当前位置:文档之家› 光纤通信概述

光纤通信概述

光纤通信概述
光纤通信概述

目录

第1章光纤通信概述..............................................................................................................1-1

1.1 光纤通信.............................................................................................................................1-1

1.1.1光纤通信的概念......................................................................................................1-1

1.1.2光纤通信发展简史...................................................................................................1-2

1.1.3光纤通信的优点......................................................................................................1-4

1.2 光发射机.............................................................................................................................1-6

1.3 光接收机.............................................................................................................................1-7

1.4 光纤基础.............................................................................................................................1-9

1.4.1 光纤的结构..............................................................................................................1-9

1.4.2 光纤的基本特性.....................................................................................................1-10

1.4.3 光纤的种类............................................................................................................1-12

插图目录

图1-1 数字光纤通信系统................................................................................................1-1图1-2 光发射机..............................................................................................................1-6图1-3 光接收机..............................................................................................................1-7图1-4 光纤的典型结构....................................................................................................1-9图1-5 常用光纤三种基本类型.........................................................................................1-9图1-6 典型光纤的色散特性...........................................................................................1-11

第1章光纤通信概述

1.1 光纤通信

本章简要介绍光纤通信的基本概念、发展简史及其突出的优点。

1.1.1 光纤通信的概念

所谓光纤通信,就是利用光纤来传输携带信息的光波以达到通信之目的。

要使光波成为携带信息的载体,必须在发射端对其进行调制,而在接收端把

信息从光波中检测出来(解调)。依目前技术水平,大部分采用强度调制与

直接检测方式(IM-DD)。

典型的数字光纤通信系统方框图如图1-1所示。

图1-1数字光纤通信系统

从图1-1可以看出,数字光纤通信系统基本上由光发射机、光纤与光接收机组

成。在发射端,电端机把模拟信息(如话音)进行模/数转换,用转换后的数

字信号去调制发射机中的光源器件(一般是半导体激光器LD),则光源器件

就会发出携带信息的光波。如当数字信号为“1”时,光源器件发射一个“传

号”光脉冲;当数字信号为“0”时,光源器件发射一个“空号”(不发光)。

光波经光纤传输后到达接收端。在接收端,光接收机把数字信号从光波中检

测出来送给电端机,而电端机再进行数/模转换,恢复成原来的模拟信息。就

这样完成了一次通信的全过程。

1.1.2 光纤通信发展简史

随着社会的不断进步,通信向大容量、长距离方向发展是必然的趋势。由于

光波具有极高的频率(大约1014Hz),也就是说具有极高的带宽,从而可以

承载巨大容量的信息,所以用光波作为载体来进行通信一直是人们几百年来

追求的目标所在。

1. 光纤通信的里程碑

1966年7月,英籍华裔学者高锟博士在Proc. IEE杂志上发表了一篇十分著

名的论文《用于光频的光纤表面波导》,该文从理论上分析证明了用光纤作

为传输媒体以实现光通信的可能性,设计了通信用光纤的波导结构,更重要

的是科学地予言了制造通信用低损耗光纤的可能性,即通过加强原材料提纯、

加入适当的掺杂剂,可把光纤的衰减系数降低到20dB/km以下。而当时世界

上只能制造用于工业、医学方面的光纤,其衰减系数在1000dB/km以上。在

当时,对于制造衰减系数在20dB/km以下的光纤,被认为是可望而不可及的。

以后的事实发展雄辩地证明了高锟博士论文的理论性和科学大胆予言的正确

性,所以该文被誉为光纤通信的里程碑。

2. 导火线

1970年美国康宁公司根据高锟论文的设想,用改进型化学汽相沉积法(MCVD

法)制造出当时世界上第一根超低损耗光纤,成为光纤通信爆炸性发展的导

火线。

虽然当时康宁公司制造出的光纤只有几米长,衰减系数约20dB/km,但它毕

竟证明了用当时的科学技术与工艺方法制造通信用超低损耗光纤的可能性,

也就是说找到了实现低衰耗传输光波的理想媒体,这是光纤通信的重大实质

性突破。

3. 爆炸性发展

自1970年以后,世界各发达国家对光纤通信的研究倾注了大量的人力与物力,

其来势之凶、规模之大、速度之快远远超出了人们的意料,从而使光纤通信

技术取得了极其惊人的进展。

(1) 光纤损耗

1970年:20dB/km;

1972年:4dB/km;

1974年:1.1dB/km;

1976年:0.5dB/km;

1979年:0.2dB/km;

1990年:0.14dB/km;

它已经接近石英光纤的理论损耗极限值0.1dB/km。

(2) 光器件

1970年,美国贝尔实验室研制出世界上第一只在室温下连续波工作的砷化镓铝半导体激光器,为光纤通信找到了合适的光源器件。后来逐渐发展到性能更好、寿命达几万小时的异质结条形激光器和现在的寿命达几十万小时分布反馈式单纵模激光器(DFB)以及多量子阱激光器(MQW)。光接收器件也从简单的硅PD光电二极管发展到量子效率达90%以上的Ⅲ-Ⅴ族雪崩光电二极管APD。

(3) 光纤通信系统

正是光纤制造技术和光电器件制造技术的飞速发展,以及大规模、超大规模集成电路技术和微处理器技术的发展,带动了光纤通信系统从小容量到大容量、从短距离到长距离、从旧体制(PDH)到新体制(SDH)的迅猛发展。

1976年,美国在亚特兰大开通了世界上第一个实用化光纤通信系统,码速率仅为45Mbit/s,中继距离为10km。

1985年,140Mbit/s多模光纤通信系统商用化,并着手单模光纤通信系统的现场试验工作。

1990年,565Mbit/s单模光纤通信系统迅速进入商用化阶段,并着手进行零色散移位光纤、波分复用及相干光通信的现场试验,而且已经陆续制订了同步数字体系(SDH)的技术标准。

1993年,622Mbit/s的SDH产品进入商用化。

1995年,2.5Gbit/s的SDH产品进入商用化。

1998年,10Gbit/s的SDH产品进入商用化;同年,以2.5Gbit/s 为基群、总容量为20Gbit/s和40Gbit/s的密集波分复用系统DWDM进入商用化。

2000年,以10Gbit/s 为基群、总容量为320Gbit/s 的DWDM系统进入商用化。

此外,在智能光网络ION、光分插复用器OADM、光交叉连接设备OXC等方面也正在取得巨大进展。

总之,从1970年到现在虽然只有短短三十年的时间,但光纤通信技术却取得了极其惊人的进展。用带宽极宽的光波作为传送信息的载体以实现通信,这

一几百年来人们梦寐以求的幻想在今天已成为活生生的现实。然而就目前的

光纤通信而言,其实际应用仅是其潜在能力的2%左右,尚有巨大的潜力等待

人们去开发利用。因此,光纤通信技术并未停滞不前,而是向更高水平、更

高阶段方向发展。

1.1.3 光纤通信的优点

光纤通信之所以受到人们的极大重视,这是因为和其它通信手段相比,具有

无以伦比的优越性。

1. 通信容量大

从理论上讲,一根仅有头发丝粗细的光纤可以同时传输100亿个话路。虽然

目前远未达到如此高的传输容量,但用一根光纤同时传输50万个话路

(40Gbit/s)的试验已经取得成功,它比传统的同轴电缆、微波等要高出几千

乃至几十万倍以上。

一根光纤的传输容量如此巨大,而一根光缆中可以包括几十根直至上千根光

纤,如果再加上波分复用技术把一根光纤当作几十根、几百根光纤使用,其

通信容量之大就更加惊人了。

2. 中继距离长

由于光纤具有极低的衰减系数(目前已达0.25dB/km以下),若配以适当的

光发射、光接收设备以及光放大器,可使其中继距离达数百公里以上甚至数

千公里。这是传统的电缆(1.5km)、微波(50km)等根本无法与之相比拟

的。

3. 保密性能好

光波在光纤中传输时只在其芯区进行,基本上没有光“泄漏”出去,因此其

保密性能极好。

4. 适应能力强

适应能力强是指它不怕外界强电磁场的干扰、耐腐蚀、可挠性强(弯曲半径

大于250毫米时其性能不受影响)等。

5. 体积小、重量轻、便于施工和维护

光缆的敷设方式方便灵活,既可以直埋、管道敷设,又可以水底或架空敷设。

6. 原材料来源丰富,潜在价格低廉

制造石英光纤的最基本原材料是二氧化硅即砂子,而砂子在大自然界中几乎是取之不尽、用之不竭的,因此其潜在价格是十分低廉的。

1.2 光发射机

光发射机的作用,就是把数字化的信息码流(如PCM话音信号)转换成光信

号脉冲码流并输入到光纤中进行传输。典型的光发射机框图如图1-2所示。

图1-2光发射机

1. 输入接口

其作用是进行电平转换。

2. 预处理

对数字电信号的脉冲波形进行整形处理。

3. 驱动电路与光源组件

实际上就是光源及其调制电路。其作用是把电信号变成光脉冲信号发送到光

纤当中。该部分是光发射机的核心,许多重要技术指标皆由该部分决定。

4. 自动发光功率控制(APC)

为了使光发射机能输出功率稳定的光信号,可采用负反馈措施来控制光源器

件的发光功率,常用的自动发光功率控制方法是背向光控制法。

5. 自动温度控制(ATC)

所有的半导体器件对温度的变化都是比较敏感的,对LD而言也是如此,因此

为LD提供一个温度恒定的环境是十分重要的。

利用与LD封装在一起的热敏电阻可以有效地监视LD的工作环境温度。当温

度发生变化时,热敏电阻的阻值也随之变化,把该变化信号提供给ATC电路,

ATC电路进行放大处理后再控制LD组件中的致冷装置,从而达到使LD工作

环境温度恒定的目的。

1.3 光接收机

光接收机的作用是进行光/电转换,即把数字电信号(通信信息)从微弱的光

信号中检测出来,并经过放大、均衡后再生出波形整齐的电脉冲信号。典型

的光接收机框图如图1-3所示。

图1-3光接收机

1. 前置放大器

前置放大器的作用就是把光探测器产生的微弱光电流进行予放大,对它的要

求是低噪声、宽带宽。低噪声设计的目的是提高光接收机的灵敏度。宽带宽

设计的目的是满足传输速率对放大器带宽的要求,放大器带宽Δf的大小视传

输速率B高低而定,一般可取Δf=(1.5~2.0)B。

2. 主放大器

主放大器的作用是把信号进一步放大,增益一般在50dB以上,其输出脉冲幅

度范围为1~3伏(峰-峰值),以满足判决再生电路的要求。

3. 均衡器

把主放大器输出的脉冲进行均衡,从而形成码间干扰最小、能量集中即最有

利于进行判决的升余弦脉冲波形。

4. 判决再生电路

对均衡器输出的脉冲逐个进行判决,并再生成波形整齐的信号脉冲码流。

5. 定时提取电路

其作用是从接收脉冲码流中提取定时信号。

6. 自动增益控制

其作用是控制前置放大器与主放大器的增益,使光接收机有一个合适的动态范围。

7. 偏压电路

在光探测器采用APD时,偏压电路向APD提供反向偏压。实际上它是一个直流变换器,把设备电压(如+5伏)变换成APD工作需要的高压(50~100伏)。

1.4 光纤基础

1.4.1 光纤的结构

渐突突

(C) GIF

图1-5常用光纤三种基本类型

按照光在光纤中传输模式的不同,分为单模光纤和多模光纤。单模光纤的纤

芯直径极细,一般不到10μm,如图1-5(a)所示;多模光纤的纤芯直径较

粗,通常在50μm左右。但从光纤的外观上来看,两种光纤区别不大。

从图中可以看出,在纤芯和包层横截面上,折射率剖面有两种典型的分布。

对于多模光纤而言,一种是纤芯和包层折射率沿光纤径向分布都是均匀的,

而在纤芯和包层的交界面上,折射率呈阶梯形突变,这种光纤称为突变型光

纤,如图1-5(b)所示;另一种是纤芯的折射率不是均匀常数,而是随纤芯

径向坐标增加而逐渐减小,一直渐变到等于包层折射率值,因而将这种光纤

称为渐变型光纤,如图1-5(c)所示。这两种光纤剖面的共同特点是:纤芯

的折射率n1大于包层折射率n2,这也是光信号在光纤中传输的必要条件。对

于突变型光纤而言,它可以使光波在纤芯和包层的交界面形成全反射,引导

光波沿纤芯向前传播;对于渐变型光纤而言,它可以使光波在纤芯中产生连

续折射,形成穿过光纤轴线的类似于正弦波的光射线,引导光波沿纤芯向前

传播,两种光射线轨迹如图1-5(b)、(c)所示。

1.4.2 光纤的基本特性

1. 衰减系数

光纤的损耗主要包括吸收损耗、散射损耗、弯曲损耗三种,在弯曲半径较大

的情况下,弯曲损耗对光纤衰减系数的影响不大,决定光纤衰减系数的损耗

主要是吸收损耗和散射损耗。

吸收损耗是制造光纤的材料本身造成的,是光纤中过量金属杂质和氢氧根离

子OH-吸收光而产生的光功率损耗。

散射损耗通常是由于光纤材料密度的微观变化,以及所含SiO2、GeO2和P2O5

等成分的浓度不均匀,使得光纤中出现一些折射率分布不均匀的局部区域,

从而引起光的散射,将一部分光功率散射到光纤外部引起损耗;或者在制造

光纤的过程中,在纤芯和包层交界面上出现某些缺陷、残留一些气泡和气痕

等。这些结构上有缺陷的几何尺寸远大于光波,引起与波长无关的散射损耗,

并且将整个光纤损耗谱曲线上移,但这种散射损耗相对前一种散射损耗而言

要小得多。

综合以上几个方面的损耗,单模光纤的衰减系数一般分别为0.3~0.4dB/km

(1310nm区域)和0.17~0.25dB/km(1550nm区域)。ITU-T G.652建议

规定光纤在1310nm和1550nm的衰减系数应分别小于0.5dB/km和

0.4dB/km。

2. 色散系数

光纤的色散指光纤中携带信号能量的各种模式成分或信号自身的不同频率成

分因群速度不同,在传播过程中互相散开,从而引起信号失真的物理现象。

一般光纤存在三种色散:

z模式色散:光纤中携带同一个频率信号能量的各种模式成分,在传输过程中由于不同模式的时间延迟不同而引起的色散。

z材料色散:由于光纤纤芯材料的折射率随频率变化,使得光纤中不同频率的信号分量具有不同的传播速度而引起的色散。

z波导色散:光纤中具有同一个模式但携带不同频率的信号,因为不同的传播群速度而引起的色散。

几种典型光纤的色散特性如图1-6所示。

图1-6典型光纤的色散特性

3. 模场直径

单模光纤的纤芯直径为8~10μm,与工作波长1.3~1.6μm处于同一量级,由于衍射效应,不易测出纤芯直径的精确值。此外,由于基模LP01场强的分布不只局限于纤芯之内,因而单模光纤纤芯直径的概念在物理上已没有什么意义,所以改用模场直径的概念。模场直径是产生空间光强分布的基模场分布的有效直径,也就是通常说的基模光斑的直径。

G.652光纤在1310nm波长区的模场直径标称值在8.6~9.5μm范围,偏差小于10%;G.655光纤在1550nm波长区的模场直径标称值在8~11μm范围,偏差小于10%。

上述两种单模光纤的包层直径均为125μm。

4. 截止波长

为避免模式噪声和色散代价,系统光缆中的最短光缆长度的截止波长应该小于系统的最低工作波长,截止波长条件可以保证在最短光缆长度上单模传输,并且可以抑制高阶模的产生或可以将产生的高阶模式噪声功率代价减小到完全可以忽略的地步。目前ITU-T定义了三种截止波长:

z短于2m长跳线光缆中的一次涂覆光纤的截止波长;

z22m长成缆光纤的截止波长;

z2~20m长跳线光缆的截止波长。

5. 零色散波长

当光纤的材料色散和波导色散在某个波长互相抵消时,光纤总的色度色散为

零,该波长即为零色散波长。一般来讲,光纤的零色散波长位于1310nm波

长区内,但人们可以通过巧妙的波导结构设计使光纤的零色散波长移到我们

所希望的波长区内,从而制造出色散移位光纤。

6. 零色散斜率

在零色散波长附近,光纤的色度色散系数随波长而变化的曲线斜率称之为零

色散斜率。其值越小,说明光纤的色散系数随波长的变化越缓慢,因此越容

易一次性地对其区域内的所有光波长进行色散补偿,这一点对于WDM系统尤

其重要,因为WDM系统是工作在某个波长区而不是某个单波长。

1.4.3 光纤的种类

ITU-T首先在建议G.651中定义了多模光纤。由于单模光纤具有低损耗、带宽

大、易于扩容和成本低等特点,目前国际上已一致认同SDH/DWDM光传输

系统使用单模光纤作为传输媒质。ITU-T在G.652、G.653、G.654和G.655

建议中分别定义了四种单模光纤,在此一并予以简要介绍。

1. G.651光纤

G.651光纤是一种折射率渐变型多模光纤,主要应用于850nm和1310nm两

个波长区域的模拟或数字信号传输。其纤芯直径为50μm,包层直径125μm。

在850nm波长区衰减系数低于4dB/km,色散系数低于120ps/nm.km;在

1310nm波长区衰减系数低于2dB/km,色散系数低于6ps/nm.km。

2. G.652光纤

G.652光纤即指零色散点在1310nm波长附近的常规单模光纤,又称色散未

移位光纤,这也是到目前为止得到最为广泛应用的单模光纤。可以应用在

1310nm和1550nm两个波长区域,但在1310nm波长区域具有零色散点,

低达3.5ps/nm.km以下。在1310nm波长区,其衰减系数也较小,规范值为

0.3~0.4dB/km(实际光纤的衰减系数低于该规范值)。故称其为1310nm波

长性能最佳光纤。

在1550nm波长区域,G.652光纤呈现出极低的衰减,其衰减系数规范值为

0.15~0.25dB/km。但在该波长区的色散系数较大,一般约20ps/nm.km。

由于在1310nm波长区域目前还没有商用化的光放大器,解决不了超长距离传输的问题,所以G.652光纤虽然称为1310nm波长性能最佳光纤,但仍然大部分工作于1550nm波长区域。

在1550nm波长区域,用G.652光纤传输TDM方式的2.5Gbit/s的SDH信号或基于2.5Gbit/s的WDM信号是没有问题的,因为后者对光纤的色散要求仍相当于单波长2.5Gbit/s的SDH系统的要求。但用来传输10Gbit/s的SDH信号或基于10Gbit/s的WDM信号则会遇到相当大的麻烦。这是因为一方面G.652光纤在该波长区的色散系数较大,会出现色散受限的问题;另一方面还出现了偏振模色散(PMD)受限的问题。

3. G.653光纤

G.653光纤即零色散点在1550nm波长附近的常规单模光纤,又称色散移位光纤。它主要应用于1550nm波长区域,且在1550nm波长区域的性能最佳。因为在光纤制造时已对光纤的零色散点进行了移位设计,即通过改变光纤内折射率分布的办法把光纤的零色散点从1310nm波长移位到1550nm波长处,所以它在1550nm波长区域的色散系数最小,低达3.5ps/nm.km以下。而且其衰减系数在该波长区也呈现出极小的数值,其规范值为0.19~0.25dB/km。故称其为1550nm波长性能最佳光纤。

在1550nm波长区域,因为G.653光纤的色散系数极小,所以特别适合传输单波长、大容量的SDH信号。例如用它来传输TDM方式的10Gbit/s的SDH 信号是没有问题的。但是,用它来传输WDM信号则会遇到麻烦,即出现严重的四波混频效应(FWM)。

考虑到今后网络设备将向超大容量密集波分复用系统方向发展,今后网上不宜使用G.653光纤。

4. G.654光纤

G.654光纤又称1550nm波长衰减最小光纤,它以努力降低光纤的衰减为主要目的,在1550nm波长区域的衰减系数低达0.15~0.19dB/km,而零色散点仍然在1310nm波长处。G.654光纤主要应用于需要中继距离很长的海底光纤通信,但其传输容量却不能太大。

5. G.655光纤

G.655光纤是近几年涌现的新型光纤,基本设计思想是在1550nm窗口工作波长区具有合理的、较低的色散,足以支持10Gbit/s以上速率的长距离传输而无需色散补偿,从而节省了色散补偿器件及其附加光放大器的成本;同时,其色散值又保持非零特性,具有最小数值限制,足以压制四波混频和交叉相位调制等非线性影响,同时满足TDM和WDM两种发展方向的需要。因此,

G.655光纤可以用来传输单个载波上信号速率为2.5Gbit/s或10Gbit/s的WDM光信号,复用的波长通道数量可达几十、几百个。它代表了今后光纤发展的方向。

空间光通信技术简介

空间光通信技术简介 空间光通信又称为激光无线通信或无线光通信。根据用途又可分为卫星光通信和大气光通信两大类。自从60年代激光器问世开始,人们就开研究激光通信,这时的研究也主要集中在地面大气的传输中,但因各种困难未能进入实际应用。低损耗光纤波导和实用化半导体激光器的诞生为激光通信的实际应用打开了大门,目前光纤通信已经遍布世界各国的各个城市。由于对无线通信的需求的增长,再有卫星激光通信的快速发展,自从90年代开始,人们又开始重新对地面无线光通信感兴趣,进行了大量的研究,并且开发出可以实用的商业化产品。 一、开展空间光通信研究的意义及应用前景 1.作为卫星光通信链路地面模拟系统的技术组成部分 卫星光通信链路系统在上卫星前必须有地面模拟演示系统,以保障电子系统、光学系统、机械自动化控制系统等各子系统的良好工作。在链路捕捉完成以后,与以太网相连的无线光通信系统借助于光链路的桥梁,源源不断地输送以太网上的信息,这是考验光链路稳定性能的重要指标。 2.为低轨道卫星与地面站间的卫星光通信打下良好的技术基础 低轨道卫星与地面站的通信会受到天气的影响,选择干旱少雨地区建立地面站在相当程度上缓解了这一矛盾,再通过地面站之间的光纤网可以把卫星上信息送到所需地点,这从技术上牵涉到空间光通信网与光纤网连接问题,这方面问题已经基本得到解决。 3.空间光通信具有巨大的潜在市场和商业价值 ●可以克服一些通常容易碰到的自然因素障碍 当河流、湖泊、港湾、马路、立交桥和其它自然因素阻碍铺设光纤时,无线光通信系统可跨越宽阔的河谷,繁华的街道,将两岸或者岛屿与陆地连接起来。 ●提供大容量多媒体宽带网接入 用无线光通信系统作为接入解决方案,不需耗资、耗时地铺设光纤就能满足对办公大楼或商业集中区大容量接入的需要。 ●可为大企业、大机关提供部大容量宽带网 无线光通信系统能在企业、机关围为建筑物与建筑物之间的大容量连接提供一种开放空间传送的解决方案。 ●为公安、军队等重要部门提供高速宽带通信。 ●支持灾难抢救的应急系统 无线光通信系统可为灾难抢救提供一种大容量的临时通信解决方案 ●为一时性大规模的重要活动提供临时的大规模通信系统 例如,奥运会和其他体育运动会、音乐会、大型会议以及贸易展览会等专门活动往往需要大容量宽带媒体覆盖。无线光通信系统能提供一种迅速、经济而有效的解决方案,不受原有通信系统的带宽限制,也不用再去办理光纤铺设许可证。 二、空间光通信的优势 1.组网机动灵活 无线光通信设备将来可广泛适用于数据网(Ethernet,Token Ring,Fast Ethernet,FDDI,ATM,STM-x等)、网、微蜂窝及微微蜂窝(E1/T1—E3/T3,OC-3等)、多媒体(图像)通信等领域。可以把这些网上信息加载在光波上,在空气中直接传输出去,这种简便的通信方式对于频率拥挤的环境是非常理想的,例如:城市、大型公司、大学、政府机构、办公楼群等。

光纤通信技术概述解析

3.3 光纤通信技术 一、光纤通信系统概述及基本结构 光纤通信系统是以光纤为传输媒介, 光波为载波的通信系统。主要由光发送机、光纤光缆、中继器和光接收机组成, 其基本结构原理如图所示。 系统中还包含了一些互联和光信号处理部件, 如光纤连接器、隔离器、光开关等。图中电端机和光端机均包括发送和接收两部分, 两者合起来构成发送器和接收器。其中发送光端机是将电信号变换成光信号,接收光端机则是将光信号转换成电信号。 1、发送器 发送器由发送光端机和电端机构成, 其核心是一个光源。光源的主要功能就是将一个信息信号从电子格式转换为光格式。今天的光纤通信系统采用发光二极管或激光二极管作为光源。两者都是小型的半导体

设备, 可以有效地将电信号转换为光信号。LD 输出的光功率较大, 谱线窄, 一般适合长距离、大容量的通信系统, 但其寿命较短, 价格高; LED 光源发出的光功率较小, 光谱线较宽, 调制速率较低, 输出线性好, 寿命长, 成本低, 适用于短距离和中小容量的系统。它们需要与电源相连并且需要调制电路。 2、光纤 光纤通信系统中的传输介质是光纤。光纤通信系统中发送器端的光信息信号就是通过光纤传送到接收器端的。实际上, 同任何其他通信链路一样, 光纤提供发送器和接收器间的连接。同时, 光纤对光信号进行传导, 就像铜线和同轴线传导电信号一样。它大概和人的头发的粗细相同, 为了保护非常脆弱的光纤, 使其不受恶劣的外部环境和机械的损害, 通常将光纤封装在特定的结构中。裸露的光纤包上保护膜后封装到其他几层中, 所有这些就构成了光纤光缆。 3、接收器 接收器由接收光端机和电端机构成。接收光端机的主要部分包括光检测器、放大器、均衡器、判决器、自动增益控制电路和时钟电路。其中光检测器是接收光端机的核心, 光检测器的主要功能就是把光信息信号转换回电信号( 光电流) 。光纤通信系统中的光检测器主要有PIN 二极管、雪崩光电二极管( APD) 。APD 比PIN 更灵敏, 而且对外部放大功能要求更低。A PD 的缺点是具有相对较长的渡越时间以及由于雪崩放大造成的附加内部噪声。 4、光中继器

光纤通信技术的发展历史

论文题目:光纤通信技术发展历史 姓名:谢新云 学号:0932002231 专业班级:通信技术(2) 院系:电子通信工程学院 指导老师:彭霞 完成时间:2011年10月22日

概论 目前,在实际运用中相当有前途的一种通信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。 自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。 光纤通信不仅可以应用在通信的主干线路中,也可以在电力通信控制系统中发挥作用,进行工业监测、控制,现在在军事上也被广泛应用,基于各领域对信息量的需求不断增长,光纤通信技术的应用发展趋势也备受关注。一条完整的光纤链路除受光纤本身质量影响外,还取决于光纤链路现场的施工工艺和环境。 本文针对光纤通信技术的发展及趋势展开研究,分别介绍了光纤通信技术的发展历史和现状,以及光纤通信技术的发展趋势,对一些先进的光纤通信技术进行了介绍。 关键字:光纤通信技术,发展历史,现状,发展趋势

目录 概论 (1) 目录 (2) 第一章光纤通信技术的形成 (3) 1.1早期的光通信 (3) 1.2 现在光纤通信技术的形成 (3) 1.2.1 光纤通信器件的发展 (3) 1.2.2 光纤 (5) 第二章光纤通信技术的现状 (8) 2.1 光纤光缆 (8) 2.2 光电子器件 (8) 2.3光纤通信系统 (14) 第三章我国光纤通信技术的发展 (15) 参考文献 (16)

北邮2017秋季光纤通信技术光纤通信技术阶段作业一

一、单项选择题(共20道小题,共100.0分) 1.目前光纤通信的长波长低损耗工作窗口是1310nm 和 nm。 A.1550 B.1480 C.980 D.1510 知识点: 第一章概述 学生答 案: [A;] 得分: [5] 试题分 值: 5.0 提示: 2.在目前的实用光纤通信系统中采用___________ 调制方式,即将调制信号 直接作用在光源上,使光源的输出功率随调制信号的变化而变化。 A.直接 B.间接 C.外 D.分接 知识点: 第一章概述 学生答 案: [A;] 得分: [5] 试题分 值: 5.0 提示: 3.渐变型光纤是指___________是渐变的。 A.纤芯和包层的折射率 B.纤芯的折射率 C.包层的折射率 D.模式数量 知识点: 光纤结构和分类 学生答 案: [B;]

得分: [5] 试题分 值: 5.0 提示: 4.变化的电场和变化的磁场的相互激发,从而形 成的传播。 A.色散 B.误码 C.时延 D.电波 知识点: 光纤基础理论 学生答 案: [D;] 得分: [5] 试题分 值: 5.0 提示: 5.如果电磁波的横向场的极化方向在传输过程中保持不变的横电磁波称 为。 A.园偏振光 B.椭圆极化波 C.圆极化波 D.线极化波 知识点: 光纤基础理论 学生答 案: [D;] 得分: [5] 试题分 值: 5.0 提示: 6.全反射条件是____________________。 A.n1 sinθ1=n2 sinθ2 B.k0n1<β< k0n2 C.0≤φ≤φmax D.n1 > n2,900>θ1≥θc 知识点: 光纤基础理论

光纤通信技术调研报告

光纤通信技术现状综述 信息工程学院通信工程赵爱杰20092420253 导读 概述 主要技术 相干光通信技术 概念 关键技术 主要优势 光孤子通信技术 概念 关键技术 主要优势 全光通信网 概念 关键技术 主要优势 总结 参考网站 概述 光纤通信,顾名思义,就是利用光导纤维传导经过调制而携带信息的光信号,实现信息传递的通信方式。光纤通信技术发展历史并不长,1966年高锟发表论文《Dielectric-Fibre surface waveguides for optical frequencies》奠定了光纤技术进入实用的里程碑。经过短短几十年发展,现在光纤技术已经以其突出优势在通信领域得到了广泛应用。 光纤技术相比其他通信技术,具有其无与伦比的优越性,其中最突出的就是其超大容量:理论上讲,一根头发丝粗细的光纤可同时传输1000亿个话路,虽然目前如此高的传输量仍未达到,但相比明线、双绞线、同轴电缆、无线信道这些传统传输介质,其传输能力仍然高出几十甚至上千倍,而把若干根光纤聚集成光缆的传输信息量就可想而知了。所以可以预见,当下乃至未来若干年的信息爆炸时代,光纤通信将逐步成为信息传输的主流技术。 其次,光纤技术还有很多传统传输技术无法比拟的有点,如传输距离长、保密性能好、适应能力强、抗干扰性好、体积小重量轻,便于施工维护、制造原料来源广,生产成本低廉等。 主要技术 目前光纤通信的主要技术有:相干光通信技术,光孤子通信技术,全光通信

网等,下面注意作简要介绍: 相干光通信技术: 所谓相干光技术就是在光通信中使用相干调制和外差检测技术。所谓相干调制,就是利用传输信号来控制光载波的频率、相位和幅度。外差检测,就是利用一束本机振荡产生的激光与输入信号在光混频器中进行混频,得到与信号光频率、相位和幅度按相同规律变化的中频信号的技术。 在发送端,采用外调制方式将信号调制到光载波上传输,当信号光到达接收端时,首先与一束本振光信号进行相干耦合,然后由平衡接收机进行探测。相干光通信根据本振光频率与信号光频率不等或相等,可分为外差检测和零差检测。前者光信号经光电转换后获得的是中频信号,还需要二次解调才能被转换成基带信号。后者光信号经光电转换后被直接转换成基带信号,不用二次解调,但它要求本振光频率与信号光频率严格匹配,并且要求本振光与信号光的相位锁定。 关键技术: 1)外光调制技术,光调制是根据某些电光或声光晶体的光波传输特性随电压或声压等外界因素的变化而变化的物理现象而提出的。外光调制器主要包括三种:利用电光效应制成的电光调制器、利用声光效应制成的声光调制器和利用磁光效应制成的磁光调制器。采用以上外调制器,可以完成对光载波的振幅、频率和相位的调制。 2)偏振保持技术,在相干光通信中,相干探测要求信号光束与本振光束必须有相同的偏振方向,才能获得相干接收所能提供的高灵敏度,所以在相干光通信中应采取光波偏振稳定措施。主要有两种方法:一是采用“保偏光纤”使光波在传输过程中保持光波的偏振态不变;二是使用普通单模光纤,在接收端采用偏振分集技术,信号光与本振光混合后首先分成两路作为平衡接收,对每一路信号又采用偏振分束镜分成正交偏振的两路信号分别检测,然后进行平方求和,最后对两路平衡接收信号进行判决,选择较好的一路作为输出信号。 3)频率稳定技术,激光器稳频技术主要有三种,(1)将激光器的频率稳定在某种原子或分子的谐振频率上。在1.5μm波长上,已经利用氨、氪等气体分子实现了对半导体激光器的频率稳定;(2) 利用光生伏特效应、锁相环技术、主激光器调频边带的方法实现稳频;(3)利用半导体激光器工作温度的自动控制、注入电流的自动控制等方法实现稳频。 相干光通信技术相对于传统的光强度调制有突出有点: 1)灵敏度高,中继距离长,相干光通信的一个最主要优点是相干检测能改善接收机的灵敏度。相同条件下,相干接收机比普通接收机灵敏度高20dB,可以达到接近散粒噪声极限的高性能,因此也增加了光信号的无中继传输距离。 2)选择性好,通信容量大,相干光通信提高了接收机的选择性,在直接检测中,接收波段较大,为抑制噪声干扰,探测器通常需要放置窄带滤光片,但其频带仍然很宽。在相干外差探测中,探测的是信号光和本振光的混频光,因此只有在中频频带内的噪声才能进入系统,而其他噪声均被带宽较窄的微波中频放大器滤除。可见,外差探测有良好的滤波性能。此外,由于相干检测优良的波长选择性,相干接收机可以使频分复用系统的频率间隔大大缩小,从而实现密集波分复用,具有以频分复用实现更高传输速率的潜在优势。

光纤通信技术

光纤通信技术 摘要:光纤通信是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式。1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。1977年美国在芝加哥相距7000米的两电话局之间,首次用多模光纤成功地进行了光纤通信试验。85微米波段的多模光纤为第一代光纤通信系统。1981年又实现了两电话局间使用1.3微米多模光纤的通信系统,为第二代光纤通信系统。1984年实现了1.3微米单模光纤的通信系统,即第三代光纤通信系统。80年代中后期又实现了1.55微米单模光纤通信系统,即第四代光纤通信系统。用光波分复用提高速率,用光波放大增长传输距离的系统,为第五代光纤通信系统。新系统中,相干光纤通信系统,已达现场实验水平,将得到应用。光孤子通信系统可以获得极高的速率,20世纪末或21世纪初可能达到实用化。在该系统中加上光纤放大器有可能实现极高速率和极长距离的光纤通信。 关键字:光纤;光纤通信器件;传输技术 Abstract: optical fiber communication is the carrier for the use of light, the optical fiber transmission medium as the message from one place to another means of communication. In 1966 the Chinese British doctor Gao Kun made an epoch-making the paper, he presented with cladding material quartz glass optical fibers, can be used as a communication medium. Since then, pioneered the field of optical fiber communication research. In 1977 the United States of America in Chicago being 7000 meters of two Telephone Bureau, first used successfully for multimode optical fiber optical fiber communication test. 85 micron band multimode fibers for the first generation of optical fiber communication system. 1981 has two telephone interoffice using 1.3 microns multimode fiber communication system, as the second generation of optical fiber communication system. In 1984 1.3 micron single-mode optical fiber communication system, namely the third generation of optical fiber communication system. In the late 80 's and 1.55 micron single-mode optical fiber communication system, namely the fourth generation of optical fiber communication system. Using WDM increase rate, light amplification growth propagation distance of the system, as the fifth generation of optical fiber communication system. The new system, the system of coherent optical fiber communication, has reached the field experimental level, will be applied. Optical soliton communication system can achieve extremely high speed, at the end of twentieth Century or the beginning of twenty-first Century may reach utility. In the system with optical fiber amplifier has the potential to achieve high speed and extremely long distance optical fiber communication. Keywords: optical fiber; optical fiber communication device; transmission technique 1 引言 光纤通信的发展极其迅速,至1991年底,全球已敷设光缆563万千米,到1995年已超过1100万千米。光纤通信在单位时间内能传输的信息量大。一对单模光纤可同时开通

光纤通信技术介绍

光纤通信技术介绍 光纤通信是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式。1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。1977年美国在芝加哥相距7000米的两电话局之间,首次用多模光纤成功地进行了光纤通信试验。85微米波段的多模光纤为第一代光纤通信系统。1981年又实现了两电话局间使用1.3微米多模光纤的通信系统,为第二代光纤通信系统。1984年实现了1.3微米单模光纤的通信系统,即第三代光纤通信系统。80年代中后期又实现了1.55微米单模光纤通信系统,即第四代光纤通信系统。用光波分复用提高速率,用光波放大增长传输距离的系统,为第五代光纤通信系统。新系统中,相干光纤通信系统,已达现场实验水平,将得到应用。光孤子通信系统可以获得极高的速率,20世纪末或21世纪初可能达到实用化。在该系统中加上光纤放大器有可能实现极高速率和极长距离的光纤通信。 就光纤通信技术本身来说,应该包括以下几个主要部分:光纤光缆技术、光交换技术传输技术、光有源器件、光无源器件以及光网络技术等。 光纤技术的进步可以从两个方面来说明: 一是通信系统所用的光纤; 二是特种光纤。早期光纤的传输窗口只有3个,即850nm(第一窗口)、1310nm(第二窗口)以及1550nm(第三窗口)。近几年相继开发出第四窗口(L波段)、第五窗口(全波光纤)以及S波段窗口。其中特别重要的是无水峰的全波窗口。这些窗口开发成功的巨大意义就在于从1280nm到1625nm 的广阔的光频范围内,都能实现低损耗、低色散传输,使传输容量几百倍、几千倍甚至上万倍的增长。这一技术成果将带来巨大的经济效益。另一方面是特种光纤的开发及其产业化,这是一个相当活跃的领域。 1. 有源光纤 这类光纤主要是指掺有稀土离子的光纤。如掺铒(Er3+)、掺钕(Nb3+)、掺镨(Pr3+)、掺镱(Yb3+)、掺铥(Tm3+)等,以此构成激光活性物质。这是制造光纤光放大器的核心物质。不同掺杂的光纤放大器应用于不同的工作波段,如掺饵光纤放大器(EDFA)应用于1550nm附近(C、L波段);掺镨光纤放大器(PDFA)主要应用于1310nm波段;掺铥光纤放大器(TDFA)主要应用于S波段等。这些掺杂光纤放大器与喇曼(Raman)光纤放大器一起给光纤通信技术带来了革命性的变化。它的显著作用是:直接放大光信号,延长传输距离;在光纤通信网和有线电视网(CATV网)中作分配损耗补偿;此外,在波分复用(WDM)系统中及光孤子通信系统中是不可缺少的关键元器件。正因为有了光纤放大器,才能实现无中继器的百万公里的光孤子传输。也正是有了光纤放大器,不仅能使WDM传输的距离大幅度延长,而且也使得传输的性能最佳化。 2. 色散补偿光纤(Dispersion Compensation Fiber,DCF) 常规G.652光纤在1550nm波长附近的色散为17ps/nm×km。当速率超过2.5Gb/s时,随着传输距离的增加,会导致误码。若在CATV系统中使用,会使信号失真。其主要原因是正色散值的积累引起色散加剧,从而使传输特性变坏。为了克服这一问题,必须采用色散值为负的光纤,即将反色散光纤串接入系统中以抵消正色散值,从而控制整个系统的色散大小。这里的反色散光纤就是所谓的色散补偿光纤。在1550nm处,反色散光纤的色散值通常在-50~200ps/nm×km。为了得到如此高的负色散值,必须将其芯径做得很小,相对折射率差做得很大,而这种作法往往又会导致光纤的衰耗增加(0.5~1dB/km)。色散补偿光纤是利用基模波导色散来获得高的负色散值,通常将其色散与衰减之比称作质量因数,质量因数当然越大越好。为了能在整个波段均匀补偿常规单模光纤的色散,最近又开发出一种既补偿色散又能补偿色散斜率的"双补偿"光纤(DDCF)。该光纤的特点是色散斜率之比(RDE)与常规光纤相同,

光纤通信概论

《光纤通信概论》的读书报告 摘要:光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。光纤通信以其带宽、大容量、低损耗、抗电磁干扰、体积小、重量轻等一系列优点,成为现代通信的主要支柱之一。范围很广:军事,经济,生活,铁路,公路,煤矿,铁矿,广电,移动,电信等领域。几乎所用跟通信有关的都涉及到了光纤。 关键词:光纤通信技术发展现状发展趋势 光纤通信是通信技术领域中的一个伟大的技术革命。信息在光域上的传输、存储、交换技术的突破,为构建起全球光网络奠定了物质基础。麦克斯韦早已揭示通信世界的巨大资源是电磁波谱。通信技术的技术演进史,既说明了通信技术利用电磁波谱(频率范围)经历了由低频率到高频率端的发展,也阑述了人类对带宽资源需求日益提高。各种通信技术的陆续诞生,充分证实人们在用各种方法利用电磁波谱创造巨大的财富。 光纤通信发展可以大致分为三个阶段:第一阶段是从基础研究到商业应用的开发时期。第二阶段是以提高传输速率和增加传输距离为研究目标和大力推广应用的大发展时期。第三阶段是以超大容量超长距离为目标、全面深入开展新技术研究的时期。 1. 光纤通信的里程碑1966年7月,英籍华裔学者高锟博士在Proc. IEE杂志上发表了一篇十分著名的论文《用于光频的光纤表面波导》,该文从理论上分析证明了用光纤作为传输媒体以实现光通信的可能性,设计了通信用光纤的波导结构,更重要的是科学地予言了制造通信用低损耗光纤的可能性,即通过加强原材料提纯、加入适当的掺杂剂,可把光纤的衰减系数降低到20dB/km以下。而当时世界上只能制造用于工业、医学方面的光纤,其衰减系数在1000dB/km以上。在当时,对于制造衰减系数在20dB/km以下的光纤,被认为是可望而不可及的。以后的事实发展雄辩地证明了高锟博士论文的理论性和科学大胆予言的正确性,所以该文被誉为光纤通信的里程碑。 2. 导火线1970年美国康宁公司根据高锟论文的设想,用改进型化学汽相沉积法(MCVD法)制造出当时世界上第一根超低损耗光纤,成为光纤通信爆炸性发展的导火线。虽然当时康宁公司制造出的光纤只有几米长,衰减系数约20dB/km,但它毕竟证明了用当时的科学技术与工艺方法制造通信用超低损耗光纤的可能性,也就是说找到了实现低衰耗传输光波的理想媒体,这是光纤通信的重大实质性突破。 3.爆炸性发展 自1970年以后,世界各发达国家对光纤通信的研究倾注了大量的人力与物力,其来势之凶、规模之大、速度之快远远超出了人们的意料,从而使光纤通信技术取得了极其惊人的进展。 (1)光纤损耗1976年:0.5dB/km;1979年:0.2dB/km;1990年:0.14dB/km;它已经接近石英光纤的理论损耗极限值0.1dB/km。 (2)光器件1970年,美国贝尔实验室研制出世界上第一只在室温下连续波工作的砷化镓铝半导体激光器,为光纤通信找到了合适的光源器件。后来逐渐发展到性能更好、寿命达几万小时的异质结条形激光器和现在的寿命达几十万小时分布反馈式单纵模激光器(DFB)以及多量子阱激光器(MQW)。光接收器件也从简单的硅PD光电二极管发展到量子效率达90%以上的Ⅲ-Ⅴ族雪崩光电二极管APD。 (3)光纤通信系统正是光纤制造技术和光电器件制造技术的飞速发展,以及大规模、超大规模集成电路技术和微处理器技术的发展,带动了光纤通信系统从小容量到大容量、从短距离到长距离、从旧体制(PDH)到新体制(SDH)的迅猛发展。1976年,美国在亚特兰大开通了世界上第一个实用化光纤通信系统,码速率仅为45Mbit/s,中继距离为10km。1985年,140Mbit/s多模光纤通信系统商用化,并着手单模光纤通信系统的现场试验工作。1990

光纤通信技术 判断题精选概述

三、判断题 ()1. 光纤熔接机分为单芯熔接机和带状熔接机,单芯熔接机无法熔接带状光纤,带状熔接机无法熔接单芯光纤。 ()2. 光纤熔接时的热缩加固步骤要求热缩管内不能有气泡。 ()3. 光缆接头盒在最后安装时,应使用生胶或密封胶条将接头盒边缘密封,但接头盒的光缆进出口则可不密封。 ()4.单模光纤只能跟单模光纤对熔,多模光纤只能与多模光纤对熔,目前熔接机无法将单模光纤与多模光纤混熔。 ()5. 光缆的弯曲半径不小于光缆外径的15倍。 ()6. 深海光缆是指敷设于海水深度大于1000米海区的光缆。 ()7.同一台光时域反射仪在设置相同的情况下事件盲区总是小于衰减盲区。 ()8.光时域反射仪只收光,本身不发光。 ()9.掺铒光纤放大器EDFA可调节的波长有限,适于工作在1550nm窗口。 ()10. 长途电缆的防雷保护系统接地电阻应小于4Ω,困难地区应不大于10Ω。 ()11.光缆金属护套对地绝缘是光缆电气特性的一个重要指标,金属护套对地绝缘的好坏,直接影响光缆的防潮、防腐蚀性能及光缆的使用寿命。 ()12. 电缆线路应做防雷保护系统接地,其间距宜为4km,电气化区段电缆线路的屏蔽地线可代替防雷地线。 ()13.电气化区段进行通信维护工作时,必须遵守《电气化铁路有关人员电气安全规则》的有关规定。 ()14.熔接质量好坏是通过熔接处外形良否计算得来的,推定的熔接损耗只能作为熔接质量好坏的参考值,而不能作为熔接点的正式损耗值。正式损耗值必须通过OTDR测试得出。()15.电气化区段电缆屏蔽保护地线测试整治检查的周期是1年1次,并安排在每年的雨季前完成。 ()16.通信线路发生故障时,工区人员应服从调度和有关机械室(网管)的统一指挥。()17.通信线路中严禁设置影响通信传输质量和危及人身设备安全的非通信回线。 ()18.铝护套电缆弯曲半径不应小于电缆外径的7.5倍; ()19.光信号在光纤中传输时,色散导致信号能量降低。 ()20.盲区决定了2个可测特征点的靠近程度,盲区有时也被称为OTDR的2点分辨率。对OTDR来说,盲区越大越好。 ()21.用OTDR测试时,如果设定的折射率比实际折射率偏大,则测试长度比实际长度大。 ()22.利用低色散光纤也可以减少四波混频对系统性能的影响。 ()23. LC型连接器所采用的插针和套筒的尺寸是普通SC、FC等所用尺寸的一半,为1.5mm。 ()24. SDH传输体制只适用于光纤信道。 ()25.熔接机推定的熔接损耗值可作为熔接点的正式损耗值。

《光纤通信技术》习题

《光纤通信技术》习题 第一章概述 1、填空题 光纤通信是以 为载频,以 为传输介质的通信方式 1966年7月,英籍华人 博士从理论上分析证明了用光纤作为传输介质以实现光通信的可能性;1960年7月,美国科学家 发明了红宝石激光器 光纤通信系统的短波长窗口为 ,长波长窗口为 。光纤通信系统的通信窗口波长范围为 。 在光通信发展史上, 和 两个难题的解决,开创了光纤通信的时代。 2、简答题 光纤通信为什么能够成为一种主要的通信方式? 光纤通信系统由哪几部分组成?并说明各部分在系统中所完成的功能。现有光纤通信使用的光波长有哪几种?对应的频率是多少?它们在整个电磁波谱中处在什么位置? 第二章光纤及其导光原理 1、填空题 光纤的导光原理与结构特性可用 理论与 理论两种方法进行分析。 单模光纤中不存在 色散,仅存在 色散,具体来讲,可分为 和 。 光纤色散参数的单位为 ,表示两个波长间隔为 的光波传输 后到达时间的延迟 对纯石英光纤,在λ= 处,色散参数D=D M+D W=0,这个波长称

为 。 在单模光纤中,由于光纤的双折射特性使两个正交偏振分量以不同的群速度传输,也将导致光脉冲展宽,这种现象称为 色散。 单模传输条件是归一化参量V 。 允许单模传输的最小波长称为 。 数值孔径(NA)越大,光纤接收光线的能力就越 ,光纤与光源之间的耦合效率就越 2、简答题 光纤由哪几部分构成?各起什么作用? 简述G.651、G.652、G.653、G.654、G.655光纤的特性。 简述光纤的传输特性 3、计算题 阶跃折射率分布的光纤的芯径d=2a为100μm,折射率n1=1.458,包层的折射率n2=1.450,在该光纤中传输的光波的波长λ=850nm。 (1)计算该光纤的V参数? (2)估算在该光纤内传输的模式数量是多少? (3)计算该光纤的数值孔径? (4)计算该光纤单模工作的波长?(考试试卷A卷计算题) 已知均匀光纤纤芯的折射率为n1=1.5,相对折射率差△=0.01,芯半径a=25μm,试求: (1)LP01、LP02、LP11和LP12模的截止波长各为多少? (2)若λ0=1μm,光纤的归一化频率V以及其中传输的模式数量M各等于多少 均匀光纤,若n1=1.5,λ0=1.3μm,试计算: (1)若△=0.25,为了保证单模传输,其纤芯半径应取多大? (2)若取a=5μm,为了保证单模传输,△应取多大?

光纤通信设备概述

光纤通信设备概述 1.走进通信机房 通信机房,无论大小,走进去看到的是: 一排排的机柜,里面装有各种各样的设备,大部分机柜是19英寸宽,有2米高,也有2.2米高的. 地板,下面往往是走线槽, 上面也许有走线槽(地槽和顶槽2选1). 网管系统:用计算机管理通信设备. 电源系统

2.从电话机到机房的线路 家里的电话机通过双绞线连接到楼道里的电话分线盒,然后用50对或100对的音频电缆, 连到了小区附近的电缆交接箱,再用更大对数的电缆接到电话局里的音频配线架,也叫总配线架,就是112机房,在音频配线架上,每个电话机都对应有1对电话线接点,并且一般都配有防雷击的音频保安器,电话线在电话局内部还用电缆连到了交换机.或PCM30设备。 3.112机房的总配线架,也叫MDF,还叫VDF 4.电话交换机 交换机可以分为3部分,一是用户电路,负责为用户馈电,发铃流,发送忙音,拨号音,记录用户话机所拨的号码,同时将模拟的电话语音变成数字信号;二叫绳路,也就是交换系统,负责电话的交换接续;三是中继器,分入局中继器和出局中继器,中继器的接口是数字信号是2.048Mb/s的速率,叫E1口。 5.PCM30设备 电话机到电话局,如果距离近(2公里),可以用电缆直接连接,如果距离远,就必须用光纤 连接光纤通信中传输的信号是数字信号,而电话机使用的是模拟信号,因此必须要变换

PCM30设备就是将模拟信号变成数字信号的设备,它将30路电话,变成1路E1接口的数字信号。 6.同轴电缆与同轴头 7.数字配线架DDF 无论是交换机的中继器接口,还是PCM30的数字口,都是E1口,要用同轴电缆接到光端机,为了方便电缆的检修,和调换电路,就要使用数字配线架(DDF)设备.DDF就是一块装有同轴 头的面板,同轴电缆上的同轴头,接到DDF的同轴头上。 8.光传输设备(光端机) 将多路E1接口的数字信号变成1路光信号的设备叫光端机,来自交换机,或PCM30设备的数字信号E1信号,靠同轴电缆经过DDF接到光端机。光端机的输出就是激光了光端机的光接口有2根光纤,1根是发光的,另1个是收光的。 9.光缆线路器材 光缆每2公里就要有1个接头,2根光缆的接续是在光纤接续盒里完成。1条完整的光缆的两个终端是通信机房里的光缆终端盒,它将光缆里的很细的光纤与尾纤相连,尾纤是单根的,有外套,有牙签那样粗,一般是黄色的,尾纤带有1个光接头,可以通过法兰盘跟另1根尾纤相连,尾纤线束,是多根尾纤做在一起的,但是比单根尾纤细一点。 10.其他设备1 电源和电池:通信机房为了保证供电,一直采用电池作为停电后的供电,电池是直流的,所以电源设备就是将交流220V的交流电,变成-48V的直流电。电源列头柜:通信机房里有很多设备,光通信的,交换机,载波机,微波等,这些设备都要用到-48V的电源,列头柜就是将总电源通过保险然后再分配到各个通信机柜的设备。 11.其他设备2 接口变换器,传输设备的接口是E1口,在通信领域是标准的但是计算机领域的标准跟通信不同,随着计算机通信的发展,两者的接口越来越多,计算机通常采用以太网接口,和V35接口,因此他们跟E1口的变换器,就经常要用到。以太网光纤收发器,计算机的局域网已经趋向于以太网,而用光纤组网是越来越多,这就要用到光纤收发器。

光纤通信技术特点和发展

光纤通信技术的特点和发展趋势 摘要:光纤通信是指利用光与光纤传递信息的一种方式,光纤通信不仅可以应用在通信的主干线路中,也可以在电力通信控制系统中发挥作用,既有经济优势又有技术优势,光纤通信由于超高速、低误码、高可靠,价格低廉,已成为信息的最重要传输手段和信息社会的重要基础设施。本文探讨光纤通信技术的优点和缺点以及光纤通信的发展和现状。 光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。

关键词:光纤通信技术特点现状发展趋势 1、光纤通信技术 2、 光纤通信是利用光导纤维传输光信号,以实现信息传递的一种通信方式,属于有线通信的一种,光经过调变后便能携带信息,利用光波作载体,以光纤作为传输媒介,将信息从一处传至另一处,是光信息科学与技术的研究与应用领域。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层成为包层,包层的作用是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆,由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路,光波在光纤中传输,不会发生信息传播中的信息泄露现象,光纤很细,占用的体积小,这解决了实施的空间问题。光纤通信系统的组成,现代的光纤通信系统多半包括一个发射器,将电信号转换成光信号,再通过光纤将光信号传递。光纤多半埋在地下,连接不同的建筑物。系统中还包括数种光放大器,以及一个光接收器将光信号转换回电信号。在光纤通信系统中传递的多半是数位信号,来源包括计算机、电话系统,或是有线电

最新光纤通信技术与设备精编版

2020年光纤通信技术与设备精编版

第一章概述 一:单项选择题 1.光纤通信指的是: A 以电波作载波、以光纤为传输媒介的通信方式; B 以光波作载波、以光纤为传输媒介的通信方式; C 以光波作载波、以电缆为传输媒介的通信方式; D 以激光作载波、以导线为传输媒介的通信方式。 2 光纤通信所使用的波段位于电磁波谱中的: A 近红外区 B 可见光区 C 远红外区 D 近紫外区 3 目前光纤通信所用光波的波长范围是: A 0.4~2.0 B 0.4~1.8 C 0.4~1.5 D 0.8~1.8 4 目前光纤通信所用光波的波长有三个,它们是: A 0.85、1.20、1.80; B 0.80、1.51、1.80; C 0.85、1.31、1.55; D 0.80、1.20、1.70。 5 下面说法正确的是: A 光纤的传输频带极宽,通信容量很大; B 光纤的尺寸很小,所以通信容量不大;

C 为了提高光纤的通信容量,应加大光纤的尺寸; D 由于光纤的芯径很细,所以无中继传输距离短。 二、简述题 1、什么是光纤通信? 2、光纤的主要作用是什么? 3、与电缆或微波等电通信方式相比,光纤通信有何优点? 4、光纤通信所用光波的波长范围是多少? 5、光纤通信中常用的三个低损耗窗口的中心波长分别是多少? 第二章光纤与光缆工程 一、单项选择题 1.下面说法正确的是: A 为了使光波在纤芯中传输,包层的折射率必须等于纤芯的折射率; B 为了使光波在纤芯中传输,包层的折射率必须大于纤芯的折射率;C为了使光波在纤芯中传输,包层的折射率必须小于纤芯的折射率; D 为了使光波在纤芯中传输,包层的折射率必须大于涂覆层的折射率。2下面说法正确的是: A 单模光纤只能传输模式; B 单模光纤只能传输一路信号; C 单模光纤只能传输一种模式; D 单模光纤只能传输模式。

《光纤通信技术》 课程大纲

《光纤通信技术》课程大纲 课程名称:光纤通信技术 课程类别:核心课 学分:4学分 适用专业:通信工程专业、计算机应用专业 先修课程:数字通信原理、数据通信原理 一、课程的教学目的 《光纤通信技术》是信息与通信工程学科一门重要的专业课程。课程定位为需要学习通信工程、计算机通信技术等专业,从事信息通信、计算机、网络等相关行业的学员。光纤通信系统具有低的传输损耗和宽的传输频带的特点,成为高速数据业务的理想传输通道。课程以光纤的导光原理和激光器的发光原理为基础内容,同时涵盖了各种实用光网络技术。课程以提高学生基本技能素质与新技术、新手段的应用能力为目标,培养能满足光纤网络工程的规划建设、系统调测、电信核心网络和接入网络的工程等需要的应用型人才。 为了更好地掌握本课程的知识,每章后面均附有大量的习题,并对主要知识点进行了总结。鉴于本课程是实践性很强的专业课程,其教学内容既包括理论学习内容,又涵盖与之相关的实践实验活动内容,为以后学习光纤通信工程新技术打下基础。 二、相关课程的衔接 学习本课程需要先修《数字通信原理》、《数据通信原理》等专业基础课程以及《现代交换技术》、《宽带接入技术》等相关课程;后续课程包括《光网络》、《多媒体通信》等。三、教学的基本要求 要求掌握《光纤通信技术》的基本概念、工作原理,了解相关扩展知识。熟练进行光纤通信技术的工程分析及工程计算。 熟悉实验原理及内容,能够利用所学基本知识完成简单电路的分析和设计。 四、课程教学方法 下载教学内容导学、详解、实时辅导、教案、综合练习题等资料。 为了更好地掌握本课程的知识,每章后面均附有大量的习题,并对主要知识点进行了总结。本课程含有实验,使本课程更多地与实践接轨,为以后学习光纤通信工程新技术打下基础。

光纤通信技术特点分析论文

光纤通信技术特点分析论文 论文关键词:光纤通信技术,特点,应用 论文摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。本文探讨了光纤通信技术的主要特征及应用。 1.光纤通信技术 光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。 光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。 2.光纤通信技术的特点 (1)频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。 (2)损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。 (3)抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不

光纤通信技术的特点和发展前景综述

光纤通信技术的特点和发展前景综述一,光纤通信技术 光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。 光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。 二,光纤通信的特点 (1) 频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传

输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。 (2) 损耗低,中继距离长。目前,商品石英光纤损耗可低于0,20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。 (3) 抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。 (4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。 除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。 三,光纤通信技术发展的以及前景 1,光纤通信的发展

相关主题
文本预览
相关文档 最新文档