当前位置:文档之家› 控制装置及仪表炉膛压力设计

控制装置及仪表炉膛压力设计

控制装置及仪表炉膛压力设计
控制装置及仪表炉膛压力设计

科技学院

课程设计报告

( 2013-- 2014年度第一学期)

名称:控制装置与仪表

题目:炉膛压力系统死区控制系统设计院系:科技学院

班级:自动化

学号:

学生姓名:

指导教师:平玉环

设计周数:一周

成绩:

日期:2014年7 月3 日

一、课程设计(综合实验)的目的与要求

1.1 目的与要求

(1)认知控制系统的设计和控制仪表的应用过程。

(2)了解过程控制方案的原理图表示方法(SAMA图)。

(3)掌握数字调节器KMM的组态方法,熟悉KMM的面板操作、数据设定器和KMM数据写入器的使用方法。

(4)初步了解控制系统参数整定、系统调试的过程。

1.2设计实验设备

KMM数字调节器、KMM程序写入器、PROM擦除器、控制系统模拟试验台1

1.3 主要内容

1. 按选题的控制要求,进行控制策略的原理设计、仪表选型并将控制方案以SAMA

图表示出来。

2 . 组态设计

2.1 KMM组态设计

以KMM单回路调节器为实现仪表并画出KMM仪表的组态图,由组态图填写

KMM的各组态数据表。

2.2 组态实现

在程序写入器输入数据,将输入程序写入EPROM芯片中。

3. 控制对象模拟及过程信号的采集

根据控制对象特性,以线性集成运算放大器为主构成反馈运算回路,模拟控制对

象的特性。将定值和过程变量送入工业信号转换装置中,以便进行观察和记录。

4. 系统调试

设计要求进行动态调试。动态调试是指系统与生产现场相连时的调试。由于生产

过程已经处于运行或试运行阶段,此时应以观察为主,当涉及到必需的系统修改

时,应做好充分的准备及安全措施,以免影响正常生产,更不允许造成系统或设

备故障。动态调试一般包括以下内容:

1)观察过程参数显示是否正常、执行机构操作是否正常;

2)检查控制系统逻辑是否正确,并在适当时候投入自动运行;

3)对控制回路进行在线整定;

4)当系统存在较大问题时,如需进行控制结构修改、增加测点等,要重新组态下装。

二题目分析设计:

系统整体控制方案(燃煤锅炉)

1,炉膛负压概述

炉膛压力是指送入炉膛内的空气、煤粉及烟气和引风机吸走的烟气量之间的平衡关系,

即指炉膛顶部的烟气压力。

炉膛负压是反映燃烧工况稳定与否的重要参数,是运行中要控制和监视的重要参数之一。炉内燃烧工况一旦发生变化,炉膛负压随即发生相应变化。当锅炉的燃烧系统发生故障或异常时,最先将在炉膛负压上反映出来,而后才是火检、火焰等的变化,其次才是蒸汽参数的变化。因此,监视和控制炉膛负压对于保证炉内燃烧工况的稳定、分析炉内燃烧工况、烟道运行工况、分析某些事故的原因均有极其重要的意义。

炉膛负压的大小受引风量、鼓风量与压力三者的影响。锅炉正常运行时,炉膛通常保持负压-40 ~ -60Pa。炉膛负压太小,炉膛向外喷火和外泄漏高炉煤气,危及设备与运行人员的安全。负压太大,炉膛漏风量增加,排烟损失增加,引风机电耗增加。

2,控制过程简述

使用压力表检测出炉内压力,把压力信号转换为电流4-20 mA信号,用转换来的电信号控制引风机变频器的频率.通过频率的改变使引风机的引风量得到控制。

炉膛负压是一个快过程,只要PI参数整定合适,一般采用单回路闭环负反馈,控制量为引风机的变频器即可达到目的。

炉膛负压的控制对象是引风机挡板所控制的引风量,炉膛负压的动态特性是引风量阶跃变化时,炉膛负压随时间变化的特性,如下图1所示。由于炉膛负压反应很快,可做比例特性来处理。

G

Pf

G

t

t

图1 炉膛负压比例特性

炉膛负压给定由仪表调节器面板设定,同炉内负压检测和变送器检测到的负压实际值比较,经仪表调节器 PI 运算后输出 4 ~ 20 mA 电信号,作为变频器频率给定信号,用于变频器控制电机转速,达到自动控制风量的目的。

3,控制系统的选择

系统采用单回路控制系统,即一个调节器,一个执行器,一个检测变送器,只有一个闭

环。

被控变量是炉膛顶部烟气出口压力。

给定值为系统需要的合适的炉膛压力值,测量值由炉膛顶端压力计测量得到。

操控变量是引风机变频器频率。

干扰为炉膛内引风量落后于燃料量和鼓风量的控制,可能引起系统大的波动,造成不稳定因素压力变化等。

控制信号为调节器根据偏差信号计算出得到的用以控制引风机变频器的4-20 mA电流信号。

三.设计题目:

1.炉膛压力系统死区控制系统设计(如附图1)

附图1所示:

控制对象为锅炉炉膛,炉膛压力系统死区单回路控制系统。要求对炉膛压力进行单变量定值控制。测量元件采用压差变送器,执行器是炉膛引风机,由引风机进行压力补偿。炉膛压力经压力变送器测量后,由KMM模入通道送至调节器中。调节器输出AO1经A/D转换通道控制调节阀,控制炉膛压力。

2.按控制方案设计流程图

按控制方案画出控制流程图

确定对可编程调节器的要求

绘制组态图

填写控制数据表

用编程器编制用户EPROM

EPROM装入仪表,经调试修改投入运行

控制要求:当调节器的给定值SP和测量值PV之偏差超过给定的监视值(15%)时,调节器自动切换至手动(M)方式。在偏差允许的范围内(15%),允许切入自动(A)方式.

3.系统方框图

f

控制器引风机炉膛

压差变送器

炉膛负压单回路控制系统方框图,系统为负作用。

4.确定可编程调节器要求

输入输出要求:控制系统要求一路模拟量输入(模入)通道输入压力信号,一路模拟量输出(模出)通道输出控制信号控制压力调节阀。而KMM具有5路模入通道、3路模出通道(其中第一路模出通道AO1可另外同时输出一路4~20mA电流信号),可满足本系统控制要求;控制要求:设计单回路控制系统,采用带死区的PID调节器,使得测量值尽可能快的跟踪给定值变化,且超调量和衰减率满足一定得要求;

显示要求:给定值(SP)与测量值(PV)指示表(双针动圈指示表)

输出值指示

各种指示灯

操作要求:给定值和输出值的增减操作

5.绘制KMM组态图并填写KMM控制数据表格

用所采用的控制仪表制造厂商提供的控制图例和组态方法,在控制装置中实现控制策略。KMM的组态方式是填表式组态方法,要根据控制要求画出KMM组态图并由组态图按KMM 数据表格式填写控制数据表,为制作用户EPROM作准备。

(1)绘制KMM组态图

附图3:

压力

LIM

2

PID1

1

输入处理

AIR2

AI2

LSP1

PPAR1

0.0

HLM

3

PPAR1

100.0

MAN

4

AO1

OR

7

MOD

9

NOT

6

AND

8

DMS

5

OFF

SP1

P0001

OFF

OFF

MSW

P1001

ASW

P1002

PPAR3

15%

PPAR4

0.0

图3 KMM组态图

AO2

SP1

P0001

系统0型单回路控制方式,根据系统要求,超偏差量调节器应自动切换至“手动”,即与面板手操方式构成“或”的关系;偏差恢复正常才切入“自动”,即不超差状态和面板自动方式,应构成“与”的关系,所以要用MOD方式切换模块。

(2)根据KMM组态图填写控制数据表。

KMM组态通过填入以下7个数据表格实现。

①基本数据表

(F001-01-□□-)

项目代码设定范围代码数据省缺值

PROM管理编号指定的四位数01 1118 0

运算操作周期1、2、3、4、5 02 4 2

调节器类型0、1、2、3 03 0 0

PV报警显示PID编号1、2 04 1 1

调节器编号1~50 05 1 1

上位计算机控制系统0、1、2 06 0 0

上位机故障时切换状态0、1 07 0 0

PROM管理编号:作芯片记号,指定一个四位数。

运算操作周期:1-100ms;2-200ms;3-300ms;4-400ms;5-500ms。

调节器类型:0-1PID(A/M)1;1-PID(C/A/M);2-2PID(A/M);3-2PID(C/A/M)。

上位计算机控制系统:0-无通信;1-有通信(无上位机);2-有通信(有上位机)。

上位机故障时切换状态:0-MAN方式;1-AUTO方式。

PROM管理编号为组号,由实验顺序给定的;由于我们设计的是单回路控制系统,其他数值均为缺省值。

②输入处理数据表

(F002-□□-□□-)

项目代码设定范围代码

模拟输入数据

缺省值01 02 03 04 05

输入使用0、1 01 1 0

按工程显示小数点位置0、1、2、3 02 1 1

工程测量单位的下限值-9999~9999 03 0.0 0.0

工程测量单位的上限值-9999~9999 04 100.0 100.0

折线编号0、1、2、3 05 0

温度补偿输入编号0、1、2、3、4、5 06 0

温度单位0、1 07 0

设定(目标)温度-9999~9999 08 0

压力补偿输入编号0、1、2、3、4、5 09 0

压力单位0、1 10 0

设定(目标)压力-9999~9999 11 0

开平方处理0、1 12 0

开方小信号切除0.0~100.0(%) 13 0

数字滤波常数0.0~999.9s 14 0.0

传感器故障诊断0、1 15 1 1 输入使用:0-不用;1-用。

按工程显示小数点位置:0-无小数;1-1位小数;2-2位小数;3-三位小数。

开平方处理:0-直线;0-开平方处理。

开方小信号切除:给AI1~AI5设定的开方信号切除值。

传感器故障诊断:0-无诊断;1-诊断。

我们设计的是单回路控制系统,需要一个输入通道,选择了KMM调节器的AIR2通道作为输入。传感器故障诊断为无诊断,由于我们的测量信号都是压力信号,不需要进行补偿等处理,其他数值均缺省。

③PID数据表

(F003-□□-□□-)

项目代码设定范围代码

PID数据

缺省值01 02

PID操作类型0、1 01 0 0

PV输入编号1~5 02 2 1

PV跟踪0、1 03 0 0

报警滞后0.0~100.0(%) 04 0 1.0 比例带0.0~799.9(%) 05 25.8 100.0 积分时间0.0~99.9min 06 70.9 1.0

微分时间0.0~99.9min 07 0 0.00

积分下限-200.0~200.0(%) 08 0.0

积分上限-200.0~200.0(%) 09 100.0

比率-699.9~799.9(%) 10 100.0

偏置-699.9~799.9(%) 11 0.0

死区0.0~100.0(%) 12 10 0.0

输出偏差率限制0.0~100.0(%) 13 100.0

偏差报警0.0~100.0(%) 14 15.0 10.0

报警下限-6.9~106.9(%) 15 58.3 0.0

报警上限-6.9~106.9(%) 16 70.5 100.0 PID操作类型:0-常规PID;1-微分先行PID。

PV跟踪:定值跟踪功能,0-无;1-有。

在这次设计中,PID调节器为常规调节方式,所以操作类型为0;设定PID的输入信号由通道2输入,PV输入编号为2。当调节器的输入偏差超过15%时,系统产生偏差报警。

④折线数据表

(F004-□□-□□-)

折点代码

折线数据

01 02 03

X轴

X1 01 X2 02 X3 03 X4 04 X5 05 X5 06 X7 07 X8 08 X9 09 X10 10

Y轴

Y1 11

Y2 12

Y3 13

Y4 14

Y5 15

折点代码

折线数据

01 02 03

Y轴

Y6 16 Y7 17 Y8 18 Y9 19 Y10 20

折线数据:缺省值是0.0,设定范围是0.0~799.0%,必须满足:xi

(注:本设计中此数据表未用。可不填写。)

⑤可变变量表

可使用百分型可变变量20个,时间型可变变量5个。

(F005-□□-□□-)

01(百分型) 02(时间型) 代码数据代码数据

01 0.0 01

02 100.0 02

03 15.0 03

04 0.0 04

05

20

百分型数据:缺省值为0.0;给定范围为:-699.0~799.9%。

时间型数据:缺省值为0.00min;给定范围为:0.00~99.99min。

本设计中,PPAR1、PPAR2为调节器输出的高低值限制;PPAR3、PPAR4为DSM模块的偏差限

⑥输出处理数据表

规定模拟输出信号和数字输出信号从哪个模块引出。

(F006-□□-□□-)

输出输出端代码

连接的内部信号名称

信号名代码

01

(模拟输出)

AO1 01 U4 U0004

AO2 02 SP1 P0001

AO3 03

02 (数字输出) DO1 01

DO2 02 DO3 03

连接的内部信号缺省值为U0000。

由KMM组态图可知模拟输出端AO1为调节器输出,是模块4(MAN模块)的输出,代码为U0004;输出端AO2为调节器内给定信号SP1,其代码为P0001。没有使用数字输出。

⑦运算模块数据表

用来规定模块的类型及模块相互之间的连接。

(F1□□-□□-)

运算模块编号

运算式H1输入信号H2输入信号P1输入信号P2输入信号名称编号信号名称代码信号名称代码信号名称代码信号名称代码

1 PID1 20 SP1 P0001 AI

2 P0402 U4 U0004 OFF P0502

2 LLM 11 U1 U0001 PPAR1 P0101

3 HLM 13 U2 U0002 PPAR2 P0102

4 MAN 19 U3 U0003

5 DMS 1

6 SP1 P0001 AI2 P0402 PPAR3 P0103 PPAR4 P0104 6 NOT 30 U5 U0005

7 OR 2

8 MSW P1001 U5 U0005 8 AND 27 ASW P1002 U6 U0006

9 MOD 45 OFF P0502 U7 U0007 U8 U0008 OFF P0502 10 11 12 ~ 30

运算模块编号:由设计人员按模块调入顺序给出的序号。 运算模块数据表参见教材:表4-1。

模块输入端能用的内部信号参见教材:表4-2。

根据KMM 调节器组态图中各个模块的输入输出,依据运算模块数据表和模块输入端的内部信号填写该表的。KMM 调节器组态图中运算模块的编号是按照模块调入顺序给出的。

6.系统仿真

1,各环节传递函数

炉膛压力变化可以看做是时间常数很小的一阶惯性环节, 即G(s)=

1

s T K

,可取K=0.5,T=10,滞后时间短。 2,matlab 仿真

对调解器进行参数整定,即对PID 控制规律中调节器的比例度,积分时间,微分时间三个参数的大小进行确定,可以利用经验试凑法,临界比例法,衰减曲线法等办法对调解器参数进行整定。在本系统中为压力控制系统,为快速系统,对象容量滞后较小,被控变量有波动因此,微分调节规律的作用很小,可忽略,系统比例度要大,积分时间可小,因此,可取P=50,I=100,D=20,进行仿真实验:如下图:

2.5设计实现被控对象的电路图

由运算放大器构成的反馈网络模拟控制对象特性,构成控制系统的模拟控制回路。系统原理接线图如附图4所示。

附图4:

图中实线连线表示已接连线,有三条,分别是KMM(CZ6)端子33-37(禁止外部联锁信号输入)、端子3-4(模拟通道1的电流输出构成闭合回路,以避免产生开路报警信号)和端子1-11(供电电源)。实验时需检查确认。弯虚线表示实验时需接连线,按附图4逐条正确连接。

模拟的控制对象采用由两个线性运算放大器构成的一阶滞后反馈环节串连构成,以加大对象的滞后时间。控制回路中测量值和设定值信号分别送入工业控制信号转换器中的A/D 模拟量输入通道中进行显示和记录。

运算放大器构成的是一阶滞后特性的反馈回路。运放的反馈网络是电阻和电容的并联,

等效阻抗

按控制方案画出控制流程图确定对可编程调节器的要求

绘制组态图填写控制数据表

用编程器编制用户EPROM

EPROM 装入仪表,经调试修改投入运行

,输入网络的等效阻抗11R Z =,这个放大器构成的闭

环特性传递函数s

C R R R Z Z s W f f f f +=

=

1/)(11

,设定1R R f =,则s

C R s W f f +=

11

)(。因此,这是一

个滞后时间f f C R T =的一阶滞后环节。设计实验中选取K R R f 1001==,μ47=f C ,计算得这个滞后环节的滞后时间s T 7.4=。因滞后时间较小,且对象为负对象,故设计中将这样的两个滞后环节和一个比例系数为1的环节串连而成。

工业控制信号转换器是一个数据采集系统。本设计中输入系统的定值信号和测量值,可完成信号的数据存储、显示、打印等功能。

2.6 掌握KMM 程序写入器的使用方法并用程序写入器将数据写入EPROM 中。

根据数据表中所填写的代码和数据用KMM 程序写入器进行编程。按表格次序逐项输入数据。程序输入并检查修改完毕后,按“WRIT ”、 “ENT ”键,将程序写入EPROM 中。写入程序后的EPROM 移插到KMM 调节器的用户EPROM 中,即可进行整机和系统调试工作。

KMM 程序写入器的操作:程序写入器具有制作可编程调节器的用户PROM 所需要的全部功能,还能够打印出程序的内容并具有程序写入器本身的自诊断功能。

其显示部分由两排数码管显示信息,上排数码管显示控制代码及数据,其全部格式见下图所示。

F

数据

代码2:表示详细项目代码1:表示运算式编号、 输入编号、折线编号等表示控制数据的各种数据

F001:基本数据

F002:输入处理数据F003:PID 运算数据F004:折线数据F005:可变参数

F006:输出处理数据F101:运算单元(1#)

F130:运算单元(2#)

~

~

下排数码管给出数据填写过程中的提示信息或出错代码。 控制代码及数据的内容填写由键盘控制。

我们先输入C333+ENT ,用来检查所用的芯片是否擦除干净,若没有擦除干净,下排数码

管显示“ERROR21”,需要换用其他芯片。

按照上面给出的数据顺序顺入到数据写入器。没有写的数据默认为缺省值。

当写入完成后,检查写入数据是否正确。若有错,更正错误。然后,按WRITE键将程序写入器RAM中写好的数据写入我们所用的PROM中。完成数据写入工作。

利用数据写入器写入数据如下:.

F001-01-01-1118 F002-02-01-1 F002-02-02-4 F002-02-03-0.0 F002-02-04-100.0 F002-02-15-0 F003-01-02-2 F003-01-04-0 F003-01-14-15.0 F003-01-15-58.3 F003-01-16-70.5

F005-01-01-0.0 F005-01-02-100.0 F005-01-03-15.0 F005-01-04-0.0 F006-01-01-U0004 F006-01-02-P0001 F101-20-H1-P0001 F101-20-H2-P0402 F101-20-P1-U0004 F101-20-P2-P0502 F102-11-H1-U0001 F102-11-H2-P0101 F103-13-H1-U0002 F103-13-H2-P0102 F104-19-H1-U0003 F105-16-H1-P0001 F105-16-H2-P0402 F105-16-P1-P0103 F105-16-P2-P0104 F106-30-H1-U0005 F107-28-H1-P1001 F107-28-H2-U0005 F108-27-H1-P1002 F108-27-H2-U0006 F109-45-H1-P0502 F109-45-H2-U0007 F109-45-P1-U0008 F109-45-P2-P0502

设计实验报告

姓名:专业、班级:自动化EPROM编号1118

学号:同组人

设计名称炉膛压力系统死区控制系统设计

1 设计功能说明

炉膛压力是靠引风机通过控制引风量来维持在一定范围内的。设置压力调节器,通过改变引风风量来调节炉膛压力,保证炉膛的正常工作。此次课程设计的目的在于设计控制系统,使得当炉膛压力改变时,通过KMM调节器调节引风量从而维持炉膛压力在正常水平。

为了使得控制作用尽量平稳,避免引风机的开关动作过于频繁,故调节器采用带死区的PID 调节器。

控制要求:当调节器的给定值SP和测量值PV之偏差超过给定的监视值(15%)时,调节器自动切换至手动(M)方式。在偏差允许的范围内(15%),允许切入自动(A)方式;调节PID调节器的参数,当给定值发生变化时,测量值要尽可能快的跟踪给定值变化,且保证超调量尽量小,衰减率在75%到90%之间。

2 PI参数

δ =25.8%

TI=70.9 min

3 记录曲线

见打印图纸

4 曲线分析

不加死区时的动态响应结果:

衰减率:2.857% ;超调量:2.727%;稳态误差:1.044

由于本系统应用了多个惯性环节,曲线上升时间较长。系统加入死区环节,导致系统的振荡次数较多,不易稳定,且易产生较大误差。

指导教师平玉环设计日期2014-7-2

总结

回顾起此课程设计,我感慨颇多,从理论到实践,在整整一个星期的时间里,我学到了很多东西,不仅巩固了以前所学过的很多东西,而且学到了很多书本上没有的东西。通过这次实习使我意识到理论联系实际的重要性,只有理论知识是远远不够的,只有把理论跟实际联系起来并从中得到结论才是真正的知识,才能提高自己的实际动手能力和独立思考能力。

在设计的过程中遇到了各种各样的问题,同时发现了很多自己的不足之处,对以前所学过的知识理解的不够深刻,掌握的不够牢固,通过这次课程设计,把以前的知识重新温固,巩固了所学知识。课程设计是一门综合性的实践课程,对于培养我们发现问题解决问题的能力至关重要,同时课程设计还有利于我们及时了解和掌握所学相关知识。

这次课程设计顺利完成了,它带给我的不仅是知识的掌握,更重要的是能力的提高,我深深的懂得虽然已经学完了,但是我们懂得的还只是毛皮,更多的专业知识等着我们去学习。最后感谢所有帮助过我的老师同学们,谢谢你们!

参考文献

《控制仪表与装置第三版》吴勤勤主编化学工业出版社

《控制仪表与装置实验及课程设计指导书》韦根原王秀霞主编华北电力大学

燃料与炉膛负压控制

课程实验总结报告 实验名称:炉膛负压与氧量校正控制 课程名称:专业综合实践:大型火电机组热控系统设计及实现(3)

1 引言 (2) 1.1 炉膛负压概述 (2) 2 控制逻辑 (2) 2.1 炉膛压力控制 (2) 2.1.1 相关图纸 (2) 2.1.2 控制原理 (2) 2.1.3 控制逻辑 (3) 2.2 氧量校正 (3) 2.2.1 相关图纸 (3) 2.2.2 控制原理 (3) 2.2.3 控制结构 (4) 2.2.4 氧量校正控制逻辑 (4) 2.2.5 二次风控制逻辑 (5) 3 被控对象特性 (6) 3.1 静态特性 (6) 3.2 动态特性 (8) 3.2.1 炉膛压力 (8) 3.2.2 含氧量 (8) 4 PID整定 (9) 4.1 炉膛负压控制器 (9) 4.2 氧量校正 (11) 5 总结 (12)

1 引言 1.1 炉膛负压概述 炉膛压力是指送入炉膛内的空气、煤粉及烟气和引风机吸走的烟气量之间的平衡关系,即指炉膛顶部的烟气压力。 炉膛负压是反映燃烧工况稳定与否的重要参数,是运行中要控制和监视的重要参数之一。炉内燃烧工况一旦发生变化,炉膛负压随即发生相应变化。当锅炉的燃烧系统发生故障或异常时,最先将在炉膛负压上反映出来,而后才是火检、火焰等的变化,其次才是蒸汽参数的变化。因此,监视和控制炉膛负压对于保证炉内燃烧工况的稳定、分析炉内燃烧工况、烟道运行工况、分析某些事故的原因均有极其重要的意义。 炉膛负压的大小受引风量、鼓风量与压力三者的影响。锅炉正常运行时,炉膛通常保持负压 -40 ~ -60Pa 。炉膛负压太小,炉膛向外喷火和外泄漏高炉煤气,危及设备与运行人员的安全。负压太大,炉膛漏风量增加,排烟损失增加,引风机电耗增加。 2 控制逻辑 2.1 炉膛压力控制 2.1.1 相关图纸 SPCS-3000 控制策略管理5号站132~133页。 2.1.2 控制原理 炉膛压力调节系统通过调节两台引风机的静叶来调节炉膛压力。当引风机入口静叶开度开大,引风作用加强,炉膛压力减小;开度减小,引风作用减弱,炉膛压力增大。因此该控制系统为负对象。 被控量:炉膛压力 被控对象:引风机入口静叶 控制量:引风机入口静叶开度 图2-1 炉膛负压控制框图

燃烧控制系统的设计(DOC)

目录 一绪论...................................................................................................................................... 二燃烧控制系统的设计 2.1燃烧过程控制任务 2.2燃烧过程调节量 2.3燃烧过程控制特点 三燃料控制系统 ........................................................................................................................ 3.1燃料调节系统...................................................................................................................... 3.2燃料调节——测量系统...................................................................................................... 3.3给煤机指令.......................................................................................................................... 四600MW火电机组DCS系统设计 4.1 电源部分 4.2 通信部分 4.3 系统接地 4.4 软件部分 五结论................................................................................................................................... 参考文献...................................................................................................................................

压力机液压系统的电气控制设计

湖南工业大学科技学院 机床电气控制技术 课程设计 资料袋 科技学院学院(系、部) 2011 ~ 2012 学年第二学期课程名称机床电气控制技术指导教师孙晓职称副教授 学生姓名周希专业班级机械设计班级 0901 学号 题目压力机液压系统的电气控制设计 成绩起止日期 2012 年月日~ 2012 年月日 目录清单

课程设计任务书 2011—2012学年第二学期 科技学院学院(系、部)机械设计制造及其自动化专业机设0901 班级课程名称:机床电气控制技术 设计题目:压力机液压系统的电气控制设计 完成期限:自 2012 年月日至 2012 年月日共 1 周 指导教师(签字): 2012年 6 月 17 日 系(教研室)主任(签字): 2012年 6 月 17 日

机床电气控制技术 设计说明书 压力机液压系统的电气控制设计起止日期:2012 年月日至2012 年月日学生姓名周希 班级机设0901 学号0912110127 成绩 指导教师(签字) 湖南工业大学科技学院(部) 2012年月日

目录 一、课程设计的内容与要求 (1) 1.1课程设计对象简介 (1) 1.2压力机结构及工作要求 (1) 1.3液压系统工作原理及控制要求 (2) 1.4课程设计的任务 (4) 二、电气控制电路设计 (5) 2.1继电器-接触器电气控制电路的设计 (5) 2.2继电器-接触器电气控制电路图分析及介绍 (5) 2.3选择电气元件 (9) 三、压力机的可编程控制器系统的设计 (10) 3.1可编程控制器控制系统设计的基本原则 (10) 3.2可编程控制器系统的设计 (10) 四、设计体会与总结 (15) 五、参考资料 (16)

控制仪表及装置复习要点及习题

概论思考题与习题 0-1 控制仪表与装置采用何种信号进行联络?电压信号传输和电流信号传输各有什么特点?使用在何种场合? 0-2 说明现场仪表与控制室仪表之间的信号传输及供电方式。0~10mA的直流电流信号能否用于两线制传输方式?为什么? 0-3 什么是本质安全型防爆仪表,如何构成本质安全防爆系统? 0-4 安全栅有哪几种?它们是如何实现本质安全防爆的? 第一章思考题与习题 1-1 说明P、PI、PD调节规律的特点以及这几种调节规律在控制系统中的作用。 1-2 调节器输入一阶跃信号,作用一段时间后突然消失。在上述情况下,分别画出P、PI、PD调节器的输出变化过程。如果输入一随时间线性增加的信号时,调节器的输出将作何变化? 1-3 如何用频率特性描述调节器的调节规律?分别画出PI、PD、PID的对数幅频特性。 1-4 什么是比例度、积分时间和微分时间?如何测定这些变量? 1-5 某P调节器的输入信号是4~20mA,输出信号为1~5V,当比例度δ=60%时,输入变化6mA所引起的输出变化量是多少? 1-6 说明积分增益和微分增益的物理意义。它们的大小对调节器的输出有什么影响? 1-7 什么是调节器的调节精度?实际PID调节器用于控制系统中,控制结果能否消除余差?为什么? 1-8 某PID调节器(正作用)输入、输出信号均为4~20mA,调节器的初始值I i=I0=4mA,δ=200%,T I=T D=2min,K D=10。在t=0时输入ΔI i=2mA的阶跃信号,分别求取t=12s 时:(1)PI工况下的输出值;(2)PD工况下的输出值。 1-9 PID调节器的构成方式有哪几种?各有什么特点? 1-10 基型调节器的输入电路为什么采用差动输入和电平移动的方式?偏差差动电平移动电路怎样消除导线电阻所引起的运算误差? 1-11 在基型调节器的PD电路中,如何保证开关S从“断”位置切至“通”位置时输出信号保持不变? 1-12 试分析基型调节器产生积分饱和现象的原因。若将调节器输出加以限幅,能否消除这一现象?为什么?应怎样解决? 1-13 基型调节器的输出电路(参照图1-20)中,已知R1=R2=KR=30kΩ,R f=250Ω,试通过计算说明该电路对运算放大器共模输入电压的要求及负载电阻的范围。 1-14 基型调节器如何保证“自动”→“软手操”、“软手操”(或硬手操)→“自动”无平衡、无扰动的切换? 1-15 积分反馈型限幅调节器和PI-P调节器是如何防止积分饱和的? 1-16 简述前馈调节器和非线性调节器的构成原理。 1-17 偏差报警单元为什么要设置U b和U c?简述其工作原理。 1-18 输出限幅单元是如何实现限幅的?电路中的二极管起什么作用? 第二章思考题与习题 2-1 变送器在总体结构上采用何种方法使输入信号与输出信号之间保持线性关系? 2-2 何谓量程调整、零点调整合零点迁移,试举一例说明。 2-3 简述力平衡式差压变送器的结构和动作过程,并说明零点调整合零点迁移的方法。 2-4 力平衡式差压变送器是如何实现量程调整的?试分析矢量机构工作原理。 2-5 说明位移检测放大器的构成。该放大器如何将位移信号转换成输出电流的? 2-6 以差压变送器为例说明“两线制”仪表的特点。

控制装置及仪表炉膛压力设计

科技学院 课程设计报告 ( 2013-- 2014年度第一学期) 名称:控制装置与仪表 题目:炉膛压力系统死区控制系统设计院系:科技学院 班级:自动化 学号: 学生姓名: 指导教师:平玉环 设计周数:一周 成绩: 日期:2014年7 月3 日

一、课程设计(综合实验)的目的与要求 1.1 目的与要求 (1)认知控制系统的设计和控制仪表的应用过程。 (2)了解过程控制方案的原理图表示方法(SAMA图)。 (3)掌握数字调节器KMM的组态方法,熟悉KMM的面板操作、数据设定器和KMM数据写入器的使用方法。 (4)初步了解控制系统参数整定、系统调试的过程。 1.2设计实验设备 KMM数字调节器、KMM程序写入器、PROM擦除器、控制系统模拟试验台1 1.3 主要内容 1. 按选题的控制要求,进行控制策略的原理设计、仪表选型并将控制方案以SAMA 图表示出来。 2 . 组态设计 2.1 KMM组态设计 以KMM单回路调节器为实现仪表并画出KMM仪表的组态图,由组态图填写 KMM的各组态数据表。 2.2 组态实现 在程序写入器输入数据,将输入程序写入EPROM芯片中。 3. 控制对象模拟及过程信号的采集 根据控制对象特性,以线性集成运算放大器为主构成反馈运算回路,模拟控制对 象的特性。将定值和过程变量送入工业信号转换装置中,以便进行观察和记录。 4. 系统调试 设计要求进行动态调试。动态调试是指系统与生产现场相连时的调试。由于生产 过程已经处于运行或试运行阶段,此时应以观察为主,当涉及到必需的系统修改 时,应做好充分的准备及安全措施,以免影响正常生产,更不允许造成系统或设 备故障。动态调试一般包括以下内容: 1)观察过程参数显示是否正常、执行机构操作是否正常; 2)检查控制系统逻辑是否正确,并在适当时候投入自动运行; 3)对控制回路进行在线整定; 4)当系统存在较大问题时,如需进行控制结构修改、增加测点等,要重新组态下装。 二题目分析设计: 系统整体控制方案(燃煤锅炉) 1,炉膛负压概述 炉膛压力是指送入炉膛内的空气、煤粉及烟气和引风机吸走的烟气量之间的平衡关系,

基于plc的压力过程控制系统设计论文

石家庄科技信息职业学院毕业论文 题目:基于plc的压力过程控制系统设计 学号: 姓名: 专业班级: 指导教师: 完成日期:

基于plc的压力过程控制系统设计 摘要:自二十世纪六十年代美国推出可编程逻辑控制器(Programmable Logic Controller,PLC)取代传统继电器控制装置以来,PLC得到了快速发展,在世界各地得到了广泛应用。同时,PLC的功能也不断完善。随着计算机技术、信号处理技术、控制技术网络技术的不断发展和用户需求的不断提高,PLC在开关量处理的基础上增加了模拟量处理和运动控制等功能。今天的PLC不再局限于逻辑控制,在运动控制、过程控制等领域也发挥着十分重要的作用。 目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业。 同时,计算机监控系统是采用集中监测、集中控制、集中显示、集中管理、集中保存的系统,融合了较先进的自动化技术、计算机技术、通讯技术、故障诊断技术和软件技术,广泛应用在化工、供暖、机械、供水、水处理等多个领域,在工业生产中发挥越来越显著的作用。 关键词:MCGS软件编程FX2N-4DA 模拟特殊模块plc

ABSTRACT :Since the 1960s, was launched in the USAprogrammable logic controller to replace traditional relay control device since, PLC obtained fast development, In the world can be widely used. Meanwhile, PLC function also continuously improved. Along with the computer technology, the signal processing technology, control technology network technology unceasing development and user demand unceasing enhancement, PLC in the switch quantity processing based on increased analogue processing and motion control etc. Function. Meanwhile, PLC function also continuously improved. Today's PLC no longer bureau be confined to logic control, motion control, process control etc also plays a very important role. At present, the PLC at home and abroad have been used widely steel, petroleum, chemical industry, electric power, building materials, machinery manufacturing, automotive, textile, transportation, environmental protection, and cultural entertainment industries. At the same time, computer monitoring system is to adopt the centralized monitoring, centralized control, centralized display, centralized management, the concentrated preservation system, shirt-sleeve relatively advanced automation technology, computer technology, communication technology, fault diagnosis technology and software technology, widely used in chemical industry, heating, machinery, water supply, water treatment etc, in the course of industrial production plays more and more important role. KEY WORDS:The MCGS software programming FX2N - 4DA simulation special modules plc

压力控制系统 实验报告

硬件课程设计实验报告 班级:计科13-1班 姓名:王国金 学号:08133210 指导教师:王凯 时间:2016年1月

我们经常要控制压力在某一范围内变化,是压力不超过某以上限值也不低于某一下限值。而压力控制系统在实际中也有较广泛的应用。 实例1:某大型化肥厂辅助锅炉生产10Mpa 的高压蒸汽。在正常情况下,高压蒸汽全部通过高压蒸汽透平,然后抽气得4Mpa 的中压蒸汽。中压蒸汽又分别通过空压机、原料压缩机、冰机等蒸汽透平,充分利用了整齐的能量。为了确保蒸汽透平整长运转,要求高压蒸汽压力不致过高(<10.2Mpa),要求低压蒸汽不致锅底(>3.8)但并不要求压力维持在某一值不变。 实例2:如果要控制水塔内的水在一定的范围内,当管线水压低于设定的下限时,控制补水泵开启,自动补水。当管线水位上升至上限时,控制补水泵停止工作 由此,我们想到,如何控制其压力大小,使其在一定的范围内按照我们的期望变化。对于在由风门控制的风道系统中,由人工来监测和控制风门附近的压力是一项很繁琐的工作,因为监测要求监测者进到再次行连续的不间断的循环工作。监测之后要进行判断,并在数据不符合要求的情况下进行循环控制,直监测时所得的数据符合要求为止。而且,在某些情况下人工控制是很难实现的,例如,当监测对象的压力很大的时候,或者是监测对象很难接近的时候。 为此,我们目前很需要开发一种简单的压力控制系统来替代人的工作。这样既可以节省人力资源,又可以使这项繁琐而又难实现的工作变得简单又轻松。真正实现我们所谓的监测和控制。

1 设计任务与要求---------------------------------------------------4 1.1选题报告------------------------------------------------------4 1.2提出问题------------------------------------------------------4 2 需求分析---------------------------------------------------------4 2.1设计思想------------------------------------------------------4 3硬件方案---------------------------------------------------------4 3.1设备器材------------------------------------------------------4 3.2硬件的选择以及芯片说明----------------------------------------7 3.3实验连线图----------------------------------------------------8 4软件方案---------------------------------------------------------8 4.1功能模块------------------------------------------------------8 4.2系统各模块程序流程图------------------------------------------9 5源程序清单和注释------------------------------------------------10 6运行结果--------------------------------------------------------18 7问题分析与解决方案----------------------------------------------19 7.1实验设计前的问题与解决方案-----------------------------------20 7.2实验过程中的问题与解决方案-----------------------------------20 8结论与体会------------------------------------------------------21 参考文献--------------------------------------------------------21

[第1讲] 自动化仪表及过程控制 第一章 绪 论

第一章绪论 ?本章提要 1.过程控制系统的基本概念 2.过程控制的发展概况 3.过程控制系统的组成 4.过程控制的特点及分类 5.衡量过程控制系统的质量指标 ?授课内容 第一节过程控制的发展概况 1.基本概念 ?过程控制系统-----指自动控制系统的被控量是温度、压力、流量、液位成 分、粘度、湿度以及PH值(氢离子浓度)等这样一些过程变量时的系统。(P3) ?过程控制-----指工业部门生产过程的自动化。(P3) 2.过程控制的重要性 ●进入90年代以来自动化技术发展很快,是重要的高科技技术。过程控制是 自动化技术的重要组成部分。在现代工业生产过程自动化电过程控制技术 正在为实现各种最优的技术经济指标、提高经济效益和劳动生产率、节约 能源、改善劳动条件、保护环境卫生等方面起着越来越大的作用。 3.过程控制的发展概况 ●19世纪40年代前后(手工阶段):手工操作状态,凭经验人工控制生产过程, 劳动生产率很低。 ●19世纪50年代前后(仪表化与局部自动化阶段):过程控制发展的第一个阶 段,一些工厂企业实现了仪表化和局部自动化。主要特点:检测和控制仪 表-----采用基地式仪表和部分单元组合仪表(多数是气动仪表);过程控制系 统结构------单输入、单输出系统;被控参数------温度、压力、流量和液位 参数;控制目的------保持这些参数的稳定,消除或者减少对生产过程的主 要扰动;理论-----频率法和根轨迹法的经典控制理论,解决单输入单输出 的定值控制系统的分析和综合问题。 ●19世纪60年代(综合自动化阶段):过程控制发展的第二个阶段,工厂企业 实现车间或大型装置的集中控制。主要特点:检测和控制仪表-----采用单 元组合仪表(气动、电动)和组装仪表,计算机控制系统的应用,实现直接 数字控制(DDC)和设定值控制(SPC);过程控制系统结构------多变量系统, 各种复杂控制系统,如串级、比值、均匀控制、前馈、选择性控制系统; 控制目的------提高控制质量或实现特殊要求;理论-----除经典控制理论, 现代控制理论开始应用。 ?前馈控制-----按扰动来控制,在扰动可测的情况下,可以地提高控制质量。 ?选择性控制-----在生产过程遇到不正常工况或被控量达到安全极限事,自 动实现的保护性控制。 ●19世纪70年代以来(全盘自动化阶段):发展到现代过程控制的新阶段,这 是过程控制发展的第三个阶段。主要特点:检测和控制仪表-----新型仪表、

锅炉燃烧过程控制系统设计毕业论文

锅炉燃烧过程控制系统设计毕业论文

毕业论文 锅炉燃烧过程控制系统设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

过程控制设计实验报告压力控制

过程控制设计实验报告 压力控制 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

目录 第一章过程控制仪表课程设计的目的 (1) 设计目的 (1) 课程在教学计划中的地位和作用 (1) 第二章液位控制系统(实验部分) (2) 控制系统工艺流程 (2) 控制系统的控制要求 (4) 系统的实验调试 (5) 第三章水箱压力控制系统设计 (7) 引言 (12) 系统总体设计 (13) 系统软件部分设计 (16) 总结 (19) 第四章收获、体会 (24) 参考文献 (25) 第一章过程控制仪表课程设计的目的意义 设计目的 本课程设计主要是通过对典型工业生产过程中常见的典型工艺参数的测量方法、信号处理技术和控制系统的设计,掌握测控对象参数检测方法、变送器的功能、测控通道技术、执行器和调节阀的功能、过程控制仪表的PID控制参数整定方法,进一步加强对课堂理论知识的理解与综合应用能力,进而提高学生解决实际工程问题的能力。基本要求如下:

1. 掌握变送器功能原理,能选择合理的变送器类型型号; 2. 掌握执行器、调节阀的功能原理,能选择合理的器件类型型号; 3. 掌握PID调节器的功能原理,完成相应的压力、流量、液位及温度控制系统的总体设计,并画出控制系统的原理图和系统主要程序框图。 4.通过对一个典型工业生产过程(如煤气脱硫工艺过程)进行分析,并对其中的一个参数(如温度、压力、流量、液位)设计其控制系统。 课程设计的基本要求 本课程设计是为《过程控制仪表》课程而开设的综合实践教学环节,是对《现代检测技术》、《自动控制理论》、《过程控制仪表》、《计算机控制技术》等前期课堂学习内容的综合应用。其目的在于培养学生综合运用理论知识来分析和解决实际问题的能力,使学生通过自己动手对一个工业过程控制对象进行仪表设计与选型,促进学生对仪表及其理论与设计的进一步认识。课程设计的主要任务是设计工业生产过程经常遇到的压力、流量、液位及温度控制系统,使学生将理论与实践有机地结合起来,有效的巩固与提高理论教学效果。 课程设计主要是通过对典型工业生产过程中常见的典型工艺参数的测量方法、信号处理技术和控制系统的设计,掌握测控对象参数检测方法、变送器的功能、测控通道技术、执行器和调节阀的功能、过程控制仪表的PID控制参数整定方法,进一步加强对课堂理论知识的理解与综合应用能力,进而提高学生解决实际工程问题的能力。基本要求如下: 1. 掌握变送器功能原理,能选择合理的变送器类型型号; 2. 掌握执行器、调节阀的功能原理,能选择合理的器件类型型号;

炉膛压力控制系统

内蒙古科技大学 过程控制课程设计论文 题目:锅炉炉膛负压控制系统 学生姓名:严合 学号:0867112335 专业:测控技术与仪器 班级:测控2008-3 指导教师:左鸿飞 2011 年08 月31 日

目录 一、概述 (Ⅲ) 二系统要求及组成 (Ⅴ) 2.1系统的要求 (Ⅴ) 2.2炉膛负压的动态特性 (Ⅴ) 2.3引风控制系统的工况 (Ⅴ) 2.4系统的组成 (Ⅵ) 三应注意的问题 (Ⅷ) 3.1抗积分饱和及外反馈法 (Ⅷ) 3.2 采用死区非线性环节 (Ⅸ) 3.3 引风机1和2的双速调节 (Ⅸ) 3.4 炉膛压力的测量 (Ⅹ) 3.5 内爆保护 (Ⅹ) 四、仪表选型及参数整定 (Ⅺ) 4.1 前馈-反馈控制系统 (Ⅺ) 4.3 传感器的选择 (Ⅺ) 4.4 选择控制系统设计 (Ⅺ) 五课程设计体会 (Ⅻ) 六参考文献 (ⅩⅢ)

一概述 锅炉是指利用各种燃料、电或者其他能源,将所盛装的液体加热到一定的参数(2.45Mpa- 27MPa ,400℃-570℃),并对外输出热能的特种设备。锅炉控制的主要目的是调节锅炉出口的蒸汽压力、流量和温度,使其达到所希望的数值。为此,需要对燃料、空气和水三者的量进行调节。锅炉是一个复杂的系统,对锅炉工况造成影响的因素之一是来自外部和内部的扰动,如燃料发热量的变化或热力系统工况的变化等。控制器或控制系统根据锅炉出口蒸汽参数实际值偏离其设定值的大小和方向,调节燃料量、空气量和水量,使锅炉出口参数与其所希望的值相一致。 锅炉除配有相应的仪表系统外,主要有以下控制系统:汽包液位控制系统;燃料控制系统;过热器和再热器出口蒸汽温度的控制系统;燃烧器程序控制系统等等。不同类型的锅炉,尽管其控制系统不尽相同,但是它们的工作原理大体是相同的。 而其中最重要的系统是燃烧控制系统。其主要功能是控制炉膛的燃料的空气的输入量,或控制燃烧率,以适应锅炉负荷的变化。对锅炉运行和控制系统来说,锅炉出口蒸汽压力的变化经常作为燃料量的输入和蒸汽量的输出之间不平衡的一个标志。引起蒸汽压力变化的因素很多,其中主要的扰动量是燃料量(内扰)和蒸汽量的变化(外扰)。燃烧控制系统的基本要求是:迅速适应外界负荷需求的变化;及时消除锅炉燃料侧的自发扰动;维持调节过程中各被调量在允许的范围内;保证锅炉运行的安全性和经济性。燃料控制系统一般包括燃料控制、引风控制和鼓风控制三个子系统。 燃料控制子系统中,蒸汽压力的实际值相对于其设定值的偏差输入到蒸汽压力控制器,经控制运算后输出调整锅炉燃烧率的指令信号;燃烧控制器根据锅炉燃烧率的指令信号的变化调整入炉燃料量。 同时,锅炉燃烧率的指令信号也加入到鼓风控制子系统中,对鼓风量进行调整。为保证燃烧的过程的经济性,即保证燃烧过程合适的燃料和风量的比值,常采用具有烟气氧量校正调节的鼓风控制系统,形成有燃料量前馈调节的串级控制系统,在保证送风量与燃料量基本成比例的粗调的基础上,进一步通过氧量校

机电课程设计压力机液压系统的电气控制设计全解

课程设计任务书 2013—2014学年第二学期 机械工程学院(系、部)机械设计制造及其自动化专业机设1105 班级课程名称:机床电气控制技术 设计题目:压力机液压系统的电气控制设计 完成期限:自 2014 年 6 月 13 日至 2014 年 6 月 20 日共 1 周 内容及任务一、设计的主要技术参数 具体要求见课程设计指导书 二、设计任务 完成系统的继电器控制原理图、PLC控制原理图及设计说明书一份三、设计工作量 电气图2-3张,不得少于15页 进度安排 起止日期工作内容 6.13 讲解设计目的、要求、方法,任务分工 6.14 根据指导书和任务书要求确定控制系统的输入输出点 数、类型,确定输入、输出设备及元器件种类、数量, 初步选定PLC型号 6.15 根据指导书和任务书绘制控制系统工作流程图,确定每 个动作实现和解除必须的条件 6.16-6.17 绘制继电器控制原理图、电路计算、元器件选择列表 编制控制系统的PLC控制程序 6.18-6.20 编写设计说明书 主 要参考资料【1】郁建平主编《机电控制技术》. 北京:科学出版社,2006. 【2】张万奎主编《机床电气控制技术》. 北京:中国林业出版社,2006. 【3】李伟主编《机床电器与PLC》. 西安:西安电子科技大学出版社,2006. 【4】芮静康主编《实用机床电路图集》. 北京:中国水利水电出版社,2006. 指导教师(签字): 2014年 6 月 20 日系(教研室)主任(签字): 2014年 6 月 20 日

机床电气控制技术 设计说明书 压力机液压系统的电气控制设计 起止日期:2014 年6 月13 日至2014 年6 月20 日学生姓名邓文强 班级机设1105 学号11405701424 成绩 指导教师(签字) 机械工程学院(部) 2014年6月20日

炉膛负压控制系统

炉膛负压控制系统总结 炉膛负压一般采用两台引风机静叶或动叶、或者液偶执行机构来控制。控制方案采用单回路、平衡算法控制。引风控制看似简单,实际需要注意很多方面,具体如下: 1、信号处理 1)炉膛负压控制被调量一般采用三取中选择块,需要注意的是测点的选择必须包含炉膛两侧,不能取在同一侧;另外三取中选择块设置需要注意坏点、偏差大、变化速率设置等切除情况。 2)最后是由于炉膛负压本身具有小幅波动特点,所以为了保证系统稳定性和执行机构的使用,一般我们对三取中后的信号进行滤波处理,并对SP和PV 偏差量增加调节死区功能,需要注意的是滤波时间不能太长,死区不能太大,因为太长会影响事故工况调节反应时间。最好根据炉膛燃烧特点来确定。 2、参数设置 1)对于运行人员手动设定的SP需要加上下限来防止操作失误问题。 2)由于炉膛燃烧特性决定PID参数设置不能太强,在作定值扰动时达到模拟量验收规程中要求即可,不能片面的追求定值扰动曲线的调节时间、衰减率等。 3)执行机构动作速率,以及上限设置需要根据锅炉单侧辅机出力试验确定,防止引风机出现过流保护。 3、前馈、超迟、闭锁 1)负压控制前馈可以根据对其影响因素来设置,除了常规的送风机执行机构前馈外,可增加一次风机执行机构输出、启停磨影响、RB影响等。 2)事故工况下超迟主要包括:RB、MFT。RB尤其是一次风RB对于炉膛负压影响尤为明显,所以一般采取一次风RB触发时,引风机执行机构超迟关一定量,防止负压过低引起保护动作;MFT发生时炉膛负压肯定大幅下降,所以有必要超迟关一定量,即防内爆功能。 3)引风控制增加闭锁功能很有必要,直接用负压高低来闭锁减加引风执行机构,保证升降负荷以及事故工况下机组避免超更危险的方向发展。一般我们也用负压高低报警闭锁送风机加减。

课程设计离心泵压力定值控制系统设计

目录 1.被控对象工作原理及结构特点 (2) 1.1离心泵的工作原理 (2) 1.2离心泵的结构 (2) 2.控制系统方案设计 (3) 2.1控制方案的选择 (3) 2.2被控参数与控制参数的选择 (5) 2.3被控对象的特性分析 (5) 3.过程检测控制仪表的选用 (7) 3.1测压元件及变送器 (7) 3.2变频器 (8) 3.3调节器 (9) 4.压力控制流程图及其控制系统方框图 (10) 5.调节器参数整定及MATLAB仿真 (11) 6.课程设计总结 (14) 7.参考文献 (15)

1.被控对象工作原理及结构特点 泵属于通用机械,在国民经济各部门中用来输送流体的泵种类繁多,用途很广,如水利工程、农田灌溉、化工、石油、采矿、造船、城市给排水和环境工程等。另外,泵在火箭燃料供给等高科技领域也得到应用。化工生产用泵不仅数量大、种类多,而且因其输送的介质往往具有腐蚀性,或其工作条件要求高压、高温等,对泵有一些特殊要求。在各种泵中,尤以离心泵应用最为广泛,因为它的流量、扬程及性能范围均较大,并具有结构简单、体积小、重量轻、操作平稳、维修方便等优点[1]。 1.1 离心泵的工作原理 离心泵是利用叶轮旋转而使水产生的离心力来工作的。离心泵在启动前,必须使泵壳和吸水管内充满水,然后启动电机,使泵轴带动叶轮和水做高速旋转运动,水在离心力的作用下,被甩向叶轮外缘,经蜗形泵壳的流道流入离心泵的压水管路。离心泵叶轮中心处,由于水在离心力的作用下被甩出后形成真空,吸水池中的水便在大气压力的作用下被压进泵壳内,叶轮通过不停地转动,使得水在叶轮的作用下不断流入与流出,达到了输送水的目的[2]。 1.2 离心泵的结构 离心泵的基本构造是由六部分组成的,分别是:叶轮、泵体、泵轴、轴承、密封环、填料函[1]。 叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。 泵体也称泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 泵轴的作用是借联轴器和电动机相连接,将电动机的转矩传给叶轮,所以它是传递机械能的主要部件。 轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。 密封环又称减漏环。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低;间隙过小会造成叶轮与泵壳摩擦产生磨损。 填料函主要由填料、水封环、填料筒、填料压盖和水封管组成。填料函的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流流到外面来也不让外面的空气进入到泵内,

锅炉压力控制系统

1 绪论 1.1 锅炉控制系统发展概述和国内外研究现状 21世纪到来,人类将进入一个以知识经济为特征的信息时代,检测技术、计算机技术和通讯技术一起构成现代信息的三大基础。 有的专家认为:在计算机和自动化领域,80年代的热点是个人计算机,90年代是算机,而21世纪第一个10年的热点必将是传感、执行与检测。锅炉自动化控制系统作为传感、执行与检测技术的一个应用方面也必将跨入数字化、网络化利智能化时代。 锅炉控制系统的发展过程与其它事物一样,也经历由简单到复杂、由机械到电子的过程。在我国,锅炉的控制大致经历四个阶段,叫手工控制阶段、专用仪表控制阶段、电动单元组合控制阶段和机算机控制阶段。 纵观国内外,总的来说,60年代,锅炉的控制还只是实行人工操作,锅炉的燃烧完全是凭司炉人的经验,几乎谈不到动控制。到了70—80年代,尤其是1972年能源危机之前,对锅炉的运行控制人多是注重安全性和可靠性。在越来越重视节约能源和环境保护的今天,人们则更注重于实现最佳燃烧控制,即把燃烧过程的热损失控制在最小,使热效率最高,且对环境污染最小的所谓最佳燃烧状态,因此,国内外相继对燃煤锅炉实行自动控制。逐步出现了由常规检测仪表和调节仪表构成的模拟控制系统,它具有可靠性高,成本低,易于操作利维护等优点,在大、中、小工业企业中得到了厂泛应用,解决了不少自动化方面的问题。 但是,随着生产向连续化、大型化发展,对自动化技术的要求越来越高,模拟自动控制系统越来越表现出它的局限性。主要表现在:(l)难以实现复杂的、多变量控制规律,如最优控制、自适应控制、模糊控制以及实时控制等;(2)控制参数一旦确定后就难以修改,要改变控制方案比较困难;(3)一组仪表只能控制一条回路,难以实现密集的监视、管理和操作;(4)一次性投资较大;(5)各个系统间不便进行通讯联系,难以实现多级控制。 到了 90年代,出现了以计算机作为自动化的过程控制技术,计算机控制系统运算速度快,控制精度高,并且具有分时操作功能,一台计算机可代替多台常规

基于PLC的压力控制系统设计概要

基于PLC 的压力控制系统设计 赵华军 (广州铁路职业技术学院,510430 摘要:本文介绍了利用压力传感器检测管道压力信号,并将压力信号经FX 0N -3A 模拟量模块进行A /D 转换采集到PLC ,PLC 运算后产生相应动作,并通过D /A 转换输出,控制变频器的工作。 关键词:模拟量;PLC ;变频器;A /D;D /A 中图分类号:TM 571.6+1 文献标识码:B 文章编号:1004-0420(201006-0028-03 0 前言 某企业需要将两种溶液A 、B 按照一定比例进行混合搅拌反应。由于A 溶液的流速是变化的,为了保证两种溶液按一定的比例搅拌反应,要求B 溶液流速也要跟随A 溶液的变化而产生变化。系统结构图如图1 所示。 图1 控制系统图 1 系统控制设计

为实现这一要求,采取如下方法控制:利用A 溶液管道所装压力传感器C 1将A 溶液的流速转换成压力信号输送给模拟量采集模块通道1,A /D 转换后将数字量传入PLC 。同理将B 溶液管道的压力数据经压力传感器C 2和PLC 模拟量采集模块通道2传送到PLC 。 在我国,水泵为满足运行中的最高功率要求,输出功率经常有很大的设计冗余。在没有变频器调速的情况下,一般通过阀门、风门等设备调节输出功率满足负载变化要求,输出的能量被大量浪费在阀门和风门挡板上。而在使用变频器的情况下,这些设备可以根据实际负载需要,通过调整电机转速来调整输出功率,使电动机的输出能量得到高效利用。工业企业在使用变频器后,有助于调整电机运行速度,优化生产工艺,可以达到显著的节能效果。控制系统接线如图2 。 图2 PLC 控制系统接线图

基于51单片机的压力过程控制系统设计说明

东北大学秦皇岛分校自动化工程系《过程控制系统》课程设计 设计题目:智能化压力测量仪设计 学生:李玲娜 专业:测控技术与仪器

班级学号:5091030 指导教师:宋爱娟 设计时间:2011.6.18-2011.7.1

前言........................................................................................................................ .. (3) 一、设计任务书 (4) 二、器件选择......................................................................................................... . (4) 2.1 压力传感器的选 择 (4) 2.2键盘显示控制芯片 8279 (6) 2.3模数转换 器.................................................................................................................. (7) (1)A/D转换器ADC0809 (8) (2)A/D转换器ADC0808 (9) 2.4 显示数码管 (10) 2.5 D锁存器74LS373 (11) 2.6地址锁存器74LS273 (12) 2.7 译码器74LS138 (13) 三、系统设计......................................................................................................... (13) 3.1 设计思 路.................................................................................................................. (13) 3.2 系统硬件框 图 (1) 4 3.3 控制系统总体结 构.......................................................................................................,14

相关主题
文本预览
相关文档 最新文档