当前位置:文档之家› QBZ-80开关原理图详解要点

QBZ-80开关原理图详解要点

QBZ-80开关原理图详解要点
QBZ-80开关原理图详解要点

QBZ-80、120、225开关原理与维修教程

图一QBZ-80、120、225内部结构图

图二QBZ-80、120、225原理图

上面两张图是QBZ-80、120、225开关的内部结构和电气原理图。也就是实物与原理图的对照。其中的核心部件,就是真空接触器。它起到接通与断开主回路的作用。开关内部的大部分元件,都是为了

控制真空接触器触点的接通与断开而工作的。现在,我们由简至繁的

来分析这个电路。

图三

大家看一下上面两个电路。左边的是一个真空接触器控制一个电动机,右边是一个开关控制一盏灯。原理都是一样:右边的电路中,开关闭合,灯亮。断开,灯灭。左边的电路中,接触器KM的触点闭

合,电动机得电旋转。接触器断开,电动机断电停止旋转。我们都知道,右边电灯电路中的开关,是通过手动来控制。那么左边的真空接触器是如何工作的哪?再看下图:

图四

图五真空接触器结构图

图四的那个白方框,他代表的是真空接触器的线圈。线圈实质上就是一个电磁铁,给电磁铁通上电,电磁铁产生磁力,使真空接触器上的衔铁动作,从而带动真空管内的触点动作(如图五)。现在,问题又指向了如何给电磁铁线圈通电。

图六

图七QBZ-80开关按钮结构图

图六是一个最简答的让真空接触器吸合的原理图,只要按下按钮SB1,真空接触器就会吸合。但是QBZ-80开关里用的按钮不像家里控制灯的开关一样。QBZ-80开关里的按钮你按下去的时候,按钮上的接通,只要你一松手,按钮就又断开了(如图七)。那如何才能让接触器长时间吸合哪?

图八

原理图八很好的解决了这个问题。对比发现,图八比图七多了一对触点KM。这对触点就是图五中的辅助触点,当按下按钮SB1时,线圈得电,衔铁在带动真空管内触点闭合的同时,也带动了辅助触点中的常开点KM闭合。这是,即使你松开了按钮,由于辅助触点闭合了,为吸合线圈提供了通路,线圈也会维持吸合。这时,电流流过的途径如图九中箭头所示。

图九

图八中的原理图很好的解决了按钮松开后,吸合线圈断电的问题。但是你想过没有,现在线圈吸合之后,能够维持住了,我们应该怎样把它停下来哪?

图十接触器控制原理图

再对比一下,发现图十比图八又多了一个元件,按钮SB2。他的实物如图十一。正常情况下,按钮SB2是接通的,KM接触器的线圈可以正常工作。当按下SB2时,SB2断开,从而断开了KM线圈的回路。线圈断电,接触器的真空管触点和常开辅助触点全部断开。电路回到初始状态。

图十一

图十二

现在我们来总结一下前面所讲的内容。图十二是前面几个原理图汇总起来的一张完整的电路图。这个图就是典型的接触器控制原理图。看懂了这个图,以后再分析防爆开关原理图的时候,就会非常容易。

按下按钮SB1,36V电源通过SB1——SB2——KM吸合线圈——回到36V电源的另一端。线圈得电吸合。带动主触点和辅助触点闭合。

松开按钮SB1后,由于线圈已经将辅助触点闭合,这是的电流回路为:36V电源——KM辅助触点——SB2——KM吸合线圈——36V 电源另一端。线圈维持吸合。

当需要停止时,按下SB2,回路断开,线圈释放,主触点和辅助触点断开。松开SB2后,SB2恢复到原来的接通状态,由于这时辅助触点已经断开了,所以这时线圈也不会吸合。只有再次按下启动按钮才会重新启动。

在学会了典型的接触器控制电路之后,我们再来看看QBZ-80开关的原理图。两张图对比一下,你会发现很多相似之处。其中,主触点KM是一样的。线圈ZJ、SB1、SB2、KM2和图十二中的KM线圈、SB1、SB2、KM辅助触点连接方式是一样的。只不过画法不一样,一个横着画,一个竖着画。

图十三QBZ-80开关简化原理图

对比了两张图之后,再看图十三是不是要容易些?即使我不讲解,相信你也看懂了一部分。

为了方便原理分析,我对开关原图进行了简化,图十三是简化之后的(原图可以查看上一贴中的图二)。图中的蓝色线,在分析时视为通路。红色框中的部分,请视为图十二中那样的吸合线圈。

介绍一下图中的元件:

QS:隔离换向开关

FU:熔断器,就是常说的保险丝

KM:真空接触器主触点

KM2:真空接触器辅助触点

红色方框内:真空接触器的吸合线圈

ZJ:中间继电器吸合线圈

ZJ1:中间继电器的触点

图十四中间继电器

合上隔离开关QS,控制变压器T得电,在变压器器的副边(即4、9端)变换出36V的电压。为控制电路提供电源。

按下启动按钮SB1,线圈ZJ的电,其回路为:36V电源4端——ZJ线圈——SB2——SB1——2#——9#端子至电源另一端。线圈ZJ得电吸合。使中间继电器的触点闭合,从而使真空接触的的线圈的电(图中的色框内)。其线圈回路为:36V电源4端——真空接触器线圈——ZJ1——电源另一端9#。真空接触器吸合后,带动主触点和辅助触点KM2闭合。

松开启动按钮SB1后,由于KM2已经闭合,为中间继电器的线圈ZJ维持吸合提供了回路,其回路为:36V电源4端——ZJ线圈——SB2——KM2——2#——9#端子至电源另一端。

当需要停止时,按下停止按钮SB2,断开了中间继电器吸合线圈ZJ的回路,ZJ释放,中间继电器触点ZJ1断开,切断了真空接触器线圈的回路。真空接触器释放。主回路中的KM断开。电机停止旋转。

80开关主要原理就是这样,当然还有很多的辅助电路,我们讲一下远程控制电路,他是附加电路的一部分。

一个开关要想有较多的功能,就必须在基本的电路上添加其它线路。弄清楚了基本的电路之后,就比较好理解附加电路的功能了。

有时候,80开关多安放的位置,并不适合操作者操作。为了方便操作,我们外接一个控制按钮放在操作者附近。这就是远程控制。下图是远程控制原理图:

图15 80开关远控接线图

图16

图15与上一贴的图13比较一下,其主要区别就是方框中标出的部分,多了一个1号线和一个开挂K。他们两个就是为远程控制而设置的。在图13中,我们把开关K用蓝线短接了,并擦除了1号线,同时将2号线和9号线也用蓝线短接了。主要是便于分析。在实际使用中,近控的时(即使用开关本身的按钮控制),是把开关K打到合的位置,2号线和9号线分别接地(开关外壳)或者用导线相连后再接地。也就等效于图13中用蓝线短接了。

图15中,红色框中是远控按钮(实物如图16),3根蓝线线为连接线

远控时:开关K打到分的位置,这样就切断了开关本身的启动按钮回路,防止别人误操作。开关的1、2、9号线分别与远控按钮的1、2、9号线相连。如图15。

其控制回路为:

按下远程启动按钮:36V电源4端——ZJ线圈——本机停止

按钮SB2——1#线——远控启动按钮SB2——远控停止按钮SB1——9#端子至电源另一端。线圈ZJ得电吸合。使中间继电器的触点闭合,从而使真空接触的的线圈的电。其线圈回路为:36V电源4端——真空接触器线圈——ZJ1——电源另一端9#。真空接触器吸合后,带动主触点和辅助触点KM2闭合。

松开远程启动按钮SB1后,由于KM2已经闭合,为中间继电器的线圈ZJ维持吸合提供了回路,其回路为:36V电源4端——ZJ 线圈——本机停止按钮SB2——KM2——2#线——远程停止按钮SB1——9#端子至电源另一端。

当需要停止时,按下远程或本机的任何一个停止按钮,都可以断开了中间继电器吸合线圈ZJ的回路,ZJ释放,中间继电器触点ZJ1断开,切断了真空接触器线圈的回路。真空接触器释放。主回路中的KM断开。

80开关除了本帖所讲的远控电路外,还有照明电路、双台连锁控制电路、阻容保护以及电动机综合保护器等。将在后几贴中介绍。

上一贴我们介绍了QBZ-80开关最基础的电路部分、近控及远控的原理。一台开关,紧紧能够控制用电设备电源的通与断是不行的。还要对被控制的电气有保护作用,如:当设备漏电了、过载了,能够及时的切断电源。将事故最小化。

QBZ-80开关中起保护作用的是JDB-80-A型电动机综合保护器,这是最常用的一种保护器。QBZ-120开关中是JDB-120-A型,QBZ-225开关中是JDB-225-A。这三种型号的保护器外型、结构、功

能以及接线方式都是一样的,区别仅在于额定电流不一样。

图17 JDB-80-A 电动机综合保护器

电动机综合保护器在使用中的安装接线如图18中红线所圈的地方。保护器的底端是三个电流互感器(图17中底部黑色的塑料壳内),三条铜排穿过电流互感器线圈,铜排的一端与真空接触器的主触点连接,另一端与负荷接线端子U、V、W相连(图18中 1#红圈。这样保护器就可以对主回路中的电流进行取样。

保护器有5个控制线接线端子,分别是3、4、9、33(分为660V 和380V两个端子)。它们的接线如图18所示,3和4号端子的接线如红圈2所以。圈2中标着JDB的触点,就是保护器内部的一对触点。9号线接变压器上的9号端子。33号线是检漏端子,通过主接触器的一对常闭触点KM3和中间继电器的一对常闭触点ZJ2接到负荷端U、V、W任一相即可。33号线两个端子的区别是:当设备额定电压是660V时,接到660V端子上,额定电压是380V,就接到380V 端子上

保护器的工作过程是:

4、9号线为保护器提供了工作所需的电源。合上隔离开关之后,保护器工作,首先通过33号线检查设备及线路是否漏电,如果检测到设备有漏电现象,则红圈2中的3、4号接点不闭合(即JDB保护器内部的继电器不吸合),启动控制回路,则无法启动。如果检测到设备的绝缘良好,没有其他故障,则3、4号接点闭合。为开关的启动做好准备。这时按启动按钮,中间继电器吸合,真空接触器吸合。真空接触器吸合以后,与33号线连接的KM3和ZJ2常闭接点断开,切断了JDB的漏电检查回路。这时,即使设备漏电,80开关也不会跳闸。这时的漏电保护由80开关上一级的馈电开关来完成。

这种在开关合闸之前首先检查设备绝缘情况,绝缘低于要求时,开关不能合闸的功能叫做漏电闭锁。大家一定要和漏电保护区分开来。

80开关吸合之后,设备工作。JDB保护器通过电流互感器(见图17)对开关主回路的工作电流进行取样。然后与设定的电流进行比较。当设备的工作电流大于JDB设定电流的8倍(一般都是8倍,有的智能型综合保护器可以对倍数进行设定),JDB保护器就会认为主回路有短路现象,立即断开3、4接点,开关跳闸。

当主回路电流大于设定电流的1.05倍以上,8倍以下时,JDB 保护器会认为设备有过载现象,然后延时一段时间,如果主回路的电流还没有降下来,保护器就会断开3、4点。延时时间根据过载倍数来定,过载倍数越大,延时时间越短。过载倍数越小,延时时间较长。

这叫过载保护的反时限特性。

图18 电动机综合保护器在原理图中的接线

JDB-80-A保护器的设定:

电流设定:保护器的电流大小设定值一般与被控制设备的额定值一样或稍大即可。例如,被控制电机额定电流为39A,如果保护器的电流档有39A,则调至39A即可。如果没有,可以调到40A。

电流调整方法:在电流调节旋钮的每一个档位上都有两个数值,其中一个数大,一个数小。数大的为高档,数小的是低档。对应的选择开关就是高低档开关(图17)。

试验按钮:为了确保保护器的可靠运行,要定期对保护器进行试验,以检测保护器的好坏。过载与短路试验,需要在开关吸合之后,将试验开关拨至短路或过载试验位置。短路试验,开关会立即跳闸。

过载试验,开关会延时一段时间才会跳闸。过载试验之后,如果立即将试验开关拨至“正常”位置。3、4点也不会立即闭合。这是需要按一下复位按钮,3、4点才会复位。有的JDB保护器没有复位按钮,可以将隔离开关扳至“停”的位置。稍等一会即可。

漏电闭锁试验时,需要将试验按钮先拨至“漏电”位置,然后在按启动按钮,如果此时保护器动作,开关不能吸合,说明保护器正常。

图19 两台QBZ-80开关连锁控制

图19中蓝色框内的电路是连锁控制功能电路。虽然这个电路并不常用,但既然有了这个电路,我也讲解一下他的原理及使用方法。

功能:图中的开关一作为主控开关,开关二是连控开关。当开关一吸合时,开关而自动吸合,当开关一释放时,开关二自动释放。

接线方法:用电缆将第一台开关的十三号线与第二台开关的1

号线连接,第一台开关中与KM4相连的di 端子接地,第二台开关中的9号线接地。两台开关主电源L1、L2、L3用四芯电缆并联,四芯电缆的接地芯线将两台开关外壳的接地端子(di)相连。

连接之后的等效图如图19中的绿色连线所示。

工作原理:第一台开关按启动按钮,真空接触器吸合,同时真空接触的辅助触点KM4闭合,接通了第二台开关的控制回路,第二台开关随即吸合,其回路为:电源端子4——JDB保护器端子——3号线——中间继电器线圈——6号线——停止按钮SB2——1号线——第一台开关13号线——第一台开关停止按钮——第一台开关辅助触点KM4——第一台开关di 端子——第二台开关9号端子——电源另一端。

图20 QBZ-80开关照明及阻容保护回路

图20中上面的红色框所圈的为80开关的照明电路,利用这个电路,可以外接一个36V的照明灯,其接法如图中绿色线所画的那样。但实际上这个电路没有什么用途,不知道当初设计这个电路的初衷是什么,也许是为了应急照明吧。

阻容保护电路在上图中已经圈出,圈出的电路是他的简化画法。实际元件的组成如下图,虚线框内是阻容元件

他的实物及接线如下图

阻容吸收器的作用:

阻容吸收器的主要作用是为了吸收主回路中的浪涌电压,防止主回路电压突然升高对元件造成损害。

我们可以想象一下,在一条河中,有一个闸门,闸门的上方有水,

下方没有谁。在没水的河床中有一棵树。如果这是突然打开闸门,水对小树的冲击力是非常大的。

如果在小树的旁边,挖一个很大的水库。这时再突然打开闸门,汹涌的水浪会首先涌进水库里,由于水库较大,水会慢慢上涨,水库满了之后,水才慢慢的流向小树,这时水浪对小树的冲击力已经非常小了。

阻容吸收器就相当于小树旁边的水库。电动机在刚启动和停止时,会产生很高的反向电动势。有了阻容的保护,就可以有效减小反向电动势对回路中元件的损害。

在讲解原理时,把真空接触器的吸合线圈简化成了一个线圈。:其实,真空接触器的线圈还是有点讲究的。

图 23

图24 真空接触器的结构

图25

我们知道普通的接触器只有一个线圈,它在电路中的画法如图23中的KM所示。

而真空接触器的线圈却有两个(图24),但在原理图中,却画了四个线圈符号(图25 红色框内),而且还加了一对常闭触点KM1。

接近开关工作原理,及接线图

接近开关工作原理,及接线图 发布者:david 发布时间:2011-4-20 13:30:02 阅读:607次 接近开关工作原理 1、概述 接近传感器可以在不与目标物实际接触的情况下检测靠近传感器的金属目标物。根据操作原理,接近传感器大致可以分为以下三类:利用电磁感应的高频振荡型,使用磁铁的磁力型和利用电容变化的电容型。 特点: ●非接触检测,避免了对传感器自身和目标物的损坏。 ●无触点输出,操作寿命长。 ●即使在有水或油喷溅的苛刻环境中也能稳定检测。 ●反应速度快。 ●小型感测头,安装灵活。 2、类型 (1)按配置来分

(2)、按检测方法分 ●通用型:主要检测黑色金属(铁)。 ●所有金属型:在相同的检测距离内检测任何金属。 ●有色金属型:主要检测铝一类的有色金属。 3、高频振荡型接近传感器的工作原理 电感式接近传感器由高频振荡、检波、放大、触发及输出电路等组成。振荡器在传感器检测面产生一个交变电磁场,当金属物体接近传感器检测面时,金属中产生的涡流吸收了振荡器的能量,使振荡减弱以至停振。振荡器的振荡及停振这二种状态,转换为电信号通过整形放大转换成二进制的开关信号,经功率放大后输出。下面为详细介绍: (1)通用型接近传感器的工作原理

振荡电路中的线圈L产生一个高频磁场。当目标物接近磁场时,由于电磁感应在目标物中产生一个感应电流(涡电流)。随着目标物接近传感器,感应电流增强,引起振荡电路中的负载加大。然后,振荡减弱直至停止。传感器利用振幅检测电路检测到振荡状态的变化,并输出检测信号。

振幅变化的程度随目标物金属种类的不同而不同,因此检测距离也随目标物金属的种类不同而不同。 (2)所有金属型传感器的工作原理 所有金属型传感器基本上属于高频振荡型。和普通型一样,它也有一个振荡电路,电路中因感应电流在目标物内流动引起的能量损失影响到振荡频率。目标物接近传感器时,不论目标物金属种类如何,振荡频率都会提高。传感器检测到这个变化并输出检测信号。 (3)有色金属型传感器工作原理

相序保护器接线图

相序保护器 相序保护器是一种自动相序判别的保护继电器,保证一些特殊机电设备因为电源相序接反后倒转而导致事故或设备损坏。如电梯,如果电源在维修后相序出错会导致事故的发生,必须在控制回路接入相序保护器,保证相序无误。空调压缩机,也有采用相序保护器,保证压缩机不至于在维修后发生反转的情况。 相序保护器图 一般情况下,电动机工作的接线顺序是有规定的,如果由于某种原因,导致相序发生错乱,电动机将无法正常工作甚至损坏。相序保护就是为了防止这类事故发生。 相序保护可采用相序继电器,当电路中相序与指定相序不符时,相序继电器将触发动作,切断控制电路的电源从而达到切断电动机电源、保护电动机的目的。 相序保护器优点

相序保护器是一种多功能三相电源系统或三相用电设备的监测和保护仪器。 相序保护器可实时显示三相电源电压、并可在电源发生过压保护、欠压保护、缺相保护、不平衡保护、错相保护等故障时通过继电器输出的形式,给用户提供报警输出和保护电路动作输出的触点控制信号,起到报警和保护作用。集三相电压显示、过电压保护、欠电压保护、缺相保护(断相保护)、电压不平衡保护、相序保护(错相保护)于一体,采用功能强大的微处理器芯片和非易失存储技术,显示采用高清晰超宽温中文液晶,具有功能齐全,性能稳定,显示直观、操作简便的特点。 相序保护器工作原理 取样三相电源并进行处理,在电源相序和保护器端子输入的相序相符的情况下,其输出继电器接通,设备主控制回路接通。当电源相序发生变化时,相序不符,输出继电器无法接通,从而保护了设备,避免事故的发生。 三相电源依次接入保护器的U,V,W(有的是R,S,T)三个接线点,相序保护器的辅助触点一般有一常开一常闭。接入控制回路中,具体接常开还是常闭根据控制原理或者接线图来接,.当相序错误或者缺相的时候保护器的辅助触点动作常开变常闭,常闭变常开。若起到保护作用,应该接常闭触点。 相序保护器操作指南 1、把三相电源的三相四线分别接入相序保护器的L1、L 2、L 3、N端。 2、相序保护器的常开、常闭输出端,分别接入控制设备的回路。详见相序保护器接线示意图 3、设置参数,把连接好的相序保护器通上三相电,液晶屏显示其中一相的电压。 (1)相序保护器正常情况下,按一下R/设置键,进入设置状态,设置字符闪烁,此时液晶屏上显示设置和相序字样,按▲或▼键可选择是否启用相序保护功能,ON表示开启,OFF 表示关闭。 (2)再按一下相序保护器的R/设置键,设置过电压值,液晶屏上显示设置和过压字样,按▲或▼ 键设置过电压值,过电压值在220V~300V范围内设置,步进量为1V;再按一次R/设置键,设置过电压动作时间(单位为秒),动作时间 可在0.1~20秒范围之间设置,步进量为0.1秒。接线示意图 (3)再按一下相序保护器的R/设置键,设置欠电压值,液晶屏上显示设置和欠压字样,按▲或▼ 键设置欠电压值,欠电压值在150V~220V范围内设置,步进量为1V;再按一次R/ 设置键,设置过电压动作时间(单位为秒),动作时间可在0.1~20秒范围之间设置,步进量为0.1秒。 (4)再按一下相序保护器的R/设置键,液晶屏上显示End字样,本次设置完成。 (5)当相序保护器发生电源过压、欠压、缺相、错相、不平衡等故障时,液晶屏上分别闪烁显示过压、欠压、缺相、相序、不平衡等字样,如果故障时间超过设置的动作时间,过压、欠压、缺相、相序、不平衡等字样保持常亮,同时显示故障时的电压值,这时输出触点转换。(6)由于相序保护器缺相、错相故障属于不可自动恢复性故障;故发生缺相、错相故障时,

断路器控制回路基本原理

1、控制回路的基本要求 开始学习控制回路之前,我们先了解一下控制回路需要具备哪些基本的功能: (1)能进行手动跳合闸和由保护和自动装置的跳合闸; (2)具有防止断路器多次重复动作的防跳回路; (3)能反映断路器位置状态; (4)能监视下次操作时对应跳合闸回路的完好性; (5)有完善的跳、合闸闭锁回路; 2、典型的控制回路 根据控制回路的几点基本要求,我们以10kV的PSL641保护装置为例,分为五个步骤,一步步搭建基本的控制回路,并了解每个部分的作用。 (1)跳闸与合闸回路 首先,能够完成保护装置的跳合闸是控制回路最基本的功能。这个功能的实现很简单,回路如下图所示。 假定断路器在合闸状态,断路器辅助接点DL常开接点闭合。当保护装置发跳闸命令,TJ闭合时,正电源-> TJ-> LP1-> DL-> TQ-> 负电源构成回路。跳闸线圈TQ得电,断路器跳闸。合闸过程同理。 分闸到位后,DL常开接点断开跳闸回路。DL常闭接点闭合,为下一次操作对应的合闸回路做好准备。 利用DL常开接点断开跳闸电流,一是为了防止TJ粘连造成TQ烧坏(因为TQ的热容量是按短时通电来设计的);二是因为如果由TJ来断开合闸电流,由于TJ接点的断弧容量不够,容易造成TJ接点烧坏(HJ也是一样的道理),这就为下一次保护跳闸(或合闸)埋下了隐患且不易被发现。 (2)跳闸/合闸保持回路 为了防止TJ先于DL辅助接点断开(如开关拒动等情况),我们增加了“跳闸自保持回路”。该回路可以起到保护出口接点TJ以及可靠跳闸的作用。增加的部分用红色标记,R 在Ω左右。当分闸电流流过TBJ时,TBJ动作,TBJ1闭合自保持,直到DL断开分闸电流。这时无论TJ是否先于DL断开,都不会影响断路器分闸,也不会烧坏TJ。 (3)防跳回路 TBJ我们有时也叫它“防跳继电器”。这是因为它有另一个非常重要的功能:防跳。 防跳的概念:所谓的防跳,并不是“防止跳闸”,而是“防止跳跃”。当合闸于故障线路时,保护会发跳令将线路跳开。如果此时HJ接点发生粘连,断路器就会在短时间内反复跳、合、跳、合。。。这就是“跳跃现象”。(断路器跳闸时间需要30-60ms,合闸时间需

接近开关原理及接线图

电容/电感/霍尔式接近开关的工作原理 1、电感式接近开关工作原理 电感式接近开关属于一种有开关量输出的位置传感器,它由LC高频振荡器和放大处理电路组成,利用金属物体在接近这个能产生电磁场的振荡感应头时,使物体内部产生涡流。这个涡流反作用于接近开关,使接近开关振荡能力衰减,内部电路的参数发生变化,由此识别出有无金属物体接近,进而控制开关的通或断。这种接近开关所能检测的物体必须是金属物体。工作流程方框图及接线图如下所示:

2、电容式接近开关工作原理 电容式接近开关亦属于一种具有开关量输出的位置传感器,它的测量头通常是构成电容器的一个极板,而另一个极板是物体的本身,当物体移向接近开关时,物体和接近开关的介电常数发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通和关断。这种接近开关的检测物体,并不限于金属导体,也可以是绝缘的液体或粉状物体,在检测较低介电常数ε的物体时,可以顺时针调节多圈电位器(位于开关后部)来增加感应灵敏度,一般调节电位器使电容式的接近开关在0.7-0.8Sn的位置动作。工作流程方框图及接线图如下所示:

3、霍尔式接近开关工作原理 当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,这种现象就称为霍尔效应。两端具有的电位差值称为霍尔电势U, 其表达式为U=K·I·B/d其中K为霍尔系数,I为薄片中通过的电流,B为外加磁场(洛伦慈力Lorrentz)的磁感应强度,d是薄片的厚度。 由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比的关系。我门销售的霍尔开关就属于这种有源磁电转换器件,它是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,它可方便的把磁输入信号转换成实际应用中的电信号,同时又具备工业场合实际应用易操作和可靠性的要求。 霍尔开关的输入端是以磁感应强度B来表征的,当B值达到一定的程度(如B1)时,霍尔开关内部的触发器翻转,霍尔开关的输出电平状态也随之翻转。输出端一般采用晶体管输出,和接近开关类似有NPN、PNP、常开型、常闭型、锁存型(双极性)、双信号输出之分。 霍尔开关具有无触电、低功耗、长使用寿命、响应频率高等特点,内部采用环氧树脂封灌成一体化,所以能在各类恶劣环境下可靠的工作。霍尔开关可应用于接近开关,压力开关,里程表等,作为一种新型的电器配件。 霍尔开关的功能类似干簧管磁控开关,但是比它寿命长,响应快无磨损,而且安装时要注意磁铁的极性,磁铁极性装反无法工作。 内部原理图及输入/输出的转移特性和接线图如下所示:

断路器控制回路原理

第5章断路器控制回路 教学目的:掌握断路器控制方式、断路器控制回路的基本要求、断路器的基本跳、合闸控制回路、灯光监视的断路器控制回路、灯光监察液压操作机构操作断路器控制回路复习旧课:操作电源概述、蓄电池组直流操作直流、硅整流电容储能装置直流系统、复式整流装置直流系统、直流系统的绝缘监察与电压监察装置; 重点:掌握断路器控制方式、断路器控制回路的基本要求、断路器的基本跳、合闸控制回路、灯光监视的断路器控制回路、灯光监察液压操作机构操作断路器控制回路; 难点:掌握断路器控制方式、断路器控制回路的基本要求、断路器的基本跳、合闸控制回路、灯光监视的断路器控制回路、灯光监察液压操作机构操作断路器控制回路; 引入新课: 第一节概述 一、断路器控制方式 断路器是电力系统中最重要的开关设备,在正常运行时断路器可以接通和切断电气设备的负荷电流,在系统发生故障时则能可靠地切断短路电流。 断路器一般由动触头、静触头、灭弧装置、操动机构及绝缘支架等构成。为实现断路器的自动控制,在操动机构中还有与断路器的传动轴联动的辅助触头。断路器的控制方式有多种,分述如下。 1.按控制地点分 断路器的控制方式接控制地点分为集中控制和就地(分散)控制两种。 (1)集中控制。在主控制室的控制台上,用控制开关或按钮通过控制电缆去接通或断开断路器的跳、合闸线圈,对断路器进行控制。一般对发电机、主变压器、母线、断路器、厂用变压器35kV以上线路等主要设备都采用集中控制。 (2)就地(分散)控制。在断路器安装地点(配电现场)就地对断路器进行跳、合闸操作(可电动或手动)。一般对10kV线路以及厂用电动机等采用就地控制,可大大减少主控制室的占地面积和控制电缆数。 2.按控制电源电压分 断路器的控制方式接控制电源电压分为强电控制和弱电控制两种。 (1)强电控制。从断路器的控制开关到其操作机构的工作电压均为直流110V或220V。 (2)弱电控制。控制开关的工作电压是弱电(直流48V),而断路器的操动机构的电压是220V。目前在500kV变电所二次设备分散布置时,在主控室常采用弱电一对一控制。 3.按控制电源的性质分 断路器的控制方式按控制电源的性质可分为直流操作和交流操作(包括整流操作)两种。 直流操作一般采用蓄电池组供电;交流操作一般是由电流互感器、电压互感器或所用变压器提供电源。

两线接近开关的接线方式

两线接近开关的接线方式 接近开关又叫接近传感器,在看很多领域当中都有一定的应用。接近传感器具有稳定性高、寿命长、功耗小、动作响应频率高、防水防尘等优点。接近开关在接线的时候接线的方法是比较复杂的,用户必须要掌握一定的接线知识这样才能正确并且快捷的安装完成接近开关。那么接近开关正确的接线方法是什么呢?今天电工学习网就来为大家具体介绍一下吧。 (1)接近开关有两线制和三线制之区别,两线制接近开关工作电压分为AC(交流)和DC(直流)电源,三线制接近开关又分为NPN

型和PNP型,它们的接线方式是不同的。多凯公司还有生产四线制产品,四线制是在三线基础上实现了常开(NO)+常闭(NC)双信号端,为客户减少库存和成本。 (2)两线制接近开关的接线方式比较简单,接近开关与负载串联后接到电源即可,DC电源产品需要区分红(棕)线接电源正端、蓝(黑)线接电源0V(负)端,AC电源产品则不需要。 (3)三线制或四线制接近开关的接线:棕色线(BN)接电源正(+)端;蓝线线(BU)接电源0V(负)端;黑色线(BK)或者白色线(WH)为信号端,应连接负载。 (4)三线制或四线制负载接线是这样的:除负载连接接近开关信号一端,对于NPN型接近开关,负载的另一端应接到电源正(+)端;对于PNP型接近开关,负载的另一端则应连接到电源0V(负)端。 (5)接近开关的负载可以是信号灯、小型继电器线圈、可编程控制器plc的数字量输入模块。 (6)用于可编程控制器PLC需要特别注意接到PLC数字输入模块的三线制或四线制接近开关的型式选择。PLC数字信号输入模块一般可分为两类:一类的公共输入端为电源0V,电流从输入模块流出(日本模式),此时一定要选用NPN型接近开关;另一类的公共输入端为电源正端,电流从输入模块流入(欧洲模式),此时,一定要选用PNP 型接近开关。千万不能选错了哟! (7)两线制接近开关受工作条件的限制,导通时开关本身产生

接近开关工作原理一

接近开关工作原理一-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

接近开关的工作原理一 随着自动化的提高,接近开关的使用次数也越来越频繁,大家不禁会问,接近开关就那么点大,能用多大的用处呢?其实,这是个理解误区,可别小看了这些小开关,它们的用处可大着呢!现在,就让我来给大家详细系统的介绍介绍接近开关的工作原理、接线方式及应用吧!首先大家看到的就是它的工作原理。 接近开关又称传感器,按工作性质分类可分为电感式接近开关、电容式接近开关、红外线光电开关、位移传感、霍尔开关及磁性开关六大类,按电源分类就只有交流和直流两种了。针对设备,给大家介绍前面三种常用的开关,即电感式、电容式和红外线光电三种! 电感式接近开关: 电感式接近开关属于一种有开关量输出的位置传感器,它由LC高频振荡器和放大处理电路组成,利用金属物体在接近这个能产生电磁场的振荡感应头时,使物体内部产生涡流。 这个涡流反作用于接近开关,使接近开关振荡能力衰减,内部电路的参数发生变化,由此识别出有无金属物体接近,进而控制开关的通或断。这种接近开关所能检测的物体必须是金属物体。 以下是它的工作原理图:(图1) 电容式接近开关: 电容式接近开关亦属于一种具有开关量输出的位置传感器,它的测量头通常是构成电容器的一个极板,而另一个极板是物体的本身,当物体移向接近开关时,物体和接近开关的介电常数发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通和关断。这种接近开关的检测物体,并

不限于金属导体,也可以是非金属、液体或粉状物体,在接近开关的尾部,有一个可以顺时针调节多圈电位器来调节感应灵敏度,一般调节电位器使电容式的接近开关在它本身检测距离的70%-80%的位置动作。 以下是它的工作原理图:(图2) 红外线接近开关: 红外线属于一种电磁射线,其特性等同于无线电或X射线。人眼可见的光波是380nm-780nm,发射波长为780nm-1mm的长射线称为红外线,而红外线光电开关优先使用的是接近可见光波长的近红外线。红外线光电开关(光电传感器)属于光电接近开关的简称,它是利用被检测物体对红外光束的遮光或反射,由同步回路选通而检测物体的有无,其物体不限于金属,对所有能反射光线的物体均可检测。根据检测方式的不同,红外线光电开关可再分为 1.漫反射式光电开关 漫反射光电开关是一种集发射器和接收器于一体的传感器,当有被检测物体经过时,将光电开关发射器发射的足够量的光线反射到接收器,于是光电开关就产生了开关信号。当被检测物体的表面光亮或其反光率极高时,漫反射式的光电开关是首选的检测模式。其原理图见图3。 图3

电感式接近开关原理详解

电感式接近开关原理 1.电感式接近开关工作原理 电感式接近开关由三大部分组成:振荡器、开关电路及放大输出电路。振荡器产生一个交变磁场。当金属目标接近这一磁场,并达到感应距离时,在金属目标内产生涡流,从而导致振荡衰减,以至停振。振荡器振荡及停振的变化被后级放大电路处理并转换成开关信号,触发驱动控制器件,从而达到非接触式之检测目的 2.霍尔接近开关工作原理 当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,这种现象就称为霍尔效应。两端具有的电位差值称为霍尔电势U,其表达式为U=K·I·B/d其中K为霍尔系数,I为薄片中通过的电流,B为外加磁场(洛伦慈力Lorrentz)的磁感应强度,d是薄片的厚度。 由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比的关系。霍尔开关就属于这种有源磁电转换器件,它是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,它可方便的把磁输入信号转换成实际应用中的电信号,同时又具备工业场合实际应用易操作和可靠性的要求。霍尔开关的输入端是以磁感应强度B来表征的,当B值达到一定的程度(如B1)时,霍尔开关内部的触发器翻转,霍尔开关的输出电平状态也随之翻转。输出端一般采用晶体管输出,和其他传感器类似有NPN、PNP、常开型、常闭型、锁存型(双极性)、双信号输出之分。霍尔开关具有无触电、低功耗、长使用寿命、响应频率高等特点,内部采用环氧树脂封灌成一体化,所以能在各类恶劣环境下可靠的工作。霍尔开关可应用于接近传感器、压力传感器、里程表等,作为一种新型的电器配件。 3.线性接近传感器的原理 线性接近传感器是一种属于金属感应的线性器件,接通电源后,在传感器的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。 该接近传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。线性传感器主要应用在自动化装备生产线对模拟量的智能控制。 4. 电感式接近开关工作原理 电感式接近开关由三大部分组成:振荡器、开关电路及放大输出电路。振荡器产生一个交变磁场。当金属目标接近这一磁场,并达到感应距离时,在金属目标内产生涡流,从而导致振荡衰减,以至停振。振荡器振荡及停振的变化被后级放大电路处理并转换成开关信号,触发驱动控制器件,从而达到非接触式之检测目的。 附录1:部分常用材料的值 材料衰减系数 钢 1

npn接近开关接线图

接近开关接线图|选型|厂家|接线图|NPN|PNP|电气符号|型号|品牌|24v 接近开关实物接线图|二线接近 感应式传感器npn 接近开关接线图 40 mm 齐平安装 NAMUR sensors must be operated with approved switch amplifiers. Please find suitable devices below: 参数表节选:的技术参数npn 接近开关接线 图 一般特性 开关功能 常闭 (NC) 输出类型 NAMUR 额定工作距离 40 mm 安装 齐平 可靠动作距离 0 ... 32 mm 实际动作距离 36 ... 44 mm 类型 40 mm 衰减因素 r 铝 0,35

接近开关接线图|选型|厂家|接线图|NPN|PNP|电气符号|型号|品牌|24v 接近开关实物接线图|二线接近 衰减因素 r 铜 0,35 衰减因素 r 304 0,8 输出类型 2 线 额定值 安装条件 F 100 mm 额定电压 8,2 V (R i 约 1 kΩ) 开关频率 0 ... 80 Hz 迟滞 0 ... 5 类型 3 % 反极性保护 反极性保护

接近开关接线图|选型|厂家|接线图|NPN|PNP|电气符号|型号|品牌|24v 接近开关实物接线图|二线接近 短路保护 是 电流消耗 未检测到测量板 ≥ 3 mA 检测到测量板 ≤ 1 mA 开关状态指示 黄色 LED 功能安全性参数 平均失效时间(天) 2360 a 使用寿命(...月...天) 20 a 诊断范围 0 % 与标准和规范体系的一致性 符合标准

开关柜二次控制原理图..

一、二次回路的定义 由二次设备互相连接,构成对一次设备进行监测、控制、调节和保护的电气回路称为二次回路 二次回路在词典中的解释:在电气系统中由互感器的次级绕组、测量监视仪器、继电器、自动装置等通过控制电缆联成的电路。用以控制、保护、调节、测量和监视一次回路中各参数和各元件的工作状况。用于监视测量表计、控制操作信号、继电保护和自动装置等所组成电气连接的回路均称为二次回路或称二次接线。 二、二次回路的组成 指对一次设备的工作进行监视、控制、测量、调节和保护,所配置的如:测量仪表、继电器、控制和信号元件,自动装置、继电保护装置、电流、电压互感器等,按一定的要求连接在一起所构成的电气回路,称为二次接线或称为二次回路。一次回路的组成由发电机、变压器、电力电缆、断路器、隔离开关、电压、电流互感器、避雷器等构成的电路,称为一次接线或称为主接线。 三、二次回路的分类 1、按电源性质分 交流电流回路---由电流互感器(TA)二次侧供电给测量仪表及继电器的电流线圈等所有电流元件的全部回路。 交流电压回路---由电压互感器(TV)二次侧及三相五柱电压互感器开口三角经升压变压器转换为220V供电给测量仪表及继电器等所有电压线圈以及信号电源等。

直流回路---使用所变输出经变压、整流后的直流电源。 蓄电池---适用于大、中型变、配电所,投资成本高,占地面积大。 2、按用途区分 测量回路、继电保护回路、开关控制及信号回路、断路器和隔离开关的电气闭锁回路、操作电源回路。 操动回路---包括从操动(作)电源到断路器分、合闸线圈之间的所有有关元件,如:熔断器、控制开关、中间继电器的触点和线圈、接线端子等。 信号回路---包括光字牌回路、音响回路(警铃、电笛),是由信号继电器及保护元件到中央信号盘或由操动机构到中央信号盘。 四、二次回路识图 常用的继电保护接线图包括:继电保护的原理接线圈、二次回路原理展开图、施工图(二次回路又称背面接线图、盘面布置图)。 1、看图 A、"先看一次,后看二次"。一次:断路器、隔离开关、电流、电压互感器、变压器等。了解这些设备的功能及常用的保护方式,如变压器一般需要装过电流保护、电流速断保护、过负荷保护等,掌握各种保护的基本原理;再查找一、二次设备的转换、传递元件,一次变化对二次变化的影响等。 B、"看完交流,看直流"。指先看二次接线图的交流回路,以及电气量变化的特点,再由交流量的"因"查找出直流回路的"果"。一般交流回路较简单。

接近开关的工作原理

接近开关的工作原理 发布时间:2007-6-11 供稿:xabest 浏览[758]次打印该页 接近开关的工作原理 1、概述 接近传感器可以在不与目标物实际接触的情况下检测靠近传感器的金属目标物。根据操作原理,接近传感器大致可以分为以下三类:利用电磁感应的高频振荡型,使用磁铁的磁力型和利用电容变化的电容型。 特性: ●非接触检测,避免了对传感器自身和目标物的损坏。 ●无触点输出,操作寿命长。 ●即使在有水或油喷溅的苛刻环境中也能稳定检测。 ●反应速度快。 ●小型感测头,安装灵活。 2、类型 (1)按配置来分 (2)、按检测方法分 ●通用型:主要检测黑色金属(铁)。 ●所有金属型:在相同的检测距离内检测任何金属。 ●有色金属型:主要检测铝一类的有色金属。 3、高频振荡型接近传感器的工作原理 电感式接近传感器由高频振荡、检波、放大、触发及输出电路等组成。振荡器在传感器检测面产生一个交变电磁场,当金属物体接近传感器检测面时,金属中产生的涡流吸收了振荡器的能量,使振荡减弱以至停振。振荡器的振荡及停振这二种状态,转换为电信号通过整形放大转换成二进制的开关信号,经功率放大后输出。下面为详细介绍: (1)通用型接近传感器的工作原理 振幅变化的程度随目标物金属种类的不同而不同,因此检测距离也随目标物金属的种类不同而不同。 (2)所有金属型传感器的工作原理 所有金属型传感器基本上属于高频振荡型。和普通型一样,它也有一个振荡电路,电路中因感应电流在目标物内流动引起的能量损失影响到振荡频率。目标物接近传感器时,不论目标物金属种类如何,振荡频率都会提高。传感器检测到这个变化并输出检测信号。 (3)有色金属型传感器工作原理

各内开关接线图

各内开关接线图 交流接触器两个控制按钮接线图 电动机正反转控制接线图,而且是采用按钮加接触器辅助触电的双重互锁,带自保持的控制方式,控制回路电压为线电压。从原理上看是没有问题的,能够实现基本功能。但是我觉得热继电器的常闭接点一般都接在接触器线圈与电源“2”之间,这样做的目的是当热继电器动作以后其常闭接点断开,此时整个控制回路除了SB1的一端(“1”)以及热继电器常闭接点的一端(“2”)带电以外,其他元件都不带电,特别是接触器的线圈是不带电的,既有效的减少了人员因为检查动作原因而触电的危险又能使线圈彻底断电。因为通常热继电器动作都是由于主回路电流长时间过大,使得继电器内双金属片温度达到动作值后保护动作而切断主回路,达到保护电动机以及接触器的目的。 那就在远方再设置一套用来控制正反转的启动按钮与图中对应的SB1 SB2并联,停止按钮和SB3串联就行了。

HY2-15倒顺开关接线图 倒正开关接三相比较简单,一边三接点接三相电源,另一边接三相电机。 接单相的比较麻烦,如图, 补充回答:

接单相电机如图; 图1图2是一般单相电机正反转盒内接线图, 图1正转;黑U1与红V1 连接,绿Z2与黄U2连接, 图2反转;黑U1与绿Z2连接,红V1与黄U2连接; 单相电机正反转盒内接出4根线,黑U1 红V1 绿Z2 黄U2 进入倒顺开关,如上图;

外接电源AB两根线接1 和6,4和5用一段导线相连,其他2 3 5 6 接单相电机正反转盒内接出的4根线,黑U1 红V1 绿Z2 黄U2 按图接好通电即可到顺使用了。 带接触器的自锁按钮接线图

给排水泵控制箱接线图

最新各内开关接线图

各内开关接线图

各内开关接线图 交流接触器两个控制按钮接线图 电动机正反转控制接线图,而且是采用按钮加接触器辅助触电的双重互锁,带自保持的控制方式,控制回路电压为线电压。从原理上看是没有问题的,能够实现基本功能。但是我觉得热继电器的常闭接点一般都接在接触器线圈与电源“2”之间,这样做的目的是当热继电器动作以后其常闭接点断开,此时整个控制回路除了SB1的一端(“1”)以及热继电器常闭接点的一端(“2”)带电以外,其他元件都不带电,特别是接触器的线圈是不带电的,既有效的减少了人员因为检查动作原因而触电的危险又能使线圈彻底断电。因为通常热继电器动作都是由于主回路电流长时间过大,使得继电器内双金属片温度达到动作值后保护动作而切断主回路,达到保护电动机以及接触器的目的。 那就在远方再设置一套用来控制正反转的启动按钮与图中对应的SB1 SB2并联,停止按钮和SB3串联就行了。

HY2-15倒顺开关接线图 倒正开关接三相比较简单,一边三接点接三相电源,另一边接三相电机。接单相的比较麻烦,如图, 补充回答:

接单相电机如图; 图1图2是一般单相电机正反转盒内接线图, 图1正转;黑U1与红V1 连接,绿Z2与黄U2连接,

图2反转;黑U1与绿Z2连接,红V1与黄U2连接; 单相电机正反转盒内接出4根线,黑U1 红V1 绿Z2 黄U2 进入倒顺开关,如上图; 外接电源AB两根线接1 和 6,4和5用一段导线相连,其他2 3 5 6 接单相电机正反转盒内接出的4根线,黑U1 红V1 绿Z2 黄U2 按图接好通电即可到顺使用了。 带接触器的自锁按钮接线图

最新10KV开关柜二次接线图解

10K V开关柜二次接线 图解

10KV开关柜二次接线图解 时间:2011-03-30 1、综述 10kV开关柜的主要部分包括:真空断路器、电流互感器、就地安装的微机保护装置、操作回路附件(把手、指示灯、压板等等)、各种位置辅助开关。其中,断路器与电流互感器安装在开关柜内部,微机保护、附件、电度表安装在继电器室(沿用以前的叫法,其实已经没有继电器了)的面板上,端子排与各种电源空气开关安装在继电器室内部,端子排通过控制电缆或专用插座与断路器机构连接。 理解开关柜的二次接线,我们需要找到两份图纸:综自厂家提供的保护原理图、接线图;开关柜厂家提供的二次原理图、配线图、端子排图、断路器机构原理图。 综自厂的图纸是开关柜厂家的设计原始依据,也是我们审核开关柜厂家图纸的依据。开关厂的原理图一般都是根据综自厂的原理图修改的,再示意性的画出电流、电压、信号量的输入,控制量的输出。 2、10kV电缆出线中置柜的二次接线 KYN28A(GZS1)中置柜是城区变电站使用最多的10kV开关柜型式,从正面看,它明显分成三部分,最上面是继电器室,中间是断路器室,下面是空室(什么也没有),母线等高压设备安装在背面的柜体内。如图8-1-1所示。

图8-1-1 2.1继电器室 继电器室的面板上,安装有微机保护装置、操作把手、保护出口压板、指示灯(合位红灯、分位绿灯、储能完成黄灯);继电器室内,安装有端子排、微机保护控制回路直流电源开关、微机保护工作直流电源、储能电机工作电源开关(直流或交流)。图8-1-1是早期开关柜的图片,继电器室就是安装电流表和指示灯的位置。 2.2断路器室

接近开关原理

接近开关原理 接近开关 一,电感式接近开关工作原理 电感式接近开关由三大部分组成:振荡器、开关电路及放大输出电路。振荡器产生一个交变磁场。当金属目标接近这一磁场,并达到感应距离时,在金属目标内产生涡流,从而导致振荡衰减,以至停振。振荡器振荡及停振的变化被后级放大电路处理并转换成开关信号,触发驱动控制器件,从而达到非接触式之检测目的 电路板图: 原理图:

电感式接近开关传感器的选型及使用、调试方法 电感式接近开关由于其具有体积小,重复定位精度高,使用寿命长,抗干扰性能好,可靠性高,防尘,防油,乃振动等特点,被广泛用于各种自动化生产线,机电一体化设备及石油、化工、军工、科研等多种行业。 一.工作原理 电感式接近开关是一种利用涡流感知物体的传感器,它由高频振荡电路、放大电路、整形电路及输出电路组成。 振荡器是由绕在磁芯上的线圈而构成的LC振荡电路。振荡器通过传感器的感应面,在其前方产生一个高频交变的电磁场,当外界的金属物体接近这一磁场,并达到感应区时,在金属物体内产生涡流效应,从而导致LC振荡电路振荡减弱或停止振荡,这一振荡变化,被后置电路放大处理并转换为一个具有确定开关输出信号,从而达到非接触式检测目标之目的。 二.电感式接近开关传感器的电气指标 1.工作电压:是指电感式接近开关传感器的供电电压范围,在此范围内可以保证传感器的电气性能及安全工作。 2.工作电流:是指电感式接近开关传感器连续工作时的最大负载电流。

3.电压降:是指在额定电流下开关导通时,在开关两端或输出端所测量到的电压, 4.空载电流:是指在没有负载时,测量所得的传感器自身所消耗的电流。 5.剩余电流:是指开关断开时,流过负载的电流。 6.极性保护:防止电源极性误接的保护功能。 7.短路保护:超过极限电流时,输出会周期性地封闭或释放,直至短路被清除。 三.电感式接近开关传感器的选型 1.根据安装要求,合理选用外形及检测距离。 2.根据供电,合理选用工作电压。 3.根据实际负载,合理选择传感器工作电流。 国内、国际常用色线对照:(供参考) 类型国际国内 +V 棕红 GND 兰黑 Vout 黑绿 四.使用方法 1.直流两线制接近开关的ON状态和OFF状态实际上是电流大、小的变化,当接近开关处于OFF状态时,仍有很小电流通过负载,当接近开关处于ON状态时,电路上约有5V的电压降,因此在实际使用中,必须考虑控制电路上的最小驱动电流和最低驱动电压,确保电路正常工作。 2.直流三线制串联时,应考虑串联后其电压降的总和。 3.如果在传感器电缆线附近,有高压或动力线存在时,应将传感器的电缆线单独装入金属导管内,以防干扰。 4.使用两线制传感器时,连接电源时,需确定传感器先经负载再接至电源,以免损坏内部元件。当负载电流<3mA 时,为保证可靠工作,需接假负载。 R≤U S/(I L-3) P>U S2/R

接近开关与PLC的接线方法

摘要:本文主要分析了数字量输入时PLC内部电路常见的几种形式,SINK- 拉电流输入,SOURCE- 灌电流输入,并结合传感器常见几种输出形式和经常遇到的NPN和PNP输出,以及单端与双端接口,给出了和不同的PLC电路形式连 接时的接线方法。 关键词: PLC SINK- 拉电流输入 NPN输出 SOURCE- 灌电流输入 PNP输出单端双端接口 一:引言 PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。 目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。 由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。 二:输入电路的形式 1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。 2、术语的解释 SINK漏型 SOURCE源型 SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。

图尔克接近开关接线图

图尔克接近开关(电压、电流输出)接线图 图尔克TURCK 模拟量传感器NI8-M18-LIU 外形尺寸图 图尔克TURCK 模拟量传感器NI8-M18-LIU 接线形式图 电感式传感器模拟量输出型 NI8-M18-LIU Edition ? 材料信息描述数据下载 数据表(英语)368 KB 数据表419 KB 设计圆柱螺纹 结构尺寸圆柱螺纹, M18 x 1 电气连接电缆

一般接近开关接线 BK(black)黑色:一般为输出线,输出为常开。 BN(brown)棕色:一般为电源线,接电源正极。 BU(blue)蓝色:一般为电源线,接电源负极。 WH(white)白色:一般为输出线,输出为常闭。 NPN:黑色一端接负载,负载另外一端接电源正极。 PNP:黑色一端接负载,负载另外一端接电源负极。 1)接近开关有两线制和三线制之区别,三线制接近开关又分为NPN型和PNP 型,它们的接线是不同的。请见下图所示: 2)两线制接近开关的接线比较简单,接近开关与负载串联后接到电源即可 3)三线制接近开关的接线:红(棕)线接电源正端;蓝线接电源0V端;黄(黑)线为信号,应接负载。而负载的另一端是这样接的:对于NPN型接近开关,应接到电源正端;对于PNP型接近开关,则应接到电源0V端。4)接近开关的负载可以是信号灯、继电器线圈或可编程控制器PLC的数字量输入模块。 5)需要特别注意接到PLC数字输入模块的三线制接近开关的型式选择。PLC 数字量输入模块一般可分为两类:一类的公共输入端为电源0V,电流从输入模块流出(日本模式),此时,一定要选用NPN型接近开关;另一类的公共输入端为电源正端,电流流入输入模块,即阱式输入(欧洲模式),此时,一定要选用PNP型接近开关。千万不要选错了。 6)两线制接近开关受工作条件的限制,导通时开关本身产生一定压降,截止时又有一定的剩余电流流过,选用时应予考虑。三线制接近开关虽多了一根线,但不受剩余电流之类不利因素的困扰,工作更为可靠。 7)有的厂商将接近开关的“常开”和“常闭”信号同时引出,或增加其它功能,此种情况,请按产品说明书具体接线。

接近开关怎么接线-接近开关实物接线图

接近开关怎么接线-接近开关实物接线图

————————————————————————————————作者:————————————————————————————————日期:

接近开关怎么接线?接近开关实物接线图 接近开关是一种无需与运动部件进行机械直接接触而可以操作的位置开关,当物体接近开关的感应面到动作距离时,不需要机械接触及施加任何压力即可使开关动作,从而驱动直流电器或给计算机(plc)装置提供控制指令。接近开关是种开关型传感器(即无触点开关),它既有行程开关、微动开关的特性,同时具有传感性能,且动作可靠,性能稳定,频率响应快,应用寿命长,抗干扰能力强等、并具有防水、防震、耐腐蚀等特点。产品有电感式、电容式、霍尔式、交、直流型。接近开关又称无触点接近开关,是理想的电子开关量传感器。 1)接近开关有两线制和三线制之区别,三线制接近开关又分为NPN型和PNP型,它们的接线是不同的。请见下图所示:

2)两线制接近开关的接线比较简单,接近开关与负载串联后接到电源即可。 3)三线制接近开关的接线:红(棕)线接电源正端;蓝线接电源0V端;黄(黑)线为信号,应接负载。而负载的另一端是这样接的:对于NPN 型接近开关,应接到电源正端;对于PNP型接近开关,则应接到电源0V端。 4)接近开关的负载可以是信号灯、继电器线圈或可编程控制器PLC的数字量输入模块。

5)需要特别注意接到PLC数字输入模块的三线制接近开关的型式选择。PLC数字量输入模块一般可分为两类:一类的公共输入端为电源0V,电流从输入模块流出(日本模式),此时,一定要选用NPN型接近开关;另一类的公共输入端为电源正端,电流流入输入模块,即阱式输入(欧洲模式),此时,一定要选用PNP型接近开关。千万不要选错了。 6)两线制接近开关受工作条件的限制,导通时开关本身产生一定压降,截止时又有一定的剩余电流流过,选用时应予考虑。三线制接近开关虽多了一根线,但不受剩余电流之类不利因素的困扰,工作更为可靠。

PLC接近开关接法

PLC的三线制接近开关是用NPN型还是用PNP型,这要看PLC的硬件情况,很难说孰多孰少!主要是由PLC输入电路的结构决定的,是日本式还是欧洲式?现先举西门子公司S7-300 PLC为例,常用的数字量输入模块是32点的SM321,DI32×DC24V(6ES7 321-1BL00-0AA0),该模块的接线图如下所示: 从图中可以看出,外部开关量输入触点的公共端接到了电源的正端,这种情况应使用PNP型接近开关,接线方法按9楼网友所说的。如果使用NPN型,是不能工作的 再看三菱公司的FX1N PLC,输入电路的结构是典型的日本式,接线图如下所示:

从图中可以看出,外部开关量输入触点的公共端接到了电源的0V端,这种情况应使用NPN型接近开关,接线方法还是按9楼网友所说的(只不过PLC的“M”,相当于三菱系列中的“COM”)。同理,三菱PLC如果使用PNP型接近开关,也是不能工作的!

PNP、NPN接近开关都属于集电极开路输出信号形式,但二者存在一些不同: 1、NPN的输出电路OUT端通过接近开关内部的开关管和0V连接,当传感器动作时,开关管饱和导通,OUT端和0V端相通,输出接近0V的低电平信号,当其连接PLC,电流从PLC的公共端(S/S或M端,下同)流入,从PLC的输入端流出,此即为PLC的漏型电路形式,NPN接近开关不能接源型输入电路的PLC,如图1

2、PNP的输出电路OUT端通过接近开关内部的开关管和+V连接,当传感器动作时,开关管饱和导通,OUT端和+V端相通,输出接近+V的高电平信号,当其连接PLC,电流从PLC的公共端流出,从PLC的输入端流入,此即为PLC的源型电路形式,PNP接近开关不能接漏型输入电路的PLC,如图2 3、选择接近开关类型是要根据控制器如plc的I/O的电源接入方式的不同来确定,考虑其输出特点不同,要注意其各自使能状态的逻辑电平的差别: 对NPN型接近开关,其“+V”接外电源的负极性端,“0V”经过外电源的正极性端后接PLC的公共端,“OUT”接PLC 的信号输入端,动作时输出低电平信号,电流从PLC的公共端流入PLC、从PLC的输出端流出PLC。对于接近开关来说则是电流从其“0V”和“+V”端流出接近开关,从“OUT”端流入接近开关,见图3

接近开关如何接线(1)

一、接近开关原理: 简单的讲就是信号输出分PNP型(24V输出)和NPN型(0V输出) 在讨论这个问题时,有一个问题先弄明白就是这里所说的低电平即0V,并不是指如果不给电的状态例如一个接近开关的黑线或蓝线被剪断时黑/蓝线一端就是0V;0V也是有电压的,而剪断的话就没有了电压,所以没电和0V是两个概念,不要混淆。其次,负极不一定就是0V,要看负极给定的引入电压是多少。 首先说NPN:NPN接通时是低电平输出,即接通时黑色线输出低电平(通常为0V),下图即为NPN型接近开关原理图,中间电阻代表负载,此负载可以是金属感应物或继电器或PLC等,中间三个圆圈代表开关引出的三根线,其中棕线要接正,蓝线要接负,黑色为信号线。此为常开开关,当开关动作关闭时黑色和蓝色两线接通如下图2,这时黑色线输出电压与蓝线电压相同,自然就是负极给定电压(通常为0V)。 图1:NPN型接近开关电路图 图2:NPN型接近开关工作状态 PNP:PNP接通时为高电平输出,即接通时黑线输出高电平(通常为24V),下图为PNP型三线开关原理图,电阻代表负载,当开关工作时,图1开关闭合,即黑线和棕线接通如图2,此时棕线与黑线相当于一条线,电压自然就是正极电压(通常为24V)。 图1:PNP接近开关原理图 图2:PNP常开型接近开关工作状态

1)接近开关有两线制和三线制之区别,三线制接近开关又分为NPN型和PNP型,它们的接线是不同的。请见下图所示: 2)两线制接近开关的接线比较简单,接近开关与负载串联后接到电源即可。 3)三线制接近开关的接线:红(棕)线接电源正端;蓝线接电源0V端;黄(黑)线为信号,应接负载。而负载的另一端是这样接的:对于NPN型接近开关,应接到电源正端;对于PNP型接近开关,则应接到电源0V端。 4)接近开关的负载可以是信号灯、继电器线圈或可编程控制器PLC的数字量输入模块。 5)需要特别注意接到PLC数字输入模块的三线制接近开关的型式选择。PLC数字量输入模块一般可分为两类:一类的公共输入端为电源0V,电流从输入模块流出(日本模式),此时,一定要选用NPN型接近开关;另一类的公共输入端为电源正端,电流流入输入模块,即阱式输入(欧洲模式),此时,一定要选用PNP型接近开关。千万不要选错了。 6)两线制接近开关受工作条件的限制,导通时开关本身产生一定压降,截止时又有一定的剩余电流流过,选用时应予考虑。三线制接近开关虽多了一根线,但不受剩余电流之类不利因素的困扰,工作更为可靠。 7)有的厂商将接近开关的“常开”和“常闭”信号同时引出,或增加其它功能,此种情况,请按产品说明书具体接线。 1)如同我在3楼第5)条中所说的,接入PLC的三线制接近开关是用NPN型还是用PNP

相关主题
文本预览
相关文档 最新文档