当前位置:文档之家› 基于物联网的环境监测实现研究

基于物联网的环境监测实现研究

基于物联网的环境监测实现研究
基于物联网的环境监测实现研究

基于物联网的环境监测实现研究

戴礼森

I

摘要

近年来物联网(The Internet of things)的概念和技术逐渐成为研究的热点,被认为它是继计算机、互联网与移动通信网之后信息产业发展又一次浪潮,开发应用前景巨大。物联网是通信网络的延伸,它能够使我们的社会更加自动化,降低生产成本提高生产效率,借助通信网络随时获取远端的信息。而作为物联网技术基础的无线传感器网络是当前国际上备受关注的、涉及多学科高度交叉、知识高度集成的前沿热点研究领域。本文研究了物联网技术在环境监测系统的应用,尤其是在严酷环境中对环境参数的检测和采集,对无线传感器网络的几种关键技术,如节点供电、自组织路由,以及和互联网的连接等进行了研究,给出了具体解决方案、硬件和软件路由设计等。

关键词:物联网、无线传感网、环境监测、ZigBee、TinyOs

目录

1 前言 (3)

2物联网与无线传感网 (5)

1.1.环境监测典型应用 (5)

3 物联网环境监测系统设计 (7)

3.1无线采集节点设计 (7)

3.1.1节点结构及功能设计 (7)

3.1.2 硬件设计 (10)

3.2 节点路由协议实现 (12)

3.3 无线网关设计 (16)

3.3.1网关与上位机通讯协议 (18)

3.3.2 网关路由协议实现 (22)

3.4 上位机通信与数据分析处理 (24)

3.4.1 上位机通信软件结构 (24)

4 结束语 (28)

1前言

近年来物联网的概念和技术被广泛关注,普遍认为它是继计算机、互联网与移动通信网之后的世界信息产业发展又一次浪潮,开发应用前景巨大。美国研究机构Forrester预测,物联网所带来的产业价值要比互联网大30倍,将形成下一个万亿元级别的通信业务。

所谓物联网是指通过信息传感设备,按约定的协议实现人与人、人与物、物与物全面互联的网络,其主要特征是通过射频识别、传感器等方式获取物理世界的各种信息,结合互联网、移动通信网等网络进行信息的传送与交互,采用智

能计算技术对信息进行分析处理,从而提高对物质世界的感知能力,实现智能化的决策和控制

中国政府和领导人对物联网高度重视,国家主席胡锦涛、国务院总理温家宝等领导在不同场合多次强调要依靠科技创新,引领经济发展;要注重经济结构调整和发展模式转变,重视新兴产业的发展等问题;明确提出了“感知中国”的理念,自此“物联网”提到国家议事日程。为抢占未来信息技术的制高点,我国政府也制定了相应的物联网研究和发展计划,并提出“感知中国”的概念。而且在2010年政府工作报告中更是指出,中国要大力培育战略性新兴产业,并特别提出要加强物联网的研发应用。

物联网研究起步于90年代末期的美国军方,2001年起DARPA每年都投入千万美元进行物联网技术研究。麻省理工学院、加州大学伯克利分校等高校,Intel、HP等IT公司进行了大量物联网的基础理论和关键技术的研究。我国物联网的研究与发达国家同步。2001年中科院成立了微系统研究与发展中心。 2002年至2009年期间,国家自然基金和“863”计划共支持物联网项目144项。中科院上海微系统所和清华、浙大、国防科大等院校较早地开展了物联网的相关研究。

国外大部分物联网产品的研发仍处于理论研究和小规模试验阶段,目前仍处于技术膨胀期,没有形成统一的技术标准,距离成熟实际应用仍需几年时间。Dust Networks、Crossbow Technologies等公司的物联网系列产品已走出实验室,进入应用测试阶段。国内物联网产品的研发与标准化工作还处于起步阶段。

作为物联网技术基础的无线传感器网络(Wireless Sensor Networks,WSN)是当前国际上备受关注的、涉及多学科高度交叉、知识高度集成的前沿热点研究领域。它综合了传感器、RFID技术、嵌入式计算、现代网络及无线通信和分布式信息处理等技术,能够通过各类集成化的微型传感器协同完成对各种环境或监测对象的信息的实时监控、感知和采集,这些信息通过无线方式被发送,并以自组织多跳的网络方式传送到用户终端,从而实现物理世界、计算世界以及人类社会这三元世界的连通。

本文报告了物联网技术在环境监测系统的应用,尤其是在严酷环境中对环境参数的检测和采集,对几种关键技术,如节点供电、自组织路由,以及和互联网的连接等进行了研究,给出了具体解决方案结构设计、路由设计等。

2物联网与无线传感网

一般来说,传感器网络相当于物联网中的“感知层”,对于物体的运动和所处环境通过传感器网络进行搜集和整理,数据则通过传输网络传输到应用层,进行运算、处理、反馈或者实施等等,有人把物联网等同于传感器网,这是不全面的。以互联网为代表的计算机网络技术是二十世纪计算机科学的一项伟大成果,它给我们的生活带来了深刻的变化,然而在目前,网络功能再强大,网络世界再丰富,也终究是虚拟的,它与我们所生活的现实世界还是相隔的,在网络世界中,很难感知现实世界,很多事情还是不可能的,时代呼唤着新的网络技术。可以预见,在不久的将来,无线传感网络将给我们的生活带来革命性的变化

图1 物联网数据链

1.1.环境监测典型应用

在某些严酷环境中,如桥梁、水坝、矿山等部署相应的传感器节点,通过自组织路由形成无线传感网,再由网关接入互联网。也同样适用远端无人值守机房、感知家庭、农作物灌溉情况、土壤空气情况、牲畜和家禽的环境状况和大面积的地表监测、气象和地理研究、洪水监测等场所。参数传感器可以是位移传感器、震动传感器、液位传感器、压力传感器、温度传感器等。其典型应用如图2、图3 所示。

图2 矿井环境检测系统

图3 桥梁状态检测

举例来说,目前我国煤矿采用的煤矿支架压力监测系统都是以工业CAN总线为基础,井下监测系统与地面信息中心通过电缆或光纤连接,构成有线信息传输网络,网络结构相对固定,不适合掘进工作面延伸的动态变化要求。将带有压力传感器的节点嵌入到各支架上形成自组织路由传感器,即可有效解决压力等环境参数采集和检测任务,随着工作面的移动而通信不受影响,如图4所示。

节点

图4.矿井环境监测系统

在图4中,各个无线矿压采集节点和无线网关之间形成一个自组织的网络,无线矿压采集节点采用电池供电,无线网关采用稳压电源供电,通过CAN总线实现地面数据监视和处理部分与井下设备通信。

系统可以通过光纤环网、电话线或者电缆实现地面系统与井下压力采集系统的通信和传输。上位机实现数据分析与处理并接入互联网。

3物联网环境监测系统设计

作为环境参数监测的一个具体应用,在下述描述中以压力参数为例。

3.1无线采集节点设计

3.1.1节点结构及功能设计

无线传感器节点是无线传感网络的组成单元,可以看作是一种非常小型的计算机,一般由以下四个部分组成:传感器模块、处理器模块、无线通信模块和能量供应模块。无线传感器网络可以在任何时刻、任何地点不需要任何现有基础网络设施,包括有线和无线设施支持的条件下,快速构建起一个移动通信网络。网络的运行维护管理等完全在网络内部实现,网络还需要一些基站来建立传感器

网络与外界的联系,但各传感器节点构成的网络依然是一个自组织的无中心的无线网络。

图 5 无线传感节点结构

如图5所示,传感器模块主要是用来采集各类信息,如温度、湿度、声音、加速度、全球定位信息等,并负责将模拟信息量化为数字信息,传递给其它模块进行处理;处理器模块包括处理器和存储器两部分,负责控制整个传感器节点的操作,存储和处理本身采集的数据以及其它节点发来的数据;无线通信模块负责与其它传感器节点进行通信,交换控制消息和收发采集数据;能量供应模块为传感器节点提供运行所需要的能量。

节点的能量靠电池提供,其能量有限由于条件的限制,难以在使用中给节点更换电池,所以传感器节点的能量限制是整个系统设计瓶颈,它直接决定了网络的工作寿命;另一方面,传感器节点的计算能力和存储能力都较低,使得其不能进行复杂的计算和数据存储,有效的路由协议是系统设计的关键。

无线传感器网络的能量管理主要体现在传感器节点电源管理上和有效节能的通信协议设计上,WSN是通过能量管理协议来负责网络能量的管理。其中和电源单元发生关联的有很多的模块,包括感应单元、处理单元、通信单元定位系统和移动装置等模块。其中,从传感器节点的结构来看,除了供电模块外,其它的模块都存在着电源能量消耗。在某个传感器应用现场,节点的主要任务就是监测事件,一旦事件发生就要快速执行本地采集数据的处理,然后发送数据到目的节点。因此,耗能可以分成三个组成部分:感应、通信和数据处理部分。传感器网络的协议主要考虑如何在通信部分实现有效的节能。很多研究和测量成果都表明:节点空闲监听会消耗接收数据所需能量的50%-100%左右。

在实际应用中,如果没有感应事件发生,节点大多数时间处于空闲模式,这是能量浪费的主要来源。能量管理协议的核心思想就是让不执行感应任务的节点直接进入睡眠状态。因此,无线传感网络能耗的特点如下:①节点能耗与其操作模式关系较大,②无线传感器的能耗主要来源于无线的传输以及传输的数据量。

对于无线传感网,能量浪费主要来源于下面几个方面:①由于数据包冲突造成的能量浪费,如多个节点向同一个节点传输数据造成数据包碰撞、重传从而造成能量浪费;②由于不必要侦听造成能量浪费,比如一个节点侦听到不是自己的数据包所造成的能量浪费;③无线模块长期处于空闲状态所造成能量浪费,节点处于空闲状态的能耗可以和接收状态及发送状态的能耗比拟,如果节点无线模块长期处于空闲状态就会造成大量能量浪费:④由于收发节点没有协调好所造成的不必要数据发送,比如当发送端发送数据时,接收端处于睡眠状态,此时发送的数据会造成能量的浪费。

系统设计中我们采用了专为嵌入式无线传感网络设计的TinyOs操作系统。TinyOS采用了组件的结构,它是一个基于事件的系统。TinyOS设计的主要目标是代码量小、耗能少、并发性高、鲁棒性好,可以适应不同的应用,其技术特点表现在:

轻线程:解决节点操作可能比较频繁,线程较短,传统进程/线程调度无法满足。

主动消息:在发送消息的同时传送处理这个消息的相应处理函数ID和处理数据,接收方得到消息后可立即进行处理,从而减少通信量事件驱动:整个系统的运行是因为事件驱动而运行的,没有事件发生时微处理器进入睡眠状态,从而可以达到节能的目的。

组件化编程:组件就是对软硬件进行功能抽象。整个系统是由组件构成的,通过组件提高软件重用度和兼容性。程序员只关心组件的功能和自己的业务逻辑,而不必关心组件的具体实现,从而提高编程效率。

依据以上设计思路,设计完成的本系统采集节点主要由处理器、通信控制器、RTC实时时钟电路、数据显示、数据存储、油压采集以及射频通信模块组成。结构框图如图6所示。

图6 环境参数采集节点功能图

各模块功能和设计:

①网络节点采用模块化设计,包含射频通讯模块、传感器AD采集模块、RTC实时时钟模块、LCD显示模块、数据存储模块。

②节点每隔规定时间(通常2秒)采集数据,并将数据记录,同时加上时间信息,然后节点尝试将数据再上传至网关。

③若上传失败,则数据将被记录在存储模块中,存储空间为128KB,等待通讯恢复后再将数据上传回来。

④每个监控节点间可以转发其它节点信息,以实现多跳的特性,节点间自动完成MESH网络,并可快速适应环境变化,保证数据传输稳定。

3.1.2 硬件设计

节点硬件主处理器采用TI公司生产的一款专用于IEEE802.15.4和Zigbee 通信协议的片上系统(SoC)CMOS解决方案。如图7所示,这种解决方案能够提高性能并满足以ZigBee为基础的2.4GHz ISM波段应用,及对低成本,低功耗的要求。它结合一个高性能2.4GHz DSSS(直接序列扩频)射频收发器核心和一颗工业级小巧高效的8051控制器。CC2430的设计结合了8Kbyte的RAM及强大

的外围模块,并且有3种不同的版本,他们是根据不同的闪存空间32,64和128kByte来优化复杂度与成本的组合。

图7 SoC系统框图

针对协议栈,网络和应用软件的执行对MCU处理能力的要求,CC2430包含一个增强型工业标准的8位8051微控制器内核,运行时钟32MHz。由于更快的执行时间和通过除去被浪费掉的总线状态的方式,使得使用标准8051指令集的CC2430增强型8051内核,具有8倍的标准8051内核的性能。

CC2430包含一个DMA控制器。8k字节静态RAM,其中的4k字节是超低功耗SRAM。32k,64k或128k字节的片内Flash块提供在电路可编程非易失性

存储器。

CC2430集成了4个振荡器用于系统时钟和定时操作:一个32MHz晶体振荡器,一个16MHz RC-振荡器,一个可选的32.768kHz晶体振荡器和一个可选的32.768kHz RC 振荡器。

CC2430也集成了用于用户自定义应用的外设。一个AES协处理器被集成在CC2430,以支持IEEE802.15.4 MAC 安全所需的(128位关键字)AES的运行,以实现尽可能少的占用微控制器。

中断控制器为总共18个中断源提供服务,他们中的每个中断都被赋予4个中断优先级中的某一个。调试接口采用两线串行接口,该接口被用于在电路调试和外部Flash编程。I/O控制器的职责是21个一般I/O口的灵活分配和可靠控制。

CC2430包括四个定时器:一个16位MAC定时器,用以为IEEE802.15.4的CSMA-CA算法提供定时以及为IEEE802.15.4的MAC层提供定时。一个一般的16位和两个8位定时器,支持典型的定时/计数功能,例如,输入捕捉、比较输出和PWM功能。

CC2430内集成的其他外设有:

实时时钟;上电复位;8通道,8-14位ADC;可编程看门狗;两个可编程USART,用于主/从SPI或UART操作。

为了更好的处理网络和应用操作的带宽,CC2430集成了大多数对定时要求严格的一系列IEEE802.15.4 MAC协议,以减轻微控制器的负担。

射频及模拟收发器:

CC2430的接收器是基于低--中频结构之上的,从天线接收的RF信号经低噪声放大器放大并经下变频变为2MHz的中频信号。中频信号经滤波、放大,在通过A/D转换器变为数字信号。自动增益控制,信道过滤,解调在数字域完成以获得高精确度及空间利用率。集成的模拟通道滤波器可以使工作在 2.4GHz ISM波段的不同系统良好的共存。

3.2 节点路由协议实现

无线传感器网络是一种能量有限的网络,且能量通常无法得到补充。因此,在无线传感器网络中,有效利用有限的能量资源是任何路由算法首要考虑的因

素。无线传感器网络设计的一个主要目标是最大化网络生命期。如果网络中某些节点能量消耗过快,这对网络的生存期有很大的影响。所以,每个节点能耗均衡也是路由算法的重要考虑因素。本项目主要研究基于最小跳数的能量自适应路由算法( minimum hops energy-adapted protocol,MHEP)。该路由算法的关键思想是利用到sink 节点的最小跳数和路径节点最小剩余能量作为路由选择度量来完成信息包的转发。

传感节点发送信息时,首先搜索本节点的下一跳可用节点集,从中选择路径节点最小剩余能量最大的节点进行转发,下跳节点接收到该信息后作同样的处理,直至发送到目的节点为止。下面给出的是单跳路由描述。

单跳路由实现过程

配置文件NodeC

使用的组件:MainC 主组件

NodeP 节点实现组件

LedsC LED组件

HalFlashP Flash读写组件

HplCC2430Timer1P 定时器1组件

HplCC2430Timer3P 定时器3组件

HplCC2430I2CbusP I2C组件

HplCC2430GeneralIOC IO组件

AdcP ADC组件

SimpleMacC RF组件

SmsLcdBasicC LCD驱动组件

使用的接口:Boot 启动接口

Leds LED接口

HalFlash Flash操作接口

HplCC2430Timer16 as Timer1 定时器1接口

Init as Timer1Init 定时器1初始化接口

HplCC2430Timer8 as Timer3 定时器3接口

Init as Timer3Init 定时器3初始化接口

HplCC2430I2CBus as I2C I2C接口

Init as AdcInit ADC初始化接口

AdcControl ADC控制接口

Read as AdcRead ADC读接口

SimpleMac RF接口

StdControl as SimpleMacControl RF控制接口

SmsLcdBasic 液晶接口

GeneralIO as PAEnable PA控制脚

提供的接口:Init 软件初始化:读出Flash中存储的节点地址号。

实现文件NodeP

任务:task void delay()延时10ms

task void delay1() 延时时间由节点号决定,相邻节点号间隔10ms。事件:event void Boot.booted()

启动上电启动后进入该事件,该事件中完成时钟,定时器寄存器初始化,无线发送变量的初始化,无线寄存器初始化,功放控制设置。

async event void Timer3.fired()

定时器3中断程序。停止定时器。

如果没找到子节点:本节点作为最后一级节点,向父节点发送自身节点号。

如果找到了子节点:向子节点发送设置消息。

event void AdcRead.readDone(error_t result,int16_t val)

读ADC中断程序。ADC值转换成压力整数和小数位,LCD显示压力值;

每5s采集一次,采集后立即休眠;直到采集12次(也就是一分钟采集结束),不休眠,读出时间值,打开定时器1,定时时间和节点跳数有关(目的是为了叉开各个节点发送数据的时间,避免冲突)。

event packet_t *SimpleMac.receivedPacket(packet_t *packet)

无线接收中断程序。Switch接收数据长度:

(1) length = 10 若packet->data = 0,表明收到的是查询消息,向发送查询消息

的节点回应一个消息。若packet->data = 1,表明收到的是应答消息,从有效覆盖范围内的节点回应中,找出RSSI值最大的节点。

(2) length = 11 表明是父节点发送到本节点的设置消息,设置父节点为发送设

置消息的节点号。跳数MHC为父节点跳数加一,设置定时器1溢出值为391*MHC(每个节点错开200ms),设置地址过滤。启动定时器3,发送查询子节点消息。

(3) length = 9+全部子节点字节数表明收到的是节点号上传消息,将消息转

发到自己的父节点。

(4) length = 21 表明收到的是时间设置消息,将其转化为BCD码格式,写入

RTC,启动RTC,设置定时中断时间(5s)。将时间转发至子节点。设置外部中断寄存器。

(5) length = 36 表明是发到本节点的数据消息,转发至父节点。

MCS51_INTERRUPT(SIG_P1INT)

外部中断服务程序。在我们的系统中,外部中断为RTC中断。中断服务程序中,清外部中断标志位,调用读ADC命令。

async event void Timer1.fired()

定时器1中断服务程序。停止定时器,打开无线,发送数据包至父节点。

3.3 无线网关设计

无线网关的功能是建立和各采集节点的通信路由并保持通信,与上位机或通信网络接口和数据处理单元通信将各节点采集数据上传,同时上位机可以通过网关向各个采集节点发送命令。其硬件部分和节点设计基本相同。网关结构如图8所示。

(1)网关包含射频通讯模块、串口通讯模块、RTC实时时钟模块、通信协议处理模块、数据存储模块;

(2)网关通过射频模块,收集所有节点上传的数据报;

(3)若监控服务软件与网关保持连接,则网关将即时的将数据通过CAN 总线通讯上报数据信息;

(4)若监控服务软件与网关通讯断开,则网关将收集到的数据存储至存

储系统中;

(5)监控服务软件与网关通讯恢复,则网关可将存储的数据再次传回;

图8 网关结构功能图

(6)U盘存储

作为网关重要功能,当与上位机通信中断时,各采集点采集到的环境数据存储在U盘,操作人员通过更换U盘取出存储的数据。

U盘驱动电路采用“U 盘和SD 卡文件管理控制专用芯片,用于单片机系统读写U 盘或者SD 卡中的文件,与单片机采用SPI接口。考虑到本安要求,即防火花,对5V优盘供电进行限流。见图9。.

图9 U盘供电和驱动电路3.3.1网关与上位机通讯协议

网关报告节点即时数据(Gateway -> PC)

心跳数据头

记录数据

网关报告节点历史数据(Gateway -> PC)

此类数据为节点因为发生错误无法正确上传所保存下来的数据:节点转发失败的数据

网关板上报未成功的数据

所有的数据组成相应的片段,保存到FLASH中,可能无序。

获取网关当前RTC时间(PC->Gateway)

上位机可以通过该命令得到基站的RTC时间值,基站正确接收到上位机命令后,

设置网关当前RTC时间(PC->Gateway)

物联网智能环境监测系统

《传感器与物联网技 术》 综合报告 题目:智能环境与物联网技术 专业: 学号: 姓名: 提交日期:二О一六年六月 摘要

环境与所有人的日常生活都息息相关,而物联网技术也随着计算机技术,信息技术,以及智能技术的发展越来越多的开始被应用到我们的日常生活中来。本文主要针对物联网技术应用到环境监测中的相关问题进行了分析与探讨。 智能环境利用各种传感器技术,移动计算,信息融合等技术对空气环境,海洋环境,河,湖水质,生态环境,城市环境质量进行全面有效地监控,通过构建全国各地环境质量的检测实现对全国范围内的环境进行实时在线监控和综合分析,建立全国性的污染源信息综合管理系统,为采取环境治理措施和污染预警提供更客观,有效的依据。 关键字:智能环境物联网技术传感器

目录 1引言 (4) 1.1 物联网简介 (4) 1.2智能环境研究的目的和背景 (4) 2需求分析 (4) 2.1智能环境功能需求分析 (5) 2.2各子系统需求分析 (5) 2.2.1大气污染监测子系统需求分析 (5) 2.2.2海洋污染监测子需求分析 (5) 2.2.3水质监测子系统需求分析 (5) 2.2.4生态环境检测子系统需求分析 (5) 2.2.5城市环境检测子系统需求分析 (5) 2.3其他非功能需求分析 (6) 2.3.1可靠性需求 (6) 2.3.2开放性需求 (6) 2.3.3可扩展性需求 (6) 2.3.4安全性需求 (6) 2.3.5应用环境需求 (6) 3详细设计 (6) 3.1各环境监测子系统解决方案 (6) 3.2智能环境监测系统结构图 (5) 3.2.1各子系统环境监测拓扑结构图 (6) 4结论 (12) 参考文献 (13)

基于物联网的生态环境监测

1 、生态环境监测的定义 对于生态环境监测,许多人有不同的理解。全球环境监测系统将其定义为是一种综合技术,可相对便宜地收集大范围内生命支持系统能力的数据。前苏联学者曾提出,生态监测是生物圈的综合监测。美国环保局把生态监测定义为自然生态系统的变化及其原因的监测。国内有学者提出“生态监测就是运用可比的方法,在时间和空间上对特定区域范围内生态系统或生态系统组合体的类型、结构和功能及其组合要素等进行系统地测定和观察的过程,监测的结果则用于评价和预测人类活动对生态系统的影响,为合理利用资源、改善生态环境和自然保护提供决策依据”,这一定义从方法原理、目的、手段、意义等方面作了较全面的阐述。 2 、生态监测的对象 生态环境监测已不再是单纯的对环境质量的现状调查,它是以监测生态系统条变化对环境压力的反映及趋势,侧重于宏观的、大区域的生态破坏问题。生态监测的对象包括农田、森林、草原、荒漠、湿地、湖泊、海洋、气象、物候、动植物等,每一类型的生态系统都具有多样性,不仅包括了环境要素变化的指标和生物资源变化的指标,同时还要包括人类活动变化的指标。另外根据《生态环境状况评价技术规范》的生态环境质量指标:生物丰度指数、植被覆盖指数、水网密度指数、土地退化指数和环境质量指数,提出了生态监测的因子。 3 生态监测的类型

根据生态监测2个基本的空间尺度,可将其划分为宏观生态监测和微观生态监测两大类。 (1)宏观生态监测。是在大区域范围内对各类生态系统的组合方式、镶嵌特征、动态变化和空间分布格局及其在人类活动影响下的变化等进行监测。主要利用遥感技术、地理信息系统和生态制图技术等进行监测。 (2)微观生态监测。其监测对象的地域等级最大可包括由几个生态系统组成的景观生态区,最小也应代表单一的生态类型。它是对某一特定生态系统或生态系统集合体的结构和功能特征及其在人类活动影响下的变化进行监测。 宏观生态监测起主导作用,且以微观生态监测为基础,二者既相互独立,又相辅相成。 4 、生态监测的特点 生态监测是一个综合性的工作,牵涉到多学科的交叉,它包含了农、林、牧、副、渔、工等各个生产领域。又是一个长期性的复杂性的工作,因为生态系统的发展是十分缓慢的复杂变化过程,受污染物质的排放、资源的开发利用,还有自然因素等的影响,长期监测才能揭示其变化规律。其还具有分散性,生态监测站点的选取往往相隔较远,监测网的分散性很大。同时由于生态过程的缓慢性,生态监测的时间跨度也很大,所以通常采取周期性的间断监测。 生态监测系统性强。生态监测本身是对系统状态的总体变化

基于物联网的环境监测实现研究

基于物联网的环境监测实现研究

摘要 近年来物联网(TheInternetofthings)的概念和技术逐渐成为研究的热点,被认为它是继计算机、互联网与移动通信网之后信息产业发展又一次浪潮,开发应用前景巨大。物联网是通信网络的延伸,它能够使我们的社会更加自动化,降低生产成本提高生产效率,借助通信网络随时获取远端的信息。而作为物联网技术基础的无线传感器网络是当前国际上备受关注的、涉及多学科高度交叉、知识高度集成的前沿热点研究领域。本文研究了物联网技术在环境监测系统的应用,尤其是在严酷环境中对环境参数的检测和采集,对无线传感器网络的几种关键技术,如节点供电、自组织路由,以及和互联网的连接等进行了研究,给出了具体解决方案、硬件和软件路由设计等。 关键词:物联网、无线传感网、环境监测、ZigBee、TinyOs 目录 1 前言......................................................................................... 错误!未指定书签。2物联网与无线传感网............................................................. 错误!未指定书签。 1.1.环境监测典型应用................................................... 错误!未指定书签。 3 物联网环境监测系统设计..................................................... 错误!未指定书签。 3.1无线采集节点设计.................................................................. 错误!未指定书签。 3.1.1节点结构及功能设计........................................................... 错误!未指定书签。 3.1.2硬件设计............................................................................... 错误!未指定书签。 3.2节点路由协议实现................................................................. 错误!未指定书签。 3.3 无线网关设计 .............................................................. 错误!未指定书签。 3.3.1网关与上位机通讯协议....................................................... 错误!未指定书签。 3.3.2 网关路由协议实现............................................ 错误!未指定书签。 3.4上位机通信与数据分析处理.................................................. 错误!未指定书签。 3.4.1上位机通信软件结构........................................................... 错误!未指定书签。 4 结束语..................................................................................... 错误!未指定书签。1前言 近年来物联网的概念和技术被广泛关注,普遍认为它是继计算机、互联网与移动通信网之后的世界信息产业发展又一次浪潮,开发应用前景巨大。美国研

基于物联网的环境监测系统设计

163 电子技术 1 引言 近几年来,我国不断投入大量的人力、物力和财力,加强环境保护的信息化建设,在环境监测监控系统、环境应急系统等硬件等软硬件建设方面做出了大量的探索和努力。现阶段我国的环境监测监控领域的发展并没有太大突破,尤其是环境监测监控系统的体系结构以及环境监控中的硬件设备等等,在当今物联网技术大发展的趋势下,随着环境监测监控新途径、新方法和新技术的发展,环境监测监控系统建设已经成为下一步环境监控的重要手段,把符合“物物相连”等要求的数据采集终端设备纳入环境监测监控物联网系统。数据采集终端设备之间通过相互协作,完成相关的环境监测业务。现有技术中存在多种类型环境要素接入时系统要求高、传输方式单一、数据采集可靠性低的问题。 2 系统介绍 基于物联网的环境监测系统设计 万 军1 ,张新婷2 (1.科盛环保科技股份有限公司,南京 211500;2.河海大学设计研究院有限公司,南京 210098) 摘 要:本文介绍了一种环境监测物联网系统,包括环境监测服务器、环境监测服务平台、物联网、环保数采仪、采集终端,解决了多种类型环境要素接入时系统要求高、传输方式单一、数据采集可靠性低的问题,具有多种类型环境要素可同时接入环境监测物联网系统、数据可靠、有利于判断数据的正确性、便于用户使用和升级、传输方式多样、适用于不同环境监测场合。关键词:物联网;环境监测;系统 DOI:10.16640/https://www.doczj.com/doc/111417146.html,ki.37-1222/t.2017.12.147 图1 是环境监测物联网系统结构图 如图1所示,环境监测物联网系统包括环境监测服务器、环境监测服务平台、物联网、环保数采仪、采集终端,采集终端用于采集废气污染物的数据、采集废水污染物的数据、设备运行数据、室温数据、室内湿度数据以及自身的工作状态并上传至环保数采仪,环保数采仪用于将接收的环保数据汇总后上传至经物联网上传至环境监测服务平台,环境监测服务平台将接收的环保数据保存至环境监测服务器,用户经环境监测服务平台监测环保数据并发出控制监控指令至采集终端,环境监测服务器用于向用户提供环保数据。 环境监测物联网系统,包括环境监测服务器、环境监测服务平台、物联网、环保数采仪、采集终端;采集终端用于采集废气污染物的数据、采集废水污染物的数据、采集锅炉负荷数据、室温数据、室内湿度数据以及自身的工作状态并上传至环保数采仪;环保数采仪用于将接收的环保数据汇总后上传至经物联网上传至环境监测服务平台;环境监测服务平台将接收的环保数据保存至环境监测服务器,用户经环境监测服务平台监测环保数据并发出控制监控指令至采集终端;环境监测服务器用于向用户提供环保数据。控制指令包括废气污染物控制指令、废水污染物控制指令、设备运行控制指令、室温控制指令、室内湿度 控制指令。环境监测物联网系统还包括网关,网关用于目的地址解析。 由于采用包括环境监测服务器、环境监测服务平台、物联网、环保数采仪、采集终端,采集终端用于采集废气污染物的数据、采集废水污染物的数据、采集锅炉负荷数据、室温数据、室内湿度数据以及自身的工作状态并上传至环保数采仪,环保数采仪用于将接收的环保数据汇总后经物联网上传至环境监测服务平台,环境监测服务平台将接收的环保数据保存至环境监测服务器,用户经环境监测服务平台监测环保数据并发出控制监控指令至采集终端,环境监测服务器用于向用户提供环保数据,网络拓扑结构合理,数据准确性高,便于用户使用和升级。 由于物联网用于采集终端和环境监测服务平台的数据传输,使得多种类型环境要素可同时接入环境监测物联网系统,由于物联网利用局部网络或互联网等通信技术把传感器、控制器、人员和物等通过新的方式联在一起,形成人与物、物与物相联,实现信息化、远程管理控制和智能化的网络,物联网是互联网的延伸,它包括互联网及互联网上所有的资源,兼容互联网所有的应用,但物联网中所有的元素(所有的设备、资源及通信等)都是个性化和私有化。 3 小结 (1)采用物联网用于采集终端和环境监测服务平台的数据传输,使得多种类型环境要素可同时接入环境监测物联网系统。 (2)由于采用了废气连续在线监测仪、锅炉运行负荷采集装置、废水在线监测仪、温度传感器、湿度传感器等多种采集终端接入的技术手段,多种环保数据的采集为环境监测服务平台的数据分析提供了更可靠的依据。 (3)上传采集终端自身的工作状态包括废气连续监测仪自身的工作状态和废水在线监测仪自身的工作状态,使得用户能及时发现设备存在的问题,有利于判断数据的正确性以及系统的维护。 (4)采用包括环境监测服务器、环境监测服务平台、物联网、环保数采仪、采集终端,采集终端用于采集废气污染物的数据、采集废水污染物的数据、采集锅炉负荷数据、室温数据、室内湿度数据以及自身的工作状态并上传至环保数采仪,环保数采仪用于将接收的环保数据汇总后上传至经物联网上传至环境监测服务平台,环境监测服务平台将接收的环保数据保存至环境监测服务器,用户经环境监测服务平台监测环保数据并发出控制监控指令至采集终端,环境监测服务器用于向用户提供环保数据,网络拓扑结构合理,数据准确性高,便于用户使用和升级。 (5)采用环保数采仪的技术手段,由于环保数采仪允许多种协议输入,统一格式输出,解决了传输方式单一的难题。从整体上说,本系统布局合理,连接简单,适用于不同环境监测场合。 作者简介:万军(1982-),男,江苏南京人,本科,中级,研究方向:电气自动化。

机场,楼宇,工业园区环境监测物联网系统

lora环境监测物联网系统 解 决 方 案

一、系统背景 人们越来越重视环境问题,为此创羿兴晟研发了多款lora产品,例lora控制终端CY-LRB-102、lora检测终端CY-LRB-101、lora控制终端CY-LRW-102、lora检测终端CY-LRW-101等产品型号,还有多款产品正在研发中,通过lora窄带物联网技术实现对场所内环境,包括pm2.5、CO2含量、光照、粉尘颗粒物浓度、环境温度气压等的监测,打造lora环境监测物联网系统,通过对环境的监测实现对环境状态的提前预警,实现从被动承受到主动防御的转变。 一台lora控制终端可连接16-32个环境传感器。Lora远距离通信,大大减少了中继的成本。本系统可应用于机场、车站、工业园区、居民区、学校等各种需要监测实时环境状态的场景,实现对环境的实时监控和提前预警。 二、系统组成及总体设计 lora环境监测物联网系统由各种环境传感器、lora控制终端CY-LRB-102、lora检测终端CY-LRB-101、DDC设备及云数据管理平台等几个部分组成。 系统总体网络拓扑结构如图1所示,主要包括环境数据管理中心、lora控制终端CY-LRB-102、lora监测终端CY-LRB-101以及DDC 设备,该系统lora控制终端CY-LRB-102与各类传感器以有线一对多方式相连,采集传感器的模拟量数据;lora控制终端CY-LRB-102与lora监测终端CY-LRB-101采用lora无线一对一的通信方式,传输传

感器的模拟量数据;lora监测终端CY-LRB-101与DDC设备以有线多对一方式相连,将环境信息发送给DDC设备,并将数据上传到环境数据管理中心。 lora控制终端CY-LRB-102向下与传感器根据modbus通信规约通过RS485方式连接,向上借助lora网络的超长距离无线通信能力与lora监测终端CY-LRB-101通信;lora监测终端CY-LRB-101向上与DDC设备根据baet通信规约通过RS485方式连接,将采集的环境数据通过DDC设备传回环境数据管理中心。lora控制终端CY-LRB-102与lora监测终端CY-LRB-101内都有modbus/baet通信规约机制,可根据需要转换通信机制。若遇障碍物严重遮挡,导致lora控制终端CY-LRB-102与lora监测终端CY-LRB-101不能正常通信时,可增加中继节点以使采集的数据传输至Lora监测终端CY-LRB-101。 环境数据管理中心通过对采集数据的分析处理,智能分析每个接入传感器的状态,并转换成有价值的信息,供授权用户访问使用。由此可见,该系统可实现上电即用、网络简单、数据上传、数据下发、抗干扰等功能,实现环境数据的采集与管理。该系统不仅为环境数据管理中心提供查询和管理的便捷,还能提供智能决策,帮助管理中心提高服务水平。

基于物联网的智能化环境监测系统研究平台.doc

基于物联网的智能化环境监测系统研究平台 摘要:本文通过对重点污染源排放状态的自动监控,及时、准确、全面地反映环境质量现状及趋势,为环境管理、污染源控制、环境规划、环境评价提供客观的科学依据,采用了计算机、通讯和自动化领域最新的产品和技术,从而构建新一代的污染源在线自动监测(监控)系统。 关键词:物联网;环境;检测(监控);平台 哥本哈根气候峰会在2009年12月举行,许多国家希望达成一份具有约束力的二氧化碳减排协议。与此同时,各国都陆续将物联网的建设上升到国家战略的层面,旨在通过物联网的应用实现节能减排,成就低碳经济。物联网作为低碳经济革命的技术创新之一,是要在能源流的整个过程中提高能源生产率和降低二氧化碳的排放。低碳经济社会的特点是要建立能源互联网,使得不同形式、不同时空的能源可以得到聪明的使用。这既可以大幅度地减少能源消耗和二氧化碳排放,同时又可以大幅度地提高人们的生活质量和便利性。 1 系统总体设计 1.1 异构自组织无线传感器网络 拟采用三层架构:底层节点包括信息采集设备等;中间层由车载设备节点或多跳转发设备构成;上层由位置固定的网关节点组成。 1.2 平面型环境监测气体传感器 气体传感器:一是提高灵敏度和工作性能,降低功耗和成本,缩小尺

寸,简化电路,与应用整机相结合,这也是气体传感器一直追求的目标。二是增强可靠性,实现元件和应用电路集成化,多功能化,发展MEMS技术,发展现场适用的变送器和智能型传感器。 1.3 环境与气象监测信息处理中心及通讯终端 监控中心采用标准的B/S系统架构,同时采用通用的软、硬件产品,并规范数据存储格式,使系统具有兼容性强、规模易扩展的特性。定制移动终端采用CPU+DSP核的硬件架构,可以实现高速的数据处理能力。丰富的外部接口和高亮度大屏幕,坚实的外壳能很好满足特殊要求。终端采用VISION公司的VISION225+TI公司的OMAP5910构成的硬件平台。 2 系统技术难点分析 基于物联网的智能化环境监测系统主要研究的内容是异构自组织无线传感器网络与平面型环境监测气体传感器。 2.1 异构自组织无线传感器网络系统架构 信息采集节点:由传感模块和数据处理传输模块组成,能够自组织成无线网络的节点。传输距离50-100米,功耗休眠期10mW,工作时间100mW,传输距离可扩展为500米,接口包括模拟4-20MA和RS485接口。车载节点和多跳转发节点:是具有较强数据收集能力的中心节点,把传感节点汇集来的数据进行接收和处理,传输距离500-1000米,功耗随传输距离变化。网关节点:把车载节点和多跳转发节点通过Internet转发给中央控制系统,具有无线接入网络和宽带接入网络功能。终端设备:是由能够上网的PC、PDA或智能手机构成,实现远程浏览。中央控制管理:通过节点收集的各类信息最终汇总到中央控制系统,自主设计开发的中央控制系统

HJKJ2014060015 基于物联网的水环境监测及分析系统

基于物联网的水环境监测及分析系统 梁艳,俞旭东,谢凯 (南京南瑞集团公司,江苏南京211106) [摘要]:基于物联网的水环境监测及分析系统集传感器、测控、通信、计算机应用、地理信息系统等技术为一体,实现了“测得准、传得快、说得清、管得好”的总体目标,可为水环境管理、水功能区管理、污染物减排和总量控制提供科学依据。系统可方便接入其他业务系统,实现资源共享,提高环保部门环境监察、管理能力,增强应对突发性污染事故快速反应能力,满足环境监测和环境管理的业务需求。 关键词:物联网;水环境监测;水环境分析 0引言 随着环保产业的发展及物联网概念的兴起,将物联网与环境监测融合已成为环境监测与管理新的发展趋势[1]。环境参数、设备状态、视频监控等信息通过具有定位功能的传感器、智能监测分析仪器等感知设备进行采集后,经由网络设备和通道实时传输至信息平台进行存储和分析,实现环境管理部门对水环境信息的实时监控,同时实现其对监测站点测控、数据传输装置及排污口闸门等设备进行远程控制和工况监测,增加系统运行的稳定性和可靠性,有效防止和应对突发性环境污染事故的发生。物联网技术在环境监测中的应用使得环境监测与管理更加便利和准确[2-3]。 传统的水环境监测以实验室监测为主,还包括便携式仪器现场人工取样检测和固定监测站点连续取样监测[4],各方式分别具有其优缺点。如实验室监测响应时间长,检测频次有限,但监测参数全面且分析结果精确;自动在线监测投资运行成本高,但监测及时,预警能力强等。物联网将3种监测手段结合起来,充分利用传感器技术、射频技术、无线通信技术等,快速有效获取大范围(甚至是整个水域)水质信息并对这些信息进行综合挖掘利用,作出整体有效的评价[5-6]。水质信息的快速准确获取以及数据的高效利用是水环境监测中物联网技术运用的关键。 水环境监测及分析系统在物联网先进感知技术的基础上,充分利用网络技术、数据库技术、GIS技术、Web发布技术,以智能传感器为基础,结合自由组网传输方式将采集数据传输至环境业务数据中心。系统对业务应用进行扩展,其业务应用模块依据水质规范,对监测项目各种动态数据进行综合性地分析和评价,实现有效的监控预警;并且根据内置的各种水质模型,为污染物总量控制、水功能区环境治理提供科学依据及技术支持,提高环境管理部门监察监管能力,增强其应对突发性污染事故快速反应能力,实现环境监测管理“测得准、传得快、说得清和管得好”的总体目标。

根据物联网的环境监测实现研究

-` 基于物联网的环境监测实现研究 戴礼森

摘要 近年来物联网(The Internet of things)的概念和技术逐渐成为研究的热点,被认为它是继计算机、互联网与移动通信网之后信息产业发展又一次浪潮,开发应用前景巨大。物联网是通信网络的延伸,它能够使我们的社会更加自动化,降低生产成本提高生产效率,借助通信网络随时获取远端的信息。而作为物联网技术基础的无线传感器网络是当前国际上备受关注的、涉及多学科高度交叉、知识高度集成的前沿热点研究领域。本文研究了物联网技术在环境监测系统的应用,尤其是在严酷环境中对环境参数的检测和采集,对无线传感器网络的几种关键技术,如节点供电、自组织路由,以及和互联网的连接等进行了研究,给出了具体解决方案、硬件和软件路由设计等。 关键词:物联网、无线传感网、环境监测、ZigBee、TinyOs

目录 1 前言 (3) 2物联网与无线传感网 (5) 1.1.环境监测典型应用 (5) 3 物联网环境监测系统设计 (7) 3.1无线采集节点设计 (7) 3.1.1节点结构及功能设计 (7) 3.1.2 硬件设计 (10) 3.2 节点路由协议实现 (12) 3.3 无线网关设计 (16) 3.3.1网关与上位机通讯协议 (17) 3.3.2 网关路由协议实现 (21) 3.4 上位机通信与数据分析处理 (23) 3.4.1 上位机通信软件结构 (23) 4 结束语 (27) 1前言 近年来物联网的概念和技术被广泛关注,普遍认为它是继计算机、互联网与移动通信网之后的世界信息产业发展又一次浪潮,开发应用前景巨大。美国研究机构Forrester预测,物联网所带来的产业价值要比互联网大30倍,将形成下一个万亿元级别的通信业务。 所谓物联网是指通过信息传感设备,按约定的协议实现人与人、人与物、物与物全面互联的网络,其主要特征是通过射频识别、传感器等方式获取物理世界的各种信息,结合互联网、移动通信网等网络进行信息的传送与交互,采用智

物联网智能环境监测系统

物联网智能环境监测系 统 Document number:BGCG-0857-BTDO-0089-2022

《传感器与物联网技 术》 综合报告 题目:智能环境与物联网技术 专业: 学号: 姓名: 提交日期:二О一六年六月 摘要 环境与所有人的日常生活都息息相关,而物联网技术也随着计算机技术,信息技术,以及智能技术的发展越来越多的开始被应用到我们的日常生

活中来。本文主要针对物联网技术应用到环境监测中的相关问题进行了分析与探讨。 智能环境利用各种传感器技术,移动计算,信息融合等技术对空气环境,海洋环境,河,湖水质,生态环境,城市环境质量进行全面有效地监控,通过构建全国各地环境质量的检测实现对全国范围内的环境进行实时在线监控和综合分析,建立全国性的污染源信息综合管理系统,为采取环境治理措施和污染预警提供更客观,有效的依据。 关键字:智能环境物联网技术传感器

目录 1引言 (4) 物联网简介 (4) 智能环境研究的目的和背景 (4) 2需求分析 (4) 智能环境功能需求分析 (5) 各子系统需求分析 (5) 大气污染监测子系统需求分析 (5) 海洋污染监测子需求分析 (5) 水质监测子系统需求分析 (5) 生态环境检测子系统需求分析 (5) 城市环境检测子系统需求分析 (5) 其他非功能需求分析 (6) 可靠性需求 (6) 开放性需求 (6) 可扩展性需求 (6) 安全性需求 (6) 应用环境需求 (6)

3详细设计 (6) 各环境监测子系统解决方案 (6) 智能环境监测系统结构图 (5) 各子系统环境监测拓扑结构图 (6) 4结论 (12) 参考文献 (13) 1引言 物联网简介 物联网是一种新兴技术,其核心内容是将各种信息传感设备和互联网结合起来而形成的一个巨大的网络,实现信息的高速获取和交换,是人类的生产和生活具有更高的智能化。物联网作为一种新理念,却非凭空产生,而是随着传感器技术,无线网络技术,人工智能技术和数据融合技术的发展而出现的。目前的传感器已经能够实现对温度,湿度,声音,光线,辐射等多种环境信号的采集;物联网技术领域也出现了一种Wifi,CDMA以及Adhoc等高速网络接入和容错组网的方式,使得高速数据传输成为可能;人工智能技术经过多年的发展,目前已经能够实现一定程度的自动控制;高性能计算技术的出现也使得海量数据处理和融合不再成为控

基于物联网的远程环境监测技术探究

基于物联网的远程环境监测技术探究 在经济快速发展的背景之下,生态环境问题日益激烈,已经影响到人们的日常生产生活。例如水系污染、饮水安全以及土壤污染严重等问题,都对后续可持续发展目标的实现造成诸 多阻碍。因此,针对基于物联网的远程环境监测系统进行构件是社会发展客观要求,是进一 步推动环境监测现代化水平的重要前提。也可改善我国环境监测信息化建设不足的问题,逐 步实现生态文明建设的目标。改善人们现有生活环境与生活质量。 一、环境监测与物联网的相关概念 环境监测的概念是贯穿在环境质量整个监测的过程中的,以前的环境检测对象都是相对单一的,但是随着环境问题的严重化趋势越来越明显,环境监测的范围必须要扩大发展方向,要加 上对于环境质量与环境污染的监测。其中环境监测的主要流程包括现场调查、样品收集与处理、样品保存、数据处理与综合评价。数据分析后必须以报告的形式进行数据的综合评价,这 样的形式也为今后的环境监测工作提供必要的依据。物联网简单来说就是通过先进技术将待 识别物体与互联网技术相融合,可以做到对这些事物的识别、定位、追踪、监控和管理。物联网,顾名思义就是物物相连。 二、环境监测中物联网的作用 1.物联网技术与空气质量监测 近年来人们越来越关系空气质量,"灰霾天气"中PM2.5、有害气体含量等成了大众所关 心的话题。传统的监测是监测人员直接观察并记录,从数据入手分析各污染物的含量是否满 足国家标准。这种方式往往耗费许多的人力和物力资源,缺乏动态性。由此本文提出基于物 联网的空气远程式的监测系统,系统原理是利用物联网的相关技术实现对空气情况实现实时 监测、传输和处理等。物联网技术对空气的质量有一个实时全面的监测,根据反馈回来的数 据对空气污染成分分析及对污染来源进行追溯,确保预防工作和消除污染措施的落实,因此 物联网技术在空气质量的监测和溯源应用中的作用十分重大。 2.物联网技术在水污染监测中的应用 在环境监测中,水污染监测占据重要位置,是其不可缺少的一部分内容。水质监测概念 设计到相当大的范围。水温、溶解氧以及电导率等是传统水质自动监测站在开展工作时间测 的主要对象,同时不能忽略浊度以及氧化还原电位等指标的重要性。生活水以及水污染是我 国开展水质监测与检测工作的两个重要内容。在检测过程中,传统的检测方式需要在每段时 间内通过反复取水的方式了解水质,这种方法存在一定的弊端。为在真正意义上实现对上述 现象的改善。利用物联网技术构建科学的水质自动监测系统,是满足实时、连续、准确监测 水域的重要前提,也可以有效掌握水域的变化状况。检测所得的数据会直接与调度中心来回 传输,通过自动储存与取出的方式判断目标水域。如果有问题出现,系统会第一时间报警, 在便捷性方面占据绝对优势。 三、基于物联网的远程环境监测技术的系统设计 1.架构设计 物联网的基本特征可概括为全面感知、可靠传送和智能处理。其自下而上可以分为以下 几个层次: (1)感知层目的是全面感知 利用传感器技术等感知、捕获采集物体的各种信息;

基于物联网的远程环境监测技术探究

基于物联网的远程环境监测技术探究 发表时间:2019-04-04T15:06:21.573Z 来源:《中国西部科技》2019年第3期作者:王斌[导读] 物联网技术可以说是顺应时代发展潮流的一种产物,在各个领域中,物联网技术的应用范围不断拓宽,环境监测工作也已经逐步实现与物联网技术的充分融合。在构建环境监测系统时,利用物联网技术可满足方位全面、层次多元这一需求,利用相应的技术科学检测各项环境参数。改善环境污染检测随机性较强的问题,这不仅可实现对环境监测难度的有效降低,同时也可提升监测质量,将更为全面的技 术提供给环境监测工作。 大庆市环境监测中心站 在经济快速发展的背景之下,生态环境问题日益激烈,已经影响到人们的日常生产生活。例如水系污染、饮水安全以及土壤污染严重等问题,都对后续可持续发展目标的实现造成诸多阻碍。因此,针对基于物联网的远程环境监测系统进行构件是社会发展客观要求,是进一步推动环境监测现代化水平的重要前提。也可改善我国环境监测信息化建设不足的问题,逐步实现生态文明建设的目标。改善人们现有生活环境与生活质量。 一、环境监测与物联网的相关概念 环境监测的概念是贯穿在环境质量整个监测的过程中的,以前的环境检测对象都是相对单一的,但是随着环境问题的严重化趋势越来越明显,环境监测的范围必须要扩大发展方向,要加上对于环境质量与环境污染的监测。其中环境监测的主要流程包括现场调查、样品收集与处理、样品保存、数据处理与综合评价。数据分析后必须以报告的形式进行数据的综合评价,这样的形式也为今后的环境监测工作提供必要的依据。物联网简单来说就是通过先进技术将待识别物体与互联网技术相融合,可以做到对这些事物的识别、定位、追踪、监控和管理。物联网,顾名思义就是物物相连。 二、环境监测中物联网的作用 1.物联网技术与空气质量监测 近年来人们越来越关系空气质量,"灰霾天气"中PM2.5、有害气体含量等成了大众所关心的话题。传统的监测是监测人员直接观察并记录,从数据入手分析各污染物的含量是否满足国家标准。这种方式往往耗费许多的人力和物力资源,缺乏动态性。由此本文提出基于物联网的空气远程式的监测系统,系统原理是利用物联网的相关技术实现对空气情况实现实时监测、传输和处理等。物联网技术对空气的质量有一个实时全面的监测,根据反馈回来的数据对空气污染成分分析及对污染来源进行追溯,确保预防工作和消除污染措施的落实,因此物联网技术在空气质量的监测和溯源应用中的作用十分重大。 2.物联网技术在水污染监测中的应用 在环境监测中,水污染监测占据重要位置,是其不可缺少的一部分内容。水质监测概念设计到相当大的范围。水温、溶解氧以及电导率等是传统水质自动监测站在开展工作时间测的主要对象,同时不能忽略浊度以及氧化还原电位等指标的重要性。生活水以及水污染是我国开展水质监测与检测工作的两个重要内容。在检测过程中,传统的检测方式需要在每段时间内通过反复取水的方式了解水质,这种方法存在一定的弊端。为在真正意义上实现对上述现象的改善。利用物联网技术构建科学的水质自动监测系统,是满足实时、连续、准确监测水域的重要前提,也可以有效掌握水域的变化状况。检测所得的数据会直接与调度中心来回传输,通过自动储存与取出的方式判断目标水域。如果有问题出现,系统会第一时间报警,在便捷性方面占据绝对优势。 三、基于物联网的远程环境监测技术的系统设计 1.架构设计 物联网的基本特征可概括为全面感知、可靠传送和智能处理。其自下而上可以分为以下几个层次:(1)感知层目的是全面感知 利用传感器技术等感知、捕获采集物体的各种信息; (2)网络层就是传输数据 通过各种互联网将得到的数据信息进行远距离的传输;应用层即智能处理:利用各式各样的智能数据处理技术,对下两层采集、传输上来的数据和信息进行分析及处理,使用具体的作业场景来实现信息的存储、数据的挖掘、应用的决策等。 2.具体系统组成设计 这个系统也很大程度的精简了工作的人员数量,积极响应国家的创新政策。基于物联网的环境远程监测系统可以更好的更加全面的对相关环境进行监测,并且与专业人员的合理配合可以更加透彻的了解相应的环境状况对于环境治理工作的开展有很大的积极作用。 (1)感知层 主要目的就是收集相关数据,根据具体的环境监测的对象我们应该先确定需要采集的信息,例如对大气空气质量的监测我们就需要监测各种气体的浓度和温度等参数。为了采集这些信息布置相应的传感器,传感器组成的网络应确保对监测区域有一个很好的覆盖。这些个传感器节点构成无线传感器网络再通过ZigBee技术等近距离无线传输技术来确保采集到的数据可以向上层传送。 (2)网络层 这部分是将上一步的数据等打包再传送到环境检测中心等终端,也就是说网络层是联通感知及应用层的一座必不可少的桥梁。网络层的工作方式为:先存储于现场数据库之中、再上传至位于公网云计算网络中的中间件服务器。中间件服务器接收现场服务器根节点上传的数据集,并存储于数据中心数据库,实现现场实测数据向公网中数据中心数据库的传输和迁移。在网络传输方面涉及到一系列的远距离网络技术譬如GPRS、3G、4G等,综合各方面的优势,通过对比选择一种适合系统且经济实惠的远距离网络传输技术来对下层采集到的数据进行有效并且安全的传送,数据全面、不重不漏的传送是一个需要解决的问题。 (3)应用层 对于该系统的应用层方面主要的目的就是利用远程监测平台完对环境监测的各种信息数据的接收、处理和显示等,这一部分是对下面两层的工作情况进行一个全面立体的展示,通过各种数据库以及组态软件对采集到的数据进行分析,然后有一个动态的曲线、趋势之类的展示,目的就是让环境监测的相关工作人员能够一目了然的看懂所监测的环境的具体信息,好做出一些相关的结论和分析。以上框架设计好之后就着手搭建相应的软硬件的平台来确保改远程环境监测功能的良好实现。

环境监测监控物联网系统

环境监测监控物联网系统 核心提示:环境监测监控物联网系统是一个新生产物,是在延续传统环境监测监控系统优势基础上,研发而成的,可以实现自动监控系统中安全可靠的数据采集、处理和传输。数据采集终端设备纳入物联网系统,并且它们直接可以互联互通、实现自主组局域网,相互协作完成特定的业务(比如河流上中下游数据的一致性检查和数据采集终端设备的故障诊断等等)。可应用于各种行业的自动监控,作为信息采集、处理和通信终端应用产品。 近几年来,我国不断投入了大量的人力、物力和财力,加强环境保护的信息化建设,在环境监测监控系统、环境应急系统等软硬件建设方面做出了大量的探索和努力。现阶段,我国的环境监测监控领域的发展并没有太大突破,尤其是环境监测监控系统的体系结构以及环境监测监控中的硬件设备等等。山东省的环保信息化工作在全国一直走在前列,相关部门不断探索环境监测监控的新途径、新方法和新技术。在当今物联网技术大发展的趋势下,我们探索出了环境监测监控物联网系统的解决方案。该方案中,把符合了"物物相连"等要求的数据采集终端设备纳入环境监测监控物联网系统。数据采集终端设备之间能够互相通信,相互协作,完成相关的环境监测业务。系统中的终端设备之间通过相互协作,进行河流的上中下游相关监测数据的一致性检查和数据采集终端设备的故障诊断。采用代码分发机制,通过各种类型数采终端的主节点向其余节点分发软件升级程序,在最快、最安全的前提下,完成一次网络系统的升级。该系统可应用于各种行业的自动监控,作为信息采集、处理和通信终端应用产品。产品应用范围广阔,可应用于环保、电力、热力、工矿、电信、市政、水务、燃气、交通等工业和公用事业中的各种类型自动监测站的数据采集与传输领域。为实现环境监测监控物联网系统的长足发展打下了坚实的基础。

相关主题
文本预览
相关文档 最新文档