当前位置:文档之家› 压缩器扩展器的使用方法.

压缩器扩展器的使用方法.

压缩器扩展器的使用方法.
压缩器扩展器的使用方法.

Waves C1 comp

压缩器扩展器的使用方法

—亚菲—

今天与各位朋友们一起交流学习C1 comp压缩器扩展器插件,其中的内容是我个人学习这款插件的一些体会,写出来与朋友们共同交流学习。首先任意打开一款宿主软件,我使用的是Cubase 5和Adobe Audition 3.0宿主软件。在宿主软件中导入Dx插件,在Dx插件下找到C1 comp压缩器、扩展器插件。首先来设置选项,在第一项里选择low Reg 这是压缩器(peak Ref是扩展)我们把扩展补傷值设定为0.5分贝,把阈值开关的音量值设定的为-10分贝,起始时间设定为7ms(毫秒)压缩比例设置为2:1。点击预演,这时候我们跟着音乐听,当有超过-10分贝的音量进入时,阈值开关打开开始工作,这时它会以2:1的比例,以设置的开始时间7ms,(毫秒)为依据开始慢慢压缩完成,它压缩时不是一个直线,而是一个曲线,不是一瞬间压下去,而是呈曲线慢慢的压下去。这样开头有冲击力的音量就被保留下来了。我们设定的释放值是10ms 压缩完成后,它用10ms值释放后回到原点。这就是C1 comp压缩插件的使用原理。

示波器原理及其应用分析解析

示波器原理及其应用 示波器介绍 示波器的作用 示波器属于通用的仪器,任一个硬件工程师都应该了解示波器的工作原理并能够熟练使用示波器,掌握示波器是对每个硬件工程师的基本要求。 示波器是用来显示波形的仪器,显示的是信号电压随时间的变化。因此,示波器可以用来测量信号的频率,周期,信号的上升沿/下降沿,信号的过冲,信号的噪声,信号间的时序关系等等。 在示波器显示屏上,横坐标(X)代表时间,纵坐标(Y)代表电压,(注,如果示波器有测量电流的功能,纵坐标还代表电流。)还有就是比较少被关注的-亮度(Z),在TEK的DPO示波器中,亮度还表示了出现概率(它用16阶灰度来表示出现概率)。 1.1.示波器的分类 示波器一般分为模拟示波器和数字示波器;在很多情况下,模拟示波器和数字示波器都可以用来测试,不过我们一般使用模拟示波器测试那些要求实时显示并且变化很快的信号,或者很复杂的信号。而使用数字示波器来显示周期性相对来说比较强的信号,另外由于是数字信号,数字示波器内置的CPU或者专门的数字信号处理器可以处理分析信号,并可以保存波形等,对分析处理有很大的方便。

1.2.1 模拟示波器 模拟示波器使用电子枪扫描示波器的屏幕,偏转电压使电子束从上到下均匀扫描,将波形显示到屏幕上,它的优点在于实时显示图像。 模拟示波器的原理框图如下: 见上图所示,被测试信号经过垂直系统处理(比如衰减或放大,即我们拧垂直按钮-volts/div),然后送到垂直偏转控制中去。而触发系统会根据触发设置情况,控制产生水平扫描电压(锯齿波),送到水平偏转控制中。 信号到达触发系统,开始或者触发“水平扫描”,水平扫描是一个是锯齿波,使亮点在水平方向扫描。触发水平系统产生一个水平时基,使亮点在一个精确的时间内从屏幕的左边扫描到右边。在快速扫描过程中,将会使亮点的运动看起来

过载保护概念及扭力限制器

过载保护的概念 过载保护顾名思义即载荷(负载)超出某一限定值,为了维护机器及设备的安全而进行的保护。我们所指的过载保护装置主要是针对于机器和设备的扭矩进行保护的扭矩限制器、扭矩保持器、对机器及设备轴向载荷(包括拉力和推力)过载进行保护的直线限力器,对电机过载进行保护的电气式过载保护器 扭矩限制器又称安全离合器、安全联轴器,常用于安装在动力传动的主、被动侧之间,当发生过载故障时(扭矩超过设定值),扭矩限制器便会产生分离,从而有效保护了驱动机械(如电机、减速机、伺服马达)以及负载,常见形式为:磨擦式扭矩限制器以及滚珠式扭矩限制器。扭矩限制器的安装结构形式有:轴-轴、轴-法兰、轴-同步带轮、轴-链轮、轴-齿轮、轴-带轮等。 扭矩保持器也称扭力控制器、滑动联轴器。常用于安装在动力传动的驱动侧和负载侧之间,一旦传递扭矩达到设定值,扭矩保持器便会产生打滑,从而使动力传动的主、被动侧以固定扭矩值传递动力。主要用于需要提供定扭矩值的间歇性滑移工况以及收放卷时的张力控制。 直线限力器是对机器及设备直线方向载荷(包括拉力和推力)过载进行保护的过载保护装置。联接在同一直线上的主、被动机构之间,一旦主、被动侧间拉力或推力超出限定值,主、被动侧间动力瞬间完全卸载,防止了轴向载荷过载故障导致的停机和损伤。 电式的过载保护器是通过监视电流而迅速检测出电机过载。它不同于电机的过载保护器如热继电器、熔断器等,而是用于设备保护的过载保护器。与热继电器相比其反应时间更为迅速,不到其反应时间的1/5,电机过载保护器的电流在稍微超过预设电流时不会动作,即使工作其动作也会很缓慢。 过载保护的类别及特点

工作原理分: 一机械式过载保护器 1 扭矩限制器 A 滚珠型扭矩限制器 特点:滚珠式(钢球式)过载保护器,其制造简单,工作可靠,过载时滑动摩擦力矩小(有的几乎没有),动作灵敏度高,自动恢复精度高,其结构形式也是最丰富的,是自动化工业生产的理想产品。 B 摩擦型扭矩限制器 特点:摩擦式过载保护器,过载时因摩擦消耗能量缓和冲击,故工作平稳、调整和使用方便、维修简单、灵敏度较高,过载消除后即自动恢复,用于转速高,转动惯量大的传动装置,是目前使用比较广泛的产品。 2 扭矩保持器 特点:是一种摩擦型的扭矩限制器,当传递扭矩达到设定值时,扭矩保持器打滑,与普通的摩擦离合器不同的是主要用于低速时的滑移使用场合,能够达到很高的控制精度,如收放卷的张力控制、滚子输送的间歇打滑、旋转工作台的缓冲制动、拧螺丝机构、拧螺母机构、拧阀门机构等设备上的扭矩控制。 3 直线限力器 特点:是用于轴向负载过载保护的装置,一旦轴向的推力或者拉力出现过载,直线限力器立即跳闸,完全切断传递动力,当轴向过负载卸荷或下降到设定值以下时,直线限力器自动回复到过负载保护状态,可正常传递轴向力,从而保护了机器及设备不因过载而损坏,常用于凸轮推杆机构、曲柄机构的过载保护场合。 二电气式过载保护器 特点;电流冲击继电式的过载保护器,能通过监视电流而迅速检测出电机过载,从而能使昂贵的设备避免损坏。它不同于电机的过载保护器如热继电器、熔断器等,而是用于设备保护的过载保护器。与热继电器相比其反应时间更为迅速,不到其反应时间的1/5,电机过载保

示波器的基础学习知识原理和使用

示波器的原理和使用 示波器是一种用途广泛的基本电子测量仪器,用它能观察电信号的波形、幅度和频率等电参数。用双踪示波器还可以测量两个信号之间的时间差,一些性能较好的示波器甚至可以将输入的电信号存储起来以备分析和比较。在实际应用中凡是能转化为电压信号的电学量和非电学量都可以用示波器来观测。 【实验目的】 1.了解示波器的基本结构和工作原理,掌握使用示波器和信号发生器的基本方法。2.学会使用示波器观测电信号波形和电压幅值以及频率。 3.学会使用示波器观察李萨如图并测频率。 图1-1 示波器结构图 【实验原理】 不论何种型号和规格的示波器都包括了如图1-1所示的几个基本组成部分:示波管(又称阴极射线管,cathode ray tube,简称CRT)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号发生电路(锯齿波发生器)、自检标准信号发生电路(自检信号)、触发同步电路、电源等。 1.示波管的基本结构

示波管的基本结构如图1-2所示。主要由电子枪、偏转系统和荧光屏三部分组成,全都密封在玻璃壳体内,里面抽成高真空。 (1)电子枪:由灯丝、阴极、控制栅极、第一阳极和第二阳极五部分组成。灯丝通电后加热阴极。阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。控制栅极是一个顶端有小孔的圆筒,套在阴极外面。它的电位比阴极低,对阴极发射出来的电子起控制作用,只有初速度较大的电子才能穿过栅极顶端的小孔然后在阳极加速下奔向荧光屏。示波器面板上的“辉度”调整就是通过调节电位以控制射向荧光屏的电子流密度,从而改变了屏上的光斑亮度。阳极电位比阴极电位高很多,电子被它们之间的电场加速形成射线。当控制栅极、第一阳极与第二阳极电位之间电位调节合适时,电子枪内的电场对电子射线有聚集作用,所以, H-灯丝;K-阴极;G1,G2- 控制栅极;A1-第一阳极;A2-第二阳极;Y-竖直偏转板;X-水平偏转板 图1-2 示波管结构图 第一阳极也称聚集阳极。第二阳极电位更高,又称加速阳极。面板上的“聚集”调节,就是调第一阳极电位,使荧光屏上的光斑成为明亮、清晰的小圆点。有的示波器还有“辅助聚集”,实际是调节第二阳极电位。 (2)偏转系统:它由两对互相垂直的偏转板组成,一对竖直偏转板,一对水平偏转板。在偏转板上加以适当电压,电子束通过时,其运动方向发生偏转,从而使电子束在荧光屏上产生的光斑位置也发生改变。 (3)荧光屏:屏上涂有荧光粉,电子打上去它就发光,形成光斑。不同材料的荧光粉发光的颜色不同,发光过程的延续时间(一般称为余辉时间)也不同。荧光屏前有一块透明的、带刻度的坐标板,供测定光点的位置用。在性能较好的示波管中,将刻度线直接刻在荧光屏玻璃内表面上,使之与荧光粉紧贴在一起以消除视差,光点位置可测得更准。2.波形显示原理

简述极限力矩限制器

简述极限力矩限制器:1)作用:防止回转驱动装置偶尔过载,保护电动机、金属结构及传动零部件免遭破坏。(2)原理:正常工作时,蜗杆的转矩通过涡轮的圆锥形摩擦盘与上锥形摩擦盘间的摩擦力矩传给小齿轮轴,带动小齿轮转动;当需要传动的转矩超过极限力矩联轴器所能承受的转矩时,上下两个锥形摩擦盘间开始打滑,以此来限制所要传递的转矩,起到安全保护作用。 块式制动器:在接通电源时,电磁松闸器的铁心吸引衔铁压向推杆,推杆推动左制动臂向左摆,主弹簧被压缩。同时,解除压力的辅助弹簧将右制动臂向右推,两制动臂带动制动瓦块与制动轮分离,机构可以运动。当切断电源时,铁心失去磁性,对衔铁的吸引力消除,因而解除衔铁对推杆的压力,在主弹簧张力的作用下,两制动臂一起向内收摆,带动制动瓦块抱紧制动轮产生制动力矩;同时,辅助弹簧被压缩。制动力矩由主弹簧力决定,辅助弹簧保证松间间隙。块式制动器的制动性能在很大程度上是由松闸器的性能决定 起重力矩限制器的作用起重力矩限制器是太刀重要的安全装置之一,塔吊的结构计算和稳定性验算均是以最大额定起重力矩为依据,其中力矩限制器的作用就是控制塔吊使用时不得超过最大额定起重力矩,防止超载。构造和工作原理起重力矩限制器分为机械式和电子式,机械式中又有杠斜式和弓板式等多种形式。其中弓板式起重力矩限制器因结构简单,目前应用比较广泛。弓板式力矩限制器主要安装在塔帽的主弦杆上。其工作原理如下:塔吊吊载重物时,由于载荷的作用,塔帽的主弦杆产生压缩变形,载荷越大,变形越大。这时力矩限制器上的弓形钢板也随之变形。并将弦杆的变形放大,使弓板上的调节螺栓与限位开关的距离随载荷的增加而逐渐缩小。当载荷达到额定荷载时,通过调整调节螺栓触动限位开关,从而切断起升机构和变幅机构的电源,达到限制塔吊的吊重力矩载荷的目的 起重量限制器:一般会有3个触点,当触头碰到后触点,将信号反馈给PLC控制器,就起到相应的左右。当触头碰到50%起重量的触点后,此时起升吊钩能上升及下降,高速档回路被断开,只能中速或者低速运行。防止快速档提起重物导致起升电机电流过载从而使电机损坏。当触头碰到80%-90%起重量的触点后,此时起升吊钩能上升及下降,高速档回路和中速档回路被断开,只能者低速运行。防止提起重物速度过快导致起升电机电流过载从而使电机损坏。当触头碰到105%起重量的触点后,此时起升吊钩上升回路被断开,吊钩只能下降,高速档回路和中速档回路被断开,只能者低速运行。保护钢丝绳不被超重拉断。但不影响其它机构动作,以达到限载保护作用.

压缩机工作原理及结构

压缩机工作原理及结构-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

下面简单介绍几种压缩机的工作原理及结构 一、离心压缩机的工作原理及结构 汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进汽部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。级间的串联通过弯通,回流器来实现。这就是离心式压缩机的工作原理。

二、往复式压缩机工作原理及结构 属于容积式压缩机,是使一定容积的气体顺序地吸入和排出封闭空间提高静压力的压缩机。曲轴带动连杆,连杆带动活塞,活塞做上下运动。活塞运动使气缸内的容积发生变化,当活塞向下运动的时候,汽缸容积增大,进气阀打开,排气阀关闭,空气被吸进来,完成进气过程;当活塞向上运动的时候,气缸容积减小,出气阀打开,进气阀关闭,完成压缩过程。通常活塞上有活塞环来密封气缸和活塞之间的间隙,气缸内有润滑油润滑活塞环。 往复式压缩机振动大的原因有哪些? 1、连杆螺栓、轴承盖螺栓、十字头螺母松动。 2、主轴承、连杆大小头瓦、十字头滑道等间隙过大。 3、曲轴和联轴器配合松动。 4、十字头滑板与滑道间隙过大,或滑板松动。 5、十字头销过紧或断油引起发热烧毁。 6、油和水带入气缸造成水击。 7、气阀损坏或泄漏。 8、润滑油太少或断油,引起气缸拉毛。 9、活塞环损坏。 10、活塞螺帽松动,活塞松动。

压缩机应用之经济器的应用

经济器的应用 一、概述 螺杆压缩机的标准设计包含经济器(ECO)运行的配置。这种模式的制冷量和效率经过冷循环或两级制冷循环得到提升。特别是在高冷凝温度与低蒸发温度工况下,其节能效果更明显。螺杆机独特的经济器接入口,控制在最佳压缩比之下,直接将气体带回压缩机进行再压缩。 经济器分为两种:一种是过冷循环经济器,另一种是两级制冷剂降压的、特别适用于满液式蒸发器的蒸发桶式经济器。 现主要介绍过冷循环经济器。 二、过冷循环经济器的运行 这种运行模式一般用一个热交换器作为液体过冷器。从冷凝器来的一部分冷媒通过中间膨胀阀进入过冷器,并与逆流来的高压液态制冷剂进行热交换(液态制冷剂被过冷)吸热后蒸发,蒸发后的过热蒸气通过压缩机的经济器接口进入中间压缩段压缩。 由于中间补气是在吸气过程后进行的,因此对吸气量没有影响,制冷量增加是由于单位制冷量的增加。然而中间补气后,被压缩的气体量增加了,所以压缩功也略有增加。结果表明,蒸发温度越低,带经济器螺杆比单级螺杆的制冷量增加的越多,而功率则增加的很少,也就是说,蒸发温度越低,单位轴功率的制冷量越大。 风冷热泵机组在低温环境下制热时,压缩机的压比会增加,进而影响压缩机的容积效率,减少制冷剂的循环量。采用经济器循环,在螺杆机的相应部位,通过经济器,补一部分气体给压缩机。由于补气,一方面可提高压缩机的输气能力,另一方面也能增加液体过冷度,使机组在低温环境制热从单级压缩机组变成一个小双级压缩的机组,从而提升机组的制热效率,温度越低,经济器效果越明显。经测试,可提升制热能力15%左右,效率提升8%。 这种运行模式下过冷的冷媒液体压力仍为冷凝压力。至蒸发器的管路除了保温要求外,还要注意管路的震动设计,以避免经济器运行中因压力变化而致使管

压缩机的工作原理

往复式压缩机的工作原理 什么是压缩 往复式压缩机都有气缸、活塞和气阀。压缩气体的工作过程可分成膨胀、吸入、压缩和排气四个过程。 例:单吸式压缩机的气缸,这种压缩机只在气缸的一段有吸入气阀和排除气阀,活塞每往复一次只吸一次气和排一次气。 1 ,膨胀:当活塞向左边移动时,缸的容积增大,压力下降,原先残留在气缸中的余气不断膨胀。 2, 吸入:当压力降到稍小于进气管中的气体压力时,进气管中的气体便推开吸入气阀进入气缸。随着活塞向左移动,气体继续进入缸内,直到活塞移至左边的末端(又称左死点)为止。 3 ,压缩:当活塞调转方向向右移动时,缸的容积逐渐缩小,这样便开始了压缩气体的过程。由于吸入气阀有止逆作用,故缸内气体不能倒回进口管中,而出口管中气体压力又高于气缸内部的气体压力,缸内的气体也无法从排气阀跑到缸外。出口管中的气体因排出气阀有止逆作用,也不能流入缸内。因此缸内的气体数量保持一定,只因活塞继续向右移动,缩小了缸内的容气空间(容积),使气体的压力不断升高。 4 ,排出:随着活塞右移,压缩气体的压力升高到稍大于出口管中的气体压力时,缸内气体便顶开排除气阀的弹簧进入出口管中,并不断排出,直到活塞移至右边的末端(又称右死点为止。然后,活塞右开始向左移动,重复上述动作。活塞在缸内不断的往复运动,使气缸往复循环的吸入和排出气体。活塞的每一次往复成为一个工作循环,活塞每来或回一次所经过的距离叫做冲程。< 什么是压缩气体的三种热过程? 气体在压缩过程中的能量变化与气体状态(即温度、压力、体积等)有关。在压缩气体时产生大量的热,导致压缩后气体温度升高。气体受压缩的程度越大,其受热的程度也越大,温度也就升得越高。压缩气体时所产生的热量,除了大部分留在气体中使气体温度升高外,还有一部分传给气缸,使气缸温度升高,并有少部分热量通过缸壁散失于空气中。 压缩气体所需的压缩功,决定于气体状态的改变。说通缩点,压缩机耗功的大小与除去压缩气体所产生的热量有直接关系。一般来说,压缩气体的过程有以下三种:等温压缩过程:在压缩过程中,把与压缩功相当的热量全部移除,使缸内气体的温度保持不变,这种压缩成为等温压缩。在等温压缩过程中所消耗的压缩功最小。但这一过程是一种理想过程,实际生产中是很难办到的。 绝热压缩过程:在压缩过程中,与外界没有丝毫的热交换,结果使缸内气体的温度升高。这种不向外界散热也不从外界吸热的压缩成为绝热压缩。这种压缩过程的耗功最大,也是一种理想压缩。因为实际生产中,无伦何种情况要想避免热量的散失,是很难做到的。 多变压缩过程:在压缩气体过程中,既不完全等温,也不完全绝热的过程,成为多变压缩过程。这种压缩过程介于等温过程和绝热过程之间。实际生产中气体的压缩过程均属于多变压缩过程。 什么是多级压缩? 所谓多级压缩,即根据所需的压力,将压缩机的气缸分成若干级,逐级提高压力。并在每级压缩之后设立中间冷却器,冷却每级压缩后的高温气体。这样便能降低每级的排气温度。

固态继电器原理及应用电路

固态继电器原理及应用电路 下面以交流型的SSR为例来说明它的工作原理,图1是它的工作原理框图,图1中的部件①-④构成交流SSR 的主体,从整体上看,SSR只有两个输入端(A和B)及两个输出端(C和D),是一种四端器件。工作时只要在A、B上加上一定的控制信号,就可以控制C、D两端之间的“通”和“断”,实现“开关”的功能,其中耦合电路的功能是为A、B端输入的控制信号提供一个输入/输出端之间的通道,但又在电气上断开SSR中输入端和输出端之间的(电)联系,以防止输出端对输入端的影响,耦合电路用的元件是“光耦合器”,它动作灵敏、响应速度高、输入/输出端间的绝缘(耐压)等级高;由于输入端的负载是发光二极管,这使SSR的输入端很容易做到与输入信号电平相匹配,在使用可直接与计算机输出接口相接,即受“1”与“0”的逻辑电平控制。触发电路的功能是产生合乎要求的触发信号,驱动开关电路④工作,但由于开关电路在不加特殊控制电路时,将产生射频干扰并以高次谐波或尖峰等污染电网,为此特设“过零控制电路”。所谓“过零”是指,当加入控制信号,交流电压过零时,SSR即为通态;而当断开控制信号后,SSR要等待交流电的正半周与负半周的交界点(零电位)时,SSR才为断态。这种设计能防止高次谐波的干扰和对电网的污染。吸收电路是为防止从电源中传来的尖峰、浪涌(电压)对开关器件双向可控硅管的冲击和干扰(甚至误动作)而设计的,一般是用“R-C”串联吸收电路或非线性电阻(压敏电阻器)。图2是一种典型的交流型SSR的电原理图。 直流型的SSR与交流型的SSR相比,无过零控制电路,也不必设置吸收电路,开关器件一般用大功率开关三极管,其它工作原理相同。不过,直流型SSR在使用时应注意:①负载为感性负载时,如直流电磁阀或电磁铁,应在负载两端并联一只二极管,极性如图3所示,二极管的电流应等于工作电流,电压应大于工作电压的4倍。②SSR工作时应尽量把它靠近负载,其输出引线应满足负荷电流的需要。③使用电源属经交流降压整流所得的,其滤波电解电容应足够大。图4 给出了几种国内、外常见的SSR的外形。 二、固态继电器的特点SSR成功地实现了弱信号(Vsr)对强电(输出端负载电压)的控制。由于光耦合器的应用,使控制信号所需的功率极低(约十余毫瓦就可正常工作),而且Vsr所需的工作电平与TTL、HTL、CMOS等常用集成电路兼容,可以实现直接联接。这使SSR在数控和自控设备等方面得到广泛应用。在相当程度上可取代传统的“线圈—簧片触点式”继电器(简称“MER”)。SSR由于是全固态电子元件组成,与MER相比,它没有任何可动的机械部件,工作中也没有任何机械动作;SSR由电路的工作状态变换实现“通”和“断”的开关功能,没有电接

示波器的使用实验报告

示波器的使用实验报告 一、实验目的 二、1. 了解示波器的基本结构和工作原理,掌握示波器的调节和使用方法; 三、2. 学会利用双踪示波器观测电信号波形; 四、3. 学会利用双踪示波器观察李萨如图形,并利用其测量正弦信号的频率。 五、二、实验仪器 六、EE1642B型函数信号发生器、GDS-2062型双踪示波器、导线。 七、三、实验原理 双踪示波器包括两部分:示波管和控制示波管工作的电路。 1. 示波管 如下图所示,示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两对相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏。高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点。Y偏转板是水平放置的两块电极。X偏转板是垂直放置的两块电极。在Y 偏转板和X偏转板上分别加电压,可以在荧光屏上得到相应的图形。 2. 双踪示波器的原理

双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。 电子开关将两个待测的电压信号Y CH1和Y CH2周期性的轮流作用在Y偏转板上。由于视觉滞留效应,能在荧光屏上看到两个波形。 由示波器的原理功能方框图可见,被测信号电压加到示波器的Y轴输入端,经垂直放大电路加于示波管的垂直偏转板。示波管的水平偏转电压,虽然多数情况都采用锯齿电压(用于观察波形时),但有时也采用其它的外加电压(用于测量频率、相位差等时),因此在水平放大电路输入端有一个水平信号选择开关,以便按照需要选用示波器内部的锯齿波电压,或选用外加在X轴输入端上的其它电压来作为水平偏转电压。 此外,为了使荧光屏上显示的图形保持稳定,要求锯齿波电压信号的频率和被测信号的频率保持同步。这样,不仅要求锯齿波电压的频率能连续调节,而且在产生锯齿波的电路上还要输入一个同步信号。这样,对于只能产生连续扫描(即产生周而复始、连续不断的锯齿波)一种状态的简易示波器(如国产SB10型等示波器)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,以牵制锯齿波的振荡频率。对于具有等待扫描功能(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波,进行一次扫描)功能的示波器(如国产ST-16型示波器、SR-8型双踪示波器等而言,需要在其扫描电路上输入一个与被测信号相关的触发信号,使扫描过程与被测信号密切配合。为了适应各种需要,同步(或触发)信号可通过同步或触发信号选择开关来选择,通常来源有3个:①从垂直放大电路引来被测信号作为同步(或触发)信号,此信号称为“内同步”(或“内触发”)信号;②引入某种相关的外加信号为同步(或触发)信号,此信号称为“外同步”(或“外触发”)

压限器的使用方法

压限器的使用方法(申精) 因为这个问题始终困绕着我,后来在搜了许多关于压限器的文章,整理出来,给跟我一样的新手.在这里我说两句:这只是先人给的一点技术,要想摸透,还是自己动手研究. 顾名思义,压限器就是压缩器和限制器的组合体,压缩器的含义就是说要保证后级设备输出的一定要小于前级设备的输入,而限制器的含义就是无论前级设备的电平输入有多大,但是经过限制器处理后传到后级设备,他的电平输出一定要保持限制器设定的那个恒定的量。 压限器的功能有很多,主要有六点: 减小动态冲击。录音过程中压缩动态。平衡音量。保护功放、音箱等。制作特殊效果。减小非音乐信号中的噪声。 调试过程中: 1、THRESHOLD门限电平。调节压限器开始工作的电平值,输入高于此值,压限器开始工作,一般不应超过0dB。 2、RATIO压限比动态信号被压缩的量。如打到2:1时,输入为超过门限电平40dB输出公为20dB,也就是动态被压缩了1/2.一般当门限为0dB时,压限比应为10:1。当门限为-20dB 时,压缩比建议为2:1以上。在的士高舞厅如果压缩比设定过小,就没有压缩痕迹;如果压缩比设定过大,就会造成音乐动态范围变窄、声音干瘪无味。在的士高厅扩声中作为压缩器使用,一般将压缩比设定在3:1左右,作为限制器使用时,应将压缩比设定在8:1左右.能保证音乐信号压缩在扩声系统的动态范围内,避免过载失真,以确保的士高舞厅音乐的震撼力。 3,ATTACK压缩起动时间.压限器从输入信号到压缩开始之间的量(时间)。为保护功放,应最小。 4、RELEASE 压缩恢复时间.压限器从压缩状态恢复到原始状态的时间。为使声音充满一些生气,建议为适中。 5、INPUT OUTPUT 输入、输出电平量。建议为0dB 6、GAIN REDUCTION 输入衰减量。 7、STEREO LINK连锁按键。双声道处理时,当按下此键,可使门限由一个通道控制。 8、BYPASS 压限使用/旁路。 音频压限器在晚会中的使用 音频压限器是一种大压缩比,高阈值电平的信号动态压缩装置,它主要用于抑制有输入信号的意外大峰值冲击而造成设备的过载失真,其压缩比一般在10:1至20:1之间,阈值电平

固态继电器的检测方法

固态继电器的检测方法 1.识别输入、输出引脚兼测好坏 在交流固态继电器的壳体上,输入端一般标有“+”、“-”及“INPUT”字样,而输出端则不分正、负,但有的器件标有“LOAD”字样。而对于直流固态继电器,一般在输入和输出端均标有“+”、“-”,有的器件还标有“IN”(输入)、“OUT”(输出)字样,以示区别。 用数字万用表判别输入、输入端时,可使用二极管档,分别对四个引脚进行正反向测试,其中必定能测出一对引脚间的电压值符合正向导通、反向截止的规律,即正向测量时显示“1.3~1.6V”,反向测试时显示溢出符号“1”。据此便可判定这两个引脚为输入端,而在正向测量时,显示“1.3~1.6V”的一次测量,红表笔所接的是正极,黑表笔所接的则为负极。对于直流固态继电器,找到输入端后,一般与其横向两两相对的便是输出端的正极和负极。需要指出的是,有些直流固态继电器的输出端带有保护二极管,保护管的正极接固态二极管的负极,保护管的负极则是与固态继电器的正极相接,测试时要注意正确区分。 检测举例: 被测器件为一只JGTIF A型直流固态继电器,其外形和内部结构如图5-78所示。它的输出端并接有保护二极管。为叙述方便,将该器件的四个引脚分别标上①、②、③、④。测试时,先区分输入端的两个引脚。使用DT890A型数字万用表二极管档,对①、②、③、④进行正、反向测量 由测试数据可知,当红表笔接①脚,黑表笔接②脚时,仪表显示值为1381(1.381V),交换表笔测量时,仪表显示溢出符号为“1”;当红表笔接④脚,黑表笔接③时,仪表显示值为543(0.543V),交换表笔测量时,仪表显示溢出符号“1”;在其余的几种测试状态,仪表均显示溢出符号“1”。由此不难得出结论:①、②脚为被测器件的直流输入端,①脚为正极,②脚为负极,“1.381V”是固态继电器内部发光二极管的正向压降; ③、④脚为直流输出端,③脚为正极,④脚为负极,“0.543V”是固态继电器输出端所并联的保护二极管的正向压降。注意,对于输出端未有保护二极管的固态继电器,无论怎样交换表笔测量其③、④脚,仪表均显示溢出符号“1”。 使用不同型号的数字万用表测量固态继电器内部发光二极管时,有的仪表显示值有时只是瞬间闪出读数,接着便显示溢出符号“1”,遇到此情况,可反复交换表笔多测几次,直到得出测试结论。 2.检测带载能力 现以测试JGC-4F型AC-SSR为例,介绍检测固态继电器带负载能力的方法。JGC-4F的外形及其检测接线如图5-79所示。被测固态继电器的输入电压为DC5V,输出电压为AC25V,输出电流为2A。测试步骤如下: (1)使用DT899A型数字万用表的二极管档,先对①、②脚进行正、反向测量,仪表均显示溢出符号“1”;再对③、④脚进行正、反向测量,当红表笔接③脚,黑表笔接④脚时,仪表显示1524(1.524V),调换表笔测量时,仪表显示溢出符号“1”,由此说明③、④脚为输入端,③脚为正极,④脚为负极。而①、②脚则是被测器件的交流输出端。 (2)参照图5-80(a)所示,使用一台DC5V稳压电源,将DT890A型数字万用表拨至2kΩ电阻档测量输出端的通、断电阻。将S1闭合加电后,测得电阻值为1.343kΩ,表明内部双向晶闸管导通,此时能接通负载。将S1断开时,仪表显示溢出符号“1”(电阻值为无穷大),说明被测器件关断,此时可切断负载。注意,根据被测固态继电器型号的不同,所测得的输出端的通态电阻值也有所不同,其值的范围是比较大的,有的为几时欧,有的为几千欧。输出端的通态电阻与输入电流IS有关。在10~20mA范围内,输入电流IS越大,通态电阻越小。IS值的大小取决于输入端所加直流电压的大小,但所加的输入电压值不得超过被测器件的额定输入电压值。此外,若输入端直流电压的极性接反了,固态继电器是不能正常工作的。 (3)如图5-80(b)所示,将JGC-4F的输出端串上一只220V、60W的白炽灯泡,接入220V交流电源。闭合S1时灯泡正常发光,断开S1时灯泡立即熄灭。由此证明被测交流固态继电器JGC-4F的性能良好。

空气压缩机工作原理及使用

空气压缩机工作原理及使用 第一章空气压缩机工作原理及使用 第一节工作原理 驱动机启动后,经三角胶带,带动压缩机曲轴旋转,通过曲柄杆机构转化为活塞在气缸内作往复运动。当活塞由盖侧向轴运动时,气缸容积增大,缸内压力低于大气压力,外界空气经滤清器,吸气阀进入气缸;到达下止点后,活塞由轴侧向盖侧运动,吸气阀关闭,气缸容积逐渐变小,缸内空气被压缩,压力升高,当压力达到一定值时,排气阀被顶开,压缩空气经管路进入储气罐内,如此压缩机周而复始地工作不断地向储气罐内输送压缩空气,使罐内压力逐渐增大,从而获得所需的压缩空气。 第二节空压机的安装、起动、运转和停车 (一)机器的安放 空压机应安放在空气流通、光线充足、四周平坦的地方,以便操作管理和保证风冷效果。 (二)开机前的检查和准备 1、检查机器各部位是否处于正常状态,紧固件有否松动等。 2、加注润滑油:空压机冬季用13号、夏季用19号压缩机油,加油至视油窗2/3处为宜。注意:在气温较低地区,应防止润滑油凝结。 3、用手盘动空压机风扇2-3转,检查有无障碍感或异常声响。 4、打开储气罐上的输气闸阀,使其处于全开状态。 5、对电动空压机,由电工决定起动方式,接线后先作点起动,检查曲轴旋转方向是否如安全罩上的箭头所示;对柴动空压机,还要按柴油机说明书对柴油机进行检查、准备。 (三)起动 (1)起动电动机,并注意电动机的转向是否正确; (2)待电动机运转正常后勤工作,逐渐打开减荷阀,使空压机投入正常运转。 (四)运转中注意事项 (1)注意各部声响和震动情况; (2)注意检查注油器油室的油量是否足够,机身油池内的油面是否在油标尺规定的范围内,各部供油情况是否良好; (3)注意检查电气仪表的读数和电动机的温度; (4)空压机每工作两小时,将中间冷却器、后冷却器内的油水排放一次;每班将风包内的油水排放一次。 (5)注意检查各部温度和压力表的读数; ①润滑油压力在(1.47~2.45)×105N/m2, 但不低于0.981×105N/m2; ②冷却水最高排水温度不超过40℃;

实验1 示波器函数信号发生器的原理及使用(实验报告之实验数据表)

实验1 示波器、函数信号发生器的原理及使用 【实验目的】 1. 了解示波器、函数信号发生器的工作原理。 2. 学习调节函数信号发生器产生波形及正确设置参数的方法。 3. 学习用示波器观察测量信号波形的电压参数和时间参数。 4. 通过李萨如图形学习用示波器观察两个信号之间的关系。 【实验仪器】 1. 示波器DS5042型,1台。 2. 函数信号发生器DG1022型,1台。 3. 电缆线(BNC 型插头),2条。 【实验内容与步骤】 1. 利用示波器观测信号的电压和频率 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。 图1-1 函数信号发生器生成的正、余弦信号的波形 学生姓名/学号 指导教师 上课时间 第 周 节

(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表 表1-1 正余弦信号的电压和时间参数的测量 电压参数(V)时间参数 峰峰值最大值最小值频率(Hz)周期(ms)正弦信号 3sin(200πt) 余弦信号 3cos(200πt) 2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。 图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形 3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形 (1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45o),观测并记录两正弦信号的李萨如图形于图1-3中。 (2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135o),观测并记录两正弦信号的李萨如图形于图1-3中。

压缩器和限制器

压缩器和限制器 在低输入电平和中等输 入电平时,压缩器作为增 益为1的放大器来用,如 右图A所示;譬如说增益 增大2分贝,输出也增大 2分贝。当输入增大到门 限区(门限区可在很宽的 范围内调整),压缩器就 进入增益减小区。对2比 1的压缩比来说,输入增 加2分贝,输出只增加1 分贝;对4比1的压缩比 来说,输入增加4分贝, 输出只会增加1分贝。动 作时间常数和恢复时间 常数的作用示于右图B。 当输入电平突然变化,使 此装置开始压缩,在新的 增益能被定出并开始作 用之前将稍有些过冲。动 作时间通常很短,一般在 100毫秒到1毫秒之间。 恢复时间通常可在0.1秒 到2.5秒或3秒之间调 整。较长的恢复时间对于较慢的连续的音乐更为有用,而较快的恢复时间会更适合较快的节目。一个很重要的设计准则是,每秒种增益的改变不应该误被当成是信号包迹的失真或不需要的调制。最困难的方面是动作时间;如果对此装置设计时没有给以应有的注意,那么迅速开始增益衰减大概会作为“卡拉”声听见。钢琴录音是要求最苛刻的,因为用高频节目来掩盖这些缺陷的可能性很小。 压缩器的心脏是它的传感电路或检波电路。近年来,有效值检波已用于许多压缩器设计当中,这是假设,信号的有效值在检定信号的响度上比信号的峰值要好些。要定出信号的有效值电平需要一定的时间,所以如果必须把压缩器作为过载保护用时,可能需要把峰值检波和有效值检波结合起来用。 压缩器和限制器是增益可以作为信号电平的函数而变化的放大器。信号电平越高,增益越低。压缩器的重要特点在于其压缩比、压缩门限、压缩动作时间和恢复时间。这些特点示于右图。 大多数压缩器都是单波段装置,就是说,增益控制是在整个音频频谱内同时工作的。多波段压缩器也已研制出来,在其中,每个波段是与其他波段无关单独压缩的。通常,在这些压缩器中不超过两三个波段,它们的主要用途是用在电平要求很严格的磁带复制和唱片转录工作中。压缩必须慎用,否则音乐频谱会受到有害的影响。 限制器是一种特殊类型的压缩器。10比1或更高的压缩比一般规定为限制动作,因为输出电

压缩机简介

第一章压缩机 第一节压缩机概述: 一、定义:压缩机是用来提高气体压力和输送气体的机械。 二、主要用途: 1、动力压缩机: (1)压缩气体驱动各种风动机械,如:气动扳手、风镐。 (2)控制仪表和自动化装置。 (3)交通方面:汽车门的启动。 (4)食品和医药工业中用高压气体搅拌浆液。 (5)1、纺织业中,如喷气织机。2、气体输送用压缩机(1)管道输送—为了克服气体在管道中流动过程中,管道对气体产生的阻力。(2)瓶装输送—缩小气体的体积,使有限的容积输送较多的气体。3、制冷和气体分离用压缩机如氟利昂制冷、空气分离。4、石油、化工用压缩机(1)用气体的合成和聚合,如氨的合成。(2)润滑油的加氢精制。 三、压缩机分类 (1)按作用原理分:容积式和速溶式(透平式) (2)按压送的介质分类:空气压缩机、氮气压缩机、氧气压缩机、氢气压缩机等 (3)按排气压力分类:低压(0.3-1.0mpa)中压(1.0-10mpa)高压(10-100mpa)超高压(>100mpa) (4)按结构型式分类:压缩机——容积式、速溶式。容积式——回转式(包括螺杆式、滑片式、罗茨式)、往复式(包括活塞式、隔膜式)速度式——离心式、轴流式、喷射式、混流式。 第二节压缩机著名厂家 一、国外著名的压缩机企业有以下几家: (1)、日本有起家:日立(Hitachi)、三井、三菱、(Mitsubishi)、川崎、石川岛(IHI)、荏原(EBRARA ,包括美国埃利奥特ELLIOTT)和神钢(kobeico);(2)、美国有五家:德莱赛兰(DRESSER-RAND)、英格索兰(Ingerso11-rand)、库柏(Cooper)、通用电气动力部(原来的意大利新比隆Nuovo Pignone公司)和美国A-C压缩机公司; (3)、德国有二家:西门子工业(原来的德马格-德里瓦)、盖哈哈-波尔西克(GHH-BORSIG); (4)、瑞士有一家:苏尔寿(SULZER); (5)、瑞典有一家:阿特拉斯(ATLAS-COPCO); (6)韩国有一家:三星动力。 1、国外压缩机企业简历: 美国英格索兰公司是一家在全球五百家,最大工业企业中名列前茅的跨国公司,建立与1871年,至今已经有129年的历史。https://www.doczj.com/doc/1214342712.html,/ 瑞士苏尔寿公司:是世界著名跨国工业集团,创建与1834年,已有一百多年的历史。 2、在选型是注意: (1)、使用进口设备,注意电控、仪控、机械备件等方面的配置,同时注意国内

固态继电器介绍及工作原理

固态继电器介绍及工作原理 1.什么是固态继电器,有什么优缺点? 固态继电器(亦称固体继电器)英文名称为Solid State Relay,简称SSR。它是用半导体器件代替传统电接点作为切换装置的具有继电器特性的无触点开关器件,单相SSR为四端有源器件,其中两个输入控制端,两个输出端,输入输出间为光隔离,输入端加上直流或脉冲信号到一定电流值后,输出端就能从断态转变成通态。 固态继电器工作可靠,寿命长,无噪声,无火花,无电磁干扰,开关速度快,抗干扰能力强,且体积小,耐冲击,耐振荡,防爆、防潮、防腐蚀、能与TTL、DTL、HTL等逻辑电路兼容,以微小的控制信号达到直接驱动大电流负载。主要不足是存在通态压降(需相应散热措施),有断态漏电流,交直流不能通用,触点组数少,另外过电流、过电压及电压上升率、电流上升率等指标差。 2. 固态继电器可应用于哪些场合? 固态继电器目前已广泛应用于计算机外围接口装置,电炉加热恒温系统,数控机械,遥控系统、工业自动化装置;信号灯、闪烁器、照明舞台灯光控制系统;仪器仪表、医疗器械、复印机、自动洗衣机;自动消防,保安系统,以及作为电网功率因素补偿的电力电容的切换开关等等,另外在化工、煤矿等需防爆、防潮、防腐蚀场合中都有大量使用。 3.固态继电器可分为哪些类型? 交流固态继电器按开关方式分有电压过零导通型(简称过零型)和随机导通型(简称随机型);按输出开关元件分有双向可控硅输出型(普通型)和单向可控硅反并联型(增强型);按安装方式分有印刷线路板上用的针插式(自然冷却,不必带散热器)和固定在金属底板上的装置式(靠散热器冷却);另外输入端又有宽范围输入(DC3-32V)的恒流源型和串电阻限流型等。 4.过零型SSR与随机型SSR在用途上有什么区别? 过零型SSR用作“开关”切换(从“开关”切换功能而言即等同于普通的继电器或接触器),我们通常讲的固态继电器多数都为过零型(过零型SSR只能“开关”不能“调压”)。 随机型SSR主要用于“斩波调压”(但随机型SSR的控制信号必须为与电网同步且上升沿可在0°-180°范围内改变的方波信号时才能实现调压,单一电压信号或0-5V的模拟信号并不能使其调压,从“调压”功能的角度讲随机型SSR 完全不同于普通的继电器或接触器)。有一点必须强调,各类调压模块或固态继电器内部作为输出触点的器件均为可控硅,且都是依靠改变可控硅导通角来达到“调压”的目的,故输出的电压波形均为“缺角”的正弦波(不同于自耦

往复式压缩机的基本知识及原理

.活塞式压缩机的基本知识及原理 活塞式压缩机的分类: (1)按气缸中心线位置分类 立式压缩机:气缸中心线与地面垂直。 卧式压缩机:气缸中心线与地面平行,气缸只布置在机身一侧。 对置式压缩机:气缸中心线与地面平行,气缸布置在机身两侧。(如果相对列活塞相向运动又称对称平衡式) 角度式压缩机:气缸中心线成一定角度,按气缸排列的所呈现的形状。有分L型、V型、W型和S型。 (2)按气缸达到最终压力所需压级数分类 单级压缩机:气体经过一次压缩到终压。 两级压缩机:气体经过二次压缩到终压。 多级压缩机:气缸经三次以上压缩到终压。 (3)按活塞在气缸内所实现气体循环分类 单作用压缩机:气缸内仅一端进行压缩循环。 双作用压缩机:气缸内两端进行同一级次的压缩循环。 级差式压缩机:气缸内一端或两端进行两个或两个以上的不同级次的压缩循环。 (4)按压缩机具有的列数分类 单列压缩机:气缸配置在机身的一中心线上。 双列压缩机:气缸配置在机身一侧或两侧的两条中心线上。 多列压缩机:气缸配置在机身一侧或两侧的两条以上中线上。 活塞式压缩机工作原理: 当活塞式压缩机的曲轴旋转时,通过连杆的传动,活塞便做往复运动,由气缸内壁、气缸内的工作容积则会发生周期性变化。活塞式压缩机的活塞从气缸盖处开始运动时,气缸内的工作容积逐渐增大,这时,气体即沿着进气管,推开进气阀而进入气缸,直到工作容积变到最大时为止,进气阀关闭;活塞式压缩机的活塞反向运动时,气缸内工作容积缩小,气体压力升高,当气缸内压力达到并略高于排气压力时,排气阀打开,气体排出气缸,直到活塞运动到极限位置为止,排气阀关闭。当活塞式压缩机的活塞再次反向运动时,上述过程重复出现。总之,活塞式压缩机的曲轴旋转一周,活塞往复一次,气缸内相继实现进气、压缩、排气的过程,即完成一个工作循环。 活塞式压缩机的基本结构 活塞式压缩机基本原理大致相同,具有十字头的活塞式压缩机,主要有机体、曲轴、连杆、十字头、气缸、活塞、填料、气阀等组成。 1、机身:主要由中体、曲轴箱、主轴瓦(主轴承)、轴承压盖及连接和密封件等组成。曲轴箱可以是整体铸造加工而成,也可以是分体铸造加工后组装而成。主轴承采用滑动轴承,安装时应注意上下轴承的正确位置,轴承盖设有吊装螺孔和安装测温元件的光孔。 2、曲轴:曲轴是活塞式压缩机的主要部件之一,传递着压缩机的功率。其主要作用是将电动机的旋转运动通过连杆改变为活塞的往复直线运动。 3、连杆:连杆是曲轴与活塞间的连接件,它将曲轴的回转运动转化为活塞的往复运动,并把动力传递给活塞对气体做功。连杆包括连杆体、连杆小头衬套、连杆大头轴瓦和连杆螺栓。 4、十字头:十字头是连接活塞与连杆的零件,它具有导向作用。十字头与活塞杆的连接型式分为螺纹连接、联接器连接、法兰连接等。大中型压缩机多用联接器和法兰连接结构,使用可靠,调整方便,使活塞杆与十字头容易对中,但结构复杂。 5、气缸:气缸主要由缸座、缸体、缸盖三部分组成,低压级多为铸铁气缸,设有冷却水夹层;高压级气缸采用钢件锻制,由缸体两侧中空盖板及缸体上的孔道形成泠却水腔。气缸采用缸套结构,安装在缸体上的缸套座孔中,便于当缸套磨损时维修或更换。气缸设有支承,用于支撑气缸重量和调整气缸水平。 6、活塞:活塞部件是由活塞体、活塞杆、活塞螺母、活塞环、支承环等零件组成,每级活塞体上装有不同数量的活塞环和支承环,用于密封压缩介质和支承活塞重量。活塞环采用铸铁环或填充聚四氟乙烯塑料环;当压力较高时也可以采用铜合金活塞环;支承环采用四氟或直接在活塞体上浇铸轴承合金。 活塞与活塞杆采用螺纹连接,紧固方式有直接紧固法,液压拉伸法,加热活塞杆尾部法等,加热活塞杆尾部使其热胀产生弹性伸长变形,将紧固螺母旋转一定角度拧至规定位置后停止加热,待杆冷却后恢复变形,即实现紧固所需的预紧力。活塞杆为钢件锻制成,经调质处理及表面进行硬化处理,有较高的综合机械性能和耐磨性。活塞体的材料一般为铝合金或铸铁。

相关主题
文本预览
相关文档 最新文档