当前位置:文档之家› 无线衰落信道、多径与OFDM、均衡技术要点

无线衰落信道、多径与OFDM、均衡技术要点

无线衰落信道、多径与OFDM、均衡技术要点
无线衰落信道、多径与OFDM、均衡技术要点

无线衰落信道、多径与OFDM、均衡技术

(2012-08-30 14:14:43)

转载▼

标签:

杂谈

参见张贤达通信信号处理。OFDM移动通信技术原理与应用,移动通信原理吴伟陵

目录

无线信道的传播特征

无线信道的大尺度衰落

阴影衰落

无线信道的多径衰落

多径时延与与叠加后的衰落

频率选择性衰落和非频率选择性衰落

符号间干扰ISI的避免

多径信号的时延扩展引起频率选择性衰落,相干带宽=最大时延扩展的倒数

无线信道的时变性以及多普勒频移

多普勒效应

时变性、时间选择性衰落与多普勒频移

相干时间与多径

OFDM对于多径的解决方案

多径信号在时域、频域的分析思考

1,多径信号是空间上的多个不同信号。各参数应分别从时域、频率进行考察。

2,符号间干扰ISI是时域的概念,时延、多径均影响了ISI

3,信道间干扰ICI是频域的概念,时延、多径均影响了ICI

4,时延、多普勒频移分别对应于:频率选择性衰落、时间选择性衰落,它们具有对偶性质

多径对信号频谱的影响,OFDM如何抗多径

GSM中的自适应均衡技术

无线信道的传播特征

与其他通信信道相比,移动信道是最为复杂的一种。电波传播的主要方式是空间波,即直射波、折射波、散射波以及它们的合成波。再加之移动台本身的运动,使得移动台与基站之间的无线信道多变并且难以控制。信号通过无线信道时,会遭受各种衰落的影响,一般来说接收信号的功率可以表达为:

其中d表示移动台与基站的距离向量,|d|表示移动台与基站的距离。根据上式,无线信道对信号的影响可以分为三种:

(1)电波中自由空间内的传播损耗|d|-n ,也被称作大尺度衰落,其中n一般为3~4;

(2)阴影衰落S(d)表示由于传播环境的地形起伏,建筑物和其他障碍物对地波的阻塞或遮蔽而引起的衰落,被称作中等尺度衰落;

(3)多径衰落R(d)表示由于无线电波中空间传播会存在反射、绕射、衍射等,因此造成信号可以经过多条路径到达接收端,而每个信号分量的时延、衰落和相位都不相同,因此在接收端对多个信号的分量叠加时会造成同相增加,异相减小的现象,这也被称作小尺度衰落。

下图可以清晰的说明三种衰落情况。

图信号在无线信道中的传播特性

此外,由于移动台的运动,还会使得无线信道呈现出时变性,其中一种具体表现就是会出现多普勒频移。自由空间的传播损耗和阴影衰落主要影响到无线区域的覆盖,通过合理的设计就可以消除这种不利影响。

另外还有快衰落与慢衰落概念。

移动通信的传播如图5-02中的曲线所示,总体平均值随距离减弱,但信号电平经历快慢衰落的影响。

慢衰落是由接受点周围地形地物对信号反射,使得信号电平在几十米范围内有大幅度的变化,若移动台在没有任何障碍物的环境下移动,则信号电平只与发射机的距离有关。所以通常某点信号电平是指几十米范围内的平均信号电平。这个信号的变化呈正态分布。标准偏差对不同地形地物是不一样的,通常在6-8dB左右。

快衰落是叠加在慢衰落信号上的。这个衰落的速度很快,每秒可达几十次。除与地形地物有关,还与移动台的速度和信号的波长有关,并且幅度很大,可几十个dB,信号的变化呈瑞利分布。快衰落往往会降低话音质量,所以要留快衰落的储备。

解释:衰减与衰落的关系

衰落是指无线电线路上接收信号电平的随机起伏。它主要由多径((multipath))干涉和非正常衰落所引起。前者常为多径衰落或干涉型衰落;后者常称为衰减型衰落。信号幅度随时间、频率和空间而起伏的衰落分别称为时间选择性衰落、频率选择性衰落和空间选择性衰落。极化发生变化而产生的衰落称为极化衰落。信号电平在短期内(例如几秒、几分钟内)的快速变化称快衰落,例如,多径衰落。信号电平中值短期内(小时、日)的长期变化,称慢衰落,例如传输媒质结构的变化引起的衰落。其统计特性可用衰落深度、衰落率、衰落周期和衰落带宽等参数描述。

衰减是指电子信号经过一段距离后的减弱,按功率控制技术。

衰落可以通过均衡来弥补。参见 GSM中的自适应均衡技术

解释:

衡量性能的指标主要有两个:一个是错误率(误码率或误比特率);另一个是中断率(瞬时信噪比低于给定门限值的概率)。无线信道中的平衰落会大大增加平均误码率或中断率。无线信道中还存在频率选择性衰落和多普勒频移。频率选择性衰落会引起码间干扰(ISI),多普勒频移则会引起临信道干扰、临频干扰、信道间干扰(ICI)。

无线信道的大尺度衰落

无线电波在自由空间内传播,其信号功率会随着传播距离的增加而减小,这会对数据速率以及系统的性能带来不利影响。最简单的大尺度路径损耗模型可以表示为:

其中Pi表示本地平均发射信号功率,Pr表示接收功率,d是发射机与接收机之间的距离。对于典型环境来说,路径损耗指数γ一般在2~4中选择。由此可以得到平均的信号噪声比(SNR)为:

其中N0是单边噪声功率谱密度,B是信号带宽,K是独立于距离、功率和带宽的常数,如果为保证可靠接收,要求SNR ≥ SNR0,其中SNR0表示信噪比门限,则路径损耗会为比特速率带来限制:

以及对信号的覆盖范围带来限制:

可见,如果不采用其它特殊技术,则数据的符号速率以及电波的传播范围都会受到很大的限制,但是在一般的蜂窝系统中,由于小区的规模相对较小,所以这种大尺度衰落对移动通信系统的影响并不需要单独加以考虑。

阴影衰落

当电磁波在空间传播受到地形起伏、高大建筑物的阻挡,在这些障碍物后面会产生电磁场的阴影,造成场强中值的变化,从而引起衰落,被称作阴影衰落。与多径衰落相比,阴影衰落是一种宏观衰落,是以较大的空间尺度来衡量的,其中衰落特性符合对数正态分布,其中接收信号的局部场强中值变化的幅度取决于信号频率和障碍物状况。频率较高的信号比低频信号更加容易穿透障碍物,而低频信号比较高频率的信号具备更强的绕射能力。

无线信道的多径衰落

无线移动信道的主要特征就是多径传播,即接收机所接收到的信号是通过不同的直射、反射、折射等路径到达接收机,如下图所示。

图无线信号的多径传播

多径时延与与叠加后的衰落

在移动传播环境中,移动台天线接收的信号不是来自单一路径,而是来自许多路径的众多反射波的合成,这种现象称作多径效应。无线信道中,发射机与接收机之间不仅仅存在有一条路径,而是具有不同的幅值、相位、时延以及到达角度的反射路径,在时域内得到的时间弥散信号。

由于电波通过各个路径的距离不同,各条路径来的反射波到达时间不同,相位也不同,在接收端不同相位的多个信号的叠加,使得接收信号的幅度/电平急剧变化产生多径衰落。

如果同相叠加则会使信号幅度增强,而反相叠加则会削弱信号幅度。这样,接收信号的幅度将会发生急剧变化,就会产生衰落。

例如,发射端发生一个窄脉冲信号,则在接收端可以收到多个窄脉冲,每一个窄脉冲的衰落和时延以及窄脉冲的个数都是不同的,对应一个发送脉冲信号,下图给出接收端所接收到的信号情况。这样就造成了信道的时间弥散性(time dispersion),其中τmax被定义为最大时延扩展。

图多径接收信号

符号间干扰ISI的避免

在传输过程中,由于时延扩展,接收信号中的一个符号的波形会扩展到其他符号当中,造成符号间干扰(InterSymbol Interference,ISI)。为了避免产生ISI,应该令符号宽度要远远大于无线信道的最大时延扩展,或符号速率要小于最大时延扩展的倒数。,由于移动环境十分复杂,不同地理位置,不同时间所测量到的时延扩展都可能是不同的,因此需要采用大量测量数据的统计平均值。

下表给出不同信道环境下的时延扩展值。

表不同信道环境下的时延扩展值

环境最大时延扩展最大到达路径差

室内40ns~200ns12m~16m

室外1μs~20μs300m~5000m

频率选择性衰落和非频率选择性衰落

根据衰落与频率的关系,可将衰落分成两类:即频率选择性衰落和非频率选择性衰落(平坦衰落)。

1,频率选择性衰落:指信号中各分量的衰落状况与频率有关,衰落信号波形将产生失真(因为信号中不同频率分量衰落不一致)。

2,非频率选择性衰落:指信号中各分量的衰落与频率无关,无波形失真,仅仅幅度发生变化。

非频率选择性衰落,它对于不关心幅度值的调制方式是各种通信系统希望满足的传输方式,也称为平坦衰落。因为各频率分量所遭受的衰落具有一致性(即相关性),因而这种衰落信号的波形不失真。

已经发现:

当码元速率较低,信号带宽远小于信道相关带宽时,信号通过信道传输后各频率分量的

变化具有一致性,则信号波形不失真,无码间串扰ISI,此时出现的衰落为非频率选择性衰落;

当码元速率较高,信号带宽大于相关带宽时,信号通过信道后各频率分量的变化是不一致的,将引起波形失真,造成码间串扰,此时出现的衰落为频率选择性衰落。

总之,窄带信号通过移动信道时将引起非频率选择性衰落;宽带扩频信号通过移动信道时将引起频率选择性衰落。

多径信号的时延扩展引起频率选择性衰落,相干带宽=最大时延扩展的倒数

在频域内,与时延扩展相关的另一个重要概念是相干带宽(coherent bandwidth),是应用中通常用最大时延扩展的倒数来定义相干带宽,即:

从频域角度观察,多径信号的时延扩展可以导致频率选择性衰落(frequency-selective fading),即针对信号中不同的频率成分,无线传输信道会呈现不同的随机响应,由于信号中不同频率分量的衰落是不一致的,所以经过衰落之后,信号波形就会发生畸变。

由此可以看到,当信号的频率较高,信号带宽超过无线信道的相干带宽时,信号通过无线信道后各频率分量的变化是不一样的,引起信号波形的失真,造成符号间干扰,此时就认为发生了频率选择性衰落;

反之,当信号的传输速率较低,信道带宽小于相干带宽时,信号通过无线信道后各频率分量都受到相同的衰落,因而衰落波形不会失真,没有符号间干扰,则认为信号只是经历了平衰落,

即非频率选择性衰落。

相干带宽是无线信道的一个特性,至于信号通过无线信道时,是出现频率选择性衰落还是平衰落,这要取决于信号本身的带宽。

相关带宽是移动信道的一个特性;相关带宽表征的是信号两个频率分量基本相关的频率间隔;相关带宽实际上是对移动信道对具有一定带宽信号传输能力统计的度量。相干带宽B_c是通过多径时延定义的:B_c=1/(50*T_m),当T_s>>T_m(即B_s<

在实际应用中,对于多个频率分量的信号,相关带宽为最大时延Tm的倒数,即B=1/Tm

例:某市区实测最大时延Tm3.5us,其相关带宽为: B=1/Tm=280kHz

对于带宽为25kHz的窄带数字信号,其衰落为非频率选择性衰落。

OFDM在每个子载波上传输低速率数据流,子载波带宽仅为15KHz或7.5KHz。满足非频率选择性衰落的要求。

解释:相干带宽是描述时延扩展的:相干带宽是表征多径信道特性的一个重要参数,它是指某一特定的频率范围,在该频率范围内的任意两个频率分量都具有很强的幅度相关性,即在相干带宽范围内,多径信道具有恒定的增益和线性相位。通常,相干带宽近似等于最大多径时延的倒数。

从频域看,如果相干带宽小于发送信道的带宽,则该信道特性会导致接收信号波形产生频率选择性衰落,即某些频率成分信号的幅值可以增强,而另外一些频率成分信号的幅值会被削弱,

当两个发射信号的频率间隔小于信道的相干带宽,那么这两个经过信道后的,受到的信道传输函数是相似的,由于通常的发射信号不是单一频率的,即一路信号也是占有一定带宽的,如果,这路信号的带宽小于相干带宽,那么它整个信号受到信道的传输函数是相似的,即信道对信号而言是平坦特性的,非频率选择性衰落的,同样在相干时间内,两路信号受到的传输函数也是相似的特性,通常发射的一路信号由于多径效应,有多路到达接收机,若这几路信号的时间间隔(解释:指同一个符号到达接收机的时间间隔吗)在相干时间之内,那么他们具有很强的相关性,接收机都可以认为是有用信号,若大于相干时间,则接收机无法识别,只能认为是干扰信号。

解释:什么是相干

对于两个平稳信号S1(t)和S2(t),它们的相关系数的绝对值大于0小于1时,两个信号相关,相关系数等于1时,两个信号相干。当两个信号相干时,它们之间只相差一个复常数。复常数既一有幅度成分,又有频率成分。由此我们可见,若是两个信号相干,它们其中一个可以看作是另一个的幅度的衰减,频率上衰落造成的,其实二者可以看作同一个信号。相关系数越是接近1,相关性越大。

解释:时域的时延反映到频域,相干带宽的计算实际上来源于:矩形脉冲的宽带变化时,其频谱分量的变化趋势。

可以看到,由于时延,脉冲的时域波形被展宽了,从接收机看来就是:脉冲宽度增大。所以也把多径称为: 时间弥散现象。

而从傅立叶变换可得“脉冲宽度与频谱:呈反比关系”。

所以:时延增大,脉冲宽度变大,则频谱变得更狭小。

根据,如信号带宽较大,则要求信号在小时延信道中传输。

每个多径信号在一个特定的信道中传输,每个信道的时延不同,则频谱变化的情况也不同。

按可见,当多径信道1的时延大于多径信道2的时延时,多径信道1在x轴的第一个交点将向坐标轴原点移动,即带宽变小。

对于有最大时延扩展的信道,其带宽是各信道中最小的。

只要信号的带宽小于最大时延扩展的信道带宽,则这个信号就没有任何频率分量受影响,或幅度的衰落呈等比变化(带宽内各频率分量的幅度可近似画成一条下降直线的)反之,如信号的带宽大于最大时延扩展的信道带宽,则超出带宽的一部分频率分量的幅度无疑会衰落。

这部分频率分量也是受频率选择性衰落所影响的频率分量。

上述解释回答了“为什么时延扩展会产生频率选择性衰落、相干带宽?”

无线信道的时变性以及多普勒频移

多普勒效应

当移动台在运动中进行通信时,接收信号的频率会发生变化,成为多普勒效应,这是任何波动过程都具有的特性。

以可见光为例,假设一个发光物体在远处以固定的频率发出光波,我们可以接收到的频

率应该是与物体发出的频率相同。

现在假定该物体开始向我们运动,但光影发出第二个波峰时,它距我们的距离应该要比

发出第一个波峰到达我们的时间远,因此两个波峰到达我们的时间间隔变小了,与此相应我们接

收到的频率就会增加,

相反,当发光物体远离我们而去的时候,我们就受到的频率就要减小,这就是多普勒效

应的原理。

在天体物理学中,天文学家利用多普勒效应可以判断出其他星系的恒星都在远离我们而

去,从而得出宇宙是在不断膨胀的结论。这种称为多普勒效应的频率和速率的关系是我们日常熟

悉的,例如我们在路边听汽车汽笛的声音:当汽车接近我们时,其汽笛音调变高(对应频率增加);

而当它驶离我们时,汽笛音调又会变地(对应频率减小)。

多普勒效应是由于接收用户处于高速移动中而引起,只产生在高速(>=70km/h)的车载

通信,对于慢速移动的通信不需要考虑。

时变性、时间选择性衰落与多普勒频移

信道的时变性是指信道的传递函数是随时间而变化的,即在不同的时刻发送相同的信号,

在接收端收到的信号是不相同的,如下图所示。

时变性在移动通信系统中的具体体现之一就是多普勒频移(Doppler shift),即单一频

率信号经过时变衰落信道之后会呈现为具有一定带宽和频率包络的信号,如下图所示。这又可称

为信道的频率弥散性(frequency dispersion)。

时间选择性衰落指在不同的时间衰落特性是不一样的。由多普勒频移引起。

解释:

多普勒频移即频率分量向原频率点两侧扩展。比如发射时频谱是离散的、带限的,有N

个频率分量。但接收信号的频谱会扩展为 N个频段(每个频段以原频率分量为中心,各向两边扩

展了一个频率范围。

解决办法是依靠正确的频域定位技术。

当移动台向入射波方向移动时,多普勒频移为正,即移动台接收到的信号频率会增加;

如果背向入射波方向移动,则多普勒频移为负,即移动台接收到的信号频率会减小。由于存在多

普勒频移,所以当单一频率信号(f0)到达接收端的时候,其频谱不再是位于频率轴± f0处的单

纯δ函数,而是分布在(f0-fm,f0+fm)内的、存在一定宽度的频谱。下表给出两种载波情况下

不同移动速度时的最大多普勒频移数值。

表最大多普勒频偏(Hz)

100km/h75 km/h50 km/h25 km/h 速度

载波

900MHz83624221

2GHz1851399346

相干时间与多径

从时域来看,与多普勒频移相关的另一个概念就是相干时间,即:

fm是最大的多普勒频偏

相干时间是信道冲击响应维持不变的时间间隔的统计平均值。

换句话说,相干时间就是指一段时间间隔,在此间隔内,两个到达信号有很强的幅度相关性。

如果基带信号带宽的倒数,一般指符号宽度(解释:即符号周期、脉冲宽度)大于无线信道的相干时间,那么信号的波形就可能会发生变化,造成信号的畸变,产生时间选择性衰落,也称为快衰落;

反之,如果符号的宽度小于相干时间,则认为是非时间选择性衰落,即慢衰落。可理解为多普勒频偏比信号变化慢得多(?\\)。

在相干时间内,两路信号受到的传输函数是相似的,通常发射的一路信号由于多径效应,有多路到达接收机,若这几路信号的时间间隔(指同一个符号到达接收机的时间间隔)在相干时间之内,那么他们具有很强的相关性,接收机都可以认为是有用信号,若大于相干时间,则接收机无法识别,只能认为是干扰信号。

相干时间就是信道保持恒定的最大时间差范围,发射端的同一信号在相干时间之内到达接收端,信号的衰落特性完全相似,接收端认为是一个信号。如果该信号的自相关性不好,还可能引入干扰,类似照相照出重影让人眼花缭乱。从发射分集的角度来理解:时间分集要求两次发射的时间要大于信道的相干时间,即如果发射时间小于信道的相干时间,则两次发射的信号会经历相同的衰落,分集抗衰落的作用就不存在了。

OFDM对于多径的解决方案

自由空间的传播损耗和阴影衰落主要影响到无线区域的覆盖,通过合理的设计就可以消除这种不利影响。在无线通信系统中,重点要解决时间选择性衰落和频率选择性衰落。采用OFDM 技术可以很好的解决这两种衰落对无线信道传输造成的不利影响。

OFDM带来以下优点

1,频率选择性衰落小:因为OFDM子载波的带宽 < 信道“相干带宽”时,可以认为该信道是“非频率选择性信道”,所经历的衰落是“平坦衰落”。

2,时间选择性衰落小:因为OFDM符号持续时间 > 信道“相干时间”时,信道可以等效为“线性时不变”系统,降低信道时间选择性衰落对传输系统的影响。

原因如下:

1,OFDM是一种无线环境下的高速传输技术。无线信道的频率响应曲线大多是非平坦的,而OFDM 技术的主要思想就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各子载波并行传输。这样,尽管总的信道是非平坦的,具有频率选择性,但是每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相干带宽,因此就可以大大消除信号波形间的干扰。

OFDM增强了抗频率选择性衰落和抗窄带干扰的能力。在单载波系统中,单个衰落或者干扰可能导致整个链路不可用,但在多载波的OFDM系统中,只会有一小部分载波受影响。此外,纠错码的使用还可以帮助其恢复一些载波上的信息。通过合理地挑选子载波位置,可以使OFDM的频

谱波形保持平坦,同时保证了各载波之间的正交。

OFDM中窄带干扰也只影响其频段的一小部分,而且系统可以不使用受到干扰的部分频段,或者采用前向纠错和使用较低阶调制等手段来解决。

2,OFDM通过把输入的数据流串并变换到N个并行的子信道中,降低了信号速率,增大符号周期,使得每个用于调制子载波的数据符号周期可以扩大为原始数据符号周期的N倍,因此时延扩展与符号周期的比值也同样降低N倍。多路信号会更易在相干时间内到达接收机。所以 OFDM符号持续时间 > 信道“相干时间”,OFDM容忍时延的能力很强。

解释:GSM中每个频道宽度:200KHz,每个频道: 8个时隙。

而OFDM中每个子载波间隔是15KHz,小于信道的相干带宽。

所以:OFDM可以有效对抗符号间干扰。

解释:

多径对信道产生的负面影响就是会产生符号间干扰(Inter Symbol Interference)。可以拉长符号的时间,并在符号之间加入cp保护。这样可以克服多径。减小带宽的原因其实和多径无直接关系,在多载波系统中,我们当然希望子载波越小越好,同样是20Mhz的带宽,子载波越小,子载波个数越多能表征的信息就越多。但子载波越小载波正交性就越难保证,载波非正交对子载波的影响就越大。

防止多普勒?没法防止,只能设计好参考信号、cp长度、符号长度,来准确估计多普勒,然后用算法补偿多普勒。通常说的能抗多高度移动速度等等,都是针对这些设计来说的。

lte子载波宽度的设计、符号长度、支持的最高速率和相干带宽有关。我们当然希望信道是平坦的,至少一个RB内平坦,不然无法用参考信号的子载波估计出的信道,给其他业务子载波均衡。

多径信号在时域、频域的分析思考

1,多径信号是空间上的多个不同信号。各参数应分别从时域、频率进行考察。

测量角度包括:

1)分时域、频域来分别观察与测量每个多径信号,包括:时延、最大时延、符号周期、相干带宽

2)分时域、频域来观察多个多径信号之间的关系。即:相干时间、多普勒频偏、ISI

多径信号在时域只涉及时延、最大时延、符号周期、相干时间等时间上的概念,它们在时域进行测量。

多径信号在频域,则涉及相干带宽,它是一个频率范围值(频分复用后的一个子信道的带宽小于相干带宽时,则其衰落为非频率选择性衰落),属于频域概念,相干带宽=1/最大时延,时延则是时域的测量值。这就把时域与频域建立了对应关系。

相干带宽属于某个多径信号的参数,不涉及多个多径信号之间关系。

相干时间是时域的概念,它=1/最大的多普勒频偏。两个多径信号到达时间间隔在相干时间之内,则视为相同信号,可以叠加后再处理。

多普勒频偏实际上不是频域上的频率分量,而是不同多径信号的符号周期的倒数,比如信号发出时,时钟频率为x,它的某个多径信号到接收机后,其时钟频率变为y,对应的频谱同样也同样发生了偏移,频谱上每个频率点均发生了偏移,偏移量与 (y-x)、x 的数值有关。(x、y 是基波频率)

2,符号间干扰ISI是时域的概念,时延、多径均影响了ISI

1),时延->符号不同步->符号间干扰ISI

OFDMA除了频分复用外,也是时分复用的系统。收发两端必须让时间高度一致,以定位时隙开始位置(即符号同步),当信号存在时延时,某一个时隙的OFDM符号就会重叠到邻接的时隙上。如果延伸得太长,就会扰乱邻接时隙内发送的真实符号,这就是符号间干扰ISI。

接收机必须解决 OFDM符号同步问题,即接收机必须知道每个OFDM周期从哪个时间点开始后才能进行FFT运算。

2),多径分量->符号不同步->符号间干扰ISI

当各多径信号叠加时,如多径信号到达接收机的时间间隔不同(多径信号到达的时间间隔一定是不同的),即不但有时延,而且各多径信号的时延不同。

对接收机来说,需要定位OFDM符号起始时间,多径信号的叠加会造成 OFDM符号拉长、延伸到下一个符号的时间内,且由于各多径时延不同(由于手机在移动,各多径也在变化),延伸长度也是随OFDM符号而变,即某个OFDM符号延时A us的话,另一个OFDM符号延时 B us。

3,信道间干扰ICI是频域的概念,时延、多径均影响了ICI

多径、时延造成了多普勒效应,接收信号中子载波不再正交了。

由于各多径信号时延的不同,接收信号的波形比原信号展宽了,变宽的部分即时延扩展,可用相干带宽描述。

两路径信号同相,接收信号出现峰点,而两路径信号反相时,接收信号出现谷点。

时延的扩散,会引起符号间干扰ISI。而从频域看。接收信号频谱中,某个频率分量的增益会比其它分量的增大,从而使接收信号产生畸变。

为了减少ISI,OFDM符号之间插入了空闲的保护间隔。

保护间隔长度大于信道的最大多径时延,这样一个OFDM的多径分量就不会对下一个OFDM符号构成干扰。即所有符号的延时都会落在下一个符号的保护间隔时间内。(注:保护间隔在符号首)符号时间=保护间隔时间(t1->t2)、真正的符号时间(t2->t3)

由于符号可能可能延伸到下一个符号时间内,即真正的t2、t3时间点延迟到t21,t31

对于接收机来说,仍以t2->t3作为FFT积分时间,因为有循环前缀的存在,t2->t21时间内有循环前缀存在。所以 t2->t3 时间内仍包括了完整的符号周期。

如果没有循环前缀,t2->t3时间内的符号不完整,积分后得到的频谱就会偏移。造成了信道间干扰ICI。

所以:只要无线信道中的最大时延不超过循环前缀的长度,就可以同时解决 ISI与ICI

4,时延、多普勒频移分别对应于:频率选择性衰落、时间选择性衰落,它们具有对偶性质

由于信号在时域的时延扩展,引起了频域的频率选择性衰落,即某些频率点的幅度下降特别大,这些频率点构成了一个衰落周期(即一个频率范围),衰落周期是时域的时延扩展的倒数。

由于用户高速移动产生了频域的多普勒频移,即频率由f0扩展到(f0+△f)为中心点的一段频率(即在频域上将信号的带宽展宽了,范围为B)。用户高速移动时产生了多径信号,如果各多径信号的时延(即到达接收机的时间)差别太大,则叠加起来差别太大。多普勒频移与相干时间可以联系起来。可把相干时间视为时域的衰落周期,相干时间之外,即时间选择性衰落。

多径对信号频谱的影响,OFDM如何抗多径?

设时延为θ,循环前缀CP长为Ng。

在系统已经同步的前提下

1,当θ

IFFT使得各子载波的初相是相同的。

接收侧看到各多径信号之和。

可以证明,只要θ

可见:θ

2,当θ>Ng时,各子载波不再保护正交,会引入ICI。

θ>Ng时,子载波相位跳变可能发生在FFT积分期间,波形的不连续会产生很多谐波,这些谐波进入其它子信道中引起了ICI。

当最大时延大于保护间隔时,时延会产生附加谐波,从而破坏子载波间的正交性。这时接收机只能在FFT之前先对信号作频偏校正,以保持子载波间的正交性后再解调。

而在采用BPSK和QPSK调制时,即使最大时延大于保护间隔且不大于FFT积分(64点)的6%

的情况下,仍有较好的适应性。?\\

而16QAM与64QAM的OFDM系统抗多径性能较差,即使时延小于保护间隔,也会对系统误码率产

生影响。

已经证明,当最大多径时延小于保护间隔(且同时采用了循环前缀CP生成保护间隔GI),可以完全消除多径干扰而不会引起ISI和ICI。

但当存在某条路径p的时延大于保护间隔时,会使得上一个OFDM的符号,通过第p条路径泄露到当前OFDM符号序列中,引起ISI和ICI。

为克服这条多径需要采用较长的保护间隔,这会引起很大的系统开销,降低了系统容量。

可能的方法是:干扰抵消,此时循环前缀仅用于主要的时延较小的路径,而时延较大的路径则作为干扰处理。但存在误码率较大的问题。

思考:所以,多径信号之间不会互相影响,时延只会影响单条多径信号内子载波的正交性。

GSM中的自适应均衡技术

注:下面虽然描述的是GSM技术,但主要技术原理仍适应于LTE。

数字传输的引入带来了另一问题是时间色散。这一问题也起源于反射,但与多径衰落不同,其反射信号来自远离接收天线的物体约在几千米远处,图3-20为时间色散一例。由基站发送“1”、“0”序列,如果反射信号的达到时间刚好滞后直射信号一个比特的时间,那么接收机将在从直射信号中检出“0”的同时,还从反射信号中检出“1”,于是导致符号“1”对符号“0”的干扰。

图3-20 时间色散

在GSM系统中,比特速率为270kbit/s,则每一比特时间为3.7ms。因此,一比特对应1.1km。假如反射点在移动台之后lkm,那么反射信号的传输路径将比直射信号长2km。这样就会在有用信号中混有比它迟到两比特时间的另一个信号,出现了码间干扰。时间色散似乎是个很棘手的问题,不过在GSM系统中采用了自适应均衡技术,这一问题的严重性得以缓解。

均衡有两个基本途径:一为频域均衡,它使包括均衡器在内的整个系统的总传输函数满足无失真传输的条件。它往往是分别校正幅频特性和群时延特性,序列均衡通常采用这种频域均衡法。二为时域均衡,就是直接从时间响应考虑,使包括均衡器在内的整个系统的冲激响应满足无码间串扰的条件。目前我们面临的信号是时变信号,因此需要采用第二个均衡途径时域均衡来达到整个系统无码间串扰。

时域均衡系统的主体是横向滤波器,也称横截滤波器,它由多级抽头延迟线、加权系数相乘器(或可变增益电路)及相加器组成,如图3-21。

图3-21 横向滤波器

自适应均衡器所追求的目标就是要达到最佳抽头增益系数,是直接从传输的实际数字信号中根据某种算法不断调整增益,因而能适应信道的随机变化,使均衡器总是保持最佳的工作状态,有更好的失真补偿性能,自适应均衡器需有三个特点:快速初始收敛特性、好的跟踪信道时变特性和低的运算量。因此,实际使用的自适应均衡器系统除在正式工作前先发一定长度的测试脉冲序列,又称训练序列,以调整均衡器的抽头系数,使均衡器基本上趋于收敛,然后再自动改变为自适应工作方式,使均衡器维持最佳状态。自适应均衡器一般还按最小均方误差准则来构成,最小均方算法采用维特比(“Viterbi )算法。维特比算法其实质就是最大似然比算法,维特比均衡器的方框图如图3-22。

图3-22 维特比均衡器

GSM 数字移动通信系统中的训练序列如表3-1,它们具有很好的自相关性,以使均衡器具有很好的收敛性。

表3-1 GSM 系统的训练序列

数 十进制 八进制 十六进制 二进制

1 9898135 45604227 970897 001001011100001000

10010111

2 12023991 55674267 B778B7 001011011101111000

10110111

3 17754382 103564416 10EE90E 010000111011101001

00001110

4 18796830 107550436 11ED11E 010001111011010001

00011110

5 7049323 32710153 6B906B 000110101110010000

01101011

6 20627770 116540472 13AC13A 010011101011000001

00111010

7 43999903 247661237 29F629F 101001111101100010

10011111

8 62671804 357045674 3BC4BB C 111011110001001011

10111100

下面简单介绍一下均衡技术的原理。信道可以是金属线、光缆、无线链路等,每种信道有其自己的特性,如带宽、衰减等等。因此,最佳接收机应适合用于特殊类型传输信道,这就意味着该接收机应知道信道是什么样的,否则就不是最佳接收机:我们要做的事情就是建立一个传输信道(即空中接口)的数学模型,计算出最可能的传输序列,这就是均衡器。传输序列是以突发脉冲串的形式传输,在突发脉冲串的中部,加有已知方式的且自相关性强的训练序列,利用这一训练序列,均衡器能建立起该信道模型。这个模型随时间改变,但在一个突发脉冲串期间被认为是恒定的。建立了信道模型,下一步是产生全部可能的序列,并把它们馈入通过信道模型,输出序列中将有一个与接收序列最相似,与此对应的那个输入序列便被认为是当前发送的序列,见图3-23。

图3-23 均衡器工作原理

例中序列长度N = 3,接收序列为010。N = 3给出了馈入信道模型的8种可能的输入系列:

输入000,输出100;

输入001,输出010;

输入010,输出:110等等。

显然,第二个输入系列001产生了最相似输出序列010,因此认为001=为发送序列。

这看起来似乎很简单,不过问题是通常不会有N =3的情况。例如在GSM 中,N = 116,这就需要相当大量的比较。假如每秒钟比较1千万个组合,计算全部组合将要花费1029年。由此导致的话音时延是绝对不能容忍的,所以实际使用的均衡器中使用了维特比算法就是这个道理。

GSM 规范要求均衡器应能处理时延高达15ms 左右的反射信号,15ms 约对应4比特时间。此外,由于近区(相对于接收机)反射,反射信号本身易受到瑞利衰落的影响。然而,与直射信号相比,反射信号具有不相关性衰落图形,困而能被均衡器利用,从而改善性能。因此只要反射信号的时延不超过15ms 就可以得到很好的信号质量。

maab瑞利衰落信道仿真

引言 由于多径和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,如时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着至关重要的影响,而多径信道的包络统计特性成为我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布和Nakagami-m分布。在本文中,专门针对服从瑞利分布的多径信道进行模拟仿真,进一步加深对多径信道特性的了解。 仿真原理 1、瑞利分布简介 环境条件: 通常在离基站较远、反射物较多的地区,发射机和接收机之间没有直射波路径,存在大量反射波;到达接收天线的方向角随机且在(0~2π)均匀分布;各反射波的幅度和相位都统计独立。 幅度、相位的分布特性: 包络 r 服从瑞利分布,θ在0~2π内服从均匀分布。瑞利分布的概率分布密度如图1所示: 图1 瑞利分布的概率分布密度 2、多径衰落信道基本模型

根据ITU-RM.1125标准,离散多径衰落信道模型为 () 1()()()N t k k k y t r t x t τ==-∑%% (1) 其中,()k r t 复路径衰落,服从瑞利分布; k τ是多径时延。 多径衰落信道模型框图如图2所示: 图2 多径衰落信道模型框图 3、产生服从瑞利分布的路径衰落r(t) 利用窄带高斯过程的特性,其振幅服从瑞利分布,即 ()r t = (2) 上式中,()c n t 、()s n t 分别为窄带高斯过程的同相和正交支路的基带信号。 首先产生独立的复高斯噪声的样本,并经过FFT 后形成频域的样本,然后与S (f )开方后的值相乘,以获得满足多普勒频谱特性要求的信号,经IFFT 后变换成时域波形,再经过平方,将两路的信号相加并进行开方运算后,形成瑞利衰落的信号r(t)。如下图3所示: 图3 瑞利衰落的产生示意图 其中,

瑞利信道仿真 matlab

实验一 瑞利信道的仿真 一 引言:瑞利信道介绍 瑞利衰落信道(Rayleigh fading channel )是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。[1] 瑞利分布就是两个独立的高斯分布的平方和的开方一个信号都是分为正交的两部分,而每一部分都是多个路径信号的叠加,当路径数大于一定数量的时候,他们的和就满足高斯分布。而幅度就是两个正交变量和的开平方,就满足瑞利分布了。[2] 二 实验目的: 用MATLAB 软件仿真瑞利信道,产生瑞利信道的随机数,画出产生瑞利数据的CDF 和PDF ,并求瑞利数据的均植和方差。 三 实验内容: 1、实验原理: 一个随机二维向量的两个分量呈独立的、有着相同的方差的正态分布时,这个向量的模呈瑞利分布,两个正交高斯噪声信号之和的包络服从瑞利分布。信道符合瑞利分布,做出概率密度函数曲线。这里又到了瑞利分布的概率密度函数 2 22()exp() 0r 2r r p r σσ=-≤≤∞运用公式验证瑞利信道是符合瑞利分布的。 2、程序框图

3、源程序代码 % parameters setting clc; n=0:0.1:10; sigma=1; N=100000; x=randn(1,N); y=randn(1,N); M=x+j*y; r=sqrt(sigma*(x.^2+y.^2)); % q=1-exp((-(x.^2+y.^2))/(2*sigma*sigma)); % step=0.1; %range=0:step:3; h=hist(r,n); fr_approx=h/(0.1*sum(h)); pijun=sum(r)/N; junfanghe=(r-pijun).^2; junfang=sum(junfanghe)/N; u=0; % w=hist(q,n); % fr_approx1=-w/(0.1*sum(w)); % Calculate the CDF &Drawing cdf=raylcdf(n,sigma); subplot(3,1,1); plot(n,cdf); % hold on; % plot(n,fr_approx1,'ko'); % Calculate the PDF & Drawing title('Normal cumulative distribution'); pdf=raylpdf(n,sigma); subplot(3,1,2); plot(n,pdf); title('Normal probability density'); hold on; plot(n,fr_approx,'ko'); axis([0 8 0 1]) wucha=fr_approx-pdf; subplot(3,1,3); plot(n,wucha); title('wucha'); % Generate the randoms & Calculate the mean, covariance R=raylrnd(sigma,1,1000); % subplot(3,1,3);

实验二 信道与眼图实验

实验二信道与眼图实验 一、实验目的 1、掌握用眼图来定性评价基带传输系统性能。 2、掌握信道与眼图模块的使用方法。 二、实验内容 1、信号送入高斯白噪信道,调节噪声功率大小,观测信道输出。 2、数字基带传输信道观测眼图。 三、实验仪器 1、信号源模块一块 2、信道与眼图模块一块 3、20M双踪示波器一台 4、虚拟仪器(选配)一块 5、频谱分析仪一台 四、实验原理 1、高斯白噪 本实验中我们用伪随机序列模拟高斯白噪声。伪随机噪声具有类似于随机噪声的一些统计特性,同时又便于重复产生和处理。由于它具有随机噪声的优点,又避免了它的缺点,因此获得了日益广泛的实际应用。目前广泛应用的伪随机噪声都是由数字电路产生的周期序列(经滤波等处理后)得到的。我们把这种周期序列称为伪随机序列。通常产生伪随机序列的电路为一反馈移存器。它又可分为线性反馈移存器和非线性反馈移存器两类。 由线性反馈移存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移存器序列,通常简称为m序列。由于m序列的均衡性、游程分布、自相关特性和功率谱与上述随机序列的基本性质很相似,所以通常认为m序列属于伪噪声序列或伪随机序列。用m序列的这一部分频谱作为噪声产生器的噪声输出,虽然这种输出是伪噪声,但是多次进行某一测量,都有较好的重复性。将m序列进行滤波,就可取得上述功率谱均匀的部分作为输出。 实验中,“噪声功率调节”旋转电位器用来控制叠加在信号上的噪声功率的大小。 2、传输畸变和眼图 一个实际的基带传输系统,尽管经过了精心的设计,但要使其传输特性完全符合理想情况是困难的,甚至是不可能的。因此,码间干扰也就不可能避免。我们知道,码间干扰问题与发送滤波器特性、信道特性、接收滤波器特性等因素有关,因而计算由于这些因素所引起的误码率就非常困难,尤其在信道特性不能完全确知的情况下,甚至得不到一种合适的定量分析方法。眼图就是一种能够方便地估计系统性能的实验手段。这种方法的具体做法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器水平扫描周期,使其与接收码元的周期同步。这时就可以从示波器显示的图形上观察出码间干扰和噪声的影响,从而估计出系统性能的优劣程度。所谓眼图就是指示波器显示的图形,因为在传输二进制信号波形时,它很像人的眼睛。 为了说明眼图和系统性能之间的关系,我们把眼图简化为一个模型,如图2-1所示。该图表述了下列意思: (1)眼图张开部分的宽度决定了接收波形可以不受串扰影响而抽样、再生的时间间隔。

无线信道建模与仿真

摘要 移动通信最近几年得到了突飞猛进的发展,人们对无线信道的研究也成了当前通信行业的主题,特别是对无线信道的建模与仿真也受到了许多学者的关注,在这个领域的研究也取得了很大成果。无线信道模型分为自由空间模型、无线视距模型和经验模型,本文首先研究了无线信道模型的特点,建立了无线信道的的模型,对自由空间模型和经验模型Okumura-Hata 模型、COST-231 Hata模型以及COST231-WI模型进行了比较,并将其用Matlab软件仿真,对仿真结果进行了分析。 关键字:无线信道、Hata模型、COST231-WI模型

Abstract Mobile communication several years obtained the development recently which progresses by leaps and bounds, The people have also become the current correspondence profession subject to the wireless channel research. Specially has also received many scholars' attention to the wireless channel modeling and simulation, Has also yielded the very big result in this domain research. Wireless channel model is divided into free space model, the wireless line of sight and empirical model, this paper studied the characteristics of wireless channel model is established radio channel model, on the free space model and empirical model Okumura-Hata model, COST-231 Hata model and COST231-WI model were compared, using Matlab software to simulate, the simulation results are analyzed. Keywords: Wireless channel, Hata model, COST231-WI model

无线信道传播特性分析总结

无线信道传播特性分析总结 班级学号姓名 随着科学技术的发展,无线通信已经渗透到我们生活的各个方面,对我们的生活工作有着巨大的影响。在无线通信系统中,无线通信的信道的特性对整个系统有着巨大的影响。 1、无线信道的概念 要想搞明白无线信道具有哪些特性,就要先了解什么是无线信道。信道是对无线通信中发送端和接收端之间的通路的一种形象比喻,对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,我们想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。信道具有一定的频率带宽,正如公路有一定的宽度一样。 与其它通信信道相比,无线信道是最为复杂的一种,其衰落特性取决于无线电波传播环境。不同的环境,其传播特性也不尽相同。无线信道可能是很简单的直线传播,也可能会被许多不同的因素所干扰,例如:信号经过建筑物,山丘,或者树木所有反射而产生的多径效应,使信号放大或衰落。在无线信道中,信号衰落是经常发生的,衰落深度可达30。对于数字传输来说,衰落使比特误码率大大增加。这种衰落现象严重恶化接收信号的质量,影响通信可靠性。移动信道与非移动点对点无线信道相比,信号传输的误比特率前者比后者高106倍。 另外,在陆地移动系统中,移动台处于城市建筑群之中或处于地形复杂的区域,其天线将接收从多条路径传来的信号,再加移动台本身的运动,使得信号产生多普勒效应,并且信道的特性也随时间变化而变化,增加了信号的不确定性,使得移动台和基站之间的无线信道多变且难以控制。所以,与传统模型相比,无线信道多径数目增多,时延扩展加大,衰落加快。 2、无线信道的特性 信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机组合。同时,电波在各条路径的传播过程中,有用信号会受到各种噪声的污染,包括加性噪声

湘潭大学移动通信实验报告实验3-白噪声信道模拟实验

实验三、白噪声信道模拟实验 一、实验目的 1、了解白噪声产生原因。 2、了解多径干扰对信号的影响。 二、实验内容 观察白噪声对信号的干扰。 三 、基本原理 在移动通信中,严重影响移动通信性能的主要噪声与干扰大致可分为3类:加性正态白噪声、多径干扰和多址干扰。 这里加性是指噪声与信号之间的关系服从叠加原理的线性关系,正态则是指噪声分布遵从正态(高斯)分布,而白则是指频谱是平坦的,仅含有这类噪声的信道一般文献上称为AWGN信道。这类噪声是最基本的噪声,非移动信道所特有,一般简称这类噪声为白噪声。这类噪声以热噪声、散弹噪声及宇宙噪声为代表,其特点是,无论在时域内还是在频域内它们总是普遍存在和不可避免的。 热噪声是在电阻一类导体中,自由电子的布朗运动引起的噪声。导体中的每一个自由电子由于其热能而运动。电子运动的途径,由于和其他粒子碰撞,是随机的和曲折的,即呈现布朗运动。所有电子运动的总结果形成通过导体的电流。电流的方向是随机的,因而其平均值为零。然而,电子的这种随机运动还会产生一个交流电流成分。这个交流成分称为热噪声。 散弹噪声是由真空电子管和半导体器件中电子发射的不均匀性引起的。散弹噪声的物理性质可由平行板二极管的热阴极电子发射来说明。在给定的温度下,二极管热阴极每秒发射的电子平均数目是常数,不过电子发射的实际数目随时间是变化的和不能预测的。这就是说,如果我们将时间轴分为许多等间隔的小区间,则每一小区间内电子发射数目不是常量而是随机变量。因此,发射电子所形成的电流并不是固定不变的,而是在一个平均值上起伏变化。总电流实际上是许多单个电子单独作用的总结果。由于从阴极发射的每一个电子可认为是独立出现的,且观察表明,每1安培多平均电流相当于在1秒钟内通过约6×1018个电

移动通信瑞利衰落信道建模及仿真

移动通信瑞利衰落信道建模及仿真 信息与通信工程学院 09211123班 09212609 蒋砺思 摘要:首先分析了移动信道的表述方法和衰落特性,针对瑞利衰落,给出了Clarke模型,并阐述了数学模型与物理模型之间的关系,详细分析了Jakes仿真方法,并用MATLAB进行了仿真,并在该信道上实现了OFDM仿真系统,仿真曲线表明结果正确,针对瑞利衰落的局限性,提出了采用Nakagami-m分布作为衰落信道物理模型,并给出了新颖的仿真方法。 关键词:信道模型;Rayleigh衰落;Clarke模型;Jakes仿真;Nakagami-m分布及仿真 一.引言 随着科学技术的不断进步和经济水平的逐渐提高,移动通信已成了我们日常生活中不可缺少的必备品。然而,移动通信中的通话常常受到各种干扰导致话音质量的不稳定。本文应用统计学及概率论相关知识对移动通信的信道进行建模仿真和详尽的分析。 先来谈谈移动通信的发展历史和发展趋势。所谓通信就是指信息的传输、发射和接收。人类通信史上革命性的变化是从电波作为信息载体(电信)开始的,近代电信的标志是电报的诞生。为了满足人们随时随地甚至移动中通信的需求,移动通信便应运而生。所谓移动通信是指通信的一方或双方处于移动中,其传播媒介是无线电波,现代移动通信以Maxwel1理论为基础,他奠定了电磁现象的基本规律;起源于Hertz的电磁辐射,他认识到电磁波和电磁能量是可以控制发射的,而Marconi无线电通信证实了电磁波携带信息的能力。第二次世界大战结束后,开始了建立公用移动通信系统阶段。这第一代移动通信系统最大缺点是采用模拟技术,频谱利用律低,容量小。90年代初,各国又相继推出了GSM等第二代数字移动通信系统,其最大缺点是频谱利用率和容量仍然很低,不能经济的提供高速数据和多媒体业务,不能有效地支持Internet业务。90年代中期以后,许多国家相继开始研究第三代移动通信系统,目前,我国及其他国家已开始了第四代移动通信的研究。相比之前的系统,3G或4G有以下一些特点:1.系统的国际通用性:全球覆盖和漫游。2.业务多样性,提供话音、数据和多媒体业务,支持高速移动。3.频谱效率高,容量大。4.提供可变速率业务,具有QoS保障。在3G或4G的发展中,一个核心问题就是系统的高速数据传输与信道衰落之间的矛盾。从后面的分析中,我们会看到多径衰落是影响移动通信质量的重要因素,而高速数据传输和移动终端高速移动会加剧多径衰落,因此,抗衰落是3G或4G的重要技术,对移动信道的研究是抗衰落的基础,建模及仿真是研究衰落信道的基本方法之一。 再来看看移动通信系统组成及移动信道特点。移动通信组成如图(1)所示,包括信源、信道、信宿,无线信道是移动通信系统的重要

通信原理仿真-多径信道仿真实验

多径信道仿真实验报告 一、AM 、DSB 调制及解调 要求:用matlab 产生一个频率为1Hz ,功率为1的余弦信源()m t ,设载波频率 10c Hz ω=,02m =,试画出: AM 及DSB 调制信号的时域波形; 1 2 3 4 567 8 9 10 t AM 时域波形图 1 2 3 4 56 7 8 9 10 t DSB 时域波形图 0100200300400 500600700 8009001000 N AM 频谱图 100 200 300 400 500600 700 800 900 1000 N DSB 频谱图

● 采用相干解调后的AM 及DSB 信号波形; 1002003004005006007008009001000 AM 波 100200300400500600700800900 1000 -1.5-1 -0.5 0.5 1 1.5 DSB 波 ● AM 及DSB 已调信号的功率谱;

1002003004005006007008009001000 5 10 5 AM 波功率谱 01002003004005006007008009001000 5 1015x 10 4 DSB 波功率谱 调整载波频率及m0,观察分的AM 的过调与DSB 反相点现象。

在接收端带通后加上窄带高斯噪声,单边功率谱密度 00.1 n ,重新解调。%% 加噪解调 noise=wgn(1,length(sAM),0.2); %高斯噪声 h2=fir1(100,[2*8.9/100,2*11.1/100]); %带通滤波器设计 znoise=conv(noise,h2); %窄带高斯噪声 sAM2=sAM+znoise(101:end); sDSB2=sDSB+znoise(101:end); spAM2=sAM2.*ct; spDSB2=sDSB2.*ct; b=fir1(100,0.12*2); sdAM2=filter(b,1,spAM2); sdAM_2=2.*sdAM2-m0; sdAM__2=sdAM_2(50:end); %去暂态 figure(6); plot(sdAM__2,'r');hold on; plot(mt); legend('加噪解调后','原信号');title('AM波');

(精选)信道衰落模型汇总

简单模型2种:常量(Constant )模型和纯多普勒模型 1. 常量(Constant )模型: 常量模型既没有衰落,也没有多普勒频移,适用于可预测的固定业务无线信道。其幅度分布的概率密度函数(PDF )为: 0(r)A (r r ) p δ=- 式中r 为信道响应的幅度,A 为概率常数。 常量模型的多普勒谱为: ()db d f P B f δ= 式中fd 为最大多普勒频移,f 为基带频率,B 为常数。 2. 纯多普勒模型: 纯多普勒模型无衰落,但有多普勒频移,适用于可预测的移动业务无线信道。其幅度分布与常量模型相同,多普勒谱为: ()x db d d f f P C f f δ=-,C 为常数。 由于移动通信中移动台的移动性,无线信道中存在多普勒效应。在移动通信中,当移动台移向基站时,频率变高,远离基站时,频率变低。我们在移动通信中要充分考虑“多普勒效应”。虽然,由于日常生活中,我们移动速度的局限,不可能会带来十分大的频率偏移,但是这不可否认地会给移动通信带来影响,为了避免这种影响造成我们通信中的问题,我们不得不在技术上加以各种考虑。也加大了移动通信的复杂性。 3. 瑞利模型: 瑞利衰落信道(Rayleigh fading channel )是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。这一信道模型能够描述由电离层和对流层反射的短波信道,以及建筑物密集的城市环境。瑞利衰落只适用于从发射机到接收机不存在直射信号(LoS ,Line of Sight )的情况,否则应使用莱斯衰落信道作为信道模型。在无线通信信道环境中,电磁波经过反射折射散射等多条路径传播到达接收机后,总信号的强度服从瑞利分布。 同时由于接收机的移动及其他原因,信号强度和相位等特性又在起伏变化, 故称为瑞利衰落。

(完整word版)MATLAB仿真瑞利衰落信道实验报告结果

封面: 题目:瑞利衰落信道仿真实验报告

题目:MATLAB仿真瑞利衰落信道实验报告 引言 由于多径效应和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,即时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着重要的影响,而多径信道的包络统计特性则是我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布等。在此专门针对服从瑞利分布的多径信道进行模拟仿真,进一步加深对多径信道特性的了解。 一、瑞利衰落信道简介: 瑞利衰落信道(Rayleigh fading channel)是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。 二、仿真原理 (1)瑞利分布分析 环境条件: 通常在离基站较远、反射物较多的地区,发射机和接收机之间没有直射波路径(如视距传播路径),且存在大量反射波,到达接收天线的方向角随机的((0~2π)均匀分布),各反射波的幅度和相位都统计独立。 幅度与相位的分布特性: 包络 r 服从瑞利分布,θ在0~2π内服从均匀分布。瑞利分

布的概率分布密度如图2-1所示: 00.51 1.52 2.53 00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 图2-1 瑞利分布的概率分布密度 (2)多径衰落信道基本模型 离散多径衰落信道模型为 ()1()()() N t k k k y t r t x t τ==-∑ 其中,()k r t 复路径衰落,服从瑞利分布; k τ是多径时延。 多径衰落信道模型框图如图2-2所示:

无线传输信道的特性

通信工程专业研究方法论无线传输信道的特性 学院:电子信息工程学院 专业:通信工程 班级: 学号: 学生: 指导教师:毕红军 2014年8月

目录 一、引言: (2) 二、无线电波传播频段及途径 (3) 2.1无线电波频段划分 (3) 2.2无线电波的极化方式 (4) 2.3传播途径 (4) 三、无线信号的传播方式 (5) 3.1直线传播及自由空间损耗 (5) 3.2 反射和透射 (6) 3.2.1斯涅尔(Snell)定律 (6) d 功率定律 (7) 3.2.2 4 3.2.3断点模型 (8) 3.3绕射 (9) 3.3.1单屏或楔形绕射 (9) 3.3.2多屏绕射 (10) 3.4散射 (12) 四、窄带信道的统计描述 (14) 4.1不含主导分量的小尺度衰落 (14) 4.2含主导分量的小尺度衰落 (16) 4.3多普勒谱 (16) 4.4大尺度衰落 (17) 五、宽带信道的特性 (18)

5.1多径效应对宽带信道的影响 (18) 5.2多普勒频移对宽带信道的影响 (21) 六、总结 (22) 七、参考文献 (23) 一、引言: 各类无线信号从发射端发送出去以后,在到达接收端之前经历的所有路径统称为信道。如果传输的无线信号,则电磁波所经历的路径,我们称之为无线信道。信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机结合。同时,电波在各种路径的传播过程中,有用信号会受到各种噪声的污染,因而会出现不同情形的损伤,严重时会使信号难以恢复。无线信号在传播时,不仅存在自由空间固有的传输损耗,还会受到建筑物、地形等的阻挡而引起信号功率的衰减和相位的失真,这种衰减还会由于移动台的运动和信道环境的改变出现随机的变化。下面将讨论无线传输信道的主要特性。 二、无线电波传播频段及途径 2.1无线电波频段划分

实验七_信道编码仿真实现

实验七信道编码仿真实现 班级:08电子信息工程二班 实验人:马华臣 一、实验目的 理解信道编码的思想,掌握信道编码的编程实现原理及技术。 二、实验内容 1.随机产生二进制信源消息序列。 产生随机数的方法与前面类似,利用srand( (unsigned)time( NULL ) )和rand()函数模拟产生随机数。 2.利用信道编码方法进行编译码。 信道的编译码分三部分,即编码部分,信道模拟部分,译码部分。编码部分采用汉明编码。模拟信道,采用rand()函数随机确定产生差错的位置。译码部分,采用标准阵列表直接全表查找的方法译码。本程序实现的是对汉明(5,2)码的编码与译码(课本P362-363)。 生成矩阵为: G= 1 0 1 1 1 0 1 1 0 1 三、程序 //汉//汉明(5,2)码的编码与标准阵列译码/// ///////////////////////////// #include "stdio.h"

#include "math.h" #include"stdlib.h" #include "time.h" void main() { int aa[10000]; int i; int N; //////////////////////// int b[4][7]={{1,0,1,1,1},{0,1,1,0,1}};//定义生成矩阵 int y=0,s=0; int j,k,m,n; int a[4],q[7],rr[10000/2*5]; ////////////////////////// int p,u,D=0; int cc[2500],dd[2500],ee[2500]; int e[7][5]={{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0},{0,0,0,0,1}, {1,0,1,0,0},{1,0,0,0,1}};//定义错误图样 int w[10000/2*5]; int ww[10000/2]; printf("汉明(5,2)码的编码与标准阵列译码:\n"); printf("请输入你想产生的二进制个数(至少四个但不超过1万):"); scanf("%d",&N); //输入想产生的信源的个数 while(N<4) { printf("输入无效,请重新输入"); printf("请输入你想产生的二进制个数(至少四个):"); scanf("%d",&N); } printf("随机产生的二进制序列为:\n"); srand( (unsigned)time( NULL ) ); //产生一个随机序列,并把它放入a[]中for(i=0;i

AWGN信道设计与仿真

天津理工大学《扩频通信》实验报告AWGN信道设计与仿真 姓名:范菲菲 学号: 143127311

一、 实验目的 1、通过实验更加清楚的了解加性高斯白噪声信道(AWGN )的产生与特性。 2、观察信号通过AWGN 信道后信号的变化。 二、 实验原理 高斯白噪声是一种随机过程而且服从高斯分布,因此可以利用MATLAB 中提供的函数randn 得到正态分布的随机数作为AWGN 信道产生的干扰。AWGN 信道的“加性”特性因其满足可加性,所以可以直接用合成序列加上加高斯白噪声,这样就得到了有噪信号,这样的波形就相当于传输信号通过了AWGN 信道之后输出的波形。 三、 仿真结果 -1 012345678 I 路序列-1012345678 Q 路序列 图1 I 路和Q 路信号

-1 012345678 -1-0.5 00.5 1 合成序列-1012345678 -1-0.500.5 1加高斯噪声后的波形 图2 合成序列和加入高斯噪声之后的波形图 四、 源程序 clear all close all t=[-1:0.01:7-0.01]; tt=length(t); x1=ones(1,800); for i=1:tt if (t(i)>=-1 & t(i)<=1) | (t(i)>=5& t(i)<=7); x1(i)=1; else x1(i)=-1; end end t1=[0:0.01:8-0.01]; t2=0:0.01:7-0.01; t3=-1:0.01:7.1-0.01; t4=0:0.01:8.1-0.01; tt1=length(t1);

无线信道传播特性

无线信道传播特性分析总结

无线信道传播特性分析总结 班级学号姓名 随着科学技术的发展,无线通信已经渗透到我们生活的各个方面,对我们的生活工作有着巨大的影响。在无线通信系统中,无线通信的信道的特性对整个系统有着巨大的影响。 1、无线信道的概念 要想搞明白无线信道具有哪些特性,就要先了解什么是无线信道。信道是对无线通信中发送端和接收端之间的通路的一种形象比喻,对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,我们想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。信道具有一定的频率带宽,正如公路有一定的宽度一样。 与其它通信信道相比,无线信道是最为复杂的一种,其衰落特性取决于无线电波传播环境。不同的环境,其传播特性也不尽相同。无线信道可能是很简单的直线传播,也可能会被许多不同的因素所干扰,例如:信号经过建筑物,山丘,或 者树木所有反射而产生的多径效应,使信号放大或衰落。在无线信道中,信号衰落是经常发生的,衰落深度可达30 ?B。对于数字传输来说,衰落使比特误码率大大增加。这种衰落现象严重恶化接收信号的质量,影响通信可靠性。移动信道与非移动点对点无线信道相比,信号传输的误比特率前者比后者高106倍。 另外,在陆地移动系统中,移动台处于城市建筑群之中或处于地形复杂的区域,其天线将接收从多条路径传来的信号,再加移动台本身的运动,使得信号产 生多普勒效应,并且信道的特性也随时间变化而变化,增加了信号的不确定性, 使得移动台和基站之间的无线信道多变且难以控制。所以,与传统模型相比,无线信道多径数目增多,时延扩展加大,衰落加快。 2、无线信道的特性 信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机组合。同

信道模拟实验

1、信道模拟实验 (1)将信号源模块、信道模拟模块、终端模块小心地固定在主机箱中,确保电源接触良好。 (2)插上电源线,打开主机箱右侧的交流开关,再分别按下三个模块中的开关POWER1、POWER2,各模块对应的发光二极管LED01、LED02发光,三个模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线) (3)将信号源模块的拨码开关SW04、SW05设置为00000101 00000000,按实验一的介绍,此时分频比千位、十位、个位均为0,百位为5,因此分频比为500,此时位同步信号频率应为4KHz。相应地,信道模拟模块的编码方式控制开关拨“0”、码速率选择拨码开关设置为1000,与信号源的码速率相一致(见表10-1)。用双踪示波器观察编码输入“数据”输出点、编码输出“数据”输出点波形。 (4)将信号源的NRZ码作为数据输出,连接到终端的DATA1端,相应的位同步信号(BS1)与帧同步信号(FS1)分别相连,同时将信号源的NRZ码连接到信道模拟的信道输入端,经过信道后从信道输出1端输入到终端的DATA2端,BS2和FS2与信号源的位同步信号(BS)与帧同步信号(FS)分别相连。则终端的发光二极管D01-D24显示的是直接从信号源输出的数据,发光二极管D25-D48显示的经过信道传输后的数据。(也可用示波器双踪比较上述两组数据) (5)任意设置NRZ码的码型,旋转信道模拟模块的噪声功率调节电位器,改变信道内噪声功率大小,观察噪声对发光二极管D25-D48显示数据的影响。同时用示波器观察信道输入与信道输出1处的信号波形。 (6)将信道模拟模块的编码方式控制开关拨“1”、码速率选择拨码开关设置为1000,信号源的拨码开关SW04、SW05设置为00000111 01010000,重复上述实验。(7)换用其它码速率,重复上述实验。 2、差错控制编码实验 (1)将信号源的NRZ码作为数据输出,连接到信道模拟的编码输入数据端,相应的位同步信号(BS)与帧同步信号(FS)分别与信号源的BS和FS相连。将信号源的1024K连接到信道模拟的1M_IN,同时将信道模拟的编码输出与解码输入的位同步信号与帧同步信号分别相连,编码输出的数据连入信道输入,经过信道后从信道输出1端输入到解码输入数据端;解码输出端的数据、位同步与帧同步分别与终端的DATA1、BS1和FS1相连,则终端的发光二极管D01-D24显示的经过编解码及信道传输后的数据。(也可用示波器双踪比较两组数据,也可以将信号源NRZ码输出接入终端DATA1,BS与BS1相连,FS与FS1相连。经过解码后的数据接入终端DATA2,位同步与帧同步分别与终端的BS2和FS2相连。注意:做实验时会发现解码后的信号有时候与编码不完全对应(或移动和闪动),在通过按复位键可以达到一致,这是因为编解码后的信号有移相,通过按复位键可以使编解码信号与NRZ达成同步) (2)信道模拟模块的噪声功率调节电位器(P01)固定在噪声功率最小的位置处,用示波器观察信道输出1处的信号,观察编码后的信号是否符合表10-2(如学生实验指导书中表10-2)的规则(注意:为将(7,4)汉明码补足为8位码,我们在每一个(7,4)汉明码前添加了一位零。因此,1000编码将得到01000111)。 (3)任意将“误码”拨码开关的右七位中的一位拨为高,观察编码后信号及终端显示

瑞利信道仿真

瑞利衰落信道的matlab仿真 瑞利衰落信道(Rayleigh fading channel)是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。 模型的适用 瑞利衰落模型适用于描述建筑物密集的城镇中心地带的无线信道。密集的建筑和其他物体使得无线设备的发射机和接收机之间没有直射路径,而且使得无线信号被衰减、反射、折射、衍射。在曼哈顿的实验证明,当地的无线信道环境确实接近于瑞利衰落。[3]通过电离层和对流层反射的无线电信道也可以用瑞利衰落来描述,因为大气中存在的各种粒子能够将无线信号大量散射。 瑞利衰落属于小尺度的衰落效应,它总是叠加于如阴影、衰减等大尺度衰落效应上。 信道衰落的快慢与发射端和接收端的相对运动速度的大小有关。相对运对导致接收信号的多普勒频移。图中所示即为一固定信号通过单径的瑞利衰落信道后,在1秒内的能量波动,这一瑞利衰落信道的多普勒频移最大分别为10Hz和100Hz,在GSM1800MHz的载波频率上,其相应的移动速度分别为约6千米每小时和60 千米每小时。特别需要注意的是信号的“深衰落”现象,此时信号能量的衰减达到数千倍,即30~40分贝。 性质 多普勒功率普密度

, 瑞利衰落信道的仿真 根据上文所述,瑞利衰落信道可以通过发生实部和虚部都服从独立的高斯分布变量来仿真生成。不过,在有些情况下,研究者只对幅度的波动感兴趣。针对这种情况,有两种方法可以仿真产生瑞利衰落信道。这两种方法的目的是产生一个信号,有着上文所示的多普勒功率谱或者等效的自相关函数。这个信号就是瑞利衰落信道的冲激响应。 Jakes模型和clark模型 本次只以下图所示的模型来仿真单路信号的产生。课本上也有相关的分析。

无线信道模型

无线信道模型 摘要:本文分析了无线信道模型。针对的是对无线信道的各种效应感兴趣的读者。众所周知,正是这些复杂的效应使得无线信道产生了不确定性,也就是通常所说的统计特性。由于这方面很少有比较全面,容易理解的资料,所以本文的内容是对其他几本书和相关的论文资料的综合。此外的资料不是只讨论了部分问题,就是虽然面面俱到,但缺乏一定的深度。 本文深入探讨了“是什么影响了无线信道的特性?”这一问题。主要阐述了无线信道的两种效应:一种是乘性效应,使信号产生衰落;另一种是加性效应,使接收到的信号产生畸变。信号的衰落不一定总是随机过程,但信号的畸变却总是。对于信道对信号产生的各种效应,找到了较好的数学模型,这些模型可以用来仿真和分析系统的性能。而且,我们简单举例分析了一些数字无线调制信道的特性。 内容 1 介绍 2 无线电信道 2.1路径损耗 2.1.1 天线 2.1.2 自由空间传播 2.1.3 双线模型 2.1.4 经验和半经验模型

2.1.5其他模型和参数 2.2 阴影 2.2.1 阴影模型 2.2.2 测量结果 2.2.3 阴影修正 2.3 衰落 2.3.1 物理基础 2.3.2 数学模型 2.3.3 衰落的时域和频域特性 2.3.4 一维统计特性 2.3.5 二维统计特性 2.3.6 衰落率和持续时间 3 调制信道 3.1 噪声 3.1.1 门限噪声 3.1.2 窄带高斯白噪声 3.1.3 人为噪声 3.1.4 一些结果 3.2 干扰 4 数字信道 4.1 数字信道的结构 4.2 高斯白噪声信道下二进制PAM信号的以SNIR为自变量的函数BER的计算

4.3 瑞利信道下BPSK信号以SNIR为自变量的函数BER的计算4.4 高斯白噪声信道下其他数字调制方案的一些结果 5 结论 第一章 介绍

(完整word版)LMMSE算法信道均衡MATLAB仿真

一.信道均衡的概念 实际的基带传输系统不可能完全满足无码间串扰传输条件,因而码间串扰是不可避免的。当串扰严重时,必须对系统的传输函数 进行校正,使其达到或接近无码间串扰要求的特性。理论和实践表明,在基带系统中插入一种可调滤波器就可以补偿整个系统的幅频,和相频特性从而减小码间串扰的影响这个对系统校正的过程称为均衡,实现均衡的滤波器称为均衡器。 均衡分为频域均衡和时域均衡。频域均衡是从频率响应考虑,使包括均衡器在内的整个系统的总传输函数满足无失真传输条件。而时域均衡,则是直接从时间响应考虑,使包括均衡器在内的整个系统的冲激响应满足无码间串扰条件。 频域均衡在信道特性不变,且传输低速率数据时是适用的,而时域均衡可以根据信道特性的变化进行调整,能够有效地减小码间串扰,故在高速数据传输中得以广泛应用。 时域均衡的实现方法有多种,但从实现的原理上看,大致可分为预置式自动均衡和自适应式自动均衡。预置式均衡是在实际传数之前先传输预先规定的测试脉冲(如重复频率很低的周期性的单脉冲波形),然后按“迫零调整原理”自动或手动调整抽头增益;自适应式均衡是在传数过程中连续测出距最佳调整值的误差电压,并据此电压去调整各抽头增益。一般地,自适应均衡不仅可以使调整精度提高,而且当信道特性随时间变化时又能有一定的自适应性,因此很受重视。这种均衡器过去实现起来比较复杂,但随着大规模、超大规模集成电路和微处理机的应用,其发展十分迅速。 二.信道均衡的应用 1.考虑如图所示的基带等效数据传输系统,发送信号k x 经过ISI 失真信道传输,叠加高斯加性噪声。 图1基带等效数据传输模型 设发送信号采用QPSK 调制,即(1)k x j =±±ISI 信道的冲击响应以向量的形式表示为h 2211[,,,]T L L L h h h --+=???。典型的ISI 信道响应向量有三种: h [0.04,0.05,0.07,0.21,0.5,0.72,0.36,0,0.21,0.03,0.07]T A =--- h [0.407,0.815,0.407]T B = h [0.227,0.46,0.6888,0.46,0.227]T C = k ω为实部与虚部独立的复高斯白噪声,其均值为零,方差为2 ωσ。 2.实现目的

AWGN-信道中BPSK-调制系统的BER仿真计算

序号(学号): 学生实验报告书 2014 年 4 月27 日

实验一:AWGN 信道中BPSK 调制系统的 BER 仿真计算 一、实验目的 1.掌握二相BPSK 调制的工作原理 2.掌握利用MATLAB 进行误比特率测试BER 的方法 3.掌握AWGN信道中BPSK调制系统的BER仿真计算方法 二.实验内容 利用仿真程序在MATLAB 环境下完成AWGN信道中BPSK调制系统的BER仿真计算,得到仿真结果,写出实验小结,完成实验报告。三.实验仪器: 计算机 matlab软件 四、实验原理 在数字领域进行的最多的仿真任务是进行调制解调器的误比特率测试,在相同的条件下进行比较的话,接收器的误比特率性能是一个十分重要的指标。误比特率的测试需要一个发送器、一个接收器和一条信道。首先需要产生一个长的随机比特序列作为发送器的输入,发送器将这些比特调制成某种形式的信号以便传送到仿真信道,我们在传输信道上加上一定的可调制噪声,这些噪声信号会变成接收器的输入,接收器解调信号然后恢复比特序列,最后比较接收到的比特和传送的比特并计算错误。误比特率性能常能描述成二维图像。纵

坐标是归一化的信噪比,即每个比特的能量除以噪声的单边功率谱密度,单位为分贝。横坐标为误比特率,没有量纲。 五.实验步骤 ①运行发生器:通过发送器将伪随机序列变成数字化的调制信号。 ②设定信噪比:假定 SNR 为 m dB,则 Eb/N0=10,用 MATLAB 假设SNR 单位为分贝。③确定Eb ④计算N0 ⑤计算噪声的方差σ n ⑥产生噪声:因为噪声具有零均值,所以其功率和方差相等。我们产生一个和信号长度相同的噪声向量,且该向量方差为σ n 。⑦加上噪声,运行接收器⑧确定时间延迟⑨产生误差向量⑩统计错误比特:误差向量“err”中的每一个非零元素对应着一个错误的比特。最后计算误比特率 BER:每运行一次误比特率仿真,就需要传输和接收固定数量的比特,然后确定接收到的比特中有多少错误的。使用 MATLAB 计算BER: ber=te/length(tx)。 六.实验结果及分析 MATLAB程序: %Simulation of bpskAWGN Max_SNR=10; N_trials=1000; N=200; Eb=1; ber_m=0; for trial=1:1:N_trials trial msg=round(rand(1,N)); % 1, 0 sequence s=1-msg.*2; %0-->1, 1-->1 n=randn(1,N)+j.*randn(1,N); %generate guass white noise

相关主题
文本预览
相关文档 最新文档