当前位置:文档之家› DA000011 BGP路由协议ISSUE1.0

DA000011 BGP路由协议ISSUE1.0

课程 DA000011 BGP路由协议

ISSUE 1.0

DA000011 BGP路由协议 ISSUE1.0 目录

目录

课程说明 (1)

课程介绍 (1)

课程目标 (1)

第1章 BGP协议概述 (2)

1.1 基本概念 (2)

1.2 自治系统 (5)

1.3 BGP的工作机制 (6)

1.4 BGP的两种邻居 (8)

1.5 BGP路由通告原则 (9)

1.6 BGP同步 (10)

1.7 如何成为BGP路由 (12)

第2章 BGP的报文和状态机 (15)

2.1 报文种类 (15)

2.2 报文内容及格式 (16)

2.3 BGP协议的状态机 (21)

2.4 BGP协议中消息的应用 (23)

第3章 BGP路由属性 (24)

3.1 路由属性概述 (24)

3.2 常见BGP路由属性 (26)

3.2.1 ORIGIN属性 (28)

3.2.2 AS-PATH属性 (29)

3.2.3 下一跳属性 (30)

3.2.4 本地优先属性 (31)

3.2.5 MED属性 (32)

3.2.6 团体属性 (33)

3.3 BGP路由选择过程 (34)

DA000011 BGP路由协议 ISSUE1.0 课程说明

课程说明

课程介绍

本课程主要介绍BGP(Border Gateway Protocol)路由协议,BGP是Internet

上最重要的路由协议之一,它是目前自治系统之间采用的唯一一种路由协议。

BGP经历了不同的发展阶段,从1989年的最初版本BGP1,发展到了1993

年开始发展的最新版本BGP4。

课程目标

完成本课程的学习后,您应该能够:

●掌握BGP的基本概念

●掌握BGP的基本原理

●掌握BGP的常用属性

第1章 BGP协议概述

1.1 基本概念

BGP协议概述

●BGP是外部路由协议,用来在AS之间传递路由信息

●是一种距离矢量的路由协议,从设计上避免了环路的发生

●为路由附带属性信息

●传送协议:TCP,端口号179

●支持CIDR(无类别域间选路)

●路由更新:只发送增量路由

●丰富的路由过滤和路由策略

BGP(Border Gateway Protocol)是一种自治系统间的动态路由发现协议,它

的基本功能是在自治系统间自动交换无环路的路由信息,通过交换带有自治

系统号(AS)序列属性的路径可达信息,来构造自治区域的拓扑图,从而消

除路由环路并实施用户配置的路由策略。与OSPF和RIP 等在自治区域内部运

行的协议对应,BGP是一类EGP(Exterior Gateway Protocol)协议,而OSPF

和RIP等为IGP(Interior Gateway Protocol)协议。BGP协议经常用于ISP之

间。

BGP协议从1989年以来就已经开始使用。它最早发布的三个版本分别是

RFC1105(BGP-1)、RFC1163(BGP-2)和RFC1267(BGP-3),当前使用

的是RFC1771(BGP- 4)。随着INTERNET的飞速发展,路由表的体积也迅

速增加,自治区域间路由信息的交换量越来越大,影响了网络的性能。BGP

支持无类别域间选路CIDR(Classless Interdomain Routing),可以有效的减少

日益增大的路由表。BGP-4正迅速成为事实上的Internet边界路由协议标准。

特性描述如下:

BGP是一种外部路由协议,与OSPF、RIP等的内部路由协议不同,其着眼点

不在于发现和计算路由,而在于控制路由的传播和选择最好的路由。

通过携带AS路径信息,可以彻底解决路由循环问题。

为控制路由的传播和路由选择,它为路由附带属性信息。

使用TCP作为其传输层协议,提高了协议的可靠性。

BGP-4支持无类别域间选路CIDR(Classless InterDomain Routing),有时也称为supernetting,这是对BGP-3的一个重要改进。CIDR以一种全新的方法看待IP地址,不再区分A类网、B类网及C类网。例如一个非法的C类网络地址192.213.0.0(255.255.0.0)采用CIDR表示法192.213.0.0/16就成为一个合法的超级网络,其中/16表示子网掩码由从地址左端开始的16比特构成。CIDR的引入简化了路由聚合(Routes Aggregation),路由聚合实际上是合并几个不同路由的过程,这样从通告几条路由变为广告一条路由,减化了路由表。

路由更新时,BGP只发送增量路由,大大减少了BGP传播路由所占用的带宽,适用于在Internet上传播大量的路由信息。

由于政治的、经济的原因,每个自治系统希望对路由进行过滤、选择和控制,因此,BGP-4 提供了丰富的路由策略,它使得BGP便于扩展以支持因特网新的发展。

与OSPF,RIP等IGP协议相比,BGP的拓扑图要更抽象和粗略一些。因为IGP 协议构造的是AS内部的路由器的拓扑结构图。IGP把路由器抽象成若干端点,把路由器之间的链路抽象成边,根据链路的状态等参数和一定的度量标准,每条边配以一定的权值,生成拓扑图。根据此拓扑图选择代价(两点间经过的边的权值和)最小的路由。这里有一个假设,即路由器(端点)转发数据包是没有代价的。而在BGP中,拓扑图的端点是一个AS区域,边是AS之间的链路。此时,数据包经过一个端点(AS自治区域)时的代价就不能假设为0了,此代价要由IGP来负责计算。这体现了EGP和IGP是分层的关系。即IGP负责在AS内部选择花费最小的路由,EGP负责选择AS间花费最小的路由。

BGP作为EGP的一种,选择路由时考虑的是AS间的链路花费、AS区域内的花费(由BGP路由器配置)等因素。

如上所述,内部网关协议IGP需引入AS自治区域内部网络拓扑图其它各点的路由,同时向其它端点发送本端点(路由器)所知的路由,如直接路由、静态路由等。作为外部网关协议,BGP发送和引入路由的单位是整个AS自治区域,即BGP要发送本地路由器所在的AS内部的所有路由,引入其它AS自治区域的所有路由(假设不使用路由策略控制发送和引入)。其路由数量显然要远远大于IGP发送和引入的路由数量。因此,类似于IGP那样定时对外广播路由信息是不可取的。BGP采用发送路由增量(Incremental)的方法,完成

全部路由信息的通告和维护:初始化时发送所有的路由给BGP对等体(BGP Peer),同时在本地保存了已经发送给BGP对等体的路由信息。当本地的BGP 收到了一条新路由时(如通过IGP注入了新路由或加入了新的静态路由),与保存的已发送信息进行比较,如未发送过,则发送,如已发送过则与已经发送的路由进行比较,如新路由花费更小,则发送此新路由,同时更新已发送信息,反之则不发送。当本地BGP发现一条路由失效时(如对应端口失效),如此路由已发送过,则向BGP对等体发送一个撤消路由消息。

总之,BGP不是每次都广播所有的路由信息,而是在初始化全部路由信息后只发送路由的变化量(增量)。这样保证了BGP和对端的最小通信量,但同时也增加了BGP的复杂程度。因为对于IGP,本地路由协议只需发送发送时刻所知的全部路由,而不保存任何已发送信息,路由选择的工作由对端来完成;而BGP必须为每个BGP对端保存已经发送的路由信息,以便发送一条新路由前确认其是否真的应该发送。

为了减小路由表的体积和发送路由的通信量,BGP还支持CIDR(Classless InterDomain Routing)。它使用带有较短的掩码(相对于自然掩码)的路由来在一条路由中表达更多的路由信息。如从202.112.1.0/24-202.112.254.0/24可以使用202.112.0.0/16表示,从而减小了路由表的体积和发送路由信息时的网络流量。

同时,作为AS自治区域间的路由协议,由于政治的、经济的等原因,BGP 需要按照不同的路由的属性控制路由的发送和引入。因此,BGP有丰富的路由策略控制手段。

1.2 自治系统

BGP协议基本概念

●什么是自治系统(AS)?

●为什么引入自治系统这一概念?

●自治系统内部的路由协议

●自治系统之间的路由协议——BGP

自治系统指的是:由同一个技术管理机构管理、使用统一选路策略的一些路

由器的集合。每个自治系统都有唯一的自治系统编号,这个编号是由因特网

授权的管理机构分配的。

引入自治系统的基本思想:就是通过不同的编号来区分不同的自治系统。这

样,当网络管理员不期望自己的通信数据通过某个自治系统时,这种编号方

式就十分有用了。或许,该网络管理员的网络完全可以访问这个自治系统,

但由于它可能是由竞争对手在管理,或是缺乏足够的安全机制,因此,可能

要回避它。通过采用路由协议和自治系统编号,路由器就可以确定彼此间的

路径和路由信息的交换方法。

自治系统的编号范围是1到65535,其中1到65411是注册的因特网编号,65412

到65535是专用网络编号。

1.3 BGP 的工作机制 BGP 工作机制

AS1AS7

AS6

AS5AS4

AS3

AS2

BGP 系统作为应用层协议运行在一个特定的路由器上。系统初启时通过发送整个BGP 路由表交换路由信息,之后为了更新路由表只交换更新消息(update message )。系统在运行过程中,是通过接收和发送keep-alive 消息来检测相互之间的连接是否正常。

发送BGP 消息的路由器称为BGP 发言人(speaker ),它不断的接收或产生新路由信息,并将它广告(advertise )给其它的BGP 发言人。当BGP 发言人收到来自其他自治系统的新路由广告时,如果该路由比当前已知路由好、或者当前还没有可接受路由,它就把这个路由广告给自治系统内所有其它的BGP 发言人。一个BGP 发言人也将同它交换消息的其它的BGP 发言人称为同伴(peer ),若干相关的同伴可以构成同伴组(group )。

一般情况下一条路由是从自治系统内部产生的,它由某种内部路由协议发现和计算,传递到自治系统的边界,由自治系统边界路由器(ASBR )通过EBGP 连接传播到其它自治系统中。路由在传播过程中可能会经过若干个自治系统,这些自治系统称为过渡自治系统。如:AS5。若这个自治系统有多个边界路由器,这些路由器之间运行IBGP 来交换路由信息。这时内部的路由器并不需要知道这些外部路由,它们只需要在边界路由器之间维护IP 连通性。如:AS2、AS3、AS4。路由到达自治系统边界后,若内部路由器需要知道这些外部路由,ASBR 可以将路由引入内部路由协议。外部路由的数量是很大的,通常会超出内部路由器的处理能力,因此引入外部路由时一般需要过滤或聚合,以减少路由的数量,极端的情况是使用默认路由。还有一种自治系统称为Stub AS ,

如:AS1、AS6、AS7。其内部只有一个ASBR通过EBGP连接外部,同外部其他AS的通信要靠过渡自治系统来转接。

对一个具体的ASBR来说,其路由的来源有两种:从对等体接收的或者从IGP 引入的。对于接收的路由,根据其属性(如AS路径、团体属性等)进行过滤,并设置某些属性(如本地优先、MED值等),之后若需要的话,将具体的路由聚合为超网路由。BGP可能从多个对等体收到目的地相同的路由,根据规则选择最好的路由并加入IP路由表。对于IGP路由,则要经过引入策略的过滤和设置。BGP发送优选的BGP路由和引入的IGP路由给对等体。

1.4 BGP的两种邻居

BGP在路由器上以下列两种方式运行:

IBGP(Internal BGP)

EBGP(External BGP)

如果两个交换BGP报文的对等体属于同一个自治系统,那么这两个对等体就

是IBGP对等体(Internal BGP),如RTB和RTD。

如果两个交换BGP报文的对等体属于不同的自治系统,那么这两个对等体就

是EBGP对等体(External BGP),如RTA和RTB。

虽然BGP是运行于自治系统之间的路由协议,但是一个AS的不同边界路由

器之间也要建立BGP连接,只有这样才能实现路由信息在全网的传递,如RTB

和RTD,为了建立AS100和AS300之间的通信,我们要在它们之间建立IBGP

连接。

IBGP对等体之间不一定是物理上直连的,但必须保证逻辑上全连接。(TCP

连接能够建立即可)。

一般的路由器(包括Quidway系列路由器)都默认要求EBGP对等体之间是

有物理上的直连链路,同时他们一般也提供改变这个缺省设置的配置命令。

1.5 BGP路由通告原则

BGP路由通告原则

●多条路径时,BGP Speaker只选最优的给自己使用

●BGP Speaker只把自己使用的路由通告给相邻体

●BGP Speaker从EBGP获得的路由会向它所有BGP相邻体通告

(包括EBGP和IBGP)

●BGP Speaker从IBGP获得的路由不向它的IBGP相邻体通告

●BGP Speaker从IBGP获得的路由是否通告给它的EBGP相邻体

要依IGP和BGP同步的情况来决定

●连接一建立,BGP Speaker将把自己所有BGP路由通告给新相

邻体

BGP 的路由通告原则:

多条路径时,BGP Speaker只选最优的给自己使用;

BGP Speaker只把自己使用的路由通告给相邻体;

BGP Speaker从EBGP获得的路由会向它所有BGP相邻体通告(包括EBGP

和IBGP);

BGP Speaker从IBGP获得的路由不向它的IBGP相邻体通告;

BGP Speaker从IBGP获得的路由是否通告给它的EBGP相邻体要依IGP和

BGP同步的情况来决定;

连接一建立,BGP Speaker将把自己所有BGP路由通告给新相邻体。

这些通告原则都是BGP的设计者在设计BGP 路由协议时硬性规定的,这里我

们不深究其原因。

1.6 BGP同步

BGP协议规定:一个BGP 路由器不将从内部BGP对等体得知的路由信息通

告给外部对等体,除非该路由信息也能通过IGP得知。若一个路由器能通过

IGP得知该路由信息,则可认为路由能在AS中传播,内部通达已有了保证。

BGP的主要任务之一就是向其它自治系统发布该自治系统的网络可达信息。

如胶片所示,RTB会把去往10.1.1.1/24 的路由信息封装在UPDATE报文中,

通过由RTC、RTD建立的TCP 连接通告给RTE,如果RTE不考虑同步问题,

直接接受了这样一条路由信息并通告给RTF。那么,如果RTF 或RTE有去往

10.1.1.1/24 的数据报文要发送,这个数据报文要想到达目的地必须径过RTD

和RTC,由于先前没有考虑同步问题,RTD和RTC的路由表中没有去往

10.1.1.1/24 的路由信息,数据报文到了RTD就会被丢弃。因此,BGP必须与

IGP(如RIP、OSPF等)同步。同步是指BGP必须等待直到IGP在其所在自

治系统中成功传播该选路信息,才向其它自治系统通告过渡信息。也就是说,

当一个路由器从IBGP对等体收到一个目的地的更新信息,在把它通告给其它

EBGP对等体之前,要试图验证该目的地通过自治系统内部能否到达(即验证

该目的地是否存在于IGP,非BGP路由器是否可传递业务量到该目的地。若

IGP认识这个目的地,才接受这样一条路由信息并通告给EBGP对等体,否则

将把这个路由当作与IGP不同步,不进行通告。

如胶片所示,RTE 通过IBGP邻居关系获得去往AS100内网络10.1.1.1/24的

路由,RTE 不会马上将其添加到自己的路由表中,也不会向RTF通告。RTE

看OSPF是否也能获得去往10.1.1.1/24 路由。如果OSPF能就说明IGP 和 BGP

是同步的,RTE 就把该路由添加到路由表中,并通告给RTF。如OSPF没能获得去往10.1.1.1/24 路由,则IGP 和BGP不同步,RTE不会把去往10.1.1.1/24 的路由添加到路由表中,也不会向RTF 通告该路由。解决的方法有很多,最简单的办法是RTB把BGP路由信息引入到OSPF路由表中,再由OSPF 通告到RTE,这样就同步了。但是一般不建议这样做,因为BGP路由表很大,引入到OSPF中来会给系统带来很大负担。其它的解决办法如:可以在RTB上配置一条去往10.1.1.1/24 的静态路由,再把该静态路由引入到OSPF中,这样也可以达到同步。

实际上,同步和不同步是可以配置的。Quidway 系列路由器缺省情况下BGP 与IGP是同步的。

虽然同步是可以取消的,但取消同步是有条件的。当AS中所有的BGP 路由器能组成IBGP全闭合网时,可以取消同步,在同步被取消以后,有一个新的问题需要考虑:RTB 去往10.1.1.1/24 的下一跳是s0:1.1.1.1/24 ,RTB在把该路由信息通告给RTE时,保持路由的下一跳不变,因为它们之间是IBGP。这样对于RTE来说,去往10.1.1.1/24 的下一跳是s0:1.1.1.1/24 。下一跳s0:1.1.1.1/24 是否可达成为关键问题。对于RTE来说,如果下一跳s0:1.1.1.1/24 可达,RTE就接受去往10.1.1.1/24 的路由,如果下一跳s0:1.1.1.1/24 不可达,RTE就不接受去往10.1.1.1/24 的路由。怎样才能让下一跳可达呢?方法同样很多,通常可以通过配置强制改变下一跳来解决问题。因为AS中所有的BGP 路由器是IBGP全闭合连接,路由器在向IBGP邻居通告路由时强制下一跳为自己本身的接口,这样对于IBGP邻居来说,下一跳就是直连网段地址,可达性也就解决了。胶片中讨论的情况是:建立IBGP邻居关系的两台路由器之间是TCP连接的,在这种情况下,一般不能取消同步,因为在TCP连接的情况下下一跳可达很难满足。

如胶片所示,可以在RTB上配置RTB在向RTE通告路由信息时会强制改变下一跳为它本身接口 2.1.1.2 。对于RTE来说2.1.1.2 是直连的、可达的。当然,也可以通过配置IGP 路由协议和静态路由来解决下一跳可达的问题。

1.7 如何成为BGP路由

BGP 路由协议是运行在自治系统之间的路由协议,它的主要工作是在自治系

统之间传递路由信息,而不是去发现和计算路由信息。发现和计算路由信息

的任务由IGP (如:RIP、OSPF)路由协议来完成。BGP 的路由信息需要通

过配置命令的方式注入到BGP中。

按照注入的方式可分为三类:纯动态注入、半动态注入、静态注入。

纯动态注入是指:路由器将通过IGP路由协议动态获得的路由信息直接注入

到BGP中去。纯动态注入方式没有对路由信息做任何过滤和选择,它会把路

由器获得的所有IGP 路由信息都引入到BGP系统中。从另一角度来说,这样

一种路由注入方式配置简单,一次性引入了所有的路由信息。当然,在实际

工程中可以根据需要选择。

半动态注入是指:路由器有选择性的将IGP发现的动态路由信息注入到BGP 系统中去。它和纯动态注入的区别在于不是将IGP发现的所有路由信息注入到BGP中去。

如胶片所示,路由器B通过OSPF 协议动态地发现去往网络18.0.0.0/8的路由,再通过配置命令静态将其引入到BGP中,我们称这样一种路由注入方式为半动态注入。

静态注入是指:路由器将静态配置的某条路由注入到BGP系统中。

如胶片所示,路由器B首先,建立一条去往网络18.0.0.0/8 的静态路由,再通过配置命令将其静态引入到BGP中,我们称这样一种路由注入方式为静态注入。

第2章 BGP的报文和状态机

2.1 报文种类

BGP报文种类

●BGP报文有四种类型:

→Open:打招呼“你好,跟我交个朋友吧!”

→KeepAlive:我还活着呢,别不理我

→Update:有新闻......

→Notification:我不跟你玩了!

BGP有4种类型的报文,分别为OPEN、UPDATE、NOTIFICATION和

KEEPALIVE。

BGP对等体间通过发送OPEN报文来交换各自的版本、自治系统号、保持时

间、BGP标识符等信息,进行协商。

UPDATE报文携带的是路由更新信息。其中包括撤销路由信息和可达路由信

息及其路径属性。

当BGP检测到差错(连接中断、协商出错、报文差错等)时,发送

NOTIFICATION 报文,关闭同对等体的连接。

KEEPALIVE报文在BGP对等体间周期地发送,以确保连接保持有效。

OPEN报文主要用于建立邻居(BGP对等体)关系,它是BGP路由器之间的

初始握手消息,应该发生在任何通告消息之前。其他在收到OPEN消息之后,

即以KEEPALIVE消息作为响应。一旦握手成功,则这些BGP邻居就可以进

行UPDATE(更新)、KEEPALIVE(保持激活)以及NOTIFICATION(通

知)等消息的交换操作。

2.2 报文内容及格式

BGP报文头

BGP报文的格式是一样的,都是”报文头+报文体“的格式,下面

给出的是BGP报文头:

Marker(16 byte)

Length(2 byte)Type(1 byte)

BGP报文头的格式如图所示,每行的宽度为4个字节。

Marker 鉴权信息:16 字节,全1。这个标记的作用主要是用来检测BGP对等

体之间的同步是否丢失,并对进来的BGP消息进行验证。

Length 消息的长度:2 字节,指示整个消息的长度,包括头标长度,最小的

BGP消息长度是19字节(Keepalive报文),最大的长度是4096字节。

Type 消息的类型:1 字节,指示报文类型,如OPEN、UPDATE报文等。

1 :OPEN

2 :UPDATE

3 :NOTIFICATION

4 :KEEPALIVE

Open报文

Open报文是由报文头加如下结构构成的。

Vision

My Autonomous System

Hold Time

BGP Identifier

Optional Paramenters

Length

Optional Paramenters

Version :(1字节)发端BGP版本号

My Autonomous System :(2字节无符号整数)本地AS号

Hold Time :(2字节无符号整数)发端建议的保持时间 BGP Identifier :(4字节)发端的路由器标识符

Optional parameters Len :(1字节)可选的参数的长度

Optional Parameters :(变长)可选的参数

消息的开始部分包括BGP的版本号和发送方的自治系统编号。接下来是保持时间(HOLD TIME)字段,这是发送方提供建议的保持定时器的设定秒数。保持定时器规定了BGP邻居认为发送方信息有效的时间长度。再下一个字段是BGP标识(BGP ID),也就是BGP发送方的标识。该值是在BGP对等体之间进行握手操作的过程中确定的,并且在每个本地接口及每个BGP对等体之间是保持不变的。

KeepAlive报文

KeepAlive报文只有报文头。

Marker(16 byte)

Length(2 byte)Type(1 byte)

KeepAlive 报文主要用于对等体路由器间的运行状态以及链路的可用性确认。KeepAlive 报文的组成只包括一个BGP数据报头。 KeepAlive 消息在对等路由器间的交换频度以保证对方保持定时器不超时为限。

当一台路由器与其邻居建立BGP连接之后,将以Keepalive-interval设定的时间间隔周期性地向对等体发送Keepalive 报文,表明该连接是否还可保持。

缺省情况下,发送Keepalive 的时间间隔为 60 秒。

路由协议的分类

路由协议的分类。什么是自治域系统、IGP、EGP。 自治域(自治系统),在同一种路由协议上使用不同的自治域,可以有效的分割 路由信息,即自治域A中的路由器不会与自治域B中的路由器交换路由 信息。一个AS是一组共享相似的路由策略并在单一管理域中运行的路由器的集合。一个AS可以是一些运行单个IGP(内部网关协议)协议的路由器集合。也可以是一些运行不同路由选择协议但都属于同一个组织机构的路由器集合。不管是哪种情况,外部世界都将整个AS看作是一个实体。按照工作区域,路由协议可以分为IGP和EGP: IGP(InteriorGateway Protocols)内部网关协议 在同一个自治系统内交换路由信息,RIP、OSPF和IS—lS 都属于IGP。IGP的主要目的是发现和计算自治域内的路由信息。 EGP(Exterior Gateway Protocols)外部网关协议 用于连接不同的自治系统,在不同的自治系统之间交换路由信息,主要使用路由策略和路由过滤等控制路由信息在自治域间的传播 什么是管理距离,有什么作用。 管理距离是指一种路由协议的路由可信度。每一种路由协议按可靠性从高到低,依次分配一个信任等级,这个信任等级就叫管理距离。对于两种不同的路由协议到一个目的地的路由信息,路由器首先根据管理距离决定相信哪一个协议。 防止环路的方法有哪些? RIP:有六种防止环路的措施:设定无穷大的值(16)路由毒化水平分割毒化反转触发更新抑制计时器 OSPF有哪些状态,在每种状态下进行哪些操作?OSPF有哪三个表?为什么需要DR、BDR,如何选择。 OSPF路由器在完全邻接之前,所经过的几个状态: 1.Down:此状态还没有与其他路由器交换信息。首先从其ospf接口向外发送hello分组,还并不知道DR(若为广播网络)和任何其他路由器。发送hello分组使用组播地址224.0.0.5。 2.Attempt: 只适于NBMA网络,在NBMA网络中邻居是手动指定的,在该状态下,路由器将使用HelloInterval取代PollInterval 来发送Hello包. 3.Init: 表明在DeadInterval里收到了Hello包,但是2-Way通信仍然没有建立起来. 4.two-way: 双向会话建立,而RID彼此出现在对方的邻居列表中。(若为广播网络:例如:以太网。在这个时候应该选举DR,BDR。) 5.ExStart: 信息交换初始状态,在这个状态下,本地路由器和邻居将建立Master/Slave关系,并确定DD Sequence Number,路由器ID大的的成为Master. 6.Exchange: 信息交换状态,本地路由器和邻居交换一个或多个DBD分组(也叫DDP) 。DBD包含有关LSDB中LSA条目的摘要信息)。 7.Loading: 信息加载状态:收到DBD后,将收到的信息同LSDB中的信息进行比较。如果DBD中有更新的链路状态条目,则向对方发送一个LSR,用于请求新的LSA 。 8.Full: 完全邻接状态,邻接间的链路状态数据库同步完成,通过邻居链路状态请求列表为空且邻居状态为Loading判断。

详细分析动态路由协议原理和特点

随着路由的发展,路由协议的种类也有很多,于是我研究了一下动态路由协议的实际应用和详细的介绍,在这里拿出来和大家分享一下,希望对大家有用。顾名思义,动态路由协议是一些动态生成(或学习到)路由信息的协议。在计算机网络互联技术领域,我们可以把路由定义如下,路由是指导IP报文发送的一些路径信息。动态路由协议是网络设备如路由器(Router)学习网络中路由信息的方法之一,这些动态路由协议使路由器能动态地随着网络拓扑中产生(如某些路径的失效或新路由的产生等)的变化,更新其保存的路由表,使网络中的路由器在较短的时间内,无需网络管理员介入自动地维持一致的路由信息,使整个网络达到路由收敛状态,从而保持网络的快速收敛和高可用性。 路由器学习路由信息、生成并维护路由表的方法包括直连路由(Direct)、静态路由(Static)和动态路由(Dynamic)。直连路由是由链路层动态路由协议发现的,一般指去往路由器的接口地址所在网段的路径,该路径信息不需要网络管理员维护,也不需要路由器通过某种算法进行计算获得,只要该接口处于活动状态(Active),路由器就会把通向该网段的路由信息填写到路由表中去,直连路由无法使路由器获取与其不直接相连的路由信息。静态路由是由网络规划者根据网络拓扑,使用命令在路由器上配置的路由信息,这些静态路由信息指导报文发送,静态路由方式也不需要路由器进行计算,但是它完全依赖于网络规划者,当网络规模较大或网络拓扑经常发生改变时,网络管理员需要做的工作将会非常复杂并且容易产生错误。而动态路由的方式使路由器能够按照特定的算法自动计算新的路由信息,适应网络拓扑结构的变化。 动态路由协议的分类 按照区域(指自治系统),动态路由协议可分为内部网关协议IGP(InteriorGatewayProtocol)和外部网关协议EGP(ExteriorGatewayProtocol),按照所执行的算法,动态路由协议可分为距离向量动态路由协议(DistanceVector)、链路状态动态路由协议(LinkState),以及思科公司开发的混合型动态路由协议。 OSPF动态路由协议的特点 OSPF全称为开放最短路径优先。“开放”表明它是一个公开的协议,由标准协议组织制定,各厂商都可以得到动态路由协议的细节。“最短路径优先”是该动态路由协议在进行路由计算时执行的算法。OSPF是目前内部网关协议中使用最为广泛、性能最优的一个动态路由。 采用OSPF动态路由协议的自治系统,经过合理的规划可支持超过1000台路由器,这一性能是距离向量动态路由如RIP等无法比拟的。距离向量动态路由协议采用周期性地发送整张路由表来使网络中路由器的路由信息保持一致,这个机制浪费了网络带宽并引发了一系列的问题,下面对此将作简单的介绍。 路由变化收敛速度是衡量一个动态路由协议好坏的一个关键因素。在网络拓扑发生变化时,网络中的路由器能否在很短的时间内相互通告所产生的变化并进行路由的重新计算,是网络可用性的一个重要的表现方

OSPF路由协议各种类型详解

OSPF各种类型详解 一、OSPF数据包类型 1.Hello包:用于建立和维护相邻的两个OSPF路由器的邻接关系,该数据包是周期性地发送的。 2.Database Description(数据库描述包DBD):用于描述整个数据库,该数据包仅在OSPF初始化时发送。 3.Link state request(链路状态请求包LSQ):用于向相邻的OSPF路由器请求部分或全部的数据,这种数据包是在当路由器发现其数据已经过期时才发送的。 4.Link state update(链路状态更新包LSU):这是对link state请求数据包的响应,即通常所说的LSA数据包。 5.Link state acknowledgment(链路状态确认包LSAck):是对LSA数据包的确认,以确保可靠地传输和信息交换。 二、OSPF网络类型 OSPF链路类型有3种:点到点,广播型,NBMA。在3种链路类型上扩展出5种网络类型:点到点,广播,NBMA,点到多点,虚链路。其中虚链路较为特殊,不针对具体链路,而NBMA链路对应NBMA和点到多点两种网络类型。 以上是RFC的定义,在Cisco路由器的实现上,我们应记为3种链路类型扩展出8种网络类型,其中NBMA链路就对应5种,即在RFC的定义基础上又增加了3种类型。首先分析一下3种链路类型的特点: 1. 点到点:一个网络里仅有2个接口,使用HDLC或PPP封装,不需寻址,地址字段固定为FF; 2. 广播型:广播型多路访问,目前而言指的就是以太网链路,涉及IP 和Mac,用ARP 实现二层和三层映射; 3. NBMA:网络中允许存在多台Router,物理上链路共享,通过二层虚链路(VC)建立逻辑上的连接。

计算机网络实验六rip路由协议配置

太原理工大学现代科技学院计算机通信网络课程实验报告专业班级 学号 姓名 指导教师

实验名称 同组人 专业班级 学号 姓名 成绩 一、实验目的 《计算机通信网络》实验指导书 掌握RIP 动态路由协议的配置、诊断方法。 二、实验任务 1、配置RIP 动态路由协议,使得3 台Cisco 路由器模拟远程网络互联。 2、对运行中的RIP 动态路由协议进行诊断。 三、实验设备 Cisco 路由器3 台,带有网卡的工作站PC2 台,控制台电缆一条,交叉线、V35 线若干。 四、实验环境 五、实验步骤 1、运行Cisco Packet Tracer 软件,在逻辑工作区放入3 台路由器、两台工作站PC ,分别点击各路由器,打开其配置窗口,关闭电源,分别加入一个2 口同异步串口网络模块(WIC-2T ),重新打开电源。然后,用交叉线(Copper Cross-Over )按图6-1(其中静态路由区域)所示分别连接路由器和各工作站PC ,用DTE 或DCE 串口线缆连接各路由器(router0 router1),注意按图中所示接口连接(S0/0 为DCE ,S0/1 为DTE )。 2、分别点击工作站PC1、PC3,进入其配置窗口,选择桌面(Desktop )项,选择运行IP 设置(IP Configuration ),设置IP 地址、子网掩码和网关分别为 PC1 PC3 3、点击路由器R1,进入其配置窗口,点击命令行窗口(CLI )项,输入命令对路由器配置如下: 点击路由器R2,进入其配置窗口,点击命令行窗口(CLI )项,输入命令对路由器配………… ……… …… ………… …装… …… ……… … …… … …… … …… 订 …… … …… … …… … …… … …… … …

推荐-常用动态路由协议安全性分析及应用

常用动态路由协议安全性分析及应用 【摘要】路由器寻找的最佳路径是路由协议,它能保持各个路由器间的路由表相同,实现各个路由器间的相互连通,且在网络间传递数据包。可见,动态路由协议是借助路由器间的信息传递,计算、更新网络结构。但在此过程中,存在一定弊端影响常用动态路由器安全性。现就BGP、OSFP 和RIP V2三种常用的动态路由协议安全性进行分析,并总结其应用。 【关键词】动态路由安全性应用 连接网络的重要硬件设备,是路由器,它可以实现数据包的传递。而动态路由协议指的是路由器表的更新过程,它能够满足网络结构变化的需求。常用的动态路由分为三种,分别为BGP协议、OSPF协议和RIP V2协议。如果在数据包传递过程中,协议出现漏洞,那么容易被人利用,给网络安全造成严重影响。所以,分析常用动态路由协议安全性显得尤为重要。 一、常用动态路由协议安全性分析 1.1 BGP协议安全性 多个相互连接的商业网络共同组成了Internet。各个ISP或企业网络,需要定义一个自治系统号,即ASN,它们

的分配由IANA完成[1]。自治系统号共有65535个,其中私用保留的为65512―65535。路由信息在共享状态下,此号码的维护方式可以采取层的方式。BGP采用会话管理,其中TCP 的179端口可起到触发作用,使Keepalive和update信息被触发,且累及其邻居,从而更新和传播BGP路由表。 然而,因BGP的传输方式以TCP为主,那么容易导致BGP 出现关于TCP的诸多问题,例如拒绝服务攻击,预测序列号,SYN Flood攻击等。BGP主要是利用TCP的序列号,未使用自身的序列号。所以,一旦设备应用可预测序列号,就容易受到该类型攻击。在Internet中运行的大部分路由器都采用了Cisco设备,没有采用预测序列号方案,这就降低了受到攻击的风险。一些BGP在默认状态下,未采用相关的认证机制,有些BGP继续沿用明文密码,这样,大大增加了受到攻击的可能性。 实际应用BGP协议时,还会受到伪造报文攻击等其他攻击。但通常情况下,BGP主要在核心网的出口应用,且配置密码认证,因此,BGP协议的安全性相对较高。 1.2 OSPF协议安全性 复杂是OSPF运行机制的主要特征,运行中的诸多环节都有可能受到攻击者的攻击,给OSPF带来不同程度伤害。攻击方式分为以下几种。一是资源消耗攻击。将不同类型的OSPF报文不间断大量发送,这样极易导致攻击实体资源枯

底层路由协议

底层路由协议 1底层路由协议介绍 1.1为何要设置底层路由 OSPF、EIGRP是三层协议,就是我们常说的IGP,而BGP是架设在3层上的,BGP的邻居是靠TCP连接建立起来的,这个TCP连接就是靠OSPF/EIGRP 来通的。 1.2 EIGRP的介绍 EIGRP(高级距离矢量路由协议)是cisco私有的路由协议,采用DUAL(扩散更新算法),是在IGRP基础,增强开发出来的,IGRP目前已被淘汰 优点: 支持等价/不等价的负载均衡的内部网关路由协议 支持VLSM(可变长子网掩码)、CIDR,手工汇总 支持apple talk IPX IP等多种网络协议,但是目前商业网络使用的IP 协议,因此,研究仅限于IP网络协议下 管理距离:90 快速收敛:促发增量更新的方式,在选择最优路由的同时,就选好次优路径提供备份 缺点: EIGRP没有区域的概念,所以适用于网络规模相对较小的网络,这也是矢量距离路由算法的局限所在? 运行EIGRP的路由器之间必须通过定时发送HELLO报文来维持邻居关系,这种邻居关系即使在拨号网络上,也需要定时发送HELLO报文,这样在按需拨号的网络上,无法定位这是有用的业务报文还是EIGRP发送的定时探询报文,从而可能误触发按需拨号网络发起连接。EIGRP的无环路计算和收敛速度是基于分布式的DUAL算法的,这种算法实际上是将不确定的路由信息散播,得到所有邻居的确认后再收敛的过程,邻居在不确定该路由信息可靠性的情况下又会重复这种散播,因此某些情况下可能会出现该路由信息一直处于活动状态。 快速收敛: 收敛--拓扑中结构发生变化,从变化开始直至拓扑中所有佘恩波均知道,并且稳定的工作的过程。 1、触发式增量更新:当拓扑发生变化,立即向外发出通告,仅将变化的部分发生出去 2、选择一个最佳路径同时,会备份好次优路径 Eigrp四个组件: 网络层协议无关模块IP \ IPX \ APPLE TALK,只研究IP下的eigrp

网络基础 IPv6路由协议及安全

网络基础IPv6路由协议及安全 IPV6的概念现在已并不陌生。面对这个新的网络命令者,与前一个主宰者IPV4的不同,具体体现在哪里呢?下面就对IPV6路由协议在安全问题上,从以下三个方面做一个深入的研究。 1.协议安全 在协议安全层面上,IPV6路由协议全面支持认证头(AH)认证和封装安全有效负荷(ESP)信息安全封装扩展头。AH认证支持hmac_md5_96、hmac_sha_1_96认证加密算法,ESP封装支持DES_CBC、3DES_CBC以及Null等三种算法。 2.网络安全 IPv6路由协议的网络安全包括以下4个方面,详细介绍如下: ●端到端的安全保证。在两端主机上对报文进行IPSec封装,中间路由器实现对有IPSec扩展头的 IPV6报文进行透传,从而实现端到端的安全。 ●对内部网络的保密。当内部主机与因特网上其他主机进行通信时,为了保证内部网络的安全,可 以通过配置的IPSec网关实现。因为IPSec作为IPV6路由协议的扩展报头不能被中间路由器而 只能被目的节点解析处理,因此IPSec网关可以通过IPSec隧道的方式实现,也可以通过IPV6 路由协议扩展头中提供的路由头和逐跳选项头结合应用层网关技术来实现。后者的实现方式更加 灵活,有利于提供完善的内部网络安全,但是比较复杂。 ●通过安全隧道构建安全的VPN。此处的VPN是通过IPV6路由协议的IPSec隧道实现的。在路 由器之间建立IPSec的安全隧道,构成安全的VPN是最常用的安全网络组建方式。IPSec网关的 路由器实际上就是IPSec隧道的终点和起点,为了满足转发性能的要求,该路由器需要专用的加 密板卡。 ●通过隧道嵌套实现网络安全。通过隧道嵌套的方式可以获得多重的安全保护。当配置了IPSec的 主机通过安全隧道接入到配置了IPSee网关的路由器,并且该路由器作为外部隧道的终结点将外 部隧道封装剥除时,嵌套的内部安全隧道就构成了对内部网络的安全隔离。 3.其他安全保障 IPV6路由协议的IPSec为网络数据和信息内容的有效性、一致性以及完整性提供了保证,但是数据网络的安全威胁是多层面的,它们分布在物理层、数据链路层、网络层、传输层和应用层等各个部分。 对于物理层的安全隐患,可以通过配置冗余设备、冗余线路、安全供电、保障电磁兼容环境以及加强安全管理来防护。 对于物理层以上层面的安全隐患,可以采用以下防护手段:通过诸如AAA、TACACS+、RADIUS等安全访问控制协议控制用户对网络的访问权限来防止针对应用层的攻击;通过MAC地址和IP地址绑定、限制每端口的MAC地址使用数量、设立每端口广播包流量门限、使用基于端口和VLAN的ACL、建立安全用户隧道等来防范针对二层网络的攻击;通过进行路由过滤、对路由信息的加密和认证、定向组播控制、提高路由收敛速度、减轻路由振荡的影响等措施来加强三层网络的安全性。 路由器和交换机对IPSec的完善支持保证了网络数据和信息内容的有效性、一致性以及完整性,并且为网络安全提供了诸多解决办法。

表驱动路由协议端到端延时好于按需驱动路由协议

表驱动路由协议端到端延时好于按需驱动路由协议, 按需驱动路由协议在数据报文交付率和路由负荷方面好于表驱动路由协议。 在对网络延时要求较高的环境下,一般选用表驱动路由协议 DSDV 依赖于路由消息的周期性广播,在高速移动的 Ad Hoc 网络中不宜使用 对数据包完整性和带宽要求严格的场合应尽量选择按需驱动路由协议[ 面向应用的如时延和吞吐量之类的性能指标,在比较宽松(即节点较少或移动性较弱)的环境中,DSR 协议优于 AODV 协议;但是在较苛刻的环境中则 AODV 优于 DSR 协议,环境变得越来越苛刻(即载荷变得越重,移动性变得越强),AODV 协议相对于 DSR 协议的性能优势越来越明显 表驱动路由协议 (DSDV) 的平均时延要小于按需路由协议(AODV,DSR) 分组投递率、路由开销和能量消耗等性能不如按需路由 AODV 协议具有较强地适应能力,适用于网络拓扑变化频繁的环境;DSR 适用于节点较少网络变化较小且对时延要求不高的环境;DSDV 协议更适用于网络节点移动速度较小的环境 AODV一旦路由建立后,数据包的延时要明显优于DSDV。实际上,随着移动节点数目和节点移动速度的增加,AODV的优势将更加明显。 在节点高速移动,网络拓扑变化频繁时,AODV 和DSR 的包投递率要比DSDV 好。但是在节点慢速移动时,DSDV 的端到端平均时延要好于AODV 和DSR。这 LAR路由协议适合于节点以中低速移动 ,节点平均密度稍高但网络负载不宜 过高 ,报文发送率中高的环境 簇内节点采用表驱动路由,CBRP算法适合于节点多,速度受限的MANET。在节点移动速度相当快的 MANET 中 CBRP 算法导致网络开销迅速增大,严重影响网络性能 GPSR协议与采用Flooding算法的协议相比降低了网络负载,提高了投递成功率,缩短了路由跳数,所以它更适用于较大规模的网络。AODV,DSR,GPSR DsDv协议的应用非常受限,无法支持网络规模较大,拓扑变化相对频繁的网络环境。AoDv 和DSR可以很好地支持中小规模的网络,而对于大规模的网络需要通过分 簇算法来扩展。AoDv协议对带宽利用率高,能够及时相应网络拓扑变化,同时能避免路由环路 现象。 AODv协议也存在一些问题。由于在路由请求报文的广播过程中建立了反向路由,用于回送路由应答报文,所以要求传输信道是双向的,因此AODv仅适用于双向传输信道的网络;路由表仅维护一条到指定目的节点的路由;AODv的前向路由生存时间定时器会删除生存时长内未使用的路由,即使相应路由是有效地。 OLSR 和DSDV协议的时延整体上小于其他三种协议. DSDV协议的分组传送率低于其他协议; 路由开销方面, TORA协议的最大, DSR 最小, OLSR 的开销也较小, DSDV的开销基本不随节点的移动性而改变; DSDV 的平均跳数最少, 其次是OLSR。

各种路由协议的比较

各种路由协议的比较 首先解释一下什么是有类路由协议什么是无类路由协议: 有类路由协议:在发送时不发送子网掩码,所以它不支持VLSM,比如RIPV1,IGRP 无类路由协议:在发送是发送子网掩码,所以它支持VLSM,比如RIPV2 OSPF EGIRP IS-IS BGP 在从多路由协议中RIPV2 RIPV1 IGRP 属于距离失量路由协议,OSPF IS-IS 属于链路状态路由协议, 至于EIGRP是高级距离失量路由协议,含有一些链路状态路由协议的特征,是混合的路由协议。 以下是一些协议的比较: 1、RIPV1,RIPV2所支持的网络规模为中型,IGRP EIGRP为大型网络,而OSPF IS-IS支持极大型网络。 2、度量值(metric) RIPV1,RIPV2为跳数 IGRP,EIGRP 为复合(带宽,延时,负载,可靠性,以及MTU) OSPF,IS-IS为开销(cost cost =10的八次方/带宽) 3、最大跳数的限制 RIPV1,RIPV2为15 跳 IGRP,EIGRP为255 IS-IS为1024 OSPF 没有跳数限制 4、只有ciso的两个私有协议IGRP和EIGRP不但支持在等价的链路上做负载均衡,还支持在不等价

的链路上做负载均衡,其它的只支持在等价的链路上做负载均衡。 5、 RIP依靠UDP进行传输,使用端口号520。 但IGRP,EGIRP,OSPF直接与internet层相连并分别使用IP协议号9,88,89

路由分为静态路由和动态路由,其相应的路由表称为静态路由表和动态路由表。静态路由表由网络管理员在系统安装时根据网络的配置情况预先设定,网络结构发生变化后由网络管理员手工修改路由表。动态路由随网络运行情况的变化而变化,路由器根据路由协议提供的功能自动计算数据传输的最佳路径,由此得到动态路由表。 根据路由算法,动态路由协议可分为距离向量路由协议(Distance Vector Routing Protocol)和链路状态路由协议(Link State Routing Protocol)。距离向量路由协议基于Bellman-Ford算法,主要有RIP、IGRP(IGRP为Cisco公司的私有协议);链路状态路由协议基于图论中非常著名的Dijkstra算法,即最短优先路径(Shortest Path First,SPF)算法,如OSPF。在距离向量路由协议中,路由器将部分或全部的路由表传递给与其相邻的路由器;而在链路状态路由协议中,路由器将链路状态信息传递给在同一区域内的所有路由器。根据路由器在自治系统(AS)中的位置,可将路由协议分为内部网关协议(Interior Gateway Protocol,IGP)和外部网关协议(External Gateway Protocol,EGP,也叫域间路由协议)。域间路由协议有两种:外部网关协议(EGP)和边界网关协议(BGP)。EGP是为一个简单的树型拓扑结构而设计的,在处理选路循环和设置选路策略时,具有明显的缺点,目前已被BGP代替。 EIGRP是Cisco公司的私有协议,是一种混合协议,它既有距离向量路由协议的特点,同时又继承了链路状态路由协议的优点。各种路由协议各有特点,适合不同类型的网络。下面分别加以阐述。 2 静态路由 静态路由表在开始选择路由之前就被网络管理员建立,并且只能由网络管理员更改,所以只适于网络传输状态比较简单的环境。静态路由具有以下特点: ·静态路由无需进行路由交换,因此节省网络的带宽、CPU的利用率和路由器的内存。 ·静态路由具有更高的安全性。在使用静态路由的网络中,所有要连到网络上的路由器都需在邻接路由器上设置其相应的路由。因此,在某种程度上提高了网络的安全性。 ·有的情况下必须使用静态路由,如DDR、使用NAT技术的网络环境。 静态路由具有以下缺点: ·管理者必须真正理解网络的拓扑并正确配置路由。 ·网络的扩展性能差。如果要在网络上增加一个网络,管理者必须在所有路由器上加一条路由。 ·配置烦琐,特别是当需要跨越几台路由器通信时,其路由配置更为复杂。 3 动态路由 动态路由协议分为距离向量路由协议和链路状态路由协议,两种协议各有特点,分述如下。

第五章 路由协议

第五章路由协议 路由协议主要负责建立源节点与目的节点之间的一条消息传输路径,即实现路由功能。路由协议包含了两个方面功能:寻找源节点-目的节点间的最优路径,并将数据分组沿该路径正确转发。传统的Ad hoc网络、无线局域网等网络的首要目标是提高服务质量和公平高效地利用网络带宽资源。这些网络路由协议的优化目标通常是网络延时最小化,而能量问题通常不作为一个最主要的优化目标。而在陆地无线传感器网络中,由于节点能量有限,因此路由协议需要高效利用能量,同时,由于传感器网络规模一般较大,节点通常不具有全网拓扑信息,因此传感器网络的路由协议需要在已知局部网络信息的基础上选择合适的路径。但是,当前陆地网络的路由协议由于受到种种方面的限制,均不能有效地直接应用于水下网络中,复杂的水下环境给网络层路由协议的设计带来了全新的挑战。 水下传感器节点通信半径和覆盖面积相对于整个网络的规模较小,同时由于水声链路的高度时空动态特性,事先在源节点和目的节点之间建立一条完整且固定的通信路径是不现实的,因此水下传感器网络一方面主要采用多跳传输的路由机制,另一方面路由表需要以一定的频率更新以适应网络的动态变化。多跳传输方式需要借助中继节点转发信息,该方式要求多个节点共同协作完成消息从源节点到目的节点的传输,这就涉及中间节点选择的问题,如何选择中间节点从而有效降低传输延迟、提高数据传输率是路由协议主要解决的问题。此外,水下後感器显络迪路由协议还要具备以下特性:①可扩展性,由于水下传感器网络中的节点受部署环境的影响造成部分节点或部分链路失效,因此能有效地检测和处理节点失效或移动造成的链路中断,适应不断变化的网络柘朴是水下一隹感器网络路由协议需要解决的一个主要问题;②节能性,在水下传感器网络中,节点大都是以电池供电的,电量十分有限,且电池的更换耗时耗力,同时水声信号发射功率相对较大,因此,提高能量效率是对水下传感器网络设计的另一主要目标;③容错性和鲁棒性,在水下感器网络中,节点的失效是很难避免的,造成节点失效的原因主要包括环境因素,此外,水声信道的通信质量也很难保证,这就要求路由协议具有较好的鲁棒性,能有效避免部分节点的失效或链路的中断给整个网络造成影响;④快速收敛特性,由于水下传感器网络的拓扑结构动态变化,节点能量和水声频谱带宽资源严重受限,因此要求路由算法可以做到快速收敛,以适应网络拓扑结构的动态变化,减小通信协议开销,提高信息传输效率。

常用路由协议的分析及比较

路由分为静态路由和动态路由,其相应的路由表称为静态路由表和动态路由表。静态路由表由网络管理员在系统安装时根据网络的配置情况预先设定,网络结构发生变化后由网络管理员手工修改路由表。动态路由随网络运行情况的变化而变化,路由器根据路由协议提供的功能自动计算数据传输的最佳路径,由此得到动态路由表。 根据路由算法 动态路由协议可分为距离向量路由协议(Distance V ector Routing Protocol)和链路状态路由协议(Link State Routing Protocol)。距离向量路由协议基于Bellman-Ford算法,主要有RIP、IGRP(IGRP为Cisco公司的私有协议);链路状态路由协议基于图论中非常著名的Dijkstra 算法,即最短优先路径(Shortest Path First,SPF)算法,如OSPF。在距离向量路由协议中,路由器将部分或全部的路由表传递给与其相邻的路由器;而在链路状态路由协议中,路由器将链路状态信息传递给在同一区域内的所有路由器。 根据路由器在自治系统(AS)中的位置 可将路由协议分为内部网关协议(Interior Gateway Protocol,IGP)和外部网关协议(External Gateway Protocol,EGP,也叫域间路由协议)。域间路由协议有两种:外部网关协议(EGP)和边界网关协议(BGP)。EGP是为一个简单的树型拓扑结构而设计的,在处理选路循环和设置选路策略时,具有明显的缺点,目前已被BGP代替。 EIGRP是Cisco公司的私有协议,是一种混合协议,它既有距离向量路由协议的特点,同时又继承了链路状态路由协议的优点。各种路由协议各有特点,适合不同类型的网络。下面分别加以阐述。 2 静态路由 静态路由表在开始选择路由之前就被网络管理员建立,并且只能由网络管理员更改,所以只适于网络传输状态比较简单的环境。静态路由具有以下特点: ·静态路由无需进行路由交换,因此节省网络的带宽、CPU的利用率和路由器的内存。 ·静态路由具有更高的安全性。在使用静态路由的网络中,所有要连到网络上的路由器都需在邻接路由器上设置其相应的路由。因此,在某种程度上提高了网络的安全性。 ·有的情况下必须使用静态路由,如DDR、使用NA T技术的网络环境。 静态路由具有以下缺点: ·管理者必须真正理解网络的拓扑并正确配置路由。 ·网络的扩展性能差。如果要在网络上增加一个网络,管理者必须在所有路由器上加一条路由。 ·配置烦琐,特别是当需要跨越几台路由器通信时,其路由配置更为复杂。 3 动态路由

常用动态路由协议安全性分析

题目常用动态路由协议安全性分析 声明 本人郑重声明:所呈交的毕业论文,是本人在指导教师的指导下,独立进行研究所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的科研成果,也不包含为获得其他教育机构的学位或证书而使用过的材料。我承诺,论文中的所有内容均真实、可信。本论文的成果属于云南警官学院所有。 论文(设计)作者签名:李世悦

2016年6 月15 日

目录 第一章前言 (4) 第二章路由器 (5) 2.1路由器的概念.............................. 错误!未定义书签。 2.2路由器的作用和功能......................... 错误!未定义书签。第三章动态路由概述 ............................ 错误!未定义书签。第四章RIP OSPF BGP-4三个协议的使用情况....... 错误!未定义书签。 4.1路由信息协议RIP........................... 错误!未定义书签。 4.2OSPF协议.................................. 错误!未定义书签。 4.3BGP-4协议................................. 错误!未定义书签。第五章安全性分析.............................. 错误!未定义书签。 5.1RIP协议的安全性分析........................ 错误!未定义书签。 5.2OSPF协议的安全性分析....................... 错误!未定义书签。 5.3BGP-4协议的安全性分析...................... 错误!未定义书签。第六章总结..................................... 错误!未定义书签。小结.......................................... 错误!未定义书签。致谢. (14) 常用动态路由协议安全性分析 计算机科学专业与技术

AODV相关路由协议学习

AODV相关路由协议学习 1:AODV路由协议工作原理 AODV路由协议是一种经典的按需路由协议,它只在两个节点需要进行通信且源节点没有到达目的节点的路由时,才会进行路由发现过程。AODV采用的是广播式路由发现机制,当源节点想与另一节点进行通信时,源节点会首先查询自己的路由表中是否存在有到达目的节点的路由有效信息。如果包含有目的节点的有效信息,则源节点就会将数据包传送到目的节点的下一跳节点;如果缺失目的节点的有效的信息,则源节点会启动路径请求程序,同时广播RREQ控制包。 而下一跳节点在接收到RREQ报文时,如果该节点是目的节点,又或者该节点路由表中存放有到达目的节点的可行路径信息,则会向源节点回复路由响应报文CRREP。否则就记录相关信息,用于建立一个反向路径,让目的节点的RREP遵循此路径返回源节点,同时将RREQ报文中的跳数字段值加1,并向该节点的邻居节点转发RREQ 报文。这样经过若干中间节点转发最后到达目的节点,确认路由建立。 路由表项建立以后,路由中的每个节点都要执行路由维持和管理路由表的任务。如果由于中间节点的移动而导致路由失效,则检测到路由断链的节点就会向上游节点发送路由出错报文RRER,而收到出错报文RRER的节点则会直接发出RREQ来进行路径请求,如果能在规定好的时间内找到目的节点的路径,则表示路由成功 1.2存在的问题 传统的AODV采用基本的路由发现算法来建立从源节点到目的

节点的路由时,路由选择是选择最短路径路由,即选择最小跳数的路由,这样就忽略了每两点之间的传输能力,从而导致产生整条链路吞吐量低、路由不稳定、线路拥塞、延迟甚至数据丢失等严重问题。2最大路由速率的AODV协议的提出【基于最大路由速率的AODV 协议优化研究与实现---罗泽、吴谨绎、吴舒辞】 2.1基本思想 针对传统AODV路由协存在的问题,提出了一种基于最大传输速率(路由速率=路由速率之和/路由跳数)的改进方案,其基本思想是:用户确定一个期望速率,源节点在进行路由发现时比较收到的各条路由的实测速率,选择一条速率最大的路由作为路由,在源节点使用当前路由发送数据的过程中,源节点每隔一段时间发出RREQ 报文,以便查找到可能存在的更好的路由,如果发现一条速率更高的路由且该路由速率大于期望速率,则执行路由切换,改用新路由。

内部路由协议和外部路由协议区别

内部路由协议和外部路由协议的区别 根据路由协议工作的范围可以将动态路由协议划分为内部路由协议和外部路由协议。 实际上,前面介绍的距离向量路由协议和链路状态协议均属于内部路由协议,它们工作在一个自治系统Autonomous System,简称AS。一个自治系统通常是指一个网络管理区域,在这个区域内整个网络受到一个机构的管理,比如某个大学的校园网可以被称作一个自治区域内部,而外部路由协议则是工作在自治系统之间的路由协议,在自治系统之间进行路由信息的相互交换,实现路由表的动态更新。 普遍使用的外部路由协议有外部网关协议和边界网关协议。 1.外部网关协议 外部网关协议(Exterior Gateway Protocol,简称EGP)是长期以来较为著名的外部路由协议,它在RFC 904中描述。外部网关协议用于外部网关之间交换路由信息,这些外部网关不在同一个自治系统之内。EGP假定在两个任意AS之间只有单一的主干,因此也只存在单一的路径,因此EGP限制了网络的规模,在真正的网络运用中,EGP己经逐渐被边界网关协议所替代。 EGP以周期性地轮询为基础,在轮询时进行Hello/I Hear You消息交换以监测邻居路由器的可达性,并发出轮询请求以征求更新应答。EGP对外网关进行限制,它要求它们只能通告在该网关自治系统内的可达网络。因此,一个使用EGP的网关传送信息给它的EGP邻居,但是并不向它的EGP邻居(如果网关交换路由信息,它们就是邻居)通告自治系统这外的可达信息。在一个自治系统内部,由EGP网关负责收集自治系统内部的路由信息。 2.边界网关协议 边界网关协议(Border Gateway Protocol,简称BGP)是一个用于多个自治系统之间交换网络可达信息的外部路由协议,RFC 1771文档中对目前使用的第4版BGP协议(简称为BGP-4)进行了全面的描述。每个BGP路由器向其邻居BGP路由器通告自己掌握的网络可达信息,这些网络可达信息将被BGP路由器用于构建无回路的AS连通图,同时还会运用一些路由策略。

3种动态路由协议

RIP EIGRP和OSPF重分布 Cisco默认的几种路由协议的AD如下: 1.直连接口:0 2.静态路由:1(例外:使用接口来代替下1跳地址的时候它会被认为是直连接口) 3.EIGRP汇总路由:5 4.External(外部) BGP:20 5.EIGRP:90 6.IGRP:100 7.OSPF:110 8.IS-IS:115 9.RIP:120 10.EGP:140 11.External(外部) EIGRP:170 12.Internal(内部) BGP:200 13.未知:255 做重分布时的各路由协议的默认metric值 1、往RIP里做时,metric值默认infinity.所以要人工指定metric值,注意不要超过RIP中最大16跳. 2、往OSPF里做时,metric值默认是20,metric-type 是2默认不发布子网. 3、往EIGRP里做时,metric值默认是infinity,人工指metric值时包括:带宽,延迟,可靠度,负载,MTU.(注:可靠度=255时最大,负载=1时最小,MTU=1500,一般来说这三个值都设成这样.而且在配置metric值时的顺序就是这样的顺序.) 如:Paige(config-router)#redistribute ospf 1 metric 10000 100 255 1 1500 4、往IS-IS里做时,Router的默认类型是level-2的,并且metric值为0,在做重分布时,如果网络中只有一个IS-IS进程时,可以不写IS-IS的tag,而其他的路由协议,如EIGRP后面必须跟上进程号. 注:metric-type类型为由于OSPF的外部路由分为 类型1:--外部路径成本+数据包在OSPF网络所经过各链路成本 类型2:--外部路径成本,即ASBR上的默认设置 问题:在向EIGRP中重分布时,必须指定默认管理距离吗?为何只在OSPF向EIGRP重分布时distance eigrp 90 150?? 答:在默认时EIGRP的内部管理距离是90,外部路由管理距离是170,命令“distance eigrp 90 150”只是修改了外部管理距离 R1(config)#int loo0 R1(config-if)#ip add 1.1.1.1 255.255.255.0 R1(config-if)#int s2/0 R1(config-if)#ip add 192.168.12.1 255.255.255.0 R1(config-if)#no sh

四种路由协议比较

内部网关协议RIP:基于距离向量的路由协议。(1)仅和相邻路由器交换信息,交换的信息是自己的路由表。(2)按固定的时间间隔交换信息。RIP协议用UDP报文进行传送。 RIP实现简单,但它能使用的最大距离为15,16是不可到达,所以RIP只适用于小规模网络。RIP还有一个特点就是好消息传播的快,坏消息传播的慢。 RIP为了防止成环:可以用水平分割的方法,即从本端口接收到的路由,不再从本接口发送出去。 内部网关协议OSPF:使用分布式的链路状态协议。(1)向本自治系统内的所有路由器发送信息,用洪泛法。,路由器向所有相邻的路由器发送信息,这个相邻的路由器再向所有它相邻的路由器发送信息。(2)发送的信息是与本路由器相邻的所有路由器的链路专题。(3)只有链路状态变化时,才用洪泛法发送信息,OSPF没有RIP那样坏消息传播的慢的问题。而不像RIP那样每隔30s交换一次路由信息。OSPF协议知道全网的拓扑结构图。OSPF更新收敛的快是重要特点。OSPF不用UDP而是直接用IP数据报传送。OSPF的数据包很短,这样可以减少路由信息的通信量。 注:RIP交换的是路由表,即到目的网络的最短距离,RIP就是根据最短距离选路的。OSPF发送的信息是与本路由器相邻的链路状态,即与本路由器都和哪些路由器相邻以及该链路的度量,如距离,费用带宽。所以交换完路由信息以后,形成数据库,然后利用SPF算法(如Dijkstra静态路由算法)再算出路径,形成SPF树。每个路由单元根据SPF树生成自己的路由表。对OSPF而言,主要的消耗就在SPF的算法处理中,最常用的是Dijkstra静态路由算法。当一条链路down,每台路由器都会获得变化的信息,在网络拓扑更新之后,每台路由器就会重新计算SPT。这样计算SPT的计算量特别大,消耗CPU。。在目前的实际应用中,重新计算SPT就是删除当前的SPT,调用最短路径优先算法重新构造SPT。所以需要提出一种快速收敛的算法,来消除冗余存储或冗余计算。如下图我们只需要计算第二张图中区域的节点,即只对部分变化的节点重新计算路径,大大减少了计算量。

典型单路径路由协议

典型单路径路由协议 无线传感器网络和Adhoc网络一样,是无线自组织网络的一种,因此,它的路由协议也可以从无线Adhoc网络得到一些启发。本节首先对无线Adhoc网络的路由协议AODV进行研究,详细介绍其路由实现原理。然后详细介绍北京交通大学下一代互联网互联设备国家工程实验室代写计算机职称论文自行研制和开发的路由协议MSRP,MSRP借鉴了AODV的思想,但是又做了很大的简化。本论文所设计的多径路由机制是在MS即的基础上做了创新和改进。本节评价了它的优点和缺点,指出了需要改进的地方。 1.AODV路由协议AODVI’jj(AdhoeOndemandDistanceVectorRouting)是一种按需驱动的路由协议,它能够在移动节点之间建立动态多跳路由并维护一个Adhoc网络。AODV能让节点快速建立到新目的节点的路由,而且不需要节点维护处于非活动状态路径的路由。在链路损坏或者网络拓扑发生变化时,网络中多个移动节点能够及时做出反应,网络能够快速自愈。当网络链路出现断裂时,AODV能够通知所有受影响的节点,让它们及时删除使用该链路的路由。AODV一个很重要的创新点是对每一条路由使用了一个目的序列号,任何一个路由表项必须包含到目的节点的最新的序代写计算机硕士论文列号信息。目的节点序列号由目的节点产生。每一个目的节点在它发送给请求节点的任何路由信息中都会包含这个序列号,使用目的序列号可以保证路由无环路,也利于编程实现。当出现两条路由到达目标节点时,请求节点会选择序列号比较大的路由。节点收到任何有关报文,只要其中有关于目的序列号的信息,该目的节点的序列号就会更新。网络中的节点各自保存和维护自己的序列号。一个目的节点在下列两种情况下产生自己的序列号:1、在建立一个路由发现之前,它产代写计算机毕业论文生自己的序列号,避免与以前建立的到无线传感器网络路由协议的研究该源节点的反向路由冲突;2、在产生一个RREP回复双EQ之前,将自己节的序列号更新为目前节点的序列号和路由请求中该节点序列号两者的最大值。下一跳链路丢失时,序列号不再更新。这时候,对于使用该下一跳的每一条路由,节点都将其目的序列号加一,并将该路由标计为失效。只有再次收到“足够新”路由信息时(序列号等于或大于该记录的序列号),该节点才会将路由表中相应信息更新。AoDv定义了三种报文类型:路由请求(RREQs)、路由回复(RREPs)、路错误(计算机专业职称论文RERRs)。这些消息包装在uDP报文中,端口654,并使用通常的IP报头,请求节点使用自己的IP地址作为路由消息中的“源IP地址”字段。对于广播消息,使用IP广播地址255.255.255.255。这意味着这些消息不会被盲目的转发。但是,AODV确实需要某些报文(例如路由请求消息)能够大范围甚至在整个网络中洪,IP报文的TTL字段可以用来限定传播范围。只要通信的两个端有到对方的有效路由,那么AODV就不参与。当节点需一个到新目的节点的路由时,该节点会广播路由请求进行寻找。当该路由请求达目的节点,或者一个中间节点具有一个到目的节点的“足够新,,的路由时,这条路由便可以确定下来。每一个收到路由请求的节点都会缓存一个到源节点的反路由,这样,“路由回复”便会从最终目的节点或者满足请求条件的中间节点顺利递到源节点。节点会监测有效路由下一条链路的状态。当监测到有链路发生断裂时,节会发送路由错误消息来通知其他节点:链路已经丢失,需要重新寻找路由。“路错误”消息用来表明一些节点通过该断裂的链路己经不可达。为了采用这种错误告的机制,所有节点保存一个“前驱列表”,前驱列表包含一些邻居的IP地址,些邻居节点可能使用本节点作为到达目的地的下一跳。前驱列表的信息可以很易的在路由回复的时候获取,因为从定义上来说,“路由回复”就是要发送给前歹J表中的节点的。AODv是个路由协议,因此它有自己的路由表管理机制。即使是暂时的路信息(例如到路由请求源节点的暂时的反向路由),也需要在路由表中保存。AOD的路由表有以下几个组成部分:目的IP地址、目的序列号、有效目的序列号标以及其他的标志(如有效、无效、可修复、正在修复中)、网络接口、跳数、下跳、前驱列表、生命期(路由表的失效或删除时间)。 1AODV路由建立过程当一个节点发现自己需要路由却不存在路由信息的时候,它发起路由

相关主题
文本预览
相关文档 最新文档