当前位置:文档之家› 华为软交换信令与协议处理原理

华为软交换信令与协议处理原理

目录

第3章信令与协议处理原理..................................................................................................... 3-1

3.1 TDM承载信令处理路径 ..................................................................................................... 3-1

3.2 IP承载信令处理路径.......................................................................................................... 3-3

3.2.1 MTP3/M2UA承载ISUP/INAP的处理路径.............................................................. 3-3

3.2.2 M3UA承载ISUP/INAP的处理路径......................................................................... 3-6

3.2.3 UDP承载MGCP/H.248的处理路径 ....................................................................... 3-7

3.2.4 IP承载H.323的处理路径 ..................................................................................... 3-10

3.2.5 UDP承载SIP的处理路径..................................................................................... 3-14

3.2.6 IUA承载DSS1的处理路径................................................................................... 3-17

3.2.7 V5UA承载V5.2的处理路径.................................................................................. 3-18

第3章信令与协议处理原理

3.1 TDM承载信令处理路径

1. 正常处理路径

正常情况下,TDM(Time Division Multiplex)承载信令处理路径如图3-1所

(2) EPII处理MTP1(Message Transfer Part Layer 1)的消息,提取信令

时隙并通过内部HW将其发送到FCSU板;

(3) FCSU板处理MTP2(Message Transfer Part Layer 2)链路层消息、

MTP3网络层消息。FCSU板在分析DPC(Destination Point Code)时,

如果本消息属于本板,则根据SI(Service Indication,业务指示码)分

发到本板上的业务层处理用户层消息。否则,根据NI(Network

Indication)、OPC(Originating Point Code)、DPC(Destination Point Code)、CIC(Circuit Identification Code)通过以太网总线将用户层消息转到指定的FCCU/FCSU板进行处理。

说明:

如果目标BSGI、FCCU/FCSU板在另一机框,则分发路径包括本机框HSCI、核心LAN Switch、目标FCCU/FCSU所在机框的HSCI、目标BSGI和目标FCCU/FCSU。

2. 备份处理路径

当与提供E1接口0# EPII板对插的0# FCSU板发生故障时,TDM承载信

以接入标准64k或2M七号信令链路;

(2) 0# EPII处理MTP1消息,提取信令时隙;

(3) 由于0# FCSU板发生故障,0#EPII会自动通过H.110总线将信令时

隙发送到1# EPII板;

(4) 1# EPII板通过内部HW将信令时隙发送到1# FCSU板;

(5) 1#FCSU板处理MTP2链路层消息、MTP3网络层消息。1#FCSU

板在分析DPC时,如果本消息属于本板,则根据SI分发到本板上的业

务层处理用户层消息。否则,根据NI、OPC、DPC、CIC通过以太网总

线将用户层消息转到指定的FCCU/FCSU板进行处理。

说明:

如果提供E1中继电路的EPII板发生故障时,系统不能通过H.110总线进行

业务倒换。

3.2 IP承载信令处理路径

3.2.1 MTP3/M2UA承载ISUP/INAP的处理路径

1. 上行路径

MTP3/M2UA(SS7 MTP2-User Adaptation Layer)承载ISUP(Integrated

Services Digital Network User Part/ISDN User Part)/INAP(Intelligent

Network Application Protocol)在SoftX3000中的上行路径如图3-3所示。

如果目标BSGI、FCCU/FCSU板在另一机框,则分发路径包括本机框HSCI、核心LAN Switch、目标FCCU/FCSU所在机框的HSCI、目标BSGI和目标FCCU/FCSU。

(1) BFII对外提供IP接口接收IP报文,并进行物理层消息处理,通过固定

连接的方式将报文发到IFMI板;

(2) IFMI板处理MAC消息后,根据IP协议类型、本地IP地址、本地SCTP

端口号、对端IP地址、对端SCTP端口号,通过以太网总线将消息分发到指定的BSGI进行处理。IP协议类型、本地IP地址、本地SCTP 端口号、对端IP地址、对端SCTP端口号与BSGI板号的对应关系需要人工进行数据配置。此分发为一级消息分发,也称承载信令消息分发;

(3) BSGI进行IP、SCTP、M2UA和MTP3消息处理后,将消息发送到本

板的ISUP/SCCP分发模块。ISUP分发模块通过以太网总线,根据消息中的NI、OPC、DPC、CIC分发到负责处理该CIC的FCCU/FCSU板;

SCCP分发模块则根据TCAP/INAP的会话号分发到负责处理该会话的FCCU/FCSU板;

注意:

MGCP、H.248与SCTP协议只能由BSGI板处理,既不能由MSGI板处理,也不能由IFMI板处理。

(4) FCCU/FCSU进行ISUP/INAP消息处理。

2. 下行路径

(2) BSGI进行M2UA、MTP3消息处理后,根据IP报文的源IP地址确定IFMI

板,并通过以太网总线将对应的消息包分发到指定的IFMI板进行处理;

(3) IFMI板进行MAC层消息处理后,以固定连接方式将IP消息发送到BFII

板;

(4) IP信令消息包经过BFII驱动后,通过BFII相连的网线出SoftX3000系

统。

3.2.2 M3UA承载ISUP/INAP的处理路径

1. 上行路径

连接的方式将报文发到IFMI板;

(2) IFMI板处理MAC消息后,根据IP协议类型、本地IP地址、本地SCTP

端口号、对端IP地址、对端SCTP端口号,通过以太网总线将消息分

发到指定的BSGI进行处理。IP协议类型、本地IP地址、本地SCTP

端口号、对端IP地址、对端SCTP端口号与BSGI板号的对应关系需要

人工进行配置。此分发为一级消息分发,也称承载信令消息分发;

(3) BSGI进行IP、SCTP和M3UA消息处理后,将消息发送到本板的

ISUP/SCCP分发模块。ISUP/SCCP分发模块通过以太网总线,根据以

下原则进行二级分发:

●对于ISUP消息而言,BSGI根据NI、OPC、DPC、CIC分发到负责处

理该CIC的FCCU/FCSU板。

●对于SCCP消息而言,BSGI根据TCAP/INAP的会话号分发到负责处

理该会话的FCCU/FCSU板。

(4) FCCU/FCSU进行ISUP/INAP消息处理。

2. 下行路径

(2) BSGI进行M3UA、SCTP消息处理后,根据IP报文的源IP地址确定IFMI

板,并通过以太网总线将对应的消息包分发到指定的IFMI板进行处理;

(3) IFMI板进行MAC层消息处理后,以固定连接方式将IP消息发送到BFII

板;

(4) IP信令消息包经过BFII驱动后,通过BFII相连的网线出SoftX3000系

统。

3.2.3 UDP承载MGCP/H.248的处理路径

说明:

R2消息包含在H.248消息包中,其处理路径与MGCP/H.248消息相同。

1. 上行路径

(2) IFMI板处理MAC消息后,根据BSGI功能配置和负荷分担的原则,通

过以太网总线将消息分发到BSGI进行处理;

(3) BSGI进行MGCP/H.248底层协议处理后,根据如表3-1所示的原则进

行分发:

表3-1BSGI进行MGCP/H.248 二级消息分发路径

(4) FCCU/FCSU板进行MGCP/H.248消息处理。

2. 下行路径

BSGI板处理;

(2) BSGI板进行MGCP/H.248编解码和UDP消息处理后,根据UDP包中

携带源IP地址与IFMI IP地址进行比较,选择IP地址系统的IFMI板进行分发;

(3) IFMI板进行MAC层消息处理后,以固定连接方式将IP消息发送到BFII

板;

(4) IP信令消息包经过BFII驱动后,通过BFII相连的网线出SoftX3000系

统。

3.2.4 IP承载H.323的处理路径

H.323包括了H.323 RAS(Registration, Admission and Status)和H.323

CALL(Q.931、H.245),H.323 RAS在UDP上承载,H.323 CALL在TCP

上承载。

1. 上行路径

(2) IFMI板处理MAC消息后,确定该H.323 消息类型是H.323 RAS还是

H.323 CALL,IFMI分发H.323 RAS、H.323 CALL消息到MSGI分发

原则不同:

H.323 RAS一级分发

根据数据配置,IFMI将H.323 RAS消息固定分发到指定的一块MSGI。

说明:

●可以通过数据配置多块MSGI板处理H.323 RAS协议,但同一时刻只能允

许一块MSGI板处理RAS请求消息,其他MSGI板作为备用;

●系统小容量的配置时,通过向IFMI加载MSGI程序和数据,可以实现IFMI

充当MSGI的功能。

●H.323 CALL一级分发

IFMI判断TCP消息的目的端口是著名端口(1720)还是本地端口,从而采取不同的分发策略:如果目的端口是H.323 CALL本地端口,IFMI则根据H.323 CALL本地端口与MSGI模块号的关系进行分发。如果目的端口是著名端口,IFMI则负荷分担的方式将消息分发到MSGI进行处理。

当SoftX3000充当GK(Gatekeeper)功能时,H.323终端发起的第一个H.323 CALL消息的目的端口是著名端口。IFMI以负荷分担的方式将消息分发到任意一块MSGI进行处理。IFMI返回给H.323终端的H.323 CALL消息将携带该MSGI板H.323 CALL本地端口。该H.323 终端同一呼叫其它H.323 CALL后续消息抵达IFMI板后,IFMI会依据H.323 CALL消息中本地端口号与MSGI 板的对应关系将消息分发到MSGI板进行处理。

当SoftX3000充当H.323 GW(Gateway)时,从IFMI发出的第一个H.323 CALL消息目的端口为目的端口(1720)。对端服务器返回的H.323 CALL 消息目的端口也为目的端口(1720)。IFMI以负荷分担的方式将消息分发到任意一块MSGI进行处理。IFMI返回给对端服务器的H.323 CALL消息将携带该MSGI板H.323 CALL本地端口。对端H.323服务器同一呼叫其它H.323 CALL后续消息抵达IFMI板后,IFMI会依据H.323 CALL消息中本地端口号与MSGI板的对应关系将消息分发到MSGI板进行处理。

说明:

●每块MSGI板配置一段H.323 CALL本地端口,整个SoftX3000配置一个

H.323 CALL著名端口(1720)。

●H.323协议中一个正常呼叫过程包含一条Q.931 TCP连接和H.245 TCP

连接,不同呼叫的Q.931和H.245的TCP连接各不相同。同一呼叫的所有Q.931消息都在同一个TCP连接上传输,同样同一呼叫的所有H.245消息都在同一个TCP连接上传输。

(3) MSGI进行H.323 RAS、H.323 CALL协议处理后,H.323 RAS消息二

级分发原则如表3-2所示,H.323 CALL消息二级分发原则如表3-3所示。

表3-2H.323 RAS消息二级分发原则

表3-3H.323 CALL消息二级分发原则

(4) FCCU/FCSU完成H.323业务的处理。

2. 下行路径

3.2.5 UDP承载SIP的处理路径

1. 上行路径

(2) IFMI板处理MAC消息后,判断UDP消息的目的端口。如果目的端口是

SIP本地端口,IFMI则根据SIP本地端口与MSGI模块号对应的关系进行消息一级分发。如果目的端口是SIP服务端口,IFMI则依据负荷分担的原将消息分发到任意一块可以处理SIP协议的MSGI;

说明:

●每块MSGI板配置一段SIP本地端口,整个SoftX3000配置一个SIP服务

端口(5060)。当第一个SIP服务端口的消息抵达IFMI板后,IFMI负荷分担将消息分发到MSGI,出系统的消息将携带该MSGI板的SIP本地端口,同一呼叫其它后续消息抵达IFMI板后,IFMI依据SIP本地端口与MSGI 板的对应关系将消息分发到MSGI板进行处理;

●系统小容量的配置时,通过向IFMI加载MSGI程序和数据,可以实现IFMI

充当MSGI的功能。

(3) MSGI根据不同的消息类型按照如表3-5所示的原则进行消息二级分发:

表3-5SIP消息二级分发原则

(4) FCCU/FCSU板进行SIP业务消息的处理。

2. 下行路径

其他下发消息将直接按照记录进行下发;

(2) MSGI进行SIP、UDP消息处理;

(3) MSGI根据需要分发的UDP包的本地IP地址选择适当的IFMI板;

(4) IFMI板进行MAC层消息处理后,以固定连接方式将IP消息发送到BFII

板;

(5) IP信令消息包经过BFII驱动后,通过BFII相连的网线出SoftX3000系

统。

3.2.6 IUA承载DSS1的处理路径

1. 上行路径

IUA(ISDN User Adaptation Layer)承载DSS1(Digital Subscriber Signalling

(2) IFMI板处理MAC消息后,根据IP协议类型、源IP地址(对端设备IP

地址)、源端口号(对端设备端口号)、目的地址、目的端口号(SoftX3000)

和本地SCTP端口号,通过以太网总线将消息分发到指定的BSGI进行

处理。IP协议类型、源IP地址、源端口号、目的地址、目的端口号、

本地SCTP端口号与BSGI板号的对应关系需要人工进行配置。此分发

为一级消息分发,也称承载信令消息分发;

(3) BSGI进行IP、SCTP和IUA消息处理后,根据D链路与FCCU/FCSU

模块号的对应关系,将消息发送到FCCU/FCSU。D链路与FCCU/FCSU

模块号的对应关系需要人工进行数据配置;

(4) FCCU/FCSU进行DSS1信令的第三层消息处理。

2. 下行路径

(2) BSGI进行IUA、SCTP消息处理后,根据IP报文的源IP地址确定IFMI

板,并通过以太网总线将对应的消息包分发到指定的IFMI板进行处理;

(3) IFMI板进行MAC层消息处理后,以固定连接方式将IP消息发送到BFII

板;

(4) IP信令消息包经过BFII驱动后,通过BFII相连的网线出SoftX3000系

统。

3.2.7 V5UA承载V5.2的处理路径

1. 上行路径

V5UA(V5 User Adaptation Layer)承载V5.2在SoftX3000的上行处理路径

如图3-15所示。

(2) IFMI板处理MAC消息后,根据IP协议类型、本地IP地址、本地SCTP

端口号、对端IP地址、对端SCTP端口号,通过以太网总线将消息分发到指定的BSGI进行处理。IP协议类型、本地IP地址、本地SCTP 端口号、对端IP地址、对端SCTP端口号与BSGI板号的对应关系需要人工进行配置。此分发为一级消息分发,也称承载信令消息分发;(3) BSGI进行IP、SCTP和V5UA消息处理后,根据V5链路与FCCU/FCSU

模块号的对应关系,将消息发送到FCCU/FCSU。V5链路与FCCU/FCSU模块号的对应关系需要人工进行数据配置;

(4) FCCU/FCSU进行V5消息的处理。

2. 下行路径

V5UA承载V5.2在SoftX3000的下行处理路径如图3-16所示。

STP生成树协议原理及配置--从入门到精通

STP生成树协议原理及配置—从入门到精通 生成树协议(Spanning-Tree Protocol,以下简称STP)是一个用于在局域网中消除环路的协议。运行该协议的交换机通过彼此交互信息而发现网络中的环路,并适当对某些端口进行阻塞以消除环路。由于局域网规模的不断增长,STP已经成为了当前最重要的局域网协议之一。 STP的算法 STP将一个环形网络生成无环拓朴的步骤: 选择根网桥(Root Bridge) 选择根端口(Root Ports) 选择指定端口(Designated Ports) 选择根网桥的依据 网桥ID(BID) 网桥ID是唯一的,交换机之间选择BID值最小的交换机作为网络中的根网桥 STP选择根网桥举例 根据网桥ID选择根网桥 选择根端口的依据 在非根网桥上选择一个到根网桥最近的端口作为根端口 选择根端口的依据是: 根路径成本最低 直连(上游)的网桥ID最小 端口(上游)ID最小 根路径成本 根路径成本(开销)-是网桥到根网桥的路径上所有链路的成本之和,默认10M/100M自适应的路径开销为200000 STP选择根端口举例 在非根桥上,选择一个根端口(RP) 选择指定端口的依据 在每个网段上,选择1个指定端口 根桥上的端口全是指定端口 非根桥上的指定端口: 根路径成本最低

端口所在的网桥的ID值较小 端口ID值较小 STP选择指定端口举例 在每个网段选择1个指定端口(DP) STP计算结果 经过STP计算,最终的逻辑结构为无环拓朴 STP举例 经过STP计算后的逻辑拓朴 BPDU(桥协议数据单元) 交换机之间使用BPDU来交换STP信息 BPDU Bridge Protocol Data Unit -桥协议数据单元 使用组播发送BPDU,组播地址为: 01-80-c2-00-00-00 BPDU分为2种类型: 配置BPDU -用于生成树计算 拓朴变更通告(TCN)BPDU -用于通告网络拓朴的变化 BPDU包含的关键字段 STP使用BPDU选择根网桥2-1 交换机启动时,假定自己是根网桥,在向外发送的BPDU中,根网桥ID 字段填写自己的网桥ID STP使用BPDU选择根网桥2-2 当接收到其他交换机发出的BPDU后,比较网桥ID,选择较小的添加到根网桥ID中 STP使用BPDU计算根路径成本2-1 根网桥发送根路径成本为0的BPDU STP使用BPDU计算根路径成本2-2 其他交换机接收到根网桥的BPDU后,在根路径成本上添加接收接口的路径成本,然后转发 生成树端口的状态 生成树计时器 STP状态机 在STP选举过程中,端口是不能转发用户数据的。端口一开始处于阻塞状态,这个状态只能接收BPDU;

华为stp生成树协议笔记

STP 为什么会有stp 为了保证可靠,设计了一种环网拓扑,又因为交换机的工作原理,会出现环路问题,为了解决环路,才有了stp生成树 1 mac地址表震荡 2 广播风暴 作用:在保证可靠的基础上,解决环路问题 原理:阻塞端口(预备端口)通过选举阻塞端口,来防止环路 1 根桥(根交换机): 1 比较每台交换机上的网桥id (优先级+mac地址)越小越优先 默认优先级 32768 修改优先级修改的时候要改成4096的倍数 交换机上有默认的stp版本为mstp (多实例生成树)stp (生成树)rstp (快速生成树) [系统]stp mode stp 修改stp的模式 Stp priority 4096 修改优先级 2 根端口:非根交换机到达根交换机的最优端口 比较规则 1 路径开销值 2 对端网桥id 3 对端对口id 4 本端端口id (hub) 3 指定端口:每条链路上到达根交换机最优端口根交换机上所有端口都是指定端口 比较规则 1 路径开销 2 本端网桥id

3 本端端口id (端口优先级和端口编号)端口优先级默认是128 4 剩下的端口就叫做阻塞端口 Stp中的报文交互 BPDU 桥协议数据单元 两种bpdu 1 配置bpdu 作用:用于角色(端口)选举 维护网络拓扑 2秒1次最多20秒20 秒没有根的回应,则认为根down掉 2 tcn bpdu 拓扑变化bpdu 作用:当拓扑发生变化时,会发tcn bpdu Bpdu 字段 1 bpdu flsges标识字段 Tca 位拓扑变化确认位 Tc 位拓扑变化位 发生变化时置1 2 root identifier 根网桥id 3 root path cost 到达根的开销值 4 bridge id 本交换机的网桥id 5 port id 端口id 0x8001 前面的80 代表优先级128 , 01代表端口号 6 message age 消息寿命每经过一台交换机message age +1 7 max age 最大寿命 20 秒 8 hello time 2秒 9 forward delay 转发延迟 15秒 端口的状态变化 1 disable 开启stp时特点:不进行stp计算 2 blocking 阻塞端口直接进入blocking 状态 3 listening 非阻塞端口才进入侦听状态特点:加速mac地址表老化 中间有15秒的间隔时间,目的是为了加速mac地址表老化,mac地址表老化时间300秒 4 learning 学习状态 中间有相隔15秒的时间,加速mac地址表的学习 5 forwarding 转发状态

ISIS协议题目有答案

一、填空题:(每空4分) 1.IS-IS的IS是___intermediate___________的缩写。 2.IS-IS最早是为_CLNS(connectless network service 无连接网络服务)设计的动 态路由协议,是一种基于_链路状态算法___的IGP(内部网关)路由协议。 3.ISIS支持的网络类型有___P-2-P网络__,__广播网络__,_IS-IS协议不能真正支 持NBMA网络,可以将NBMA链路配置成子接口来支持_。 4.IS-IS的LSP的生存时间为1200秒 5.ISI S协议中的DIS相当于OSPF中的DR, SysID相当于OSPF中的router ID。 二、多选题:(每题5分) 1.LSP标识由那些部分组成___ABD______? A)系统标识System ID B)伪节点ID C)LSP序列号 D)LSP编号 2.一个IS-IS路由器想和其它区域的路由器形成邻居关系,它可以是_BC____ A) L1路由器 B) L2路由器 C) L1/L2路由器 D) 类型没有限制 3.IS-IS的PDU有如下ABD_____几种类型? A)HELLO B)LSP C)LSP ACK D)CSNP

4.下列说法正确的是:ABCD A、区域之间通过L2(L1/L2)路由器相连接 B、一个路由器目前最多有3个Area ID(IOS和VRP的实现) C、一个路由器必须整个属于某个区域,而不能象OSPF那样是同一台路由器上不同的接口 可以属于不同的区域 D、对于Level-1路由器来说,只有属于同一区域才可以建立邻居,对于Level-2路由器则没 有此同一区域限制。 简答题:(每题20分) 1.ISIS协议中DIS的选取规则? 1)DIS由LAN IIH报文选举,具备最高优先级的路由器会被当选。如果所有路由器 优先级相同,则最高MAC地址者当选 2)Level-1和Level-2的DIS是分别选举的,选举结果可能不是同一个DIS 3)DIS发送Hello数据包的时间间隔是普通路由器的1/3,这样可以保证DIS失 效可以被快速检测到 4)与OSPF不同,它的选举是抢占式,可预见的;IS-IS中不存在备份DIS,当一个 DIS不能工作时,直接选举另一个 5)同一网段的所有路由器形成邻接关系(OSPF中DR-other之间是不形成邻接关系 的) 2. 简述IS-IS协议与OSPF协议不同点? IS-IS最初是为ISO的标准协议,为CLNS(connectless network service 无连接网络服务)设计的,后来增加了对IP的支持;而OSPF一开始就是IETF为IP网络设计的;由于IS-IS历史上是为CLNS路由而制定的,发展比较缓慢,对于IP的支持很多地方需要改进,虽然已经提出了draft,但大部分还没有形成RFC,CNLP(connectless network protocol 无连接网络协议)和IP双环境使用的优势并不明显,是一个不是很成熟的协议; OSPF是专门为IP设计的,更适合IP的路由,发展成熟,标准化程度高,支持厂商多,使用多缺点暴露多,改进也多。 IS-IS协议直接在链路层上运行,报文直接封装在链路层报文中,支持CLNS、IP 等多种协议;OSPF报文封装在IP中,只支持IP协议; IS-IS协议中整个路由器只能全部属于一个区域,区域边界位于两个路由器之间,路由器的LSDB按Level来维护;而OSPF按接口来,一个路由器可以属于多个区域,为每个区域维护一个LSDB数据库; OSPF通过特殊的区域ID Area0区来定义骨干区,而IS-IS是通过连续的L2路由器来组成骨干区; IS-IS的采用的Hello协议比较简单,OSPF比较复杂;而且IS-IS检查比较宽松,邻居之间的Hello和Dead等间隔不一定必须一样,不象OSPF要求必须一致才能形成邻居关系; IS-IS的LSP生存时间是从15分钟(可配置)往下计算到0来清除旧的LSP,而OSPF

华为数通--生成树协议实验

STP实验 实验内容 STP计算过程 端口状态切换 RSTP协议的两种工作模式 生成树计算过程 实验目的 帮助读者理解STP的基本原理和生成树的生成过程 验证STP端口状态的切换 验证RSTP协议两种工作模式的互通性 实验环境 Quidway系列S3026交换机4台,VRP版本为: VRP(R)Software,Version3.10(NA),RELEASE0009; PC一台,标准网线5根、配置电缆一根; 实验组网图 实验步骤 生成树的计算过程 如上图所示,4台QuidwayS系列以太网交换机环形互连,2台PC分别连接到SwitchA和SwitchB上。4台交换机MAC地址分别为: SwitchA:00e0-fc07-7089 SwicthB:00e0-fc06-2380

SwitchC:00e0-fc07-7085 SwitchD:00e0-fc06-8200 完成连接一段时间这后,会看到交换机指示灯快速闪烁,说明4台交换机之间转发数据报文,存在环路,可以配置STP协议避免环路。 STP(SpanningTreeProtocol)是生成树协议的英文缩写。该协议可应用于环路网络,通过一定的算法实现路径冗余,同时将环路网络修剪成无环路的树型网络,从而避免报文在环路网络中的增生和无限循环。 Quidway以太网交换机所实现的快速生成树协议RSTP(RapidSpanningTreeProtocol)是生成树协议的优化版。其“快速”体现在根端口和指定端口进入转发状态的延时在某种条件下大大缩短,从而缩短了网络拓扑稳定需要的时间。 在Quidway以太网交换机上启动STP协议,命令如下: [SwitchA]stpenable [SwitchB]stpenable [SwitchC]stpenable [SwitchD]stpenable 全网配置RSTP协议之后,默认情况下,交换机的每一个端口都启用了RSTP协议。配置完成后,可以看到交换机指示灯不再快速闪烁,说明交换机已经建立了无环路的转发生成树。那么,这棵树到底什么样子呢?我们可以先从理论上来分析,然后我们通过交换机的状态信息来验证我们的理论分析结果。 生成树协议算法实现的具体过程如下: 初始状态 各台交换机的各个端口在初始时会生成以自己为根的配置消息,根路径开销为0,指定交换机ID为自身交换机ID,指定端口为本端口。 SwitchA: 端口Ethernet0/1配置消息: {32768.00e0-fc07-7089,0,32768.00e0-fc07-7089,e0/1} 端口Ethernet0/3配置消息: {32768.00e0-fc07-7089,0,32768.00e0-fc07-7089,e0/3} SwitchB: 端口Ethernet0/1配置消息: {32768.00e0-fc06-2380,0,32768.00e0-fc06-2380,e0/1} 端口Ethernet0/3配置消息:

ISIS协议题目有答案

I S I S协议题目有答案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

一、填空题:(每空4分) 1. IS-IS的IS是___intermediate___________的缩写。 2.IS-IS最早是为_CLNS(connectless network service 无连接网络服务)设计的 动态路由协议,是一种基于_链路状态算法___的IGP(内部网关)路由协议。 3.ISIS支持的网络类型有___P-2-P网络__,__广播网络__,_IS-IS协议不能真正 支持NBMA网络,可以将NBMA链路配置成子接口来支持_。 4.IS-IS的LSP的生存时间为 1200秒 5.ISIS协议中的DIS相当于OSPF中的 DR, SysID相当于OSPF中的 router ID。 二、多选题:(每题5分) 1.LSP标识由那些部分组成___ABD______ A)系统标识System ID B)伪节点ID C)LSP序列号 D)LSP编号 2.一个IS-IS路由器想和其它区域的路由器形成邻居关系,它可以是 _BC____ A)L1路由器 B)L2路由器 C)L1/L2路由器 D)类型没有限制 3.IS-IS的PDU有如下ABD_____几种类型 A)HELLO B)LSP C)LSP ACK D)CSNP

4.下列说法正确的是:ABCD A、区域之间通过L2(L1/L2)路由器相连接 B、一个路由器目前最多有3个Area ID(IOS和VRP的实现) C、一个路由器必须整个属于某个区域,而不能象OSPF那样是同一台路由器上不同的接口可 以属于不同的区域 D、对于Level-1路由器来说,只有属于同一区域才可以建立邻居,对于Level-2路由器则 没有此同一区域限制。 简答题:(每题20分) 1.ISIS协议中DIS的选取规则 1)DIS由LAN IIH报文选举,具备最高优先级的路由器会被当选。如果所有路由器 优先级相同,则最高MAC地址者当选 2)Level-1和Level-2的DIS是分别选举的,选举结果可能不是同一个DIS 3)DIS发送Hello数据包的时间间隔是普通路由器的1/3,这样可以保证DIS失 效可以被快速检测到 4)与OSPF不同,它的选举是抢占式,可预见的;IS-IS中不存在备份DIS,当一 个DIS不能工作时,直接选举另一个 5)同一网段的所有路由器形成邻接关系(OSPF中DR-other之间是不形成邻接关系 的) 2. 简述IS-IS协议与OSPF协议不同点 IS-IS最初是为ISO的标准协议,为CLNS(connectless network service 无连接网络服务)设计的,后来增加了对IP的支持;而OSPF一开始就是IETF为IP网络设计的;由于IS-IS历史上是为CLNS路由而制定的,发展比较缓慢,对于IP的支持很多地方需要改进,虽然已经提出了draft,但大部分还没有形成RFC,CNLP (connectless network protocol 无连接网络协议)和IP双环境使用的优势并不明显,是一个不是很成熟的协议; OSPF是专门为IP设计的,更适合IP的路由,发展成熟,标准化程度高,支持厂商多,使用多缺点暴露多,改进也多。 IS-IS协议直接在链路层上运行,报文直接封装在链路层报文中,支持CLNS、IP 等多种协议;OSPF报文封装在IP中,只支持IP协议; IS-IS协议中整个路由器只能全部属于一个区域,区域边界位于两个路由器之间,路由器的LSDB按Level来维护;而OSPF按接口来,一个路由器可以属于多个区域,为每个区域维护一个LSDB数据库; OSPF通过特殊的区域ID Area0区来定义骨干区,而IS-IS是通过连续的L2路由器来组成骨干区; IS-IS的采用的Hello协议比较简单,OSPF比较复杂;而且IS-IS检查比较宽松,邻居之间的Hello和Dead等间隔不一定必须一样,不象OSPF要求必须一致才能形成邻居关系;

华为生成树协议STP分析过程与配置方法

华为生成树协议STP分析过程与配置方法 一、学习目的: 1、掌握配置STP的方法 2、掌握修改网桥优先级影响根选举的方法 3、掌握修改端口优先级影响根端口与指定端口选举的方法 4、掌握配置RSTP的方法 5、掌握STP与RSTP的相互兼容问题 6、掌握配置MSTP实现不同vlan负载均衡的方法 7、掌握MSTP与STP的相互兼容问题 8、掌握生成树中的保护方法 二、重点命令 1、开启stp [plain]view plain copy 1.stp enable 2.stp mode stp 2、查看stp状态

[plain]view plain copy 1.dis stp 2.dis stp brief 3、指定stp主根和备根 [plain]view plain copy 1.stp root primary 2.stp root secondary 4、手工指定根桥优先级 [plain]view plain copy 1.stp priority 4096(4096的倍数) 5、指定RP [plain]view plain copy 1.int g0/0/10 2.stp port priority 16(16的倍数)

6、指定DP [plain]view plain copy 1.int g0/0/24 2.stp cost 2000000 7、开启rstp [plain]view plain copy 1.stp enable 2.stp mode rstp 8、配置mstp [plain]view plain copy 1.stp enable 2.stp mode mstp 3.stp region-configuration 4.region-name RG1 5.instance 1 vlan 1 to 10 6.instance 2 vlan 11 to 20 7.active region-configuration

STP生成树协议原理与算法简析

STP生成树协议原理与算法简析 简介 在实际的网络环境中,物理环路可以提高网络的可靠性,当一条线路断掉的时候,另一条链路仍然可以传输数据。但是,在交换网络中,当交换机接收到一个未知目的地址的数据帧时,交换机的操作是将这个数据帧广播出去,这样,在存在物理的交换网络中,就会产生一个双向的广播环,甚至产生广播风暴,导致交换机死机。这就产生一个矛盾,需要物理环路来提高网络可靠性,而环路又可能产生广播风暴,如何才能两全其美呢? 本章将要讲述的STP,就是用来解决这个矛盾的。STP(Spanning Tree Protocol,生成树协议)是根据IEEE 802.1D 标准建立的,用于在局域网中消除数据链路层物理环路的协议。运行该协议的设备通过彼此交互信息发现网络中的环路,并有选择的对某些端口进行阻塞,最终将环路网络结构修剪成无环路的树型网络结构,从而防止报文在环路网络中不断增生和无限循环,避免设备由于重复接收相同的报文所造成的报文处理能力下降的问题发生。 STP采用的协议报文是BPDU(Bridge Protocol Data Unit,桥协议数据单元),也称为配置消息,BPDU中包含了足够的信息来保证设备完成生成树的计算过程。STP即是通过在设备之间传递BPDU来确定网络的拓扑结构。 1 STP 生成树协议 1.1 STP的主要作用 消除环路:通过阻断冗余链路来消除网络中可能存在的路径回环。 链路备份:当前活动路径发生故障时,激活冗余备份链路,恢复网络连通性。 1.2 STP的基本原理: 通过在交换机之间传递一种特殊的协议报文——BPDU(在IEEE 802.1D中这种协议报文被称为“配置消息”)来确定网络的拓扑结构。配置消息中包含了足够的信息来保证交换机完成生成树计算。(注:此BPDU被称为配置BPDU,另外STP还有TCN BPDU。)

ISIS是一个分级的链接状态路由协议

ISIS是一个分级的链接状态路由协议,基于DECnet PhaseV 路由算法。ISIS可以在不同的子网上操作,包括广播型的LAN、WAN和点到点链路。ISIS是一个链接状态协议,实际上与OSPF非常相似,它也使用Hello协议寻找毗邻节点,使用一个传播协议发送链接信息。ISIS消息使用序列号,但它只是一个简单的加法计数器。当计数器计到最大值时,一个ISIS路由器没有别的选择,只能伪造一个错误触发对所有旧信息的刷新。然而,因为序列号有3 2 比特长,使得到达最大值之前有很大的序列号空间,所以这不是什么问题。但是,至少存在两个技术问题:ISIS使用一个小的度量值(6 比特),严重限制了能与它进行转换的信息;而且链接状态也只有8 比特长,路由器能通告的记录只有256个。一个非技术问题是ISIS受OSI 约束,使得与OSPF相比它的发展比较缓慢。这个限制的原因是由于SPF的要求;但现在的Wide-metric 使这个范围变成24位的扩展解决了这个问题。 一个非技术问题是ISIS受OSI约束,使得以前与OSPF相比它的发展比较缓慢。但现在的ISIS在非OSI即RFC方面(Integrated)ISIS有了很多的扩展使得他的发展比OSPF更容易实现对新的要求的支持如IPV6或者TE而且更简单易实现 一个路由器是intermediate system(IS),一个主机就是end system(ES),在一个主机和路由器之间运行的协议叫ES-IS,路由器与路由器之间运行的协议是IS-IS 一个subnetwork属下的接口叫:subnetwork point of attachment(SNPA),它只是一个概念上的东西,实际上它是一个subnetwork提供的服务点,由SPNA定义的,不是实际的物理界面,SNPA的概念特性对应于子网的概念特性。 PDU:就是一个OSI层上的一个节点到它的另一端(peer)的对应层上的节点,所以一个帧也叫做Date Link PDU(DLPDU),也因此一个网络层的packet也叫做network PDU(NPDU),这个date unit功能类拟于OSPF的LSA,我们称它为Link State PDU(LSP),与LSA不同的是它封装在OSPF报头之后,然后才到IP 数据包。 an LSP is itself a packet. ===================== ISIS AREAS ===================== ISIS和OSPF一样建立一个双层分级结构拓扑,但和OSPF不同的是ISIS划分area是连接中,也就是说两台路由器中间来划分area L1_Router---------|----------L2_Router 以上的竖线就是ISIS划分的area的地方,而OSPF则不是,它是在一个路由器当中划分的,一个路由器中只要有两个接口接到不同的area,这个路由器就叫做ABR area0-------ABR_Router------area1 ISIS中对路由器的称呼又和OSPF又所不同,它只有三类,一个是完全在一个area内的,OSPF叫内部路由器,ISIS叫L1,而OSPF的ABR在ISIS中叫做L1/L2,还有一类是backbone里的路由器,全都叫做L2,这样,L1/L2路由器就会维护两个line state datebase,而与ABR不同的是,L1/L2路由器不通告L2的路由给L1,因此所有的L1路由器永远不会知道area外的路由,这种情况和OSPF的tutally stubby area

交换机生成树协议原理

交换机生成树协议原理 方便用户连接服务器或高速主干网。用户也可以通过设计多台服务器(进行业务划分)或追加多个网卡来消除瓶颈。交换机还可支持生成树算法,方便用户架构容错的冗余连接。 1.网络中的广播帧 目前广泛使用的网络操作系统有Netware、WindowsNT等,而LanServer的服务器是通过发送网络广播帧来向客户机提供服务的。这类局域网中广播包的存在会大大降低交换机的效率,这时可以利用交换机的虚拟网功能(并非每种交换机都支持虚拟网)将广播包限制在一定范围内。 每台文交换机的端口都支持一定数目的MAC地址,这样交换机能够“记忆”住该端口一组连接站点的情况,厂商提供的定位不同的交换机端口支持MAC数也不一样,用户使用时一定要注意交换机端口的连接端点数。 如果超过厂商给定的MAC数,交换机接收到一个网络帧时,只有其目的站的MAC地址不存在于该交换机端口的MAC地址表中,那么该帧会以广播方式发向交换机的每个端口。 2.虚拟网的划分 虚拟网是交换机工作原理的重要功能,通常虚拟网的实现形式有三种: (1)静态端口分配

静态虚拟网的划分通常是网管人员使用网管软件或直接设置交换机的端口,使其直接从属某个虚拟网。这些端口一直保持这些从属性,除非网管人员重新设置。这种方法虽然比较麻烦,但比较安全,容易配置和维护。 (2)动态虚拟网 支持动态虚拟网的端口,可以借助智能管理软件自动确定它们的从属。端口是通过借助网络包的MAC地址、逻辑地址或协议类型来确定虚拟网的从属。当一网络节点刚连接入网时。 交换机工作原理端口还未分配,于是交换机通过读取网络节点的MAC地址动态地将该端口划入某个虚拟网。这样一旦网管人员配置好后,用户的计算机可以灵活地改变交换机端口,而不会改变该用户的虚拟网的从属性,而且如果网络中出现未定义的MAC地址,则可以向网管人员报警。 (3)多虚拟网端口配置 该配置支持一用户或一端口可以同时访问多个虚拟网。这样可以将一台网络服务器配置成多个业务部门(每种业务设置成一个虚拟网)都可同时访问,也可以同时访问多个虚拟网的资源,还可让多个虚拟网间的连接只需一个路由端口即可完成。 但这样会带来安全上的隐患。虚拟网的业界规范正在制定当中,因而各个公司的产品还谈不上互操作性。Cisco公司开发了 Inter-SwitchLink(ISL)虚拟网络协议,该协议支持跨骨干网(ATM、FDDI、FastEther)的虚拟网。但该协议被指责为缺乏安全性上的考虑。

Cisco快速生成树协议RSTP协议原理及配置

Cisco快速生成树协议RSTP协议原理及配置

实验8 Cisco 快速生成树协议RSTP 协议原理及配置 一、相关知识介绍 1、生成树协议的主要功能有两个:一是在利用生成树算法、在以太网络中,创建一个以某台交换机的某个 端口为根的生成树,避免环路。二是在以太网络拓扑发生变化时,通过生成树协议达到收敛保护的目的。 2、根网桥的选择流程: (1)第一次启动交换机时,自己假定是根网桥,发出BPDU报文宣告。 (2)每个交换机分析报文,根据网桥ID选择根网桥,网桥ID小的将成为根网桥(先比较网桥优先级,如果相等,再比较MAC地址)。 (3)经过一段时间,生成树收敛,所有交换机都同意某网桥是根网桥。 (4)若有网桥ID值更小的交换机加入,它首先通告自己为根网桥。其它交换机比较后,将它当作新的根网桥而记录下来。 3、RSTP 协议原理 STP并不是已经淘汰不用,实际上不少厂家目前还仅支持STP。STP的最大缺点就是他的收敛时间太长,对于现在网络要求靠可靠性来说,这是不允许的,快速生成树的目的就是加快以太网环路故障收敛 的速度。 (1)RSTP 5种端口类型 STP定义了4种不同的端口状态,监听(Listening),学习(Learning),阻断(Blocking)和转发(Forwarding),其端口状态表现为在网络拓扑中端口状态混合(阻断或转发),在拓扑中的角色(根 端口、指定端口等等)。在操作上看,阻断状态和监听状态没有区别,都是丢弃数据帧而且不学习MAC 地址,在转发状态下,无法知道该端口是根端口还是指定端口。RSTP有五种端口类型。根端口和指定端口这两个角色在RSTP中被保留,阻断端口分成备份和替换端口角色。生成树算法(STA)使用BPDU来决定端口的角色,端口类型也是通过比较端口中保存的BPDUB来确定哪个比其他的更优先。 1)根端口:非根桥收到最优的BPDU配置信息的端口为根端口,即到根桥开销最小的端口,这点和STP 一样。请注意图8-16上方的交换机,根桥没有根端口。按照STP的选择根端口的原则,SW-1和SW-2和根连接的端口为根端口。 2)指定端口:与STP一样,每个以太网网段段内必须有一个指定端口。假设SW-1的BID比SW-2 优先,而且SW-1的P1口端口ID比P2优先级高,那么P1为指定端口,如图8-17所示。

华为生成树协议STP分析过程与配置方法

Word文档华为生成树协议STP分析过程与配置方法 一、学习目的: 1、掌握配置STP的方法 2、掌握修改网桥优先级影响根选举的方法 3、掌握修改端口优先级影响根端口与指定端口选举的方法 4、掌握配置RSTP的方法 5、掌握STP与RSTP的相互兼容问题 6、掌握配置MSTP实现不同vlan负载均衡的方法 7、掌握MSTP与STP的相互兼容问题 8、掌握生成树中的保护方法 二、重点命令 1、开启stp [plain]view plain copy 1.stp enable 2.stp mode stp

2、查看stp状态 [plain]view plain copy 1.dis stp 2.dis stp brief 3、指定stp主根和备根 [plain]view plain copy 1.stp root primary 2.stp root secondary 4、手工指定根桥优先级 [plain]view plain copy 1.stp priority4096(4096的倍数) 5、指定RP [plain]view plain copy Word文档

1.int g0/0/10 2.stp port priority16(16的倍数) 6、指定DP [plain]view plain copy 1.int g0/0/24 2.stp cost2000000 7、开启rstp [plain]view plain copy 1.stp enable 2.stp mode rstp 8、配置mstp [plain]view plain copy 1.stp enable 2.stp mode mstp 3.stp region-configuration 4.region-name RG1 Word文档

多生成树协议详解

多生成树协议详解 文章介绍的多生成树协议的历史,以及它的特点。并对相关的一些容易让人误解的术语做了澄清。最后以一个配置实例讲解如何通过多生成树协议实现基于VLAN的负载均衡。 标签:多生成树协议;STP;VLAN;區域;实例;负载均衡 网上配置多生成树协议的例子是非常多的,但它们有个共同特点:只讲配置步骤,不讲原理。这好比教人武术只讲招式不讲心法一样,搞不好将人引入歧途。厂家为何这么做,肯定有其目的,我们就不揣测了。还是自己动手,丰衣足食吧。引入生成树协议的目的是为了防止交换式以太网因为网络中存在环路,诱发广播风暴。最初的标准是STP(Spanning Tree Protocol),因为它的收敛速度太慢,于是又引入了RSTP(Rapid STP)。RSTP大大提高了生成树协议的收敛速度,并废除了和取代了STP。交换式网络的核心设备是交换机,和路由器不同,它会转发广播。因此,交换机无法隔离广播,多个交换机连接起来将构成一个大的广播域。但是VLAN的出现改变了这种状况。通过VLAN技术我们可以把一个大的LAN划分为若干个逻辑上的VLAN,VLAN之间的数据是相互隔离的,除非通过路由器,它们之间无法通信。这也意味着支持VLAN的交换机可以像路由器一样隔离广播。VLAN技术可以将广播风暴限制于VLAN的范围内。基于此,STP协议应该做个重大修改。不是在整个LAN的范围内计算生成树,而是每个VLAN独立计算一颗生成树。多生成树协议(Multiple STP,MST)就是VLAN 版的RSTP,为每个VLAN计算一颗RSTP生成树。了解到这一点,而且你熟悉RSTP的配置,配置MSTP就不是什么大的问题了。 一般而言,一个VLAN只是LAN的一部分,不会覆盖整个LAN。因此基于VLAN计算生成树可以减少工作量。MSTP最好和VTP(VLAN Trun Protocol)协议结合起来,因为VTP可以收集VLAN在LAN中的分布信息。如果某个交换机的所有端口都不是某个VLAN的成员,那么这个交换机可以排除于这个VLAN的RSTP生成树之外。不过要注意的是用于交换机级联的端口一般设置为trunk模式,默认情况下,任何VLAN的流量都可以通过trunk端口,因此我们可以将trunk端口看作任何VLAN的成员。但在实际当中,经过trunk端口的VLAN数量一般是有限的,我们最好将trunk端口允许通过哪些VLAN流量做个明确的限定。容易让初学者迷惑的是几个术语。 一个术语是区域(Region)。如果LAN比较大的话,可以考虑将LAN划分为若干区域,分开来管理。这就和OSPF将Internet划分为若干自治系统来管理一个道理。但实际上很少有LAN会大到非要划分为若干区域来管理。一般来说,整个LAN就是一个区域。我们只需在这个默认的区域内配置即可,不必考虑区域划分的问题。 另一个术语是实例(Instance)。这名字取得可不怎么样,一些文章将其解释得神神秘秘,其实它就是一种“组”。打个比方,默认情况下,交换机的端口都是

华为生成树协议STP分析过程与配置方法.doc

v1.0可编辑可修改 华为生成树协议STP 分析过程与配置方法 一、学习目的: 1、掌握配置 STP的方法 2、掌握修改网桥优先级影响根选举的方法 3、掌握修改端口优先级影响根端口与指定端口选举的方法 4、掌握配置 RSTP的方法 5、掌握 STP与 RSTP的相互兼容问题 6、掌握配置 MSTP实现不同 vlan 负载均衡的方法 7、掌握 MSTP与 STP的相互兼容问题 8、掌握生成树中的保护方法 二、重点命令 1、开启 stp 1.stp enable 2.stp mode stp

2、查看 stp 状态 1.dis stp 2.dis stp brief 3、指定 stp 主根和备根 1. stp root primary 2. stp root secondary 4、手工指定根桥优先级 1. stp priority4096(4096 的倍数)

5、指定 RP 1. int g0/0/10 2.stp port priority16( 16 的倍数)6、指定 DP 1. int g0/0/24 2.stp cost 2000000 7、开启 rstp 1. stp enable

2.stp mode rstp 8、配置 mstp 1.stp enable 2.stp mode mstp 3.stp region-configuration 4.region-name RG1 5. instance 1 vlan 1 to 10 6. instance 2 vlan 11 to 20 7. active region-configuration 9、查看 mstp 实例配置 1. display stp region-configuration

OSPF与ISIS协议

OSPF与ISIS协议

目录 1.OSPF路由协议 (1) 1.1基本概念和术语 (1) 1.2协议操作 (2) 2.ISIS路由协议 (3) 2.1ISIS路由协议介绍 (3) 2.2IS-IS 路由协议相关概念 (3) 2.3IS-IS路由协议适用的链路类型 (4) 2.4IS-IS 路由协议结构 (4) 2.5IS-IS路由协议使用的报文 (4) 3.IS-IS与OSPF的比较 (5) 3.1相同点 (5) 3.2不同点 (6)

1. OSPF路由协议 OSPF是一种典型的链路状态路由协议。采用OSPF的路由器彼此交换并保存整个网络的链路信息,从而掌握全网的拓扑结构,独立计算路由。因为RIP路由协议不能服务于大型网络,所以,IETF的IGP工作组特别开发出链路状态协议——OSPF。目前广为使用的是OSPF第二版,最新标准为RFC2328。 OSPF作为一种内部网关协议(Interior Gateway Protocol,IGP),用于在同一个自治域(AS)中的路由器之间发布路由信息。区别于距离矢量协议(RIP),OSPF具有支持大型网络、路由收敛快、占用网络资源少等优点,在目前应用的路由协议中占有相当重要的地位。 1.1 基本概念和术语 1. 链路状态 OSPF路由器收集其所在网络区域上各路由器的连接状态信息,即链路状态信息(Link-State),生成链路状态数据库(Link-State Database)。路由器掌握了该区域上所有路由器的链路状态信息,也就等于了解了整个网络的拓扑状况。OSPF路由器利用“最短路径优先算法(Shortest Path First, SPF)”,独立地计算出到达任意目的地的路由。 2. 区域 OSPF协议引入“分层路由”的概念,将网络分割成一个“主干”连接的一组相互独立的部分,这些相互独立的部分被称为“区域” (Area),“主干”的部分称为“主干区域”。每个区域就如同一个独立的网络,该区域的OSPF路由器只保存该区域的链路状态。每个路由器的链路状态数据库都可以保持合理的大小,路由计算的时间、报文数量都不会过大。 3. OSPF网络类型 根据路由器所连接的物理网络不同,OSPF将网络划分为四种类型:广播多路访问型(Broadcast MultiAccess)、非广播多路访问型(None Broadcast MultiAccess,NBMA)、点到点型(Point-to-Point)、点到多点型(Point-to-MultiPoint)。 广播多路访问型网络如:Ethernet、Token Ring、FDDI。NBMA型网络如:Frame Relay、X.25、SMDS。Point-to-Point型网络如:PPP、HDLC。 4. 指派路由器(DR)和备份指派路由器(BDR) 在多路访问网络上可能存在多个路由器,为了避免路由器之间建立完全相邻关系而引起的大量开销,OSPF要求在区域中选举一个DR。每个路由器都与之建立完全相邻关系。DR 负责收集所有的链路状态信息,并发布给其他路由器。选举DR的同时也选举出一个BDR,在DR失效的时候,BDR担负起DR的职责。 点对点型网络不需要DR,因为只存在两个节点,彼此间完全相邻。协议组成OSPF 协议由Hello协议、交换协议、扩散协议组成。本文仅介绍Hello协议,其他两个协议可参考RFC2328中的具体描述。

STP协议原理及配置

Cisco基础:STP协议原理及配置 【内容摘要】一、stp概述stp(生成树协议)是一个二层管理协议。在一个扩展的局域网中参与stp的所有交换机之间通过交换桥协议数据单元bpdu(bridgeprotocoldataunit)来实现;为稳定的生成树拓扑结构选择一个根桥;为每个交换网段选择一台指定交换机;将冗余路径上的交换机置为blocking,来消除网络中的环路。ieee802.1d是最早关于stp的标准,它提供了网络的动态冗余切换机制。stp使您能…… ----------------------------------------------------------------------------- 一、stp概述 stp(生成树协议)是一个二层管理协议。在一个扩展的局域网中参与stp的所有交换机之间通过交换桥协议数据单元bpdu(bridge protocol data unit)来实现;为稳定的生成树拓扑结构选择一个根桥;为每个交换网段选择一台指定交换机;将冗余路径上的交换机置为blocking,来消除网络中的环路。 ieee 802.1d是最早关于stp的标准,它提供了网络的动态冗余切换机制。stp使您能在网络设计中部署备份线路,并且保证: * 在主线路正常工作时,备份线路是关闭的。 * 当主线路出现故障时自动使能备份线路,切换数据流。 rstp(rapid spanning tree protocol)是stp的扩展,其主要特点是增加了端口状态快速切换的机制,能够实现网络拓扑的快速转换。 1.1 设置stp模式 使用命令config spanning-tree mode可以设置stp模式为802.1d stp或者802.1w rstp. 1.2 配置stp 交换机中默认存在一个default stp域。多域stp是扩展的802.1d,它允许在同一台交换设备上同时存在多个stp域,各个stp域都按照802.1d运行,各域之间互不影响。它提供了一种能够更为灵活和稳定网络环境,基本实现在vlan中计算生成树。 1.2.1 创建或删除stp 利用命令create stpd和delete stpd可以创建或删除stp. 缺省的default stp域不能手工创建和删除。 1.2.2 使能或关闭stp 交换机中stp缺省状态是关闭的。利用命令config stpd可以使能或关闭stp. 1.2.3 使能或关闭指定stp的端口 交换机中所有端口默认都是参与stp计算的。使用命令config stpd port可以使能或关闭指定的stp端口。 1.2.4 配置stp的参数 运行某个指定stp的stp协议后,可以根据具体的网络结构调整该stp的一些参数。交换机中可以调整以下的stp协议参数: * bridge priority * hello time * forward delay * max age 另外每个端口上可以调整以下参数: * path cost * port priority

浅析生成树协议原理及其实验设计

2011年5月刊 网络技术 信息与电脑 China Computer&Communication 1. 生成树协议(spanning-tree)的起源 生成树协议spanning-tree 最初是由sun 公司的Radia Perlman 博士开发,其灵感来自于一首名叫《Algorhyme 》的诗歌,而这首诗歌是根据Joyce Kilmer 的名作《Trees 》而改编。 2. 生成树协议的背景 随着以太网的广泛应用,局域网的结构也日趋复杂。为了避免交换网络中的单点故障引起网络中断,人们引入了冗余技术。然而新的问题又产生了,冗余链路在带来稳定的同时又造成了网络中的环路。而环路问题会引起广播风暴、多帧复制、及MAC 地址表的不稳定等不良结果。应运而生的生成树协议则在这个问题上给出了解决的方法,它可以通过阻断冗余链路来消除桥接网络中可能存在的路径回环,同时当活动路径发生故障时可以激活冗余备份链路恢复网络连通性。 3. 生成树协议的工作原理 3.1 生成树协议的思想及历史 生成树协议(Spanning-Tree Protocol,STP IEEE802.1d 标准)的主要思想就是当网络中存在备份链路时,只允许主链路激活,如果主链路因故障而被断开后,备用链路才会被打开。 其发展历程包括三个阶段:一代生成树协议:STP/RSTP ;第二代生成树协议:PVST/PVST+;第三代生成树协议:MISTP/MSTP 。生成树协议的主要作用可以概括为:避免回路,冗余备份。 3.2 生成树协议的原理 生成树协议使用BPDU 来传送设备的有关信息。网络中所有交换机每隔一定的时间间隔就发送和接收一次BPDU 数据帧,并且用它来检测生成树拓扑的状态,通过生成树算法得到最优拓扑结构。 3.3 网桥协议数据单元(BPDU ) STP 依靠网桥相互交换各自的BPDU 获取网络拓扑结构信息,从而组建生成树。BPDU 主要包括的重要信息如下: 1)根桥ID(Root ID),由根桥的优先级和根桥的MAC 构成。网桥和交换机的优先级可以手工配置,缺省值通常为32768。 2)从发送网桥到根桥的最短路径开销(RootPath Cost),为发送网桥到根桥的最短路径上所有链路开销的和。链路开销是与交换机端口相连的链路速率相关的参数,可以手工配置。 3)发送网桥的ID(Transmitting Bridge ID),由该网桥的优先级和该网桥的MAC 组成。 4)发送端口的ID(Transmitting Port ID),由端口优先级和端口索引值组成。 5)配置消息的生存期Message Age ,接收到配置消息的端口如果是根端口,则交换机将配置消息中携带的Message Age 按照一定原则递增,并启动定时器为这条配置消息计时。 6)配置消息的最大生存期Max Age ,Max Age 用来判断配置消息是否过时。 7)配置消息发送的周期Hello Time ,该参数决定根交换机向周围的交换机发送自己的配置消息或Hello 报文的时间间隔。 8)端口状态迁移的延时Forward Delay ,该参数用于交换机状态迁移机制。 3.4 生成树协议中的主要角色 1)根交换机(Root Switch):每广播域选出一个根交换机-根桥;2)指定端口(Designated Port) :从每个网段到达根交换机的具有最佳路径的端口,处于转发状态(Forwarding),由根桥的最优端口充当; 3)备用端口(Backup port ):DP 的备份端口,由根桥的次优端口充当; 4)根口(Root Port):从每个非根交换机到达根交换机的具有最佳路径的端口,处于转发状态(Forwarding)。由非根交换机的最优端口充当; 5)替换端口(Alternate Port ):根口的替换口。由从交换机的次优端口充当; 6)非指定端口(Non-designated Port):阻塞其它的冗余端口,处于阻塞状态(Blocking)。 3.5 生成树协议作用下端口的状态 图 1 图1描述了当生成树协议作用后,交换网络中各个交换机活动端口的端口类型。 3.6 生成树协议的运行过程1)初始状态 所有当前网络下的交换机在初始状态下都会认为自己是根桥,因此各个交换机以自己各个活动的端口状态生成以自己为根的配置消 浅析生成树协议原理及其实验设计 陈荣 (湖北工业大学,湖北 武汉 430064) 摘要:主要介绍了生成树协议的起源、产生背景、思想、发展历程、工作原理及运行过程,通过具体的实验验证了生成树协议在交换网络中所发挥的巨大作用。通过对比观察生成树协议首次运行和网络拓扑发生变化后各交换机活动端口的工作状态,详细展现了生成树协议原理工作的全过程。 关键词:生成树协议;BPDU 协议单元;端口;优先级 中图分类号:TP302.1 文献标识码:A 文章编号:1003-9767(2011)05-0093-02

相关主题
文本预览
相关文档 最新文档