当前位置:文档之家› 第二讲 地球重力场

第二讲 地球重力场

第二讲 地球重力场
第二讲 地球重力场

《应用重力学》第二讲地球重力场

一、重力(Gravity)

重力 = 地球引力惯性离心力

微弱,可忽略

=

吸引力F

F GM E R 3

惯性离心力C

m R

C = m ? 2

r

重力G

G=F+C

地球重力场:在地球内部及其附近存在重力作用的空间。

④重力场强度:单位质量的物体在重力场中所受的重力 ( =G/m )

④重力加速度g=G/m

④重力加速度在数值上(包括方向)等于单位质量所受的重力,也就是等于重力场强度。

重力加速度重力重力场强度

④重力勘探所提的重力都是指重力加速度或重力场

强度。

重力(重力加速度)单位

④在CGS单位制(克、厘米、秒):“cm/s2 ”,“伽”或“Gal”

1 cm/s

2 = 1 Gal

④在SI单位制(千克、米、秒):“m/s2”,“g.u.”

1 m/s

2 = 106 g.u.

1 Gal = 1 cm/s2

1 g.u. = 10-6m/s2

1 Gal = ? g.u.

1 Gal (伽) = 1 cm/s

2 = 10-2 m/s2 = 104 g.u.

1 mGal (毫伽) = 10-5 m/s

2 = 10 g.u.

1 uGal (微伽) = 10-8 m/s

2 = 10-2 g.u.

重力的变化

④包括随不同测点位置的空间变化以及同一测点的

重力随时间的变化。

④空间上:

地球形状、地形:引起约 6万 g.u. 的变化;

地球自转:重力有 3.4万 g.u. 的变化;

地下物质密度分布不均匀:能达到几千 g.u.

变化

人类的历史活动遗迹和建筑物等

北赤南

极道极

在地球表面上,全球重力平均值约为9.8m/s2,赤道重力平均值为9.780m/s2,两极平均值为9.832 m/s2,从赤道到两极重力变化大约为0.05m/s2。

④时间上:

潮汐变化:太阳、月亮等天体引力引起的重力的周期性变化,其大小可达 3 g.u.

非潮汐变化:地球形状的变化和地下物质运动等引起的非周期性变化,其变化大小一般不超

过 1 g.u.

④海水每天有两次涨落运动,其中早晨出现的潮涨

称为潮,晚上出现的潮落称为汐,总称潮汐。

④地球上海潮涨落主要是由月球还是太阳引起的?月

球和太阳对地球的引力不但可以引起地球表面

流体的潮汐(如海潮、大气潮),还能引起地球固体部分的周期性形变(固体潮)。

太阳的质量虽比月球的质量大得多,但月球同

地球的距离比太阳同地球的距离近,月球的引

潮力比太阳的引潮力大。

④在日、月引力作用下,地球固体表面也会像海水一样产生周期性的涨落,这就是地球的潮汐现

象,称为地球固体潮。

④固体潮随时间和空间的变化,除了和地球、太阳、月亮三者之间相对位置的变化有关外,还和地球内部物质的物理性质有关。因而,利用固体潮资料可以研究地壳内部物质的物理性质和各种物质的分布规律。

④它在空间上的变化主要反映地壳和上地幔区域结构的变化。

④它在时间上的变化可能与某些灾难性的地震有直接和间接的联系。因而,通过这种资料的研究,有可能找出它们与天然地震发生的对应关系,从而为天然地震的预报工作提供一定的依据。

④重力在时间上的变化要比在空间上的变化小很

多,需要高精度测量。

④从1968年美国制成灵敏度达到0.1g.u.的超导重力仪后,重力学从静力学向动力学过渡,地球重力场研究开始从三维向四维过渡。

④我们不仅可利用不同地点重力变化来研究地质构造,还可利用不同时间重力变化来研究地质构造的运动。

? = ?

重力的数学表达式

④ 单位质量A 引力F

F =

G +M

dm ρ

ρ2 ρ

④ 其在X 、Y 、Z 三个坐标轴方向的方向余弦

cos(F , X ) = ∑ x ?

? ?

cos(F , Y ) y ?

?

cos(F , Z ) = ? z

?

? ↑

④ 惯性离心力C

④ 其方向余弦

C = ? 2

r

cos(C , X ) = x ?

r ?

? cos(C ,Y ) = y ?

r ?

cos(C , Z ) = 0

引力和惯性离心力在三坐标轴方向的分量

∑ x ?

= = + ? F ()x F cos(F , X ) G 3 dm M ?

?

y ? F ()y F cos(F , Y ) G + = 3 dm

= = ←

M ?

? ? z

? F ()z F cos(F , Z ) G + = 3 dm = = ?

C ( x ) = C cos(C , X ) M ? ↑

= ? 2

x ?

? C = C

cos(C , Y ) = ? 2

y

( y ) ← ?

C ()z = C cos(C , Z ) = 0 ↑?

重力g 在三坐标轴方向的分量

( x )

∑ x

2

?

+

M

?

3

?

g = G

dm + ? x

?

( y )

y 2

? +M ?

3

← g = G

dm + ? y

?

( z )

? z

? +?

(z) g = G

dm

④重力g 的大小为[g (x)2+g (y)2+g 2]

1/2

④其方向与过该点的水平面内法线方向一致,即铅垂

线方向。

④假设地球为质量M = 5.976×1024 kg,半径R =

6371 km的正球体,则引力值为9.8 m/s2,在赤道上惯性离心力最大约为0.0339 m/s2。

④惯性离心力约为引力的1/300 左右,地球引力是组成重力的主要部分。

二、重力位

④重力场满足:

力的大小和方向是研究点坐标的单值连续函数;

力场所做的功与路径无关。

④根据场论,存在一个原函数,它是坐标的单值连续函数,而且它沿不同的方向求导数,恰好等于重力场强度在求导方向的分量,这个原函数就重力位。

地球重力场分布规律

摘要:文章采用目前与中国大陆匹配最精准的egm2008模型,结合srtm高程数据,计算5.12地震灾区高程异常,分析了重力场分布规律。得出结论:重力场随着距震中位置的增大呈现负相关趋势。提出以下猜想:地震对小范围内重力位的影响远远大于大范围内的影响。 关键词:地球重力场;egm2008;地震灾区 引言 地球重力场是最基本的物理场,由地球系统的物质属性产生,反映由地球各圈层相互作用和动力过程决定的物质空间分布、运动和变化,承载重力场作用机制相关信息,地球重力场时空演化与地球系统的动力过程有重要的联系。因此,物理大地测量学与所有研究地球各圈层物质运动及其动力学机制的学科有交叉领域。高精度高分辨率的重力数据及以此构建的高阶地球重力场模型及时变信号,是地球动力学、地球内部物理、海洋物理及动力海洋学等相关学科研究必需的基础信息,精细的全球重力场信息会加深人们对地球系统各圈层的物质异常分布、物质的循环及动量及能量交换机制的认识,精化相关地学的模型参数,以达到对地球系统、其子系统及整体的动力学过程和行为有更深层的理解。 5?12汶川地震,发生于北京时间(utc+8)2008年5月12日14时28分04秒,震中位于中华人民共和国四川省阿坝藏族羌族自治州汶川县映秀镇与漩口镇交界处。5?12汶川地震严重破坏地区超过10万平方千米。其中,极重灾区共10个县(市),重灾区共41个县(市),一般灾区共186个县(市)。此次地震是中华人民共和国成立以来破坏力最大的地震,也是唐山大地震后伤亡最严重的一次地震。文章将对四川省灾区范围从重力异常的计算、灾区重力异常分布规律(e100°36′~108°31′,n27°50~34°19′)(如图1)展开论述。 1 计算重力场模型 egm2008地球重力场模型使用bruns公式,地球表面上任意点p的模型高程异常可由下式获得: 2 计算结果分析 文章采用icgem网站进行地球重力场的计算。通过规定模型参考系统、格网精度、模型经纬度范围等选项,进行特定区域重力场的计算。输入灾区范围(e100°36′~108°31′,n27°50~34°19′),选取最小格网精度为0.005,采用egm2008模型计算高程异常值如表1,单位为m。 (e100°36′~108°31′,n27°50~34°19′)高程异常最大值为-42.074m,由上表可知: 最小值为-27.786m,高程异常极值为14.288m,平均高程异常为-34.453m。结合图1,早去范围内高程异常最大值位于重灾区,最小值位于一般灾区。分级灾区重力异常的平均值分别为:一般灾区-35.624m、重灾区-36.885m、极重灾区-36.901m。分级灾区重力异常的最小值分别为:一般灾区-28.065m、重灾区为-28.707m,极重灾区为-32.822m。分级灾区的重力异常最大值分别为:一般灾区-42.074m、重灾区-41.644m、极重灾区-40.980m。

应用地球物理复习题

应用地球物理复习题 1应用地球物理方法的物质基础 1、地球物理勘探的主要工作内容是:数据采集、数据处理、地质解释。 2、密度差异重力勘探的物质-——地球物理前提条件 3、决定岩石矿石的密度的主要因素是:①组成岩石的各种矿物成分及其含量的多少②岩石中孔隙度 的大小及孔隙中的充填物成分③岩石所承受的压力。 4.火成岩的密度 主要取决于矿物成分及其含量的百分比,由酸性→中性→基性→超基性岩,随密度大的铁镁暗色矿物含量的增多,密度逐渐增大(见图) 成岩过程中的冷凝、结晶分异作用也会造成不同岩相带的密度差异; 不同成岩环境(如侵入与喷发)会造成同一岩类的密度有较大差异。 5.沉积岩的密度密度主要取决于:沉积岩最大的特点是孔隙发育,一般具有较大的孔隙度,如灰岩、页岩、砂岩等,孔隙度可达30%一40%,密度主要取决于: 孔隙度:主要取决于孔隙度大小,干燥的岩石随孔隙度减少密度值呈线性增大; 孔隙充填物成分与含量:充填物的成分(如水、油、气等)及充填

孔隙占全部孔隙的比例(饱和度、泥质含量); 地质年代与埋深:成岩时代久、埋深大、上覆岩层对下伏岩层的压力加大,这种压实作用也会使密度值变大。 6.物质宏观磁性 各类物质,因原子结构不同,在外磁场作用下,呈现不同的宏观磁性 抗磁性(逆磁性) 在外磁场H作用下,磁化率为负值、数值很小,约为10-5数量级 抗磁性物质没有固有原子磁矩,仅有电子旋进产生附加磁矩 附加磁矩方向与外磁场相反,形成抗磁性 顺磁性 顺磁性物质受外磁场作用,其磁化率为不大的正值 其原子具有固有磁矩,无外磁场,原子磁矩取向混乱。 有外磁场,原子磁矩(电子自旋磁矩所作的贡献)顺着外磁场方向排列,显示顺磁性。 顺磁性物质其磁化率与绝对温度成反比,称为居里定律 铁磁性 铁磁性物质磁化率大,在弱外磁场中即可达到磁化饱和 磁化强度与磁化场呈非线性关系——不可逆性 磁滞回线——铁磁性物质在外磁场中的磁化特性曲线 矫顽磁力——磁化强度归零所需外磁场强度值Hc

地球磁场解读

地球磁场 众所周知,在地球上任何地方放一个小磁针,让其自由旋转,当其静止时,磁针的N极总指向地理北极,这是由于地球周围存在着磁场,称为地磁场。地磁场有大小和方向,所以是矢量场。地磁场分布广泛,从地核到空间磁层边缘处处存在。 根据磁场起源,地磁场分为内源场和外源场。起源于地球内部的磁场称为内源场,约占地球总磁场的95%。内源场主要来自地球的液态外核。外核是熔融的金属铁和镍,它们是电流的良导体,当地球旋转时,产生强大的电流,这些电流产生了地球磁场。地磁场总体像个沿地球旋转轴放置在地心的磁铁棒产生的磁场,它内源场的主要部分,也是地磁场的主要特征,占到总地磁场的80%~85%,称为偶极子场。内源场还有五个大尺度的非偶极子场,称为磁异常,分别为南大西洋磁异常,欧亚大陆磁异常,北非磁异常,大洋洲磁异常和北美磁异常,主要来源于地壳岩石产生的磁场。起源于地球外的磁场称为外源场,主要由太阳产生,它占了地球磁场的5%。

地磁场是个随时间变化的场,内源场引起的变化称为长期变化,有磁场倒转和地磁场向西飘移。地磁场每5000~50000年倒转一次,把与现在磁场方向相同的磁场称为正常磁场(磁场从南极附近出来,回到北极),把与现在磁场方向相反的称为倒转磁场,地质时期上出现了四个较大的倒转期,现在为布容正向期,往前有松山反向期,高斯正向期和吉尔伯特反向期。固体地球外部的各种电流体系引起的地磁场变化快,时间短,称为短期变化。短期变化又分为平静变化和扰动变化,其中平静变化包括太阳静日变化和太阴日变化,扰动变化包括磁暴、亚暴、钩扰、湾扰和地磁脉动。磁暴、钩扰、湾扰的发生与太阳活动有关,太阳活动高年,这些短期变化频繁发生,而且强度很大,变化剧烈。亚暴与极光有关。 地磁场能够反射粒子流,它把我们的地球包围起来,使我们免受高速太阳风的辐射和伤害,为我们提供了一个无形的屏障。 人们利用地磁场导航已经有四百年的历史了,现在发现鸽子,海滩,蝙蝠和乌龟等大量动物都用地球磁场来导航。

重力在生活中的应用

重力在生活中的应用 重力~众所周知。物体由于地球的吸引而受到的力叫重力。重力在我们的生活中无处不在。那么~重力—对于我们生活究竟有什么样的应用呢, 其实~重力有许多的应用。例如~在建筑工程中~工人常会用重锤线来测量房屋或木条是否与水平或竖直。这重锤线就运用到了重力。它是利用重力的方向总是竖直向下的原理制造的仪器。与重锤线平行的线或面都是竖直的~与重锤线垂直的线或面都是水平的。这样一来~测量就简单多了。 再比方说~骑自行车时~遇到下坡路~即使不蹬自行车~车辆还能继续滑行。这是利用重力的作用而节省体力。 许多体育运动中也能见到重力的身影~如跳水、跳远、跳高、篮球等。因为有了重力的存在~这些运动才能很好地进行。 重力有三要素~大小、方向、作用点。上述应用所运用到的原理是重力的方向。而重力的作用点也有着极广的应用。 重力的作用点~即重心。而重心的位臵在工程上有相当重要的意义。例如起重机在工作时~重心位臵不合适~就容易翻倒,高速旋转的轮子~若重心不在转轴上~就会引起激烈的振动,增大物体的支撑面~降低它的重心~有助于提高物体的稳定程度。 不倒翁是很常见的玩具~它的设计原理就是运用了重心的位臵。不倒翁身体的下部有一个很重的配重,而上部几乎是空的,因此它的重心很低,所以将不倒翁扳倒后,由于重力作用就会使它回到原来的位臵,所以扳不倒. 在杂技表演中~经常会见到走钢丝这一杂技。为什么杂技演员可以在那么细的钢丝上保持平衡呢,答案就在演员手中的长杆子里。通常~演员都会手持五六米的长杆走钢丝。这是因为人拿着几米长的钢竿时~竿的两头会在重力作用下自然下

坠。此时人和竿的形状大体是个弓型整体重心就会下降~更接近钢丝。如果钢很长~弓的程度很大~整体重心就甚至可能在钢丝下面。而走钢丝的演员的重心位臵落在钢丝上时才不会倾倒。就像人走路时,脚下不稳时会自然地伸开双臂来保持平衡。因此,走钢丝的演员手握一根长杆是为了借助“加长了的手臂”调整重心,以便保持平衡.重心的位臵的秘密就蕴藏在此。 家用的落地扇底座通常又重又大。这是因为风扇转动时叶片对空气有作用力~使得空气流动形成阵阵凉风~力的作用是相互的~空气对叶片也有相反方向的力~如果风扇的重心太高~风扇就会倾倒~因此使用较重较大的底座可以让风扇的重心降低~并增大支撑面积~从而使风扇更加稳定的运作。 小小的羽毛球上~同样也运用了改变重心位臵的方法:通 常羽毛球的下端做得要重一些,这是利用降低重心的方法使球在下落过程中保护羽毛~从而使球的使用寿命增加。 同样的道理~为了使汽车能平稳拐弯不发生翻车事故~应该使汽车的重心尽可能地低~这就是为什么把最重的发动机安装在汽车底部的道理。此外~赛车选手在比赛时几乎是平躺在轮子之间,卡车装货时~通常都把重的货物装在下面~轻的装在上面~而且货物都装的不能过高。这些都是通过降低重心来提高稳定程度的实际应用。 重力与我们人类的生活关系十分密切~那么假如某一天~地球上失去了重力会怎样, 所有的人、物、将都会飘在空中~包括地面上的灰尘。这些灰尘被扬到空中是十分恐怖的~它们会遮住阳光~进入人或动物的呼吸道~最终导致生物的灭绝。 此外~地球自转会产生离心力。水、空气、地壳~包括人类~一直都是受地球引力影响而没有被甩倒太空。当地球失去引力时~它们就可能脱离地球的束缚~从而飘荡在浩瀚的宇宙中。

地球重力场及影响重力场的几个因素

地球重力场及影响重力场的几个因素 【摘要】地球重力场的研究始终是大地测量科学研究的核心问题,也是现代大地测量发展中最活跃的领域之一。地球重力场反映了地球物质的空间分布及地球的旋转运动,它不仅决定了地球的形状和大小,而且反映了地球表面、内部以及大气和海洋的物质分布、运动和变化。 【关键词】地球重力场,相对重力测量,绝对重力测量,卫星重力探测 前言 大地测量学的主要分支之一,是研究用物理方法测定地球形状及其外部重力场的学科。也就是说地球重力场的研究始终是大地测量科学研究的核心问题,也是现代大地测量发展中最活跃的领域之一。地球重力场是大地测量学科的主要研究对象之一,也是地球物理、地质、地震与海洋等学科的重要研究对象和手段。地球重力场反映了地球物质的空间分布及地球的旋转运动,它不仅决定了地球的形状和大小,而且反映了地球表面、内部以及大气和海洋的物质分布、运动和变化。地球重力场的空间分布及其随时间变化,不仅在国民经济中具有重要意义,而且对于研究我们生存环境的变化与灾害预测也具有深远的科学意义。因此研究地球重力场也是地球科学的一项基础性任务。 地球重力场在传统大地测量中的任务是将在物理空间(即地球重力场中)的各类大地测量观测数据通过地球重力场参数转化到几何空间(即参考椭球体上,便于进行大地位置的数学计算。因此,地球重力场的观测数据和各种参数对地面大地测量的定位是起辅助作用的。 而现代大地测量是以空间技术手段(如GPS)进行三维地心坐标的定位,这种定位方式无需由物理空间向几何空间的转换,此时研究地球重力场是为了定位卫星的精密定轨,它的精度决定卫星大地测量定位的精度。因为后者需要精细地球重力场的支持,因此地球重力场对卫星大地测量起着关键性的作用。 由此可见,无论是传统大地测量,还是现代大地测量,地球重力场在其中具有不可替代的作用,尤其是在以基础地学研究为主的现代大地测量整体框架中,研究地球重力场的物理大地测量学和空间大地测量学将相互紧密结合组成大地测量学科的支柱,共同主导学科的发展。 地球正常重力场 通过合理采用坐标系,即原点取地球的质心,坐标轴取地球的主惯性轴,则地球外部的重力场可以展开成(2.90)式所示的球函数级数。如果我们取级数的

地球物理复习题答案

1、基本概念:重力等位面、重力异常、地磁要素、磁异常、感应磁化强度,地磁日变、波阻抗、震相、同相轴、偏移距、电阻率、极化率 重力等位面: 当位移方向l与重力g的方向垂直时 W(x,y,z)=C(常数) 在W(x,y,z)=C方程所确定的曲面上,重力位各处都等 于常数C,称这曲面叫重力等位面。 重力异常:在重力学中,由地下岩矿石密度分布不均匀所引起的重力变化 磁异常:主要指地壳浅部具有磁性的岩石或矿石所引起的局部磁场,它叠加在基本磁场之上。感应磁化强度:岩(矿)石被现在地磁场磁化而具有的磁化强度称为感应磁化强度 地磁日变:地磁的太阳静日变化,以太阳日(24小时)为周期的日变化。太阴日变化:以来于地方太阴日,并以半个太阴日为周期的变化。 波阻抗:地震波在介质中传播时,作用于某个面积上的压力与单位时间内垂直通过此面积的质点流量(即面积乘质点振动速度)之比,具有阻力的含义,称为波阻抗,其数值等于介质密度p与波速V的乘积。 震相:在地震图上显示的性质不同或传播路径不同的地震波组。各种震相在到时、波形、振幅、周期、质点运动等方面都各有它们自己的特征。 同相轴:地震记录上各道振动相位相同的极值(俗称波峰成波谷)的连线称为同相轴。(在解释地震勘探资料时,常常根据地震记录上有规律地出现的形状相似的振动画出不同的同相轴,它们表示不同层次的地震波。) 偏移距:指激发点到最近的检波器组中心的距离,常常分解为两个分量:垂直偏移距,即以直角到排列线的距离;纵偏移距,从激发点在排列线的投影到第一个检波器组中心的距离。电阻率:表征物体导电性好坏的一个物理量。在数值上,它相当于电流垂直通过边长为一米的立方体均匀物质时,该物质所具有的电阻值。 极化率:表征极化介质的激电性质。 2、什么是地球物理学,包括哪些主要方法,这些方法研究的物理基础是什么?(绪论) 地球物理学是应用物理学的方法研究地球的一门科学。从广义上来讲,地球物理学的研究对象包括从固体地球的内核直至大气圈边界的整个地球;从狭义上来讲,地球物理学指的就是固体地球物理学,运用物理学的方法理解、解释地球的内部构造、组成、动力学以及与地球表面地质现象的关系。 主要的地球物理方法有: 地震学方法:地震是一种常见的地质现象。对其孕育、发生的研究包括了运动学和动力学二个方面的内容。地震波的传播带来了大量、丰富的地球内部的信息因此地震学本身就是固体地球物理学的重要组成部分。 根据介质的弹性和密度差异,通过观测和分析大地对地震波的响应,推断地球内部介质的结构和岩石的性质 测量量:地面的震动(位移,速度,加速度) 地球内部参数:速度,密度,衰减Q。 重力学方法:研究重力场时空分布规律及其测量方法的科学。 测量量:重力加速度 地球内部参数:密度 地磁学方法:研究地磁场空间分布和随时间变化的规律。

地球磁场

地球磁场 地球磁场 地球磁场言是偶极型的,近似于把一个磁铁棒 放到地球中心,使它的北极大体上对着南极而 产生的磁场形状,但并不与地理上的南北极重 合,存在磁偏角。当然,地球中心并没有磁铁 棒,而是通过电流在导电液体核中流动的发电 机效应产生磁场的。 简介 自然地球磁场图片 地球磁场The Earth magnetic field不是孤立的,它 受到外界扰动的影响,宇宙飞船就已经探测到太 阳风的存在。太阳风是从太阳日冕层向行星际空 间抛射出的高温高速低密度的粒子流,主要成分 是电离氢和电离氦。 因为太阳风是一种等离子体,所以它也有磁场, 太阳风磁场对地球磁场施加作用,好像要把地球 磁场从地球上吹走似的。尽管这样,地球磁场仍 有效地阻止了太阳风长驱直入。在地球磁场的反 抗下,太阳风绕过地球磁场,继续向前运动,于 是形成了一个被太阳风包围的、彗星状的地球磁场区域,这就是磁层。[1] 地球磁层位于距大气层顶600~1000公里高处,磁层的外边界叫磁层顶,离地面5~7万公里。在太阳风的压缩下,地球磁力线向背着太阳一面的空间延伸得很 远,形成一条长长的尾巴,称为磁尾。在磁赤 道附近,有一个特殊的界面,在界面两边,磁 力线突然改变方向,此界面称为中性片。中性 片上的磁场强度微乎其微,厚度大约有1000公 里。中性片将磁尾部分成两部分:北面的磁力 线向着地球,南面的磁力线离开地球。 地球磁场 1967年发现,在中性片两侧约10个地球半径 的范围里,充满了密度较大的等离子体,这一 区域称作等离子体片。当太阳活动剧烈时,等 离子片中的高能粒子增多,并且快速地沿磁力 线向地球极区沉降,于是便出现了千姿百态、 绚丽多彩的极光。由于太阳风以高速接近地球 磁场的边缘,便形成了一个无碰撞的地球弓形 激波的波阵面。波阵面与磁层顶之间的过渡区叫做磁鞘,厚度为3~4个地球半径。

地球重力场分布规律

地球重力场分布规律 文章采用目前与中国大陆匹配最精准的EGM2008模型,结合SRTM高程数据,计算5.12地震灾区高程异常,分析了重力场分布规律。得出结论:重力场随着距震中位置的增大呈现负相关趋势。提出以下猜想:地震对小范围内重力位的影响远远大于大范围内的影响。 标签:地球重力场;EGM2008;地震灾区 引言 地球重力场是最基本的物理场,由地球系统的物质属性产生,反映由地球各圈层相互作用和动力过程决定的物质空间分布、运动和变化,承载重力场作用机制相关信息,地球重力场时空演化与地球系统的动力过程有重要的联系。因此,物理大地测量学与所有研究地球各圈层物质运动及其动力学机制的学科有交叉领域。高精度高分辨率的重力数据及以此构建的高阶地球重力场模型及时变信号,是地球动力学、地球内部物理、海洋物理及动力海洋学等相关学科研究必需的基础信息,精细的全球重力场信息会加深人们对地球系统各圈层的物质异常分布、物质的循环及动量及能量交换机制的认识,精化相关地学的模型参数,以达到对地球系统、其子系统及整体的动力学过程和行为有更深层的理解。 5·12汶川地震,发生于北京时间(UTC+8)2008年5月12日14时28分04秒,震中位于中华人民共和国四川省阿坝藏族羌族自治州汶川县映秀镇与漩口镇交界处。5·12汶川地震严重破坏地区超过10万平方千米。其中,极重灾区共10个县(市),重灾区共41个县(市),一般灾区共186个县(市)。此次地震是中华人民共和国成立以来破坏力最大的地震,也是唐山大地震后伤亡最严重的一次地震。文章将对四川省灾区范围从重力异常的计算、灾区重力异常分布规律(E100°36′~108°31′,N27°50~34°19′)(如图1)展开论述。 1 计算重力场模型 EGM2008模型高程异常在我国大陆的总体精度为20cm,华东华中地区12cm,华北地区达到9cm,西部地区为24cm;EGM2008模型空间异常在我国大陆的总体精度为10.5mGal(1mGal=10-3cm/s2),且大大缩小了我国大陆重力场信息东西部地区的差距;EGM2008模型具有很高的精度,测试结果显示,EGM2008模型在我国大陆的精度与在全球范围内的精度相当;与WDM94,DQM 系列,EGM96相比,EGM2008模型高程异常精度提高了3~5倍,比利用GRACE 数据的IGG05b,EIGEN-5c模型提高了2倍以上,空间异常的改善程度更为突出。EGM2008显著改善了我国大陆重力场东西部地区不平衡的现状[2] EGM2008地球重力场模型使用Bruns公式,地球表面上任意点p的模型高程异常可由下式获得:

地球重力场的奥秘

龙源期刊网 https://www.doczj.com/doc/1113981289.html, 地球重力场的奥秘 作者:籍利平 来源:《百科知识》2008年第24期 在人们的印象中,测绘学的工作似乎主要只是绘制各种比例尺地图而已。其实,测绘学研究的内容并非如此单一。 作为地球科学的一个分支,测绘学要研究、测定和推算地面及其外层空间点的集合位置、确定地球形状和地球重力场,获取地球表面自然形态和人工设施的几何分布以及与其属性有关的信息,编制全球或者局部地区各种比例尺的普通地图和专题地图,建立各种地理信息系统,为经济发展和国防建设以及地学研究服务。 大地测量学是测绘学的组成部分之一,主要是研究地球的形状、大小和重力场,测定地面点几何位置和地球整体与局部运动的理论和技术。 在大地测量学中,测定地球的大小指的是测定地球这个椭圆形球体的大小;研究地球形状是指研究大地水准面的形状。 在固体地球物理学中,地球重力场也是其组成部分之一;在天体力学和航天科学中,地球重力场也占据重要位置。所以,地球重力场具有交叉学科的性质。 什么是地球重力场 在中学我们已经学过,地球重力是由于地球的吸引而产生的力。严格地说,地球重力不仅是由于地球对物体吸引这种单一力所造成的,而是由地球对物体的吸引力和地球自转产生的惯性离心力两个力合成的。其中,引力是决定重力大小的根本因素。在地球作用的空间内,其大小与方向和物体所在位置相关。地球重力场可以反映地球内部质量、密度的分布和变化,反映地球物质空间分布、运动和变化。地球重力场是一种物理场,分布于引起它的场源体——地球内部、表面及其周围的空间。 由于单位质量在重力场中受到的重力和重力加速度在数值上是一样的,所以在重力测量学科中,一般以重力代替重力加速度,但其单位仍然为加速度的单位。重力加速度的单位在MKS(米·千克·秒)单位制中为m/s2(米/秒2),在CGS(厘米·克·秒)单位制中为cm/s2(厘米/秒2);在国际单位制中,重力加速度的单位为:国际重力单位gravity unit,简写为g.u.。两者的换算关系为:1cm/s2=106g.u.。

历年地球物理试题总结

地球物理基础历年真题总结(按频率高低) 一、名词解释 1、惠更斯原理(5) 2、地球重力位(4) 3、叠加速度(4) 4、视电阻率(4) 5、磁场强度(4) 6、地震波传播介质的品质因子(Q值) (3) 7、磁化率(3) 8、时距曲线(3) 9、DMO(2) 10、地震勘探中的4D和4C(2) 11、虚反射(2)

12、磁法勘探(2) 13、重力勘探(2) 14、岁差和章动(2) 15、勒夫数(h, k)、志田数(l) (1) 16、地心纬度和天文纬度(2) 17、米兰科维奇旋回(2) 18、相干合成孔径雷达(INSAR) 19、地震子波 20、地震波阻抗 21、相干噪声 22、相干加强 23、均方根速度 24、地球重力场

25、全球海平面变化 26、布格重力异常 27、自由震荡 28、古地磁学 29、频散曲线 30、群速度 二、问答题 1、地壳、地幔界面和内核界面存在的地震学证据有那些?简述研究地球内部速 度结构的几种方法的原理,所需资料及已取得的成果。

2、试述全球板块构造学说的地球物理和地质方面的主要依据。 3、从地震资料解编到水平叠加有哪些主要处理环节。他们的作用是什么?为什 么要进行叠前深度偏移?(3) 4、怎样根据地震波速度变化和地震波的衰减特性研究地下的热状态?怎样根 据大地电磁测深结果研究地下的热状态。(3)

5、试述地壳上地幔内低速高导层的可能成因。(3) 6、解释下面几种重力校正的目的,并说明这些校正通常是加到勘测重力值还是 从勘测重力值中减去(即校正值的正、负)(3) (1)自由空气校正(2)布格校正 (3)地下校正(4)均衡校正 7、请简要叙述大洋中脊扩张的地球物理证据。(2)

地球磁场大翻转

地球磁场大翻转
近日,科学家称地球磁场在过去 200 年中已减弱了 15%,这有可能是地球磁场将反转、 两极颠倒的先兆。地球磁极反转真的会发生吗?地球磁极异常对地球人有影响吗?[详 细] [网友评论]
外媒: 地球磁场或将反转 地球恐面临灾难性影响
地球磁场在过去 200 年中已减弱了 15% 据英国《每日邮报》网站 1 月 27 日报道,科学家称,地球磁场在过去 200 年中已减弱 了 15%,这有可能是地球磁场将反转、两极颠倒的先兆,而这将给地球及人类带来灾难性 影响。 科学家说,如果反转真的发生,地球将遭遇强烈太阳风并可能引发持续数月的大规模 停电。此外,反转还将导致地球气候发生剧烈变化,并使人类因遭受更多的宇宙辐射而患癌 率大幅提升。[详细] 为什么会出现磁场反转? 地球是一个各圈层差异旋转的分层地球,即地壳、上地幔、下地幔、外核和 内核旋转的角速度不同,其中内核快速旋转,由固态的铁组成,外核是黏滞性很 低的导电液态铁;在差异旋转及各种天体的作用力下,在外核尤其是内外核交界 处形成快速旋转的环形电流,从而生成了地磁场。地核和地幔的差异旋转导致圈 层角动量交换,部分自转动能通过摩擦转变为热能,积累在外核,形成地球内部 唯一的液态圈层。与此同时,由于角动量交换,地核旋转变慢,地幔旋转变快, 圈层差异旋转方向发生反向变化,导致地球磁极倒转。所以,地磁变化与外核旋

转热涡流密切相关。根据人造卫星过去 20 年录得的磁场变化数据,发现在地下深 层产生地球引力的熔流,在接近南北极位置出现巨大旋涡,并以加强磁场逆转的 方向转动,因而削弱现有磁场,可能会导致两极易位。[详细]
调查
? ?
1.您认为地球磁极会崩塌吗? 会 不会 说不清 有影响, 引起气候、 地质等变化等 没
2.您认为地球磁极反转会对地球人造成影响吗? 有影响,杞人忧天 点击查看结果>> 说不清
地球磁场本身异常是引起气候、地质等变化的重 要因素
地球磁极变化将产生什么影响? 人们普遍忽视地电和地磁的存在,认为它们很微弱。事实并非如此。一个偶 然的机会,我发现一片树林明显地向北方倾斜,原来北部有平行的高压电线,电 磁能对树林而言竟比太阳光更具有吸引力。地磁场的异常变化使地表地电场也发 生变化,形成地电正异常区和负异常区。地表水从地电正异常区蒸发到高空,带 的是正电;从地电负异常区蒸发到高空,带的是负电。带有异种电荷的云团最容 易相互吸引而形成雷雨。相反,带有同种电荷的云团相互排斥,形成该地区的干 旱。冰岛、非洲中西部和南大西洋是三个负电异常区,它们之间的地区是明显的 干旱区,其中就有最干旱的撒哈拉沙漠;其两侧的北美洲和亚洲是正电异常区, 在正、负电异常的交界带,是高降水量区。当电磁异常区发生变动时,电场的强 度和极性也发生相应变化,由此引起的降水量改变导致全球旱涝灾害在不同地区 发生。 谈到地质变化,地磁地电还与地震有密切关系,现在地震观测的一个重要手 段就是对地磁(电)的监测。至于内在的机理,举个例子,携带大量磁性粒子的地下 岩浆因为失去地磁的束缚而改变流向和流速,流向的改变将使地球固有板块的运 动规律发生变化,而流速的降低将使岩浆自身的温度平衡机制遭到破坏,使地球 不同部位之间地温温差增大,这将会产生地震频率和强度的增加。 [详细] 磁场减弱将使南北两极海冰大量融化

地球形状与外部重力场

浅谈大地重力学 大地测量学的主要分支之一,是研究用物理方法测定地球形状及其外部重力场的学科,又称大地重力学。也就是说地球重力场的研究始终是大地测量科学研究的核心问题,也是现代大地测量发展中最活跃的领域之一。更因为地球重力场是地球的一个物理特性,它可以反映地球内部物质分布、运动和变化状态,并制约地球本身及其邻近空间的一切物理事件,因此研究地球重力场也是地球科学的一项基础性任务。地球重力场在传统大地测量中的任务是将在物理空间(即地球重力场中)的各类大地测量观测数据通过地球重力场参数转化到几何空间(即参考椭球体上) ,便于进行大地位置的数学计算。因此,地球重力场的观测数据和各种参数对地面大地测量的定位是起辅助作用的。而现代大地测量是以空间技术手段(如GPS)进行三维地心坐标的定位,这种定位方式无需由物理空间向几何空间的转换,此时研究地球重力场是为了定位卫星的精密定轨,它的精度决定卫星大地测量定位的精度。因为后者需要精细地球重力场的支持,因此地球重力场对卫星大地测量起着关键性的作用。由此可见,无论是传统大地测量,还是现代大地测量,地球重力场在其中具有不可替代的作用,尤其是在以基础地学研究为主的现代大地测量整体 框架中,研究地球重力场的物理大地测量学和空间大地测量学将相互紧密结合组 成大地测量学科的支柱,共同主导学科的发展。 下面,我们从宁津生的《跟踪世界发展动态致力地球重力场研究》学术报告出发,谈谈对大地重力学的认识。 一、从斯托克司理论到莫洛坚斯基理论 研究是从实践开始的。1957年参与了当时国家测绘总局在全国范围内建立“57国家重力基本网”的工作,接着在1958年学校聘请了原苏联莫斯科测绘学院的布洛瓦尔( V . V .Brovar)教授前来系统而全面地讲授莫洛坚斯基(M. S.Molodensky)真地球形状理论。从此,我国的地球重力场理论研究和生产实践就从斯托克司理论框架全盘转化到莫洛坚斯基理论框架。例如,在建立全国天文大地网中将旧的三角测量处理中需二次归算的展开法过渡到仅需一次归算的投影法;推求大地高由原来采用大地水准面差距转变为采用高程异常(即似大地水准面概念) ,其中引 进了天文重力水准方法;高程系统则由原来的正高转变成正常高等等。这一切都是基于莫洛坚斯基理论所确定的地球自然表面形状,其理论是严密的,相对地说克服了斯托克司理论中由于重力归算等引进的非真实性假设而引起的大地水准面不确定性的理论缺陷,从理论上说可以提高大地测量确定地球形状和地球重力场以 及定位的精度。随后,国家测绘总局在全国范围内建立国家天文大地网(即8 0坐标系) ,并在全国布设天文重力水准网,以满足建立国家天文大地网中归算大地测 量观测数据的需要。为了这种需要,同时也为了教学的需要,我们对莫洛坚斯基理论及其天文重力水准的理论、方法和精度进行了更深入的理解和研究,特别是对由布洛瓦尔为我国设计的天文重力水准和相应的加密重力测量的布设方案,结合我国的具体情况提出了修改和完善的意见,研究了天文重力水准对重力资料的精度要求,其中包括对莫洛坚斯基和方俊两个天文重力水准计算模板进行了比较,并在理论研究的基础上对天文重力水准方法进行了较全面的试验。这些研究成果部分地被收入我国修订的《天文重力水准测量细则》,为我国开展天文重力水准测量

高中物理引力场电场磁场经典解题技巧专题辅导

高中物理引力场、电场、磁场经典解题技巧专题辅导 【考点透视】 一万有引力定律 万有引力定律的数学表达式:2 21r m m G F =,适用条件是:两个质点间的万有引力的计算。 在高考试题中,应用万有引力定律解题常集中于三点:①在地球表面处地球对物体的万有引力近似等于物体的重力,即mg R Mm G =2,从而得出2gR GM =,它在物理量间的代换时非常有用。②天体作圆周运动需要的向心力来源于天体之间的万有引力,即r mv r Mm G 22=;③圆周运动的有关公式:T πω2=,r v ω=。 二电场 库仑定律:221r Q kQ F =,(适用条件:真空中两点电荷间的相互作用力) 电场强度的定义式:q F E = (实用任何电场),其方向为正电荷受力的方向。电场强度是矢量。 真空中点电荷的场强:2r kQ E =,匀强电场中的场强:d U E =。 电势、电势差:q W U AB B A AB = -=??。 电容的定义式:U Q C =,平行板电容器的决定式kd S C πε4=。 电场对带电粒子的作用:直线加速 221mv Uq = 。偏转:带电粒子垂直进入平行板间的 匀强电场将作类平抛运动。 提醒注意:应熟悉点电荷、等量同种、等量异种、平行金属板等几种常见电场的电场线

和等势面,理解沿电场线电势降低,电场线垂直于等势面。 三磁场 磁体、电流和运动电荷的周围存在着磁场,其基本性质是对放入其中的磁体、电流、运动电荷有力的作用。 熟悉几种常见的磁场磁感线的分布。 通电导线垂直于匀强磁场放置,所受安培力的大小:BIL F =,方向:用左手定则判定。 带电粒子垂直进入匀强磁场时所受洛伦兹力的大小: qvB F =,方向:用左手定则判定。若不计带电粒子的重力粒子将做匀速圆周运动,有qB mv R =,qB m T π2=。 【例题解析】 一万有引力 例1地球(看作质量均匀分布的球体)上空有许多同步卫星,同步卫星绕地球近似作匀速圆周运动,根据所学知识推断这些同步卫星的相关特点。 解析:同步卫星的周期与地球自转周期相同。因所需向心力由地球对它的万有引力提供,轨道平面只能在赤道上空。设地球的质量为M ,同步卫星的质量为m ,地球半径为R ,同步 卫星距离地面的高度为h ,由向万F F =,有 )(4)(22 2h R T m h R GmM ++π=,得R GMT h -=3224π;又由h R v m h R GmM +=+22)(得h R GM v +=;再由ma h R GmM =+2)(得2 )(h R GM a +=。由以分析可看出:地球同步卫星除质量可以不同外,其轨道平面、距地面高度、线速度、向心加速度、角速度、周期等都应是相同的。 点拨:同步卫星、近地卫星、双星问题是高考对万有引力定律中考查的落足点,对此应引起足够的重视,应注意准确理解相关概念。 例2某星球的质量为M ,在该星球表面某一倾角为θ的山坡上以初速度0v 平抛一个物体,经t 时间该物体落到山坡上。欲使该物体不再落回该星球的表面,至少应以多大的速度

地磁场及其基本要素

第一节地磁场及其基本要素 地磁场:地球周围存在的磁场。 地磁场三要素: 磁感应强度磁偏角磁倾角 磁感应强度 为某地点的磁力大小的绝对值,(磁场强度) 是一个具有方向(磁力线方向)和大小的矢量 一般在磁两极附近磁感应强度大(约为60μT(微特拉斯);在磁赤道附近最小(约为30μT ) 磁偏角 是磁力线在水平面上的投影与地理正北方向之间形成的夹角,即磁子午线与地理子午线之间的夹角。 磁偏角的大小各处都不相同。在北半球,如果磁力线方向偏向正北方向以东称为东偏,偏向正北方向以西称为西偏。 我国东部地区磁偏角为西偏,甘肃酒泉以西地区为东偏。 磁轴与地球自转轴的夹角现在约为11.5度,1980年实测的磁北极位于北纬78.2度、西经102.9度(加拿大北部),磁南极位于南纬65.5度,东经139.4度(南极洲)。 长期观测证实,地磁极围绕地理极附近进行着缓慢的迁移。 磁倾角 是指磁针北端与水平面的交角。通常以磁针北端向下为正值,向上为负值。 地球表面磁倾角为零度的各点的连线称为地磁赤道;由地磁赤道到地磁北极,磁倾角由0°逐渐变为+90°;由地磁赤道到地磁南极,磁倾角由0°变成-90°。

地球的磁场强度矢量余地磁要素 地磁倾角 (二)地磁场的组成 地磁场由基本磁场、变化磁场和磁异常三个部分组成。在地球中心假定的磁柱被称为磁偶极子,由它产生的偶极子磁场占地磁场成分的95%以上,是构成稳定地磁场的主体,即地球的基本磁场。基本地磁场的强度在地表附近较强,向上在空气中逐渐减弱。说明它主要为地内因素所控制。 变化磁场 表现为日变化、年变化、多年(短周期或长周期)变化以及突发性变化 主要由于来自地球外部的带电粒子的作用(非偶极磁场,叠加在基本磁场上) 太阳是这些带电粒子流的主要来源,而当它的表面出现黑子、耀斑(活动特别强烈的区域)并正对着地球时,便会把大量带电的粒子抛向地球,使迭加在基本磁场上的变化磁场突然增强,使地磁场发生大混乱,出现磁暴。地球两极常在随后出现奇异的极光,这也是太阳抛射来的带电粒子流为地磁极吸引。 地球磁层 仪器探测证实了地磁场形成一个在高层大气之外,形状类似慧星的磁性包层,这就是地球磁层。 太阳风与地磁场相持不下所形成的曲面是磁层的边界,叫做磁层顶.在朝太阳的一侧,磁层顶离地心约有5万多到7万多km远;背着太阳的一侧,可能是这些数字的100倍以上。 磁层的形成,使地球磁场拦截了太阳辐射来的带电粒子,还有来自宇宙的射线,使它们

第六章——地球重力场模型

第六章 地球重力场模型 随着空间技术的进步和发展,现在不但有可能根据卫星轨道根数的变化精确地确定地球动力形状因子2J ,而且有可能结合卫星测高仪、卫星追踪卫星技术、卫星重力梯度仪等空间技术的测量结果以及地面重力测量结果计算出地球大地位球函数展开的高阶项系数。以一组数值球函数展开系数表示的地球大地位称为地球重力场模型,地球重力场模型一方面支持卫星轨道的精确计算,另一方面可以给出地面上的长波重力异常场,为研究地球内部结构及其动力学过程提供重要的地面约束条件。 6.1 大地位的球函数展开 现将第二章已经讨论过的大地位球函数展开中的有关公式汇总如下。用r 表示地球外部空间任一点P 的径矢,则根据(2.2.18)式,地球在P 点的大地位球函数展开表示为 其中kM 为地球的地心引力常数,a 为地球的赤道半径,θ、λ分别为P 点的地心余纬和 经度,(c o s )m n P θ为cos θ的n 阶m 次伴随勒让德多项式, (c o s )c o s m n P m θλ、 (cos )sin m n P m θλ为归一化的n 阶m 次球面函数,根据(2.2-1.3)式、(2.2-1.6)式和(2.2-1.8)式,()n P x 、 ()n P x 、()m n P x 、 ()m n P x 分别为 m n c 、m n s 和m n c 、m n s 分别为大地位球函数展开系数和规一化的大地位球函数展开系数,根据 (2.2.20)式,有

根据(2.3.4)式、(2.3.5)式,大地位二阶球函数展开系数等于 其中A 、B 、C 分别为地球绕1Ox 、2Ox 和其旋转轴3Ox 轴的转动惯量,12I 、23I 、13I 分别为地球绕相应轴的惯性积,大地位球函数展开有时写成下面的形式 nm J 、nm K 与大地位球函数展开系数m n c 、m n s 之间的关系为 2J 称为地球的动力形状因子。当3n 时, ()n P x 、 ()m n P x 的表达式如表6.1.1所示。

(武汉大学大地测量学课件)第三章 地球重力场及地球形状的基本理论

第三章 地球重力场及形状的基本理论 1

2 3.1.1 地球的概说(略)3.1.2 地球运动概说 地球是太阳系中的一颗行星,它有自转和公转运动。1、地球的自转 地球的自转即地球绕地轴由西向东旋转。 地球的绕地轴旋转360度的时间:太阳日、恒星日。地球的自转速度: 2co s )R h V T π ?+= (2T πω=

3 2、地球的公转 地球的公转满足开普勒三大行星运动定律 (1)行星运动轨迹是椭圆,太阳位于其椭圆的 一个焦点上 直角坐标方程:极坐标方程: f 真近点角,p 为焦参数(半通径) 2 2 a b e a ?= 2 2(1) b p a e a ==?222 2 1x y a b +=1c o s p r e f = +

4 (2)行星运动在单位时间内扫过的面积相等;在时间t 内扫过的面积s 相等,则面速度 可根据能量守恒定律导出。 (3)行星运动的周期的平方与轨道的长半轴的立方的比为 常数。 设a 和a 1, T 和T 1分别表示两行星轨道的长半径与轨道运行周期。 2 2 1s ab a e t T T ππ?==AB CD EF θθθ>>AB CD EF V V V >>

5 则第三定律表达为: 一般可以用来计算行星或卫星的质量。牛顿万有引力定律: 开普勒定律是牛顿万有引力定律的基础。天体力学 2 21 3 31 T T a a = 32 2 () 4a f M m T π+= 23 23 111 )T M m a T M m a +×=+

6 222 M m M m F k f r r ??==22 F M a k m r ==2 2222 ()()M m M m a k k r r r +=+=222 24, v r a v r a r T T ππ==→=3 22() 4a f M m T π +=宇宙空间任意两质点,彼此相互吸引,其引力大小与他们的质量成积成正比,与他们之间的距离平方成反比。 在相对运动中,行星相对于太阳运动的相对加速度:

地球重力场的应用

地球重力场的应用 宁津生院士 在现代大地测量学发展中,地球重力场的理论与应用研究是最活跃的学科领域之一。因为地球重力场是地球的一个物理特性,是地球物质分布和地球旋转运动信息的综合效应,并制约地球本身及其邻近空间的一切物理事件。因此,确定地球重力场的精细结构及其随时间的变化,不仅为大地测量学中定位与描述地球表层及其内部的形态,同时也为现代地球科学中解决人类面临的资源、环境和灾害等紧迫课题,提供基础地球物理空间信息。由此可见,地球重力场研究也是地球科学的一项基础性任务。大地测量学、地球物理学、地球动力学、大气科学和海洋学以及军事科学等相关地学学科的发展,均迫切需要地球重力场的支持。在本文中,作者着重分析一下地球重力场的应用问题。 地球重力场的广泛应用 研究地球重力场是地球科学的一项基础性任务,它在自然科学和工程技术中有着广泛的应用。下面仅举几例。 地球重力场与测绘学地球重力场是反映地球物质分布特征的物理场,制约地球及其空间任何物体的运动,与空间技术发展密切相关,是建设数字地球或数字中国的基础物理场信息。建立地理空间基础框架的核心是定位。这里地球重力场的作用是将为定位所获取的物理空间中的大地测量观测数据转换到坐标计算的几何空间中,并且在精密卫星定位中为精密定轨必须有精密地球重力场模型的支持才能实现,这样才能保证以卫星绝对定位方法建立的由一定数量基准点构成的地心参考框架可以使卫星相对点定位达到相应的精度。另外有许许多多与地理位置相关的空间数据或空间信息,都需要以大地水准面或似大地水准面为起算面的正高或正常高系统,例如水利工程、灾害预测和评估、测绘各种比例尺的地形图、地壳形变监测等都有这样的要求。因此,必须建立全球或全国统一的高程基准,即统一定义的精确大地水准面或似大地水准面。它还可用于远距离高程控制、陆海和陆岛的高程连接等。一般来说还应该建立大地水准面,它既具有几何意义,也具有物理意义,其应用较之似大地水准面更为广泛。因此地球重力场的精细结构是建立地理空间基准所必需的基础信息,这些基础信息必须建立在统一的重力基准上。再者,在获取地理基础框架数据中,由于GPS定位已能提供厘米级精度的大地高,若具备相应厘米级精度的大地水准面或似大地水准面,则可直接由GPS大地高转换成相应精度的正高或正常高,以代替劳动强度大、效率低的常规水准测量。 地球重力场与工程技术地球重力场与工程技术的关系表现在两个方面,一方面是在工程测量的精度随着各种工程建设的需要而日益提高的情况下,要考虑地球重力场不均匀性的影响。一般由于工程测量的范围往往较小,通常采用平面坐标系进行各种工程测量的计算。这样的处理方法在一般的工程测量中是允许的,但在某些精密工程测量中,如修建大型水工建筑物、矿井、坑道和长距离隧道开挖等工程中,地球重力场非均匀性的影响往往会超过观测的允许误差,所以要对工程测量中的各类观测值进行相应改正,否则将会影响测量结果的精度。另一方面由于重力测量仪器精度已大大提高,因此利用微重力测量可以对水电、交通、土建工程、高层建筑等基础内部的断裂、岩石爆裂、空洞等存在或形成潜伏的威胁安全的危险性进行探测和作出解释与预计。应用微重力测量还可以探测到地表的溶洞、地下河、孔穴、废矿坑巷道、巨型管道以及规模较小的断裂、断层地质构造等密度异常体,可以进行石油、天然气资源的勘探。 地球重力场与军事科学地球重力场是决定导弹弹道轨迹的最主要的力源。自由弹道与地球重力场的关系就是卫星轨道动力方程。在众多的摄动力中仅二阶引力场摄动力一项就是其他所有非引力场摄动力之和的数千倍之多,因此必须纠正导弹飞行中由于地球引力摄动力引起的弹道偏离正常轨道的位置偏差。这里高精度重力场模型可以大幅度提高导弹攻击时的

相关主题
文本预览
相关文档 最新文档