当前位置:文档之家› 三极管最简单易懂原理总结

三极管最简单易懂原理总结

三极管最简单易懂原理总结
三极管最简单易懂原理总结

三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

一、电流放大

下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic 很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

二、偏置电路

三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。

三、开关作用

下面说说三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。

四、工作状态

如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

放大的原理就在于:通过小的交流输入,控制大的静态直流。

假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。

所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。

如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。

在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。

如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。

饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。

在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。

而在数字电路中,阀门则处于开或是关两个状态。当不工作的时候,阀门是完全关闭的,没有功耗。

三极管的基本用法

三极管的基本用法 摘要: 三极管通常也称双极型晶体管(BJT),简称晶体管或三极管。三极管在电路中常用字母T来表示。因三极管内部的两个PN结相互影响,使三极管呈现出单个PN结所没有的电流放大的功能,开拓了PN结应用的新领域,促进了电子技术的发展。它的主要的应用是用作电流放大和开关。还能够做成一些可独立使用的两端或三端器件,把三极管的集电极断路和把集电极和基极短路可作为二极管来使用。关键词:三极管电流放大二极管 1 三极管的电流放大作用 三极管的最基本的一种应用,是把微弱的电信号加以放大,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这是三极管最基本和最重要的特性。三极管的电流放大作用与三极管内部PN结的特殊结构有关。三极管犹如两个反向串联的PN结,如果孤立地看待这两个反向串联的PN结,或将两个普通二极管串联起来组成三极管,是不可能具有电流的放大作用的。具有电流放大作用的三极管,PN结内部结构的特殊性是:(1)为了便于发射结发射电子,发射区半导体的掺杂溶度远高于基区半导体的掺杂溶度,且发射结的面积较小。(2)发射区和集电区虽为同一性质的掺杂半导体,但发射区的掺杂溶度要高于集电区的掺杂溶度,且集电结的面积要比发射结的面积大,便于收集电子。(3)联系发射结和集电结

两个PN结的基区非常薄,且掺杂溶度也很低。上述的结构特点是三极管具有电流放大作用的内因。要使三极管具有电流的放大作用,除了三极管的内因外,还要有外部条件,三极管的发射结为正向偏置,集电结为反向偏置是三极管具有电流放大作用的外部条件,即对于NPN型三极管而言要满足Ue>B i,故共发射极 C 电路不但能得到电压放大,而且还可以得到电流放大,所以共射极电路是目前应用最广泛的一种基本组态。 共发射极放大电路的原理图如图1所示,待放大的输入电压Vi 通过电容 C加到BJT的发射结,从而引起基极电流B i的变化,B i的变1 b 化使集电极电流 i随之变化,c i的变化量在集电极电阻C R上产生压降, c 集电极电压 v=C C V—c i C R,当c i的瞬时值增加时,C E v就要减小,C E v中 C E 的变化量经过电容 C传送到输出端成为输出电压0v。选择合适的电 b 2

三极管工作原理分析精辟透彻看后你就懂

三极管工作原理分析,精辟、透彻,看后你就懂 随着科学技的发展,电子技术的应用几乎渗透到了人们生产生活的方方面面。晶体三极管作为电子技术中一个最为基本的常用器件,其原理对于学习电子技术的人自然应该是一个重点。三极管原理的关键是要说明以下三点: 1、集电结为何会发生反偏导通并产生Ic,这看起来与二极管原理强调的PN结单向导电性相矛盾。 2、放大状态下集电极电流Ic为什么会只受控于电流Ib而与电压无关;即:Ic与Ib之间为什么存在着一个固定的放大倍数关系。虽然基区较薄,但只要Ib为零,则Ic即为零。 3、饱和状态下,Vc电位很弱的情况下,仍然会有反向大电流Ic 的产生。 很多教科书对于这部分内容,在讲解方法上处理得并不适当。特别是针对初、中级学者的普及性教科书,大多采用了回避的方法,只给出结论却不讲原因。即使专业性很强的教科书,采用的讲解方法大多也存在有很值得商榷的问题。这些问题集中表现在讲解方法的切入角度不恰当,使讲解内容前后矛盾,甚至造成讲还不如不讲的效果,使初学者看后容易产生一头雾水的感觉。笔者根据多年的总结思考与教学实践,对于这部分内容摸索出了一个适合于自己教学的新讲解方法,并通过具体的教学实践收到了一定效果。虽然新的讲解方法肯定会有所欠缺,但本人还

是怀着与同行共同探讨的愿望不揣冒昧把它写出来,以期能通过同行朋友的批评指正来加以完善。 一、传统讲法及问题: 传统讲法一般分三步,以NPN型为例(以下所有讨论皆以NPN型硅管为例),如示意图A。1.发射区向基区注入电子;2.电子在基区的扩散与复合;3.集电区收集由基区扩散过来的电子。”(注1) 问题1:这种讲解方法在第3步中,讲解集电极电流Ic的形成原因时,不是着重地从载流子的性质方面说明集电结的反偏导通,从而产生了Ic,而是不恰当地侧重强调了Vc的高电位作用,同时又强调基区的薄。这种强调很容易使人产生误解。以为只要Vc足够大基区足够薄,集电结就可以反向导通,PN结的单向导电性就会失效。其实这正好与三极管的电流放大原理相矛盾。三极管的电流放大原理恰恰要求在放大状态下Ic与Vc在数量上必须无关,Ic只能受控于Ib。

三极管开关电路工作原理解析

三极管开关电路工作原理解析 图一所示是NPN三极管的共射极电路,图二所示是它的特性曲线图,图中它有3 种工作区域:截止区(C utoff Region)、线性区(Active Region) 、饱和区(Saturation Region)。三极管是以B 极电流IB 作为输入,操控整个三极管的工作状态。若三极管是在截止区,IB 趋近于0 (VBE 亦趋近于0),C 极与E 极间约呈断路状态,IC = 0,VCE = VCC。若三极管是在线性区,B-E 接面为顺向偏压,B-C 接面为逆向偏压,I B 的值适中(VBE = 0.7 V),I C =h F E I B 呈比例放大,Vce = Vcc -Rc I c = V cc - Rc hFE I B可被IB 操控。若三极管在饱和区,IB 很大,VBE = 0.8 V,VCE = 0.2 V,VBC = 0.6 V,B-C 与B -E 两接面均为正向偏压,C-E间等同于一个带有0.2 V 电位落差的通路,可得I c=( Vcc - 0.2 )/ Rc ,I c 与IB 无关了,因此时的IB大过线性放大区的IB 值,Ic

图3、截止态如同断路线图图4、饱和态如同通路 实验:三极管的开关作用 简单三极管开关:电路如图5,电阻RC是LED限流用电阻,以防止电压过高烧坏LED(发光二极管),将输入信号VIN 从0 调到最大(等分为约20 个间隔),观察并记录对的VOUT 以及LED 的亮度。当三极管开关为断路时,VOUT =VCC =12 V,LED 不亮。当三极管开关通路时,VOUT = 0.2V ,LED 会亮。改良三极管开关:因为三极管由截止区过度到饱和区需经过线性区,开关的效果不会有明确的界线。为使三极管开关的效果明确,可串接两三极管,电路如图六。同样将输入信号VIN 从0 调到最大(等分为约20 个间隔),观察并记录对应的VOUT 以及LED 的亮度。

三极管的工作原理

三极管的工作原理集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

项目一三极管的工作原理 三极管,全称应为半导体三极管,也称晶体管、晶体三极管,是一种电流控制电流的半导体器件其作用是把微弱信号放大成辐值较大的电信号,也用作无触点开关。晶体三极管,是半导体基本元器·件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN 和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。下图是各种常用三极管的实物图和符号。 一、三极管的电流放大作用 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 二、三极管的偏置电路 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取)。当基极与发射极之间的电压小于时,基极电流就可以认为是0。但实际中要放大的信号往往远比要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于时,基极电流都是0)。如果我们事先在三极管的基 极上加上一个 合适的电流 (叫做偏置电 流,上图中那 个电阻Rb就 是用来提供这 个电流的,所 以它被叫做基 极偏置电 阻),那么当 一个小信号跟 这个偏置电流 叠加在一起 时,小信号就

深入理解三极管

晶体三极管作为一个常用器件,是构成现代电子世界的重要基石。然而,传统的教科书对其工作原理的讲述却存在有很大问题,使初学者对三极管的工作原理无法正常理解,感到别扭与迷茫。 晶体三极管原理问题的关键在于晶体三极管原理问题的关键在于::集电结为什么会反向导通?这与晶体二极管原理中强调的PN 结单向导电特性单向导电特性((反向截止反向截止))严重矛盾严重矛盾。。 三极管原理,传统讲解方法中存在的问题概括起来主要有以下三点: 1 严重割裂晶体二极管与三极管在原理上的自然联系。没有真正说明三极管集电结为何会发生反偏导通并产生Ic ?这看起来与二极管原理强调的PN 结单向导电性相矛盾。 2 不能说明放大状态下集电极电流Ic 为什么只受控于电流Ib 而与电压无关;即:Ic 与Ib 之间为什么存在着一个固定的放大倍数β关系。 3 不能说明饱和状态下,Vc 电位很弱的情况下,为什么集电结仍然会反向导通并且有反向大电流Ic 通过。 很多教科书对于这部分内容,在讲解方法上都存在有很大问题。有一些针对初、中级学者的普及性教科书,干脆采用了回避的方法,只给出结论却不讲原因。既使专业性很强的教科书,采用的讲解方法大多也存在有很值得商榷的问题。这些问题集中表现在讲解方法的切入角度不恰当,致使逻辑混乱,讲解内容前后矛盾,甚至造成讲了还不如不讲的效果,使很多初学者常常产生一头雾水的感觉。 笔者根据多年的总结思考与教学实践,对于这部分内容摸索出了一个适合于自己教学的新讲解方法,并通过具体的教学实践收到了一定效果。虽然新的讲解方法也肯定会有所欠缺,但本人还是怀着与同行共同探讨的愿望不揣冒昧把它写出来,以期能通过同行朋友的批评指正来加以完善。 一、 传统讲法及问题: 传统讲法一般分三步,以NPN 型为例(以下所有讨论皆以NPN 型硅管为例),如示意图A 。“1 发射区向基区注入电子;2 电子在基区的扩散与复合;3 集电区收集由基区扩散过来的电子。”注 1 问题1:这种讲解方法在第3步中,讲解集电极电流Ic 的形成原因时,不是着重地从载流子的性质方面说明集电结的反偏导通,从而产生了Ic ,而是极不恰当地着重地强调了Vc 的高电位作用,同时又强调基区的薄。这种强调很容易使人产生误解——以为只要Vc 足够大基区足够薄,集电结就可以反向导通,PN 结的单向导电性就会失效。这是让初学者很容易产生一系列模糊认识的根源。 这正好与三极管的电流放大原理严重地矛盾这正好与三极管的电流放大原理严重地矛盾。。三极管的电流放大原理恰恰要求在放大状态下Ic 与Vc 在数量上必须无关数量上必须无关,,Ic 只能受只能受控于控于Ib 。

偏置详解

晶体三极管常用的共射放大电路。 三极管中,饱和状态:集电结和发射结都是正偏 截止状态:集电极和发射极都是反偏 放大状态:发射结正偏,集电结反偏 以常用的共射放大电路为例,当是PNP型晶体三极管时,主电流是Ic,偏置电流就是Ib。相对与主电路而言,为基极提供电流的电路就是所谓的偏置电路。偏置电路为发射极(e 极)与基极(b极)之间(即发射结)提供正向偏置电压;为基极(b极)与集电极(c极)之间(即集电结)提供反向偏置电压,偏置电路为晶体管基极(b极)提供的电流Ib称为偏置电流。 偏置电路往往有若干元件,其中有一重要电阻,往往要调整阻值,以便集电极电流Ic 在设计规范内,保证晶体管正常工作,这要调整的电阻就是偏置电阻Re阻值大小。 偏置电压是指晶体管放大电路中使晶体管处于放大状态时,基极-射极之间,集电极-基极之间应该设置的电压。 因此,设置晶体管基射结正偏,集基结反偏,使晶体管工作在放大状态的电路,简称为偏置电路。 使晶体管工作在放大状态的关键是其基极电压,因此,基极电压又称为偏置电压。又由于使晶体管工作在放大状态的电压设置是由其没有信号(指交流)时直流电源提供的。 因此,晶体管的直流偏置电压可以这么定义:晶体管未加信号(指交流)时,其基极与发射极之间所加的直流电压称为晶体管的直流偏置电压。 (差分)运放的偏置电压,偏置电流运放是集成在一个芯片上的晶体管放大器, 偏置电流bias current 就是第一级放大器输入晶体管的基极直流电流. 这个电流保证放大器工作在线性范围, 为放大器提供直流工作点. 因为运算放大器要求尽可能宽的共模输入电压范围, 而且都是直接耦合的, 不可能在芯片上集成提供偏置电流的电流源. 所以都设计成基极开路的, 由外电路提供电流. 因为第一级偏置电流的数值都很小, uA 到nA 数量级, 所以一般运算电路的输入电阻和反馈电阻就可以提供这个电流了. 而运放的偏置电流值也限制了输入电阻和反馈电阻数值不可以过大, 使其在电阻上的压降与运算电压可比而影响了运算精度. 或者不能提供足够的偏置电流, 使放大器不能稳定的工作在线性范围. 如果设计要求一定要用大数值的反馈电阻和输入电阻, 可以考虑用J-FET 输入的运放. 因为J-FET 是电压控制器件, 其输入偏置电流参数是指输入PN 结的反向漏电流, 数值应在pA 数量级. 同样是电压控制的还有MOSFET 器件, 可以提供更小的输入漏电流. 另外一个有关的运放参数是输入失调电流offset current, 是指两个差分输入端偏置电流的误差, 在设计电路中也应考虑.

三极管最简单易懂原理总结

三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 一、电流放大 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic 很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 二、偏置电路 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。

三极管工作原理介绍

三极管工作原理介绍,NPN和PNP型三极 管的原理图与各个引脚介绍 三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种电流控制电流的半导体器件·其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。 PNP与NPN两种三极管各引脚的表示: 三极管引脚介绍

NPN三极管原理图: PNP三极管原理图:

常见的三极管为9012、s8550、9013、s8050.单片机应用电路中三极管主要的作用就是开关作用。 其中9012与8550为pnp型三极管,可以通用。 其中9013与8050为npn型三极管,可以通用。 区别引脚:三极管向着自己,引脚从左到右分别为ebc,原理图中有箭头的一端为e,与电阻相连的为b,另一个为c。箭头向里指为PNP(9012或8550),箭头向外指为NPN(9013或8050)。 如何辨别三极管类型,并辨别出e(发射极)、b(基极)、c (集电极)三个电极 ①用指针式万用表判断基极b 和三极管的类型:将万用表欧姆挡置“R &TI mes; 100”或“R&TI mes;lk”处,先假设三极管的某极为“基极”,并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧至几千欧),则假设的基极是正确的,且被测三极管为NPN 型管;同上,如果两次测得的电阻值都很大(约为几千欧至几十千欧),则假设的基极是正确的,且被

关于三极管偏压问题

偏压∶整体回路中的某个点,测量它相对某个基准点的电压(是整体回 路电压的1/n)就称之为该点的偏压,各段电路的偏压之和就是整体回路电压,相应位置的电流就是偏压电流。 正向偏压∶NPN型三极管的电流方向为由B、C极流向E极。 当需要管子工作时,需给B极加上一个可以使电流正向流动的电压。这个 电压就是正向偏压,电压值的大小需计算确定。当需要管子完全截止无电 流时,为可靠截止,就需要加上一个负的电压。这个负的电压,就是反向 偏压。 当n区相对P区有负电压,且当负电压低于-0.6V(即绝对值大于0.6V)时,就会产生一个P区到N区的大电流;当有正电压时,在小于击穿电压之前 电流可以忽略不计。二极管的基本性质可以通过考虑耗尽层的电压和电场来理解。 正向偏压即在N区加一个相对P区的负电压。这样会导致PN 结内建电势的减小,其变化趋势如图3e所示。PN结内建电势的减小会导致电场以及耗尽区宽度的减小,如图d、c和b所示。二极管内部电压的 减小和耗尽区宽度的减小开始允许电流导通二极管。 在反偏压下n区相对p区的电压是个正电压。这会使得PN结内部的电势变大超过开始的内建电势,如图5e所示;当然也会增强PN 结的电场强度,如图5d所示。最终的结果是PN结耗尽区的宽度增加,内部电势和电场会使得PN结平衡电流(扩散电流和漂移电流)比没有外部偏 压时要大。这说明如果通过二极管的电流很小时,那么它的导通电压的范 围会比较大。 三极管的工作原理 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP 两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

三极管知识点的总结.docx

晶体三极管

晶体三极管 一.教学要求: 1 .了解三极管的基本构造、特点、符号、型号、分类等: 1 .前 1 、 2 个属 2 .理解三极管电流放大作用的实质和特性曲线及主要参数:于知识方面 3 .掌握三极管的识别和简单测试方法:的要求 2.最后 1 个属 于技能方面 的要求二.教学重点、难点分析: 1.教学重点是三极管的三个工作区域及其特点、三极管的电流放大 作用: 2.教学难点是三极管的伏-安特性 3.技能要求是掌握三极管的识别与简单测试: 三.教具: 1.晶体三极管: 2.万用表: 3.晶体管特性测试仪、双踪示波器:

四.教学过程: (一):复习提问,引入新课: 提问3-4位 学生回答1.二极管具有哪些特性? 2.常用的电子元器件有哪些? (二):新课教学: 一:三极管的结构、符号和类型: 1.结构:利用课件进行 C(集电极)C(集电极)讲解,然后总结归纳。 集电区集电区 集电结 P 集电结 N b(基极)集区b(基极)集区 P N N发射结P发射结 发射区发射区e(发射极)e(发射极)NPN型PNP型 总结:三极管的结构为:三区+ 两结 + 三电极: 三区:指发射区、基区、集电区 两结:指发射结、集电结: 三电极:指发射极、基极、集电极: 2.符号: C C B B E E NPN型PNP型

3.三极管具有放大作用的内部条件(结构特点): 发射区很厚,掺杂浓度最高; 基区很薄,掺杂浓度最小; 集电区很厚,掺杂浓度比较高。 4.三极管的型号及其意义:发给不同规格 的三极管让学生 判别。 区别代号(用大字母表示) 半导体的序号(用数字表示) 半导体的类型(用字母表示) 半导体的材料(用字母表示) 电极数目 二:三极管的电流放大作用:用双踪示波三极管具有放大作用,必须同时满足内部条件和外部条件,内部条件器演示输入信号一般由生产厂家保证。和输出信号的差1.三极管放大的外部条件:别,加强学生的发射结正偏;感性认识,然后 集电结反偏。再进行分析。 2.三极管的电流分配关系:I e I b I c 3.三极管电流放大作用的实质: “以小控大”——以基极小电流I b控制集电极大电流I c。因 此:双极型三极管属于“电流控制器件”。 三.三极管的连接方式: 1 .共发射极: 2 .共集电极:3.共基极: 三张图进行 比较,注意它们输出端输出端输入端输出端 输入端输入端 之间的特点四.三极管的伏安特性曲线 (一)输入特性曲线:

详解经典三极管基本放大电路

详解经典三极管基本放大电路 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP 两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 图1:三极管基本放大电路 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 下面说说三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

通俗易懂的三极管工作原理

通俗易懂的三极管工作原理 1、晶体三极管简介。晶体三极管是p 型和n 型半导体的有机结合,两个pn 结之间的相 互影响,使pn 结的功能发生了质的飞跃,具有电流放大作用。晶体三极管按结构粗分有npn 型和pnp 型两种类型。如图2-17所示。(用Q 、VT 、PQ 表示) 三极管之所以具有电流放大作用,首先,制造工艺上的两个特点:(1)基区的宽度做的非常薄;(2)发射区掺杂浓度高,即发射区与集电区相比具有杂质浓度高出数百倍。 2、晶体三极管的工作原理。 其次,三极管工作必 要条件是(a)在B 极和 E 极之间施加正向电 压(此电压的大小不能 超过1V);(b )在C 极 和E 极之间施加反向 电压(此电压应比eb 间电压较高);(c )若 要取得输出必须施加 负载。 图2-17 三极管的构造示意图 最后,当三极管满足必要的工作条件后,其工作原理如下: (1) 基极有电流流动时。由于B 极和E 极之间有正向电压,所以电子从发射极向基极移动,又因为C 极和E 极间施加了反向电压,因此,从发射极向基极移动的电子,在高电压的作用下,通过基极进入集电极。于是,在基极所加的正电压的作用下,发射极的大量电子被输送到集电极,产生很大的集电极电流。 (2)基极无电流流动时。在B 极和E 极之间不能施加电压的状态时,由于C 极和E 极 间施加了反向电压,所以集电极的 电子受电源正电压吸引而在C 极和E 极之间产生空间电荷区,阻碍了从发射极向集电极的电子流动,因而就没有集电极电流产生。 综上所述,在晶体三极管中 很小的基极电流可以导致很大的 集电极电流,这就是三极管的电 流放大作用。此外,三极管还能通过基极电流来控制集电极电流的导通和截止,这就是三极管的开关作 图2-18 晶体三极管特性曲线 用(开关特性)。参见晶体三极管特性曲线2-18图所示: 3、晶体三极管共发射极放大原理如下图所示: A 、vt 是一个npn 型三极管,起放大作用。

三极管四种固定式偏置电路分析

三极管四种固定式偏置电路分析 2012-7-13 14:42:37 https://www.doczj.com/doc/1112208766.html,作者:我要评论(0) 8.4.1三极管四种固定式偏置电路分析 固定式偏置电路是三极管偏置电路中最简单的一种电路。 固定式偏置电阻的一根引脚必须与三极管基极直接相连,另一根引脚与正电源端或地线端直接相连。 如图8-26所示是典型固定式偏置电路。电路中的VT1 NPN型三极管,采用正极性电源+V供电。如表8-15所示是典型固定式偏置电路工作原理解说。 2.负极性电源供电的NPN型三极管固定式偏置电路分析 如图8-27所示是负极性电源供电的NPN型三极管固定式偏置电路。电路中的VT1处NPN型三极管,-V是负极性直流电源,R1是基极偏置电阻,R1构成VT1的固定式基极偏置电路R1可以为VT1提供基极电流。基极电流从地线(也就是电源的正极端)经R1流入三般管VT1的基极。 对于采用负极性电源供电的NPN型三极管固定式偏置电路而言,偏置电阻R1的电路特征是:它的一端与三极管基极相连,另一端与地线相连。根据偏置电阻R1的这一电路特征,可以方便地在电路中确定哪个电阻是固定式偏置电阻。 在负极性电源供电电路中,电路地线的直流电压最高,而VT1发射极接电源-V端这样VT1基极电压高于发射极电压,给VT1发射结提供正向偏置电压。 3.正极性电源供电的PNP型三极管固定式偏置电路分析 如图8-28所示是正极性电源供电的PNP型三极管固定式偏置电路。电路中的VT1是PNP型三极管,+V是正极性直流电源,R1是基极偏置电阻,R1构成VT1的固定式基极偏置电路,R1可以为VT1提供基极电流。基极电流是从正电源+V端流入发射极,从基极流出再经R1到达地线。

PNP三极管结构及工作原理解析

PNP三极管工作原理解密 对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量,但三极管厉害的地方在于:它可以通过小电流控制大电流。放大的原理就在于:通过小的交流输入,控制大的静态直流。 假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。 在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。 如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。 饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。 在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。 而在数字电路中,阀门则处于开或是关两个状态。当不工作的时候,阀门是完全关闭的,没有功耗。 晶体三极管是一种电流控制元件。发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结。晶体三极管按材料分常见的有两种:锗管和硅管。而每一种又有NPN 和PNP两种结构形式,使用最多的是硅NPN和PNP两种,两者除了电源极性不同外,其工作原理都是相同的,三极管工作在放大区时,三极管发射结处于正偏而集电结处于反偏,集电极电流Ic受基极电流Ib的控 制,Ic的变化量与Ib变化量之比称作三极管的交流电流放大倍数β(β=ΔIc/ΔIb,Δ表示变化量。)在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。 要判断三极管的工作状态必须了解三极管的输出特性曲线,输出特性曲线表示Ic随Uce的变化关系(以Ib为参数),从输出特性曲线可见,它分为三个区域:截止区、放大区和饱和区。 根据三极管发射结和集电结偏置情况,可以判别其工作状态: 对于NPN三极管,当Ube≤0时,三极管发射结处于反偏工作,则Ib≈0,三极管工作在截止区;当晶体三极管发射结处于正偏而集电结处于反偏工作时,三极管工作在放大区,Ic随Ib近似作

三极管常用应用电路

三极管常用电路 1.三极管偏置电路_固定偏置电路 如上图为三极管常用电路中的固定偏置电路:Rb的作用是用来控制晶体管的基极电路Ib,Ib称为偏流,Rb称为偏流电阻或偏置电阻.改变Rb的值,就可以改变Ib的大小.图中Rb固定,称为固定偏置电阻. 这种电路简单,使用元件少,但是由于晶体管的热稳定性差,尽管偏置电阻Rb固定,当温度升高时,晶体管的Iceo急剧增加,使Ie也增加,导致晶体管工作点发生变化.所以只有在温度变化不大,温度稳定性不高的场合才用固定偏置电路 2.三极管偏置电路_电压负反馈偏置电路 如上图为三极管常用电路中的电压负反馈偏置电路:晶体管的基极偏置电阻接于集电极. 这个电路好象与固定偏置电路在形式上没有多大差别,然而正是这一点,恰恰起到了自动补偿工作点漂移的效果.从图中可见,当温度升高时,Ic增大,那么Ic上的压降也要增大,使得Uce下降,通过Rb,必然Ib也随之减小,Ib的减小导致Ic的减小,从而稳定了Ic,

保证了Uce基本不变. 这个过程,称为负反馈过程,这个电路就是电压负反馈偏置电路. 2.三极管偏置电路_分压式电流负反馈偏置电路 如上图为三极管常用电路中的分压式电流负反馈偏置电路:这个电路通过发射极回路串入电阻Re和基极回路由电阻R1,R2的分压关系固定基极电位以稳定工作点,称为分压式电流负反馈偏置电路.下面分析工作点稳定过程. 当温度升高,Iceo增大使Ic增加.Ie也随之增加.这时发射极电阻Re上的压降Ue=Ie*Re 也随之升高.由于基极电位Ub是固定的,晶体管发射结Ube=Ub-Ue,所以Ube必然减小,从而使Ib减小,Ic和Ie也就减小了. 这个过程与电压负反馈类似,都能起到稳定工作点的目的.但是,这个电路的反馈是Ue=Ie*Re,取决于输出电流,与输出电压无关,所以称电流负反馈. 在这个电路中,上,下基极偏置电阻R1,R2的阻值适当小些,使基极电位Ub主要由它们的分压值决定.发射极上的反馈电阻Re越大,负反馈越深,稳定性越好.不过Re太大,在电源电压不变的情况下,会使Uce下降,影响放大,所以Re要选得适当. 如果输入交流信号,也会在Re上引起压降,降低了放大器的放大倍数,为了避免这一点,Re两端并联了一个电容Ce,起交流旁路作用. 这种电路稳定性好,所以应用很广泛. 一、采用仪表放大器还是差分放大器 尽管仪表放大器和差分放大器有很多共性,但设计过程的第一步应当是选择使用何种类型的放大器。

三极管基本知识全归纳

1、三极管的正偏与反偏:给PN结加的电压和PN结的允许电流方向一致的叫正偏,否则就是反偏。即当P区(阳极)电位高于N区电位时就是正偏,反之就是反偏。例如NPN型三极管,位于放大区时,Uc>Ub集电极反偏,Ub>Ue 发射极正偏。总之,当p型半导体一边接正极、n型半导体一边接负极时,则为正偏,反之为反偏。 NPN和PNP主要是电流方向和电压正负不同。 NPN是用B—E的电流(IB)控制C—E的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC>VB>VE。

PNP是用E—B的电流(IB)控制E—C的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC发射极电压Ue,集电结反偏就是集电极电压Uc>基极电压Ub。放大条件:NPN管:Uc>Ub>Ue;PNP管:Ue>Ub>Uc。 (2)饱和区:发射结正偏、集电结正偏--BE、CE两PN结均正偏。即饱和导通条件:NPN管:Ub>Ue,Ub>Uc,PNP型管:Ue>Ub,Uc>Ub。饱合状态的特征是:三极管的电流Ib、Ic 都很大,但管压降Uce 却很小,Uce≈0。这时三极管的c、e 极相当于短路,可看成是一个开关的闭合。饱和压降,一般在估算小功率管时,对硅管可取0.3V,对锗管取0.1V。此时的,iC几乎仅决定于Ib,而与Uce无关,表现出Ib对Ic的控制作用。 (3)截止区:发射结反偏,集电结反偏。由于两个PN 结都反偏,使三极管的电流很小,Ib≈0,Ic≈0,而管压降Uce 却很大。这时的三极管c、e 极相当于开路。可以看成是一个开关的断开。 3、三极管三种工作区的电压测量 如何判断电路中的一个NPN硅晶体管处于饱和,放大,截止状态?用电压表测基极与射极间的电压Ube。 饱和状态eb有正偏压约0.65V左右,ce电压接近0V. 放大状态eb有正偏压约0.6V,ce电压大于0.6V小于电源电压. 截止状态eb电压低于0.6V,ce电压等于或接近电源.

三极管偏压

三极管偏压 电子管某一电极与阴极之间的固定电位差成分。 偏: 偏piān 歪,不在中间:偏斜。偏离。 压: 压(壓)yā从上面加力 整体回路中的某个点,测量它相对某个基准点的电压(是整体回路电压的1/n)就称之为该点的偏压,各段电路的偏压之和就是整体回路电压,相应位置的电流就是偏压电流。 三极管的偏压是什么意思? 你指的是不是基极偏置电压。基极偏置电压是控制三极管基极电流的重要保证。因为三极管在制造中它的基极电流不可能做成完全一样,只能通过调整偏置电压来实现。基极电流是保证三极管放大特性的重要参数,要使三极管就够在工作特性三角区内只有调整偏置电压来实现。 那为什么不说偏置电流呢?因为用电压不表示的幅度大,电流的幅度大小了。所以用电压来表示。 偏压∶整体回路中的某个点,测量它相对某个基准点的电压(是整体回 路电压的1/n)就称之为该点的偏压,各段电路的偏压之和就是整体回路 电压,相应位置的电流就是偏压电流。 正向偏压∶NPN型三极管的电流方向为由B、C极流向E极。当需要管子工作时,需给B极加上一个可以使电流正向流动的电压。这个电压就 是正向偏压,电压值的大小需计算确定。当需要管子完全截止无电流时,为可靠截止,就需要加上一个负的电压。这个负的电压,就是反向偏压。 当n区相对P区有负电压,且当负电压低于-0.6V(即绝对值大于0.6V)时,就会产生一个P区到N区的大电流;当有正电压时,在小于击穿电压之前

电流可以忽略不计。二极管的基本性质可以通过考虑耗尽层的电压和电场 来理解。 正向偏压即在N区加一个相对P区的负电压。这样会导致PN结内建电势的减小,其变化趋势如图3e所示。PN结内建电势的减小会导致电场以 及耗尽区宽度的减小,如图d、c和b所示。二极管内部电压的减小和耗 尽区宽度的减小开始允许电流导通二极管。 在反偏压下n区相对p区的电压是个正电压。这会使得PN结内部的电势变大超过开始的内建电势,如图5e所示;当然也会增强PN 结的电场强度,如图5d所示。最终的结果是PN结耗尽区的宽度增加,内 部电势和电场会使得PN结平衡电流(扩散电流和漂移电流)比没有外部偏 压时要大。这说明如果通过二极管的电流很小时,那么它的导通电压的范 围会比较大。 二极管的偏压 目前你已经知道,在平衡状态时,没有电子能够越过PN结。一般来说,偏压这个名词指的就是利用直流电压建立电子元件工作所需的某些条件。与二极管有关的两种偏压就是:正向偏压和反向偏压。任何一种偏压,都必须在PN结的两边接上足够的直流电压和适当的极性。 在学习完本节的内容后,你应该能够:参与讨论二极管的偏压特性;定义正向偏压并且说明所需条件;定义反向偏压并且说明所需条件;参与讨论门槛电压对正向偏压的影响;解释在正向偏压时,电流如何产生;解释什么是反向电流;说明二极管反向击穿的原因;以能阶图解释正向偏压和反向偏压。 1.正向偏压 要对二极管施以偏压,你必须在它的两端加上直流电压。正向偏压(forward bias)就是指施加的偏压能够让电流顺利通过PN结。如图1.20所示,一个直流电压源通过导电材料(接点和导线)在二极管的

三极管工作原理分析,精辟、透彻,看后你就懂

三极管工作原理分析,精辟、透彻,看后你就懂三极管工作原理分析,精辟、透彻,看后你就懂 随着科学技的发展,电子技术的应用几乎渗透到了人们生产生活的方方面面。晶体三极管作为电子技术中一个最为基本的常用器件,其原理对于学习电子技术的人自然应该是一个重点。三极管原理的关键是要说明以下三点: 1、集电结为何会发生反偏导通并产生Ic,这看起来与二极管原理强调的PN结单向导电性相矛盾。 2、放大状态下集电极电流Ic为什么会只受控于电流Ib而与电压无关;即:Ic 与Ib之间为什么存在着一个固定的放大倍数关系。虽然基区较薄,但只要Ib为零,则Ic即为零。 3、饱和状态下,Vc电位很弱的情况下,仍然会有反向大电流Ic的产生。 很多教科书对于这部分内容,在讲解方法上处理得并不适当。特别是针对初、中级学者的普及性教科书,大多采用了回避的方法,只给出结论却不讲原因。即使专业性很强的教科书,采用的讲解方法大多也存在有很值得商榷的问题。这些问题集中表现在讲解方法的切入角度不恰当,使讲解内容前后矛盾,甚至造成讲还不如不讲的效果,使初学者看后容易产生一头雾水的感觉。笔者根据多年的总结思考与教学实践,对于这部分内容摸索出了一个适合于自己教学的新讲解方法,并通过具体的教学实践收到了一定效果。虽然新的讲解方法肯定会有所欠缺,但本人还是怀着与同行共同探讨的愿望不揣冒昧把它写出来,以期能通过同行朋友的批评指正来加以完善。 一、传统讲法及问题:

传统讲法一般分三步,以NPN型为例(以下所有讨论皆以NPN型硅管为例),如示意图A。1.发射区向基区注入电子;2.电子在基区的扩散与复合;3.集电区收集由基区扩散过来的电子。”(注1) 问题1:这种讲解方法在第3步中,讲解集电极电流Ic的形成原因时,不是着重地从载流子的性质方面说明集电结的反偏导通,从而产生了Ic,而是不恰当地侧重强调了Vc的高电位作用,同时又强调基区的薄。这种强调很容易使人产生误解。以为只要Vc足够大基区足够薄,集电结就可以反向导通,PN结的单向导电性就会失效。其实这正好与三极管的电流放大原理相矛盾。三极管的电流放大原理恰恰要求在放大状态下Ic与Vc在数量上必须无关,Ic只能受控于Ib。 问题2 :不能很好地说明三极管的饱和状态。当三极管工作在饱 和区时,Vc的值很小甚至还会低于Vb,此时仍然出现了很大的反向饱和电流Ic,也就是说在Vc很小时,集电结仍然会出现反向导通的现象。这很明显地与强调Vc的高电位作用相矛盾。问题3:传统讲法第2步过于强调基区的薄,还容易给人造成这样的误解,以为是基区的足够薄在支承三极管集电结的反向导通,只要基区足够薄,集电结就可能会失去PN结的单向导电特性。这显然与人们利用三极管内部两个PN结的单向导电性,来判断管脚名称的经验相矛盾。既使基区很薄,人们判断管脚名称时,也并没有发现因为基区的薄而导致PN结单向导电性失效的情况。基区很薄,但两个PN结的单向导电特性仍然完好无损,这才使得人们有了判断三极管管脚名称的办法和根据。 :在第2步讲解为什么Ic会受Ib控制,并且Ic与Ib之间为什么会存在问题4 着一个固定的比例关系时,不能形象加以说明。只是从工艺上强调基区的薄与掺杂度低,不能从根本上说明电流放大倍数为什么会保持不变。

相关主题
文本预览
相关文档 最新文档