f t+NBILt=F f t+NBLq=mv0③由①②③,可得v0'=

P'=F f v0'=。

2.答案 (1)(2)m(2-4)

(3)

解析 (1)a==2g

BIL=kI2l=ma

I=。

(2)-mg4R=mv2-

v=2

ΔP=m(2-4)。

(3)BI'l·Δt=mΔv

Blq=mv

q=。

3.答案 (1)nBLv0(2)(3)v=-+v0(4)

解析 (1)E=nBLv0。

(2)q=n

Q=。

(3)q=n

-F安t=mv-mv0

-nBILt=mv-mv0

-nBLq=mv-mv0

v=-+v0。

(4)v=0

x=。

4.答案 (1)(2)

(3)2t0P-

解析 (1)设灯泡额定电流为I0

则有P=R①

流经MN的电流I=2I0②

mg sinα=BIl③

联立①②③得

B=④

(2)E=Blv=I0R⑤

v=⑥

(3)在t=0至t=t0期间,对棒运动用动量定理,有

(mg sinα-iBl)Dt=mDv⑦

累积求和得t0mg sinα-BlDq=mv⑧

设在t=0至t=t0期间棒运动的距离为s,则由电磁感应定律,得Δq=⑨

联立⑧⑨得

s=

小灯泡产生的焦耳热

Q=mgs sinα-mv2

将④⑥式入式,得

Q=mg sinαmv2=2t0P-

5.答案 (1)2 T(2)0.037 5 J

(3)U c b=

解析 (1)感应电流I=

受力平衡mg=BIl

进入时的y方向速度v y==2 m/s

B=2 T。

(2)动量定理

-BlΔq=mv-mv0

Δq=

全过程能量守恒

Q=mgl+mv2

Q=0.037 5 J。

(3)进入磁场前x≤0.4 m,U c b=0

进入磁场过程0.4 m

U c b=Bv0v y t-I=(4x-1.7) V

在磁场中0.5 m

U c b=Bv0l=0.4 V

出磁场过程0.6 m

v x=v0-=5(1-x) m/s

U c b= V。

6.答案 (1)导体棒先做加速度为1 m/s2的匀减速直线运动,在1 s末停止运动,以后一直保持静止(2)前2 s电流为0,后2 s电流为0.2 A,顺时针(3)0.04 J

解析 (1)导体棒先在无磁场区域做匀减速直线运动,有

-μmg=ma

v=v0+at

x=v0t+at2

导体棒速度减为零时,v=0

代入数据解得a=-1 m/s2,t=1 s,x=0.5 m

(2)前2 s磁通量不变,回路电动势和电流分别为E=0,I=0

后2 s回路产生的感应电动势

E==ld=0.1 V

回路的总长度为5 m,因此回路的总电阻R=5 m·λ=0.5 Ω

电流I==0.2 A

根据楞次定律,回路中的电流方向是顺时针方向。

(3)前2 s电流为零,后2 s有恒定电流,焦耳热

Q=I2Rt'=0.04 J。

7.答案 (1)竖直向下(2)(3)mgH+

解析 (1)金属棒AA'从轨道上向下运动后,由右手定制(或楞次定律),通过金属棒CC'电流方向为C'指向C,由左手定则,磁场B1的方向为竖直向下。

(2)在金属棒CC'通电的极短时间Δt内,在安培力作用下获得向右的速度v1

由平抛运动得

h=gt2

x1=v1t

解得v1=x1

由牛顿第二定律

F合=ma=m

或动量定理

F合Δt=mΔv

B1ILΔt=mΔv=mv1-0

q=IΔt=。

(3)金属棒AA'离开水平轨道后做平抛运动,由平抛运动得

h=gt2

x2=v2t

金属棒AA'在轨道上下滑到水平抛出过程中,对整个系统由能量守恒得

mgH+=Q总+

金属棒AA'从轨道上运动时,始终有一个电阻R与金属棒串联

金属棒AA'产生的焦耳热Q=Q总=mgH+。

8.答案 (1)4(2)+28l

解析 (1)设磁场的磁感应强度大小为B,cd边刚进入磁场时,线框做匀速运动的速度为v1,cd边产生的感应电动势为E1,由法拉第电磁感应定律,有

E1=2Blv1

设线框总电阻为R,此时线框中电流为I1,由闭合电路欧姆定律,有

I1=

设此时线框所受安培力为F1,有

F1=2I1lB

由于线框做匀速运动,其受力平衡,有

mg=F1

由以上各式得

v1=

设ab边离开磁场之前,线框做匀速运动的速度为v2,同理可得v2=

由以上两式得v2=4v1。

(2)线框自释放直到cd边进入磁场前,由机械能守恒定律,有

2mgl=

线框完全穿过磁场的过程中,由能量守恒定律,有

mg(2l+H)=+Q

由以上各式得

H=+28l。

9.答案 (1)v2=(2)t=

解析 (1)杆ab向下运动离开磁场前做匀速运动

mg=F安+F f①

又F f=kmg②

F安=BIL=B L=③

由①②③得v2=。

(2)杆ab在磁场中上升过程,由动量定理得

-mgt-kmgt-B Lt=0-mv1④

上升过程的感应电荷量q=t=⑤

由④⑤得t=

杆ab在磁场中上升过程经历的时间为。

10.答案 (1)1.25 Ω(2)π J

解析 (1)由法拉第电磁感应定律有

E=n

得E=nπ·r2=10×π×0.52 V=2.5 V

小灯泡正常发光,有P=I2R

由闭合电路欧姆定律有E=I(R0+R)

则有P=R,

代入数据解得I=1 A,R=1.25 Ω。

(2)对线框受力分析如图

设线框恰好要运动时,磁场的磁感应强度大小为B'

由力的平衡条件有mg sin θ=F安+F f=F安+μmg cosθ

F安=nB'I·2r

联立解得线框刚要运动时,磁场的磁感应强度大小B'=0.4 T 由B'=2-t,得

线框在斜面上可保持静止的时间t=s=s

小灯泡产生的热量Q=Pt=1.25×J=πJ。

高中物理电磁感应交变电流经典习题30道带答案

一.选择题(共30小题) 1.(2015?嘉定区一模)很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐.让条形磁铁从静止开始下落.条形磁铁在圆筒中的运动速率()A.均匀增大B.先增大,后减小 C.逐渐增大,趋于不变D.先增大,再减小,最后不变 2.(2014?广东)如图所示,上下开口、内壁光滑的铜管P和塑料管Q竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块() A.在P和Q中都做自由落体运动 B.在两个下落过程中的机械能都守恒 C.在P中的下落时间比在Q中的长 D.落至底部时在P中的速度比在Q中的大 3.(2013?虹口区一模)如图所示,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t=0到t=t1的时间间隔内,长直导线中电流i随时间变化,使线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右.图中箭头表示电流i的正方向,则i 随时间t变化的图线可能是() A.B.C.D. 4.(2012?福建)如图,一圆形闭合铜环由高处从静止开始加速下落,穿过一根竖直悬挂的条形磁铁,铜环的中心轴线与条形磁铁的中轴线始终保持重合.若取磁铁中心O为坐标原点,建立竖直向下为正方向的x轴,则图中最能正确反映环中感应电流i随环心位置坐标x变化的关系图象是() A.B.C.D. 5.(2011?上海)如图,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当a绕O点在其所在平面内旋转时,b中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a() A.顺时针加速旋转B.顺时针减速旋转 C.逆时针加速旋转D.逆时针减速旋转 6.(2010?上海)如图,一有界区域内,存在着磁感应强度大小均为B,方向分别垂直于光滑水平桌面向下和向上的匀强磁场,磁场宽度均为L,边长为L的正方形线框abcd的bc边紧靠磁场边缘置于桌面上,使线框从静止开始沿x轴正方向匀加速通过磁场区域,若以逆时针方向为电流的正方向,能反映线框中感应电流变化规律的是图() A.B.C.D. 7.(2015春?青阳县校级月考)纸面内两个半径均为R的圆相切于O点,两圆形区域内分别存在垂直纸面的匀强磁场,磁感应强度大小相等、方向相反,且不随时间变化.一长为2R的导体杆OA绕过O点且垂直于纸面的轴顺时针匀速旋转,角速度为ω,t=0时,OA恰好位于两圆的公切线上,如图所示.若选取从O指向A的电动势为正,下列描述导体杆中感应电动势随时间变化的图象可能正确的是() A.B.C.D. 8.(2014?四川)如图所示,不计电阻的光滑U形金属框水平放置,光滑、竖直玻璃挡板H、P固定在框上,H、P的间距很小.质量为的细金属杆CD恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1m的正方形,其有效电阻为Ω.此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B=(﹣)T,图示磁场方向为正方向,框、挡板和杆不计形变.则() A.t=1s时,金属杆中感应电流方向从C到D B.t=3s时,金属杆中感应电流方向从D到C C.t=1s时,金属杆对挡板P的压力大小为

大学物理(4电磁感应定律)

第10章 电磁感应定律 第一节 法拉第电磁感应定律 1.电动势 只有静电场不能维持稳恒电流。(如电容器放电就是在静电场的作用下,电流由大到小到0的衰变过程,不能维持稳恒的电流。) 要维持稳恒的电流,必须有非静电力作功,将其它形式的能量补充给电路,即电源。 在电源内部,非静电力使电荷从负极搬回到正极板。 电动势的定义:把单位正电荷从负极通过电源内部移到正极时,非静电力F k 所作的功。 把正电荷q 经电源内部由负极移到正极时,非静电力作的功为: k k A F dl + - =?? 电动势为: 1k k A F dl q q ε+- ==?? 例:5号电池的开路电压为1.5伏,充电电池的开路电压为1.2伏,这是由化学特性决定的。 在有电流输出时,电池两端的电压比开路电压低,原因是电源内部有电阻。无内阻的电源称为“理想电源”

2.法拉第定律 精确的实验表明: 导体回路中产生的感应电动势ξ的大小与穿过回路的磁通量 的变化率d Φ/dt 成正比。 d dt εΦ=- 实验1: 磁铁插入线圈中,使线圈中的 磁通量发生变化,从而在线圈 中产生感应电动势。 实验2: 内线圈通、断电的变化产生一个 变化的磁场,在外线圈中便产生 了感应电动势,其中没有任何移 动的部件,这样产生的电动势称 为感生电动势。 3.愣次定律 (解决感应电动势的方向问题) 闭合回路中,感应电流的方向总是使得它自身产生的磁通量反抗引起感应电流的磁通量的变化。或者表述为:感应电流产生的磁

电动势方向 0d dt Φ > d dt Φ < 0d dt Φ> 0d dt Φ < 0d dt Φ > 0d dt Φ < 0d dt Φ > 0d dt Φ < 。 。 。 。 。 。 。 。 。。。。。 。 。 。 。 。 。 。 。 。。。。。 × × × × × × × × ××××× × × × × × × × × ×××××

高考物理专题:电磁感应定律与楞次定律

2020高考物理 电磁感应定律 楞次定律(含答案) 1.如图所示,一水平放置的N 匝矩形线框面积为S ,匀强磁场的磁感应强度为B ,方向斜向上,与水平面成30°角,现若使矩形框以左边的一条边为轴转到竖直的虚线位置,则此过程中磁通量的改变量的大小是( ) A.3-1 2BS B.3+1 2NBS C. 3+1 2 BS D. 3-1 2 NBS 答案 C 2.(多选)涡流检测是工业上无损检测的方法之一,如图所示,线圈中通以一定频率的正弦交流电,靠近待测工件时,工件内会产生涡流,同时线圈中的电流受涡流影响也会发生变化。下列说法中正确的是( ) A .涡流的磁场总是要阻碍穿过工件磁通量的变化 B .涡流的频率等于通入线圈的交流电频率 C .通电线圈和待测工件间存在周期性变化的作用力 D .待测工件可以是塑料或橡胶制品 答案 ABC 3.如图所示,ab 为一金属杆,它处在垂直于纸面向里的匀强磁场中,可绕a 点在纸面内转动;S 为以a 为圆心位于纸面内的金属环;在杆转动过程中,杆的b 端与金属环保持良好接触;A 为电流表,其一端与金属环相连,一端与a 点良好接触。当杆沿顺时针方向转动时,某时刻ab 杆的位置如图所示,则此时刻( )

A.有电流通过电流表,方向由c向d,作用于ab的安培力向右 B.有电流通过电流表,方向由c向d,作用于ab的安培力向左 C.有电流通过电流表,方向由d向c,作用于ab的安培力向右 D.无电流通过电流表,作用于ab的安培力为零 答案A 4.(多选)航母上飞机弹射起飞是利用电磁驱动来实现的。电磁驱动原理如图所示,当固定线圈上突然通过直流电流时,线圈端点的金属环被弹射出去。现在固定线圈左侧同一位置,先后放有分别用横截面积相等的铜和铝导线制成形状、大小相同的两个闭合环,且电阻率ρ铜<ρ铝。闭合开关S的瞬间() A.从左侧看环中感应电流沿顺时针方向 B.铜环受到的安培力大于铝环受到的安培力 C.若将环放置在线圈右方,环将向左运动 D.电池正负极调换后,金属环不能向左弹射 答案AB 5.如图所示,矩形金属线框abcd放在水平桌面上,ab边和条形磁铁的竖直轴线在同一竖直平面内,现让条形磁铁沿ab边的竖直中垂线向下运动,线框始终静止。则下列说法正确的是()

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

2020高考物理 专题9电磁感应热点分析与预测 精品

2020高考物理热点分析与预测专题9·电磁感应 一、2020大纲解读 本专题涉及的考点有:电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则、自感现象、日光灯等.《2020考试大纲》对自感现象等考点为Ⅰ类要求,而对电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则等考点为Ⅱ类要求. 电磁感应是每年高考考查的重点内容之一,电磁学与电磁感应的综合应用是高考热点之一,往往由于其综合性较强,在选择题与计算题都可能出现较为复杂的试题.电磁感应的综合应用主要体现在与电学知识的综合,以导轨+导体棒模型为主,充分利用电磁感应定律、楞次定律、安培力、直流电路知识、磁场知识等多个知识点,可能以图象的形式进行考查,也可能是求解有关电学的一些物理量(如电量、电功率或电热等).同时在求解过程中通常也会涉及力学知识,如物体的平衡条件(运动最大速度求解)、牛顿运动定律、动能定理、动量守恒定理(双导体棒)及能量守恒等知识点.电磁感应的综合应用突出考查了考生理解能力、分析综合能力,尤其是考查了从实际问题中抽象概括构建物理模型的创新能力. 二、重点剖析 电磁感应综合应用的中心是法拉第电磁感应定律,近年来的高考中,电磁感应的考查主要是通过法拉第电磁感应定律再综合力、热、静电场、直流电路、磁场等知识内容,有机地把力与电磁结合起来,具体反映在以下几个方面: 1.以电磁感应现象为核心,综合应用力学各种不同的规律(如牛顿运动定律、动量守恒定律、动能定理)等内容形成的综合类问题.通常以导体棒或线圈为载体,分析导体棒在磁场中因电磁感应现象对运动情况的影响,解决此类问题的关键在于运动情况的分析,特别是最终稳定状态的确定,利用物体的平衡条件可求最大速度之类的问题,利用动量观点可分析双导体棒运动情况. 2.电磁感应与电路的综合问题,关键在于电路结构的分析,能正确画出等效电路图,并结合电学知识进行分析、求解.求解过程中首先要注意电源的确定.通常将切割磁感线的导体或磁通量发生变化的回路作为等效电源.若产生感应电动势是由几个相互联系部分构成时,可视为电源的串联与并联.其次是要能正确区分内、外电路,通常把产生感应电动势那部分电路视为内电路.最后应用全电路欧姆定律及串并联电路的基本性质列方程求解. 3.电磁感应中的能量转化问题 电磁感应过程实质是不同形式的能量转化的过程,而能量的转化则是通过安培力做功的形式而实现的,安培力做功的过程,是电能转化为其他形式的能的过程,“外力”克服安培力做功,则是其他形式的能转化为电能的过程.求解过程中主要从以下三种思路进行分析:①利用安培力做功求解,电磁感应中产生的电能等于克服安培力所做的功.注意安培力应为恒力.②利用能量守恒求解,开始的机械能总和与最后的机械能总和之差等于产生的电能.适用于安培力为变力.③利用电路特征来求解,通过电路中所产生的电能来计算. 4.电磁感应中的图象问题 电磁感应的图象主要包括B-t图象、Φ-t图象、E-t图象和I-t图象,还可能涉及感应电动势E和感应电流I随线圈位移x变化的图象,即E-x图象和I-x图象.一般又可把图象问题分为两类:①由给定的电磁感应过程选出或画出正确的图象.②由给定的有关图象分析电磁感应过程,求解相应的物理量.解答电磁感应中的图象问题的基本方法是利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解答. 三、高考考点透视 1.电磁感应中的力和运动 例1.磁悬浮列车是一种高速低耗的新型交通工具。它的驱动系统简化为如下模型,固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R,金属框置于xOy平面内,长边MN长为l,平行于y轴,宽为d的NP边平行于x轴,如图1所示。列车轨道沿Ox方向,轨道区域内存在垂直于金属框平面的磁场,磁

高二物理之电磁感应综合题练习(附答案)

电磁感应三十道新题(附答案) 一.解答题(共30小题) 1.如图所示,MN和PQ是平行、光滑、间距L=0.1m、足够长且不计电阻的两根竖直固定金属杆,其最上端通过电阻R相连接,R=0.5Ω.R两端通过导线与平行板电容器连接,电容器上下两板距离d=lm.在R下方一定距离有方向相反、无缝对接的两个沿水平方向的匀强磁场区域I和Ⅱ,磁感应强度均为B=2T,其中区域I的高度差h1=3m,区域Ⅱ的高度差h2=lm.现将一阻值r=0.5Ω、长l=0.lm的金属棒a紧贴MN和PQ,从距离区域I上边缘h=5m处由静止释放;a进入区域I后即刻做匀速直线运动,在a进入区域I的同时,从紧贴电容器下板中心处由静止释放 一带正电微粒A.微粒的比荷=20C/kg,重力加速度g=10m/s2.求 (1)金属棒a的质量M; (2)在a穿越磁场的整个过程中,微粒发生的位移大小x; (不考虑电容器充、放电对电路的影响及充、放电时间) 2.如图(甲)所示,MN、PQ为水平放置的足够长的平行光滑导轨,导轨间距L为0.5m,导轨左端连接一个阻值为2Ω的定值电阻R,将一根质量为0.2kg的金属棒cd垂直放置在导轨上,且与导轨接触良好,金属棒cd的电阻r=2Ω,导轨电阻不计,整个装置处于垂直导轨平面向下的匀强磁场中,磁感应强度B=2T.若棒以1m/s的初速度向右运动,同时对棒施加水平向右的拉力F作用,并保持拉力的功率恒为4W,从此时开始计时,经过2s金属棒的速度稳定不变,图(乙)为安培力与时间的关系图象.试求: (1)金属棒的最大速度; (2)金属棒的速度为3m/s时的加速度; (3)求从开始计时起2s内电阻R上产生的电热.

高三物理 法拉第电磁感应定律练习题

高三物理 法拉第电磁感应定律练习题 1.如下右图所示,竖直放置的螺线管与导线abcd 构成回路。导线所围区域内有一个垂直纸面向里的变化的匀强磁场。螺线管下方水平桌面上有一导体圆环,导线abcd 所围区域内磁场的磁感应强度按下面哪一图线所表示的方式随时间变化时,导体圆环将受到向上的磁场作用力 C. D. 2.在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图1所示,当磁场的磁感应强度B 随时间如图2变化时,图3 中正确表示线圈中感应电动势E 变化的是 A . . 3.如图所示,固定在水平面上的三角形导线框PQS 顶角为θ,处于垂直于纸面向里的匀强磁场中。一根用与导线框同样材料制作的导线棒MN 放在导线框上,保持MN ⊥ QS ,用水平力F 拉MN 向右匀速运动,MN 与导轨间的接触电阻和摩擦都忽略不计。则下列说法中正确的是 A.回路中的感应电流方向不变,大小逐渐增大 B.回路中的感应电流方向不变,大小逐渐减小 C.回路中的感应电流方向和大小都保持不变 D.水平力F 的大小保持不变 4.如图所示,虚线框和实线框在同一水平面内.虚线框内有矩形匀强磁场区,矩形的长是宽的2倍.磁场方向垂直于纸面向里.实线框abcd 是一个正方形导线框.若将导线框以相同的速率匀速拉离磁场区域,第一次沿ab 方向拉出,第二次沿ad 方向拉出,两次外力做的功分别为W 1、W 2,则 A.W 1=W 2 B.W 1=2W 2 C.W 2=2W 1 D.W 2=4W 1 5.一矩形线圈位于一随时间t 变化的匀强磁场内,磁场方向垂直线圈所在的平面向里,如图1所示。磁感应强度B 随t 的变化规律如图2所示。以I 表示线圈中的感应电流,以图1中线圈上箭头所示方向的电流为正,则以下的I-t 图中正确的是 A. B. C. D. t 2E -E -22E -E -2E 2-E -2E 2-E -2图1 /s 图2

近十年年高考物理电磁感应压轴题

θ v 0 y M a B 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。工作时,在通道内沿z 轴正方 向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=0.22Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =5.0m /s 的速度匀速前进。若以船为参照物,海水以5.0m /s 的速率涌入进 水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以 转化为对船的推力。当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2R = 23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2R 由于I 恒定 R /=v 0rt ∝t

精选高考物理易错题专题复习法拉第电磁感应定律含答案

一、法拉第电磁感应定律 1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。一根电阻为r 、质量为m 的导体棒置于导轨上,0?t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。求: (1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00 mB S BLt 【解析】 【详解】 (1)由法拉第电磁感应定律得 : 010 B S BS E t t t ?Φ?= ==?? 所以此时回路中的电流为: () 1 00B S E I R r R r t = =++ 根据右手螺旋定则知电流方向为a 到b. 因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即: () 00==BB SL F F BIL R t r = +安 由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为: 2E BLv = 由题意知: 12E E = 所以联立解得:

00 B S v BLt = 所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为: 00 0mB S I mv BLt =-= 答:(1)0~t 0时间内导体棒ab 所受水平外力为() 00= BB SL t F R r +,方向水平向左. (2)t 0时刻给导体棒的瞬时冲量的大小 00 mB S BLt 2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求: (1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v Q R =(3)43cd Blv U = 【解析】 【详解】 (1)线框离开磁场的过程中,则有: 2E B lv = E I R = q It = l t v = 联立可得:2 2Bl q R = (2)线框中的产生的热量: 2Q I Rt =

高考物理电磁感应现象的两类情况(大题培优 易错 难题)及详细答案

高考物理电磁感应现象的两类情况(大题培优 易错 难题)及详细答案 一、电磁感应现象的两类情况 1.某科研机构在研究磁悬浮列车的原理时,把它的驱动系统简化为如下模型;固定在列车下端的线圈可视为一个单匝矩形纯电阻金属框,如图甲所示,MN 边长为L ,平行于y 轴,MP 边宽度为b ,边平行于x 轴,金属框位于xoy 平面内,其电阻为1R ;列车轨道沿 Ox 方向,轨道区域内固定有匝数为n 、电阻为2R 的“ ”字型(如图乙)通电后使 其产生图甲所示的磁场,磁感应强度大小均为B ,相邻区域磁场方向相反(使金属框的 MN 和PQ 两边总处于方向相反的磁场中).已知列车在以速度v 运动时所受的空气阻力 f F 满足2f F kv =(k 为已知常数).驱动列车时,使固定的“ ”字型线圈依次通 电,等效于金属框所在区域的磁场匀速向x 轴正方向移动,这样就能驱动列车前进. (1)当磁场以速度0v 沿x 轴正方向匀速移动,列车同方向运动的速度为v (0v <)时,金属框MNQP 产生的磁感应电流多大?(提示:当线框与磁场存在相对速度v 相时,动生电动势E BLv =相) (2)求列车能达到的最大速度m v ; (3)列车以最大速度运行一段时间后,断开接在“ ” 字型线圈上的电源,使线圈 与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为L b ?、磁感应强度为 B '、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“ ”字型线圈 时,电容器中贮存的电量Q . 【答案】(1) 012() BL v v R -2222 101 22BL B L kR v B L +-2 4nB Lb R ' 【解析】 【详解】 解:(1)金属框相对于磁场的速度为:0v v - 每边产生的电动势:0()E BL v v =-

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

2018年高考物理试题分类解析电磁感应

2018年高考物理试题分类解析:电磁感应 全国1卷 17.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆。M端位于PQS上,O M与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则 B B ' 等于 A. 5 4 B. 3 2 C. 7 4 D.2 【解析】在过程Ⅰ中 R r B R t R E t I q 2 __4 1 π ? = ?Φ = = =,在过程Ⅱ中 2 2 1 ) ' (r B B R q π ? - = ?Φ =二者相等,解得 B B ' = 3 2 。 【答案】17.B 全国1卷 19.如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向

D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【解析】A .开关闭合后的瞬间,铁芯内磁通量向右并增加,根据楞次定律,左线圈感应电流方向在直导线从南向北,其磁场在其上方向里,所以小磁针的N 极朝垂直纸面向里的方向转动,A 正确; B 、 C 直导线无电流,小磁针恢复图中方向。 D .开关闭合并保持一段时间再断开后的瞬间,电流方向与A 相反,小磁针的N 极朝垂直纸面向外的方向转动,D 正确。 【答案】19.AD 全国2卷 18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域, 区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。一边长为 3 2 l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是 【解析】如图情况下,电流方向为顺时针,当前边在向里的磁场时,电流方向为逆时针,但因为两导体棒之间距离为磁场宽度的 2 3 倍,所以有一段时间两个导体棒都在同一方向的磁场中,感应电流方向相反,总电流为0,所以选D. 【答案】18.D 全国3卷 20.如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。导线 PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。导线框R 中的感应电动势

大学物理C-练习四稳恒电流的磁场、电磁感应定律

练 习 四 稳恒电流的磁场、电磁感应定律 一、填空题 1. 如图所示,均匀磁场的磁感应强度为B =0.2T ,方向沿x 轴正方向,则通过 abod 面的磁通量为___0.024Wb ______,通过befo 面的磁通量为____0______, 通过aefd 面的磁通量为___0.024Wb ____。 2. 如图所示,两根无限长载流直导线相互平行,通过的电流分别为I 1和I 2。则 =??1 L l d B _____)(120I I -μ_______,=??2 L l d B _____)(120I I +μ_____。 3. 试写出下列两种情况的平面内的载流均匀导线在给定点P 处所产生的磁感强度的大小. (1) B = 08I R μ ; (2) B = 0 。 4. 感应电场是由 变化的磁场 产生的,它的电场线是 闭合曲线 。 5. 如图所示,一段长度为l 的直导线MN ,水平放置在载电流为I 的竖直长导线旁与竖直导线共面,并从静止由图示位置自由下落,则t 秒末导线两端的电势差 M N U U -________0ln 2Ig a l t a μπ+- ______________. 二、选择题 1. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r ),两螺线管 单位长度上的匝数相等。两螺线管中的磁感应强度大小BR 和Br 应满足:( B) (A )BR=2Br (B )BR=Br (C )2BR=Br (D )BR=4Br 2. 磁场的高斯定理??=?0S d B 说明了下面的哪些叙述是正确的? ( A ) a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数; b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数; c 一根磁感应线可以终止在闭合曲面内; 301

高考物理大题突破--电磁感应(附答案)

1、(2011(14 分)电阻可忽略的光滑平行金属导轨长S=1.15m ,两导轨间距L =0.75 m ,导轨倾角为30°,导轨上端ab 接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T 的匀强磁场垂直轨道平面向上。阻值r=0.5Ω,质量m=0.2kg 的金属棒与轨道垂直且接触良好,从轨道上端ab 处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热0.1r Q J =。(取 210/g m s =)求:(1)金属棒在此过程中克服安培力的功W 安;(2)金属棒下滑速度2/v m s =时的加速度a .3)为求金 属棒下滑的最大速度m v ,有同学解答如下由动能定理21 -=2 m W W mv 重安,……。由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答。 2、(2011第).(16分)有人设计了一种可测速的跑步机,测速原理如题23图所示,该机底面固定有间距为L 、长度为d 的平行金属电极。电极间充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,且接有电压表和电阻R ,绝缘橡胶带上镀有间距为d 的平行细金属条,磁场中始终仅有一根金属条,且与电极接触良好,不计金属电阻,若橡胶带匀速运动时,电压表读数为U ,求: (1)橡胶带匀速运动的速率;(2)电阻R 消耗的电功率;(3)一根金属条每次经过磁场区域克服安培力做的功。 3、(2010年).(15分)如图所示,两足够长的光滑金属导轨竖直放置,相距为L ,一理想电流表与两导轨相连,匀强

磁场与导轨平面垂直.一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)磁感应强度的大小B; (2)电流稳定后,导体棒运动速度的大小v; (3)流以电流表电流的最大值I m. 4、(2010)(19)如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻。导体棒a和b放在导轨上,与导轨垂直并良好接触。斜面上水平虚线PQ以下区域,存在着垂直穿过斜面向上的匀强磁场。现对a棒施以平行导轨斜向上的拉力,使它沿导轨匀速向上运动,此时放在导轨下端的b棒恰好静止。当a棒运动到磁场的上边界PQ处时,撤去拉力,a棒将继续沿导轨向上运动一小段距离后再向选滑动,此时b棒已滑离导轨。当a 棒再次滑回到磁场边界PQ处时,又恰能沿导轨匀速向下运动。已知a棒、b棒和定值电阻的阻值均为R,b棒的质量为m,重力加速度为g,导轨电阻不计。求 (1)a棒在磁场中沿导轨向上运动的过程中,a棒中的电流强度I,与定值电阻R中的电流强度I R之比; (2)a棒质量m a; (3)a棒在磁场中沿导轨向上运动时所受的拉力F。 5、(2011).如图所示,间距l=0.3m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面,在水平面a1b1b2a2区域和倾 37的斜面c1b1b2c2区域分别有磁感应强度B1=0.4T、方向竖直向上和B2=1T、方向垂直于斜面向上的匀强磁场。角θ=? 电阻R=0.3Ω、质量m1=0.1kg、长为l 的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q

大学物理(吴百诗)习题答案10电磁感应

法拉第电磁感应定律 10-1如图10-1所示,一半径a =0.10m ,电阻R =1.0×10-3Ω的圆形导体回路置于均匀磁场中,磁场方向与 回路面积的法向之间的夹角为π/3,若磁场变化的规律为 T 10)583()(4 2-?++=t t t B 求:(1)t =2s 时回路的感应电动势和感应电流; (2)最初2s 通过回路截面的电量。 解:(1)θcos BS S B =?=Φ V 10)86(6.110)86()3 cos(d d cos d d 642--?+?-=?+?-=-=Φ- =t t a t B S t i π πθε s 2=t ,V 102.35 -?-=i ε,A 10210 0.1102.323 5---?-=??-==R I ε 负号表示i ε方向与确定n 的回路方向相反 (2)422 123 112810 3.140.1()[(0)(2)]cos 4.410C 1102 i B B S q R R θ---???=Φ-Φ=-??==??? 10-2如图10-2所示,两个具有相同轴线的导线回路,其平面相互平行。大回路中有电流I ,小的回路在大 的回路上面距离x 处,x >>R ,即I 在小线圈所围面积上产生的磁场可视为是均匀的。若 v dt dx =等速率变化,(1)试确定穿过小回路的磁通量Φ和x 之间的关系;(2)当x =NR (N 为一正数),求小回路的感应电动势大小;(3)若v >0,确定小回路中感应电流方向。 解:(1)大回路电流I 在轴线上x 处的磁感应强度大小 2 02232 2()IR B R x μ= +,方向竖直向上。 R x >>时,2 03 2IR B x μ= ,22 2 03 2IR r B S BS B r x πμπΦ=?==?= (2)224032i d dx IR r x dt dt πμε-Φ=-=,x NR =时,2024 32i Ir v R N πμε= (3)由楞次定律可知,小线圈中感应电流方向与I 相同。 动生电动势 10-3 一半径为R 的半圆形导线置于磁感应强度为B 的均匀磁场中,该导线以 速度v 沿水平方向向右平动,如图10-3所示,分别采用(1)法拉第电磁感应定律和(2)动生电动势公式求半圆导线中的电动势大小,哪一端电势高? 解:(1)假想半圆导线在宽为2R 的U 型导轨上滑动,设顺时针方向为回路方向, 在x 处 2 1(2)2m Rx R B π=+Φ,∴22m d dx RB RBv dt dt εΦ=-=-=- 由于静止U 型导轨上电动势为零,所以半圈导线上电动势为 2RBv ε=- 负号表示电动势方向为逆时针,即上端电势高。 图10-2

法拉第电磁感应定律高三物理一轮专题.docx

法拉第电磁感应定律 例 1. 如图 3 所示,边长为 a 的正方形闭合线框 ABCD 在匀强磁场中绕 AB 边匀速转动,磁感应强度为 B,初时刻线框所在平面与磁感应线垂直,经过 t 时间转 过 120°角,求:(1)线框内感应电动势在 t 时间内 的平均值; ( 2)转过 120°角时感应电动势的瞬时值 . 例 2 A 、B 两闭合圆形导线环用相同规格的导线制成,他们的半径之比为 rA:rB = 2:1 ,在导线环保会的匀强磁场区域,磁场方向垂直于导线环平面,如图,当磁场的磁感应强度随时间均匀增大过程中,求两导线 环内产生的感应电动势之比和流过两导线环的感 应电流大小之比 例 3.. 如图 5 所示,闭合导线框的质量可以忽略不计,将它从图示位置匀速拉出匀强磁场。若第一次用 0.3s 时间拉出,外力所做的功为 W1,通过导线截面 的电 量为 q 1;第二次用 0.9s 时间拉出,外力所做的功为W2,通过导线截面的电量为 q 2,则() A. W1W2,q1q2 B. W 1W2,q1q2 C. W1W2,q1q2 D.W1W2, q1q2 例 4. 一直升机停在南半球的地磁极上空,该处地磁场叶片的长度为 l,螺旋桨转动的频率为 f ,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动 .螺 旋桨叶片的近轴端为 a ,远轴端为 b ,如图所示 . 如果 忽略 a 到转轴中心线的距离,用 E 表示每个叶片 中的感应电动势,则() A.E=πfl2B, 且 a 点电势低于 b 点电势 B.E=2πfl2B ,且 a 点电势低于 b 点电势 C.E=πfl2B ,且 a 点电势高于 b 点电势 D.E=2πfl2B ,且 a 点电势高于 b 点电势 例5 如图所示,一导线弯成半径为a 的半圆形闭合回路。虚线 MN 右侧有磁感应强度为 B 的匀强磁场。方向垂直 于回路所在的平面。回路以速度 v 向右匀速进入磁场,直径 CD 始络与 MN 垂直。从 D 点到达 边界开始到 C 点进入磁场为止,下列结论正确的是 () A 感应电流方向不变 B .CD段直线始 终不受安培力 C 感应电动势最大值 E=Bav D 感应电动势平均 值 E=0.25πBav y v R B O x

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

相关主题
文本预览
相关文档 最新文档