当前位置:文档之家› Nand Flash存储结构及控制方法

Nand Flash存储结构及控制方法

Nand Flash存储结构及控制方法
Nand Flash存储结构及控制方法

Nand Flash存储结构及控制方法(K9F1G08)

2011-02-26 15:05:59| 分类:默认分类 | 标签:

mini2440nandflash k9f1g08 |字号订阅

一、NAND Flash介绍和NAND Flash控制器的使用

NAND Flash在嵌入式系统中的作用,相当于PC上的硬盘

常见的Flash有NOR Flash和NAND Flash,NOR Flash上进行读取的效率非常高,但是擦除和写操作的效率很低,容量一般比较小;NAND Flash进行擦除和写操作的效率更高,并且容量更大。一般NOR Flash用于存储程序,NAND Flash 用于存储数据。

1)NAND Flash的物理结构

笔者用的开发板上NAND Flash型号是K9F1G08,大小为128M,下图为它的封装和外部引脚

I/O0-I/O7 数据输入/输出

CLE 命令锁存使能

ALE 地址锁存使能

CE 芯片使能

RE 读使能

WE 写使能

WP 写保护

R/B 就绪/忙输出信号

Vcc 电源

Vss 地

N.C 不接

K9F1G08功能结构图如下

K9F1G08内部结构有下面一些功能部件

①X-Buffers Latches & Decoders:用于行地址

②Y-Buffers Latches & Decoders:用于列地址

③Command Register:用于命令字

④Control Logic & High Voltage Generator:控制逻辑及产生Flash所需高压

⑤Nand Flash Array:存储部件

⑥Data Register & S/A:数据寄存器,读、写页时,数据存放此寄存器

⑦Y-Gating

⑧I/O Buffers & Latches

⑨Global Buffers

⑩Output Driver

NAND Flash 存储单元组织结构图如下:

K9F1G08容量为1056Mbit,分为65536行(页)、2112列,每一页大小为2kb,外加64字节的额外空间,这64字节的额外空间的列地址为2048-2111 命令、地址、数据都通过IO0-IO7输入/输出,写入命令、地址或数据时,需要将WE、CE信号同时拉低,数据在WE信号的上升沿被NAND FLash锁存;命令锁存信号CLE、地址锁存信号ALE用来分辨、锁存命令或地址。

K9F1G08有128MB的存储空间,需要27位地址,以字节为单位访问Flash时,需要4个地址序列

2)NAND Flash访问方法

NAND Flash硬件连接如下图:

NAND Flash和S3C2440的连线包括,8个IO引脚,5个使能信号(nWE、ALE、CLE、nCE、nRE)、1个状态引脚(R/B)、1个写保护引脚(nWP)。地址、数据和命令都是在这些使能信号的配合下,通过8个IO引脚传输。写地址、数据、命令时,nCE、nWE信号必须为低电平,它们在 nWE信号的上升沿被锁存。命令锁存使能信号CLE和地址锁存使能信号ALE用来区别IO引脚上传输的是命令还是地址。

命令字及操作方法

操作NAND Flash时,先传输命令,然后传输地址,最后读写数据,这个期间要检查Flash的状态。K9F1G08容量为128MB,需要一个27位的地址,发出命令后,后面要紧跟着4个地址序列。

下图为K9F1G08的命令字

下图为K9F1G08的地址序列

K9F1G08有2112列,所以必须使用A0-A11共12位来寻址,有65535行,所以必须使用A12-A27共16位来寻址。

3)S3C2440 NAND Flash控制器介绍

NAND Flash的读写操作次序如下:

①设置NFCONF配置NAND Flash

②向NFCMD寄存器写入命令

③向NFADDR寄存器写入地址

④读写数据:通过寄存器NFSTAT检测NAND Flash的状态,在启动某个操作后,应该检测R/nB信号以确定该操作是否完成、是否成功。

下面介绍这些寄存器:

①NFCONF:配置寄存器

用来设置NAND Flash的时序参数,设置数据位宽,设置是否支持其他大小的页等。

②NFCONT:控制寄存器

用来使能NAND Flash控制器、使能控制引脚信号nFCE、初始化ECC,锁定NAND Flash等功能

③NFCMD:命令寄存器

用来发送Flash操作命令

④NFADDR:地址寄存器

用来向Flash发送地址信号

⑤NFDATA:数据寄存器

读写此寄存器启动对NAND Flash的读写数据操作

⑥NFSTAT:状态寄存器

0:busy,1:ready

二、NAND Flash控制器操作实例:读Flash

1)读NAND Flash的步骤

①设置NFCONF

在HCLK=100Mhz的情况下,TACLS=0,TWRPH0=3,TWRPH1=0,则

NFCONF = 0x300

使能NAND Flash控制器、禁止控制引脚信号nFCE,初始化ECC

NFCONT = (1<<4) | (1<<1) | (1<<0)

②操作NAND Flash前,复位

NFCONT &= ~(1<<1) 发出片选信号

NFCMD = 0xff reset命令

然后循环查询NFSTAT位0,直到等于1,处于就绪态

最后禁止片选信号,在实际使用时再使能

NFCONT |= 0x2 禁止NAND Flash

③发出读命令

NFCONT &= ~(1<<1) 发出片选信号

NFCMD = 0 读命令

④发出地址信号

⑤循环查询NFSTAT,直到等于1

⑥连续读NFDATA寄存器,得到一页数据

⑦最后禁止NAND Flash片选信号

NFCONT |= (1<<1)

NAND Flash中文版资料

NAND Flash 存储器 和 使用ELNEC编程器烧录NAND Flash 技术应用文档 Summer 翻译整理 深圳市浦洛电子科技有限公司 August 2006

目录 一. 简介 ----------------------------------------------------------------------------------- 1 二. NAND Flash与NOR Flash的区别 -------------------------------------------- 1 三. NAND Flash存储器结构描叙 --------------------------------------------------- 4 四. 备用单元结构描叙 ---------------------------------------------------------------- 6 五. Skip Block method(跳过坏块方式) ------------------------------------------ 8 六. Reserved Block Area method(保留块区域方式)----------------------------- 9 七. Error Checking and Correction(错误检测和纠正)-------------------------- 10 八. 文件系统 ------------------------------------------------------------------------------10 九. 使用ELNEC系列编程器烧录NAND Flash -------------------------------- 10 十. Invalid Block Management drop-down menu -------------------------------- 12 十一. User Area Settings3 -------------------------------------------------------- 13 十二. Solid Area Settings --------------------------------------------------------- 15 十三. Quick Program Check-box ---------------------------------------------- 16 十四. Reserved Block Area Options --------------------------------------------17 十五. Spare Area Usage drop-down menu ------------------------------------18

中科大半导体器件原理考试重点

《半导体器件原理》课程复习提纲 2017.12 基础:半导体物理、半导体器件的基本概念、物理效应。 重点:PN结、金半结、双极型晶体管、JFET、MESFET、MOSFET。根据物理效应、物理方程、实验修正等,理解半导体器件的工作原理和特性曲线,掌握器件的工作方程和各种修正效应,了解器件的参数意义,能够进行器件设计、优化、应用、仿真与建模等。 第一章:半导体物理基础 主要内容包括半导体材料、半导体能带、本征载流子浓度、非本征载流子、本征与掺杂半导体、施主与受主、漂移扩散模型、载流子输运现象、平衡与非平衡载流子。 半导体物理有关的基本概念,质量作用定律,热平衡与非平衡、漂移、扩散,载流子的注入、产生和复合过程,描述载流子输 运现象的连续性方程和泊松方程。(不作考试要求) 第二章:p-n结 主要内容包括热平衡下的p-n结,空间电荷区、耗尽区(耗尽层)、内建电场等概念,p-n结的瞬态特性,结击穿,异质结与高低结。 耗尽近似条件,空间电荷区、耗尽区(耗尽层)、内建电势等概念,讨论pn结主要以突变结(包括单边突变结)和线性缓变结为例,电荷分布和电场分布,耗尽区宽度,势垒电容和扩散电容的概念、定义,直流特性:理想二极管IV方程的推导;

对于考虑产生复合效应、大注入效应、温度效应对直流伏安特性的简单修正。PN的瞬态特性,利用电荷控制模型近似计算瞬变时间。结击穿机制主要包括热电击穿、隧道击穿和雪崩击穿。要求掌握隧道效应和碰撞电离雪崩倍增的概念,雪崩击穿条件,雪崩击穿电压、临界击穿电场及穿通电压的概念,异质结的结构及概念,异质结的输运电流模型。高低结的特性。 第三章:双极型晶体管 主要内容包括基本原理,直流特性,频率响应,开关特性,异质结晶体管。 晶体管放大原理,端电流的组成,电流增益的概念以及提高电流增益的原则和方法。理性晶体管的伏安特性,工作状态的判定,输入输出特性曲线分析,对理想特性的简单修正,缓变基区的少子分布计算,基区扩展电阻和发射极电流集边效应,基区宽度调制,基区展宽效应,雪崩倍增效应,基区穿通效应,产生复合电流和大注入效应,晶体管的物理模型E-M模型和电路模型G-P 模型。跨导和输入电导参数,低频小信号等效电路和高频等效电路,频率参数,包括共基极截止频率fα和共射极截止频率fβ的定义,特征频率f T的定义,频率功率的限制,其中少子渡越基区时间,提高频率特性的主要措施。开关特性的参数定义,开关时间的定义和开关过程的描述,利用电荷控制方程简单计算开关时间。 开关晶体管中最重要的参数是少子寿命。异质结双极型晶体管的结构及优点。

半导体器件基本结构

课题4.1 半导体器件基本结构 4.2晶体二极管 教学目标【知识目标】掌握PN结单向导体的原理 【能力目标】1.懂得什么是半导体 2.理解PN结的单向导电性 3.掌握半导体的分类 4.懂得半导体的主要参数【德育目标】培养学生的抽象理解能力 教 学重点半导体的主要参数 教 学 难 点 PN结单向导体的原理 教 学时间2课时(第11周) 教 具 准 备 半导体、电阻、电流表 教学组织与实施 教师活动学生活动 【新课导入】 提问1: 【新课讲授】 1.导体绝缘体和半导体 各种物体对电流的通过有着不同的阻碍能力,这种不同的物体允许电流通过的能力叫做物体的导电性能。 通常把电阻系数小的(电阻系数的范围约在0.01~1欧毫米/米)、导电性能好的物体叫做导体。例如:银、铜、铝是良导体。 含有杂质的水、人体、潮湿的树木、钢筋混凝土电杆、墙壁、大地等,也是导体,但不是良导体。 电阻系数很大的(电阻系数的范围约为10~10欧姆·毫米/米)、导电性能很差的物体叫做绝缘体。例如:陶瓷、云母、玻璃、橡胶、塑料、电木、纸、棉纱、树脂等物体,以及干燥的木材等都是绝缘体(也叫电介质)。 举例说明哪些是导体哪些是绝缘体哪些是半导体

导电性能介于导体和绝缘体之间的物体叫做半导体。例如:硅、锗、硒、氧化铜等都是半导体。半导体在电子技术领域应用越来越广泛。 2.PN结 PN结(PN junction)。采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。PN结具有单向导电性。 P型半导体(P指positive,带正电的):由单晶硅通过特殊工艺掺入少量的三价元素组成,会在半导体内部形成带正电的空穴; N型半导体(N指negative,带负电的):由单晶硅通过特殊工艺掺入少量的五价元素组成,会在半导体内部形成带负电的自由电子。 3.PN结的单向导电性 PN结具有单向导电性,若外加电压使电流从P区流到N区,PN 结呈低阻性,所以电流大;反之是高阻性,电流小。 如果外加电压使PN结P区的电位高于N区的电位称为加正向电压,简称正偏; PN结P区的电位低于N区的电位称为加反向电压,简称反偏。 (1) PN结加正向电压时的导电情况 外加的正向电压有一部分降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。 (2)PN结加反向电压时的导电情况 外加的反向电压有一部分降落在PN结区,方向与PN结内电场方向相同,加强了内电场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。此时PN结区的少子在内电场作用下形成的漂移电流大于扩散电流,可忽略扩散电流,PN结呈现高阻性。 分清楚P型半导体和N型半导体

NOR-FLASH驱动文档(SST39VF1601)

NOR-FLASH驱动文档(SST39VF1601)2012-03-30 00:57:33 NOR-FLASH是最早出现的Flash Memory,目前仍是多数供应商支持的技术架 构.NOR-FLASH在擦除和编程操作较少而直接执行代码的场合,尤其是纯代码存储的应用中广泛使用,但是由于NOR-FLASH只支持块擦除,其擦除和编程速度较慢,而块尺寸又较大,导致擦除和编程操作所花费的时间很长,所以在纯数据存储和文件存储的应用中显得力不从心. NOR-FLASH的特点是: 1. 程序和数据可存放在同一芯片上,FLASH芯片拥有独立的数据总线和地址总线,能快速随 机读取,并且允许系统直接从Flash中读取代码执行,而无需先将代码下载至RAM中再执行; 2. 可以单字节或单字读取,但不能单字节擦除,必须以部分或块为单位或对整片执行擦除操 作,在执行写操作之前,必需先根据需要对部分,块或整片进行擦除,然后才能写入数据。 以SST系列NOR-FLASH芯片为例介绍FLASH的使用方法及驱动. 首先,在驱动的头文件中,要根据芯片的具体情况和项目的要求作如下定义: 1. 定义操作的单位,如 typedef unsigned char BYTE; // BYTE is 8-bit in length typedef unsigned short int WORD; // WORD is 16-bit in length typedef unsigned long int Uint32; // Uint32 is 32-bit in length 在这里地址多是32位的,芯片写操作的最小数据单位为WORD,定义为16位,芯片读操作的最小数据单位是BYTE,定义为8位. 2. 因为芯片分为16位和32位的,所以对芯片的命令操作也分为16位操作和32位操作(命令 操作在介绍具体的读写过程中将详细介绍). #ifdef GE01 /*宏NorFlash_32Bit,若定义了为32位NorFlash,否则为16位NorFlash*/ #define NorFlash_32Bit #endif 3. 根据芯片的情况,定义部分(段)和块的大小. #define SECTOR_SIZE 2048 // Must be 2048 words for 39VF160X #define BLOCK_SIZE 32768 // Must be 32K words for 39VF160X

浅谈NorFlash的原理及其应用

浅谈NorFlash的原理及其应用 NOR Flash NOR Flash是现在市场上两种主要的非易失闪存技术之一。Intel 于1988年首先开发出NOR Flash 技术,彻底改变了原先由EPROM(Erasable Programmable Read-Only-Memory电可编程序只读存储器)和EEPROM(电可擦只读存储器Electrically Erasable Programmable Read - Only Memory)一统天下的局面。紧接着,1989年,东芝公司发表了NAND Flash 结构,强调降低每比特的成本,有更高的性能,并且像磁盘一样可以通过接口轻松升级。NOR Flash 的特点是芯片内执行(XIP ,eXecute In Place),这样应用程序可以直接在Flash闪存内运行,不必再把代码读到系统RAM中。NOR 的传输效率很高,在1~4MB的小容量时具有很高的成本效益,但是很低的写入和擦除速度大大影响到它的性能。NAND的结构能提供极高的单元密度,可以达到高存储密度,并且写入和擦除的速度也很快。应用NAND的困难在于Flash的管理需要特殊的系统接口。性能比较 flash闪存是非易失存储器,可以对称为块的存储器单元块进行擦写和再编程。任何flash 器件的写入操作只能在空或已擦除的单元内进行,所以大多数情况下,在进行写入操作之前必须先执行擦除。NAND器件执行擦除操作是十分简单的,而NOR则要求在进行擦除前先要将目标块内所有的位都写为0。由于擦除NOR器件时是以64~128KB的块进行的,执行一个写入/擦除操作的时间为5s,与此相反,擦除NAND器件是以8~32KB的块进行的,执行相同的操作最多只需要4ms。执行擦除时块尺寸的不同进一步拉大了NOR和NAND之间的性能差距,统计表明,对于给定的一套写入操作(尤其是更新小文件时),更多的擦除操作必须在基于NOR的单元中进行。这样,当选择存储解决方案时,设计师必须权衡以下的各项因素。 l 、NOR的读速度比NAND稍快一些。 2、NAND的写入速度比NOR快很多。 3 、NAND的4ms擦除速度远比NOR的5s快。 4 、大多数写入操作需要先进行擦除操作。 5 、NAND的擦除单元更小,相应的擦除电路更少。此外,NAND 的实际应用方式要比NOR复杂的多。NOR可以直接使用,并可在上面直接运行代码;而NAND需要I/O接口,因此使用时需要驱动程序。不过当今流行的操作系统对NAND结构的Flash都有支持。此外,Linux内核也提供了对NAND结构的Flash的支持。详解 NOR

总结NAND FLASH控制器的操作

NAND FLASH相对于NOR FLASH而言,其容量大,价格低廉,读写速度都比较快,因而得到广泛应用。NOR FLASH的特点是XIP,可直接执行应用程序, 1~4MB时应用具有很高的成本效益。但是其写入和擦除的速度很低直接影响了其性能。 NAND FLASH不能直接执行程序,用于存储数据。在嵌入式ARM应用中,存储在其中的数据通常是读取到SDROM中执行。因为NAND FLASH主要接口包括 几个I/O口,对其中的数据都是串行访问,无法实现随机访问,故而没有执行程序。 NAND FLASH接口电路是通过NAND FLAH控制器与ARM处理器相接的,许多ARM处理器都提供NAND FLASH控制器,为使用NAND FLASH带来巨大方便。 K9F2G08U0B是三星公司的一款NAND FLASH产品。 K9F2G08U0B包含8个I/O,Vss、Vcc、以及控制端口(CLE、ALE、CE、RE、WE、WP、R/B)。其存储结构分块。 共2K 块 每块大小16 页 每页大小2K + 64BYTE 即容量=块数×页数×每页大小=2K×16×(2K + 64BYTE)=256M BYTE + 8M BYTE NAND FLASH控制器提供了OM[1:0]、NCON、GPG13、GPG14、GPG15共5个信号来选择NAND FLASH启动。 OM[1:0]=0b00时,选择从NAND FLASH启动。 NCON:NAND FLASH类型选择信号。 GPG13:NAND FLASH页容量选择信号。 GPG14:NAND FLASH地址周期选择信号。 GPG15:NAND FLASH接口线宽选择。0:8bit总线宽度;1:16bit总线宽度。 访问NAND FLASH 1)发生命令:读、写、还是擦除 2)发生地址:选择哪一页进行上述操作 3)发生数据:需要检测NAND FLASH内部忙状态 NAND FLASH支持的命令: #define CMD_READ1 0x00 //页读命令周期1 #define CMD_READ2 0x30 //页读命令周期2 #define CMD_READID 0x90 //读ID 命令 #define CMD_WRITE1 0x80 //页写命令周期1 #define CMD_WRITE2 0x10 //页写命令周期2 #define CMD_ERASE1 0x60 //块擦除命令周期1 #define CMD_ERASE2 0xd0 //块擦除命令周期2 #define CMD_STATUS 0x70 //读状态命令 #define CMD_RESET 0xff //复位 #define CMD_RANDOMREAD1 0x05 //随意读命令周期1

STM32使用FSMC控制NAND flash 例程概要

本文原创于观海听涛,原作者版权所有,转载请注明出处。 近几天开发项目需要用到STM32驱动NAND FLASH,但由于开发板例程以及固件库是用于小页(512B,我要用到的FLASH为1G bit的大页(2K,多走了两天弯路。以下笔记将说明如何将默认固件库修改为大页模式以驱动大容量NAND,并作驱动。 本文硬件:控制器:STM32F103ZET6,存储器:HY27UF081G2A 首先说一下NOR与NAND存储器的区别,此类区别网上有很多,在此仅大致说明: 1、Nor读取速度比NAND稍快 2、Nand写入速度比Nor快很多 3、NAND擦除速度(4ms远快于Nor(5s 4、Nor 带有SRAM接口,有足够的地址引脚来寻址,可以很轻松的挂接到CPU 地址和数据总线上,对CPU要求低 5、NAND用八个(或十六个引脚串行读取数据,数据总线地址总线复用,通常需要CPU支持驱动,且较为复杂 6、Nor主要占据1-16M容量市场,并且可以片内执行,适合代码存储 7、NAND占据8-128M及以上市场,通常用来作数据存储 8、NAND便宜一些 9、NAND寿命比Nor长 10、NAND会产生坏块,需要做坏块处理和ECC 更详细区别请继续百度,以上内容部分摘自神舟三号开发板手册

下面是NAND的存储结构: 由此图可看出NAND存储结构为立体式 正如硬盘的盘片被分为磁道,每个磁道又分为若干扇区,一块nand flash也分为若干block,每个block分为如干page。一般而言,block、page之间的关系随着芯片的不同而不同。 需要注意的是,对于flash的读写都是以一个page开始的,但是在读写之前必须进行flash 的擦写,而擦写则是以一个block为单位的。 我们这次使用的HY27UF081G2A其PDF介绍: Memory Cell Array = (2K+64 Bytes x 64 Pages x 1,024 Blocks 由此可见,该NAND每页2K,共64页,1024块。其中:每页中的2K为主容量Data Field, 64bit为额外容量Spare Field。Spare Field用于存贮检验码和其他信息用的,并不能存放实际的数据。由此可算出系统总容量为2K*64*1024=134217728个byte,即1Gbit。NAND闪存颗粒硬件接口: 由此图可见,此颗粒为八位总线,地址数据复用,芯片为SOP48封装。 软件驱动:(此部分写的是伪码,仅用于解释含义,可用代码参见附件 主程序: 1. #define BUFFER_SIZE 0x2000 //此部分定义缓冲区大小,即一次写入的数据 2. #define NAND_HY_MakerID 0xAD //NAND厂商号 3. #define NAND_HY_DeviceID 0xF1 //NAND器件号 4. /*配置与SRAM连接的FSMC BANK2 NAND*/

NAND FLASH在储存测试中的应用

NAND FLASH在储存测试系统中的应用(3) 2009-11-09 22:35:43 来源:王文杰马游春李锦明 关键字:NAND FLASH 储存测试K9K8G08UOM 2 NAND FLASkI Memory的硬件部分 本设计当中,FLASH的数据输入输出口、控制端口通过调理电路与FPGA的端口相连,图4所示是其硬件连接电路。 从图4中可知,FLASH的数据输入输出端口I/00~7、控制端口/CE、是通过芯片SN54LV245与FPGA相连;FLASH的控制端口cLE、ALE、/WE、/RE通过芯片SN54LV245和芯片74HCl4与ITGA相连。其中F-CLE、F-ALE、F—WE、F-RE、F—CE、F- R/Bur是FPGA的I/O口,是FPGA逻辑的输入输出口。CLE、ALE信号是FLASH存储器命令、地址锁存使能信号,/WE是保证命令、地址、数据能否及时正确的写入FLASH 的信号,/RE信号控制着数据的读取,这些信号的精确度关系着FLASH存储、读数功能的实现。所以,这些信号的好坏直接关系着FLASH的正常工作。经实践的电路调试,这些信号在传输过程中受到了其它因素的干扰,信号明显失真,在电路中加入74HCl4(非门)以后,信号会变得光滑,准确。 芯片SN54LV245是八进制三态总线收发器,DIR=1时,总线传输方向从A→B;DIR=0时,总线传输方向从B→A。/OE是片选信号。/0E,DIR信号是由FPGA内部编程逻辑控制的。 FL,ASH接口中,为了保证/wE、/RE、/CE、R/B控制信号初始状态无效,由硬件电路实现端口值拉高。本设计中不使用写保护功能,所以/WP端口也接上了上拉电阻。 3 结束语 基于闪存技术的固态存储器存储密度大,功耗小,可靠性高,体积小重量轻且成本也在不断降f氐,在航空应用中有良好的应用前景。在设计储存测试系统时选用大容量的NAIXD FLASH存储器大大提高了储存、读取速度,并且设计电路结构简单,易于修改。 (本文转自电子工程世界:http://www.eewo

半导体器件原理简明教程习题标准答案傅兴华

半导体器件原理简明教程习题答案 傅兴华 1.1 简述单晶、多晶、非晶体材料结构的基本特点. 解 整块固体材料中原子或分子的排列呈现严格一致周期性的称为单晶材料。 原子或分子的排列只在小范围呈现周期性而在大范围不具备周期性的是多晶材料。 原子或分子没有任何周期性的是非晶体材料. 1.6 什么是有效质量,根据E(k)平面上的的能带图定性判断硅鍺和砷化镓导带电子的迁移率 的相对大小. 解 有效质量指的是对加速度的阻力.k E h m k ??=2 1*1 由能带图可知,Ge 与Si 为间接带隙半导体,Si 的Eg 比Ge 的Rg 大,所以Ge μ>Si μ.GaAs 为直接带隙半导体,它的跃迁不与晶格交换能量,所以相对来说GaAs μ>Ge μ>Si μ. 1.10 假定两种半导体除禁带宽度以外的其他性质相同,材料1的禁带宽度为1.1eV,材料2 的禁带宽度为 3.0eV,计算两种半导体材料的本征载流子浓度比值,哪一种半导体材料更适合制作高温环境下工作的器件? 解 本征载流子浓度:)exp( )( 1082.42 15 T dp dn i k Eg m m m n ?= 两种半导体除禁带以外的其他性质相同 ∴)9.1exp()exp()exp(0.31.121T k k k n n T T ==-- T k 9.1>0 ∴21n n >∴在高温环境下2n 更合适 1.11在300K 下硅中电子浓度330102-?=cm n ,计算硅中空穴浓度0p ,画出半导体能带图,判 断该半导体是n 型还是p 型半导体. 解 3 173 21002 02 0010125.1102)105.1(p -?=??==→=cm n n n p n i i ∴>00n p 是p 型半导体 1.16硅中受主杂质浓度为31710-cm ,计算在300K 下的载流子浓度0n 和0p ,计算费M 能级相 对于本征费M 能级的位置,画出能带图. 解 3 17 010-==cm N p A 2 00i n p n = T=300K →310105.1-?=cm n i 330 2 01025.2-?==∴cm p n n i 00n p > ∴该半导体是p 型半导体 )105.110ln(0259.0)ln(10 17 0??==-i FP i n p KT E E

nandflash用法

6 NAND FLASH CONTORLLER OVERVIEW In recent times, NOR flash memory gets high in price while an SDRAM and a NAND flash memory is comparatively economical , motivating some users to execute the boot code on a NAND flash and execute the main code on an SDRAM. S3C2440A boot code can be executed on an external NAND flash memory. In order to support NAND flash boot loader, the S3C2440A is equipped with an internal SRAM buffer called ‘Steppingstone’. When booting, the first 4K Bytes of the NAND flash memory will be loaded into Steppingstone and the boot code loaded into Steppingstone will be executed. Generally, the boot code will copy NAND flash content to SDRAM. Using hardware ECC, the NAND flash data validity will be checked. Upon the completion of the copy, the main program will be executed on the SDRAM. comparatively 比较地、相当地 motivating v. 激励;刺激;调动…的积极性(motivate的ing形式) execute vt. 实行;执行;处死 internal n. 内脏;本质adj. 内部的;里面的;体内的;(机构)内部的 Steppingstone n. 踏脚石;进身之阶;达到目的的手段 validity n. [计] 有效性;正确;正确性 content n. 内容,目录;满足;容量adj. 满意的;vt. 使满足 FEATURES 1. Auto boot: The boot code is transferred into 4-kbytes Steppingstone during reset. After the transfer, the boot code will be executed on the Steppingstone. 2. NAND Flash memory I/F: Support 256Words, 512Bytes, 1KWords and 2KBytes Page. 3. Software mode: User can directly access NAND flash memory, for example this feature can be used in read/erase/program NAND flash memory. 4. Interface: 8 / 16-bit NAND flash memory interface bus. 5. Hardware ECC generation, detection and indication (Software correction). 6. SFR I/F: Support Little Endian Mode, Byte/half word/word access to Data and ECC Data register, and Word access to other registers 7. SteppingStone I/F: Support Little/Big Endian, Byte/half word/word access. 8. The Steppingstone 4-KB internal SRAM buffer can be used for another purpose after NAND flash booting. 特性 1。自动引导:在复位时,引导代码写入4-k字节的中转区,在转移后启动 代码将在中转区上执行。 2。NAND闪存接口:支持256字,512字节,1k字和2KB字节页。 3。软件模式:用户可以直接访问NAND闪存,例如这个特性可以用于 读/写/擦除NAND闪存。

NAND Flash原理和使用

目录 1.概述 (2) 2.功能框图 (3) 3.管脚 (3) 4.寻址 (4) 5.总线操作 (5) 6.命令表 (6) 7.PAGE READ,0x00-0x30 (7) 8.RANDOM DATA READ,0x05-0xE0 (7) 9.PAGE READ CACHE MODE START,0x31;PAGE READ CACHE MODE START LAST,0x3F (8) 10.READ ID,0x90 (8) 11.READ STATUS,0x70 (9) 12.编程操作 (9) 13.内部数据搬移 (11) 14.块擦除操作,0x60-0xD0 (12) 15.复位操作,0xFF (13) 16.写保护操作 (13) 17.错误管理 (14)

以Micron公司的MT29F2G08为例介绍NAND Flash原理和使用。 1.概述 MT29F2G08使用一个高度复用的8-bit总线(I/O[7:0])来传输数据、地址、指令。5个命令脚(CLE、ALE、CE#、WE#)实现NAND命令总线接口规程。3个附加的脚用作: 控制硬件写保护(WP#)、监视芯片状态(R/B#),和发起上电自动读特征(PRE-仅3V芯片支持)。注意, PRE功能不支持宽温芯片。 MT29F2G08内部有2048个可擦除的块,每个块分为64个可编程的页,每个页包含2112字节(2048个字节作为数据存储区,64个备用字节一般作为错误管理使用)。 每个2112个字节的页可以在300us内编程,每个块(64x2112=132K)可以在2ms内被擦除。片上控制逻辑自动进行PROGRAM和ERASE操作。 NAND的内部存储阵列是以页为基本单位进行存取的。读的时候,一页数据从内部存储阵列copy到数据寄存器,之后从数据寄存器按字节依次输出。写(编程)的时候,也是以页为基本单位的:起始地址装载到内部地址寄存器之后,数据被依次写入到内部数据寄存器,在页数据写入之后,阵列编程过程启动。 为了增加编程的速度,芯片有一个CACHE寄存器。在CACHE编程模式,数据先写入到CACHE寄存器,然后再写入到数据寄存器,一旦数据copy进数据寄存器后,编程就开始。在数据寄存器被装载及编程开始之后,CACHE寄存器变为空,可以继续装载下一个数据,这样内部的编程和数据的装载并行进行,提高了编程速度。 内部数据搬移命令(INTERNAL DATA MOVE)也使用内部CAHCE寄存器,通常搬移数据需要很长时间,通过使用内部CACHE寄存器和数据寄存器,数据的搬移速度大大增加,且不需要使用外部内存。

半导体器件物理施敏课后答案

半导体器件物理施敏课后答案

半导体器件物理施敏课后答案 【篇一:半导体物理物理教案(03级)】 >学院、部:材料与能源学院 系、所;微电子工程系 授课教师:魏爱香,张海燕 课程名称;半导体物理 课程学时:64 实验学时:8 教材名称:半导体物理学 2005年9-12 月 授课类型:理论课授课时间:2节 授课题目(教学章节或主题): 第一章半导体的电子状态 1.1半导体中的晶格结构和结合性质 1.2半导体中的电子状态和能带 本授课单元教学目标或要求: 了解半导体材料的三种典型的晶格结构和结合性质;理解半导体中的电子态, 定性分析说明能带形成的物理原因,掌握导体、半导体、绝缘体的能带结构的特点 本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等):

1.半导体的晶格结构:金刚石型结构;闪锌矿型结构;纤锌矿型结构 2.原子的能级和晶体的能带 3.半导体中电子的状态和能带(重点,难点) 4.导体、半导体和绝缘体的能带(重点) 研究晶体中电子状态的理论称为能带论,在前一学期的《固体物理》课程中已经比较完整地介绍了,本节把重要的内容和思想做简要的回顾。 本授课单元教学手段与方法: 采用ppt课件和黑板板书相结合的方法讲授 本授课单元思考题、讨论题、作业: 作业题:44页1题 本授课单元参考资料(含参考书、文献等,必要时可列出) 1.刘恩科,朱秉升等《半导体物理学》,电子工业出版社2005? 2.田敬民,张声良《半导体物理学学习辅导与典型题解》?电子工业 出版社2005 3. 施敏著,赵鹤鸣等译,《半导体器件物理与工艺》,苏州大学出版社,2002 4. 方俊鑫,陆栋,《固体物理学》上海科学技术出版社 5.曾谨言,《量子力学》科学出版社 注:1.每单元页面大小可自行添减;2.一个授课单元为一个教案; 3. “重点”、“难点”、“教学手段与方法”部分要尽量具体; 4.授课类型指:理论课、讨论课、实验或实习课、练习或习题课。

STM32使用FSMC控制NAND flash 例程

本文原创于观海听涛,原作者版权所有,转载请注明出处。 近几天开发项目需要用到STM32驱动NAND FLASH,但由于开发板例程以及固件库是用于小页(512B),我要用到的FLASH为1G bit的大页(2K),多走了两天弯路。以下笔记将说明如何将默认固件库修改为大页模式以驱动大容量NAND,并作驱动。 本文硬件:控制器:STM32F103ZET6,存储器:HY27UF081G2A 首先说一下NOR与NAND存储器的区别,此类区别网上有很多,在此仅大致说明: 1、Nor读取速度比NAND稍快 2、Nand写入速度比Nor快很多 3、NAND擦除速度(4ms)远快于Nor(5s) 4、Nor 带有SRAM接口,有足够的地址引脚来寻址,可以很轻松的挂接到CPU地址和数据总线上,对CPU要求低 5、NAND用八个(或十六个)引脚串行读取数据,数据总线地址总线复用,通常需要CPU支持驱动,且较为复杂 6、Nor主要占据1-16M容量市场,并且可以片内执行,适合代码存储 7、NAND占据8-128M及以上市场,通常用来作数据存储 8、NAND便宜一些 9、NAND寿命比Nor长 10、NAND会产生坏块,需要做坏块处理和ECC 更详细区别请继续百度,以上内容部分摘自神舟三号开发板手册 下面是NAND的存储结构: 由此图可看出NAND存储结构为立体式 正如硬盘的盘片被分为磁道,每个磁道又分为若干扇区,一块nand flash也分为若干block,每个block分为如干page。一般而言,block、page之间的关系随着芯片的不同而不同。 需要注意的是,对于flash的读写都是以一个page开始的,但是在读写之前必须进行flash 的擦写,而擦写则是以一个block为单位的。 我们这次使用的HY27UF081G2A其PDF介绍: Memory Cell Array = (2K+64) Bytes x 64 Pages x 1,024 Blocks 由此可见,该NAND每页2K,共64页,1024块。其中:每页中的2K为主容量Data Field,64bit为额外容量Spare Field。Spare Field用于存贮检验码和其他信息用的,并不能存放实际的数据。由此可算出系统总容量为2K*64*1024=134217728个byte,即1Gbit。NAND闪存颗粒硬件接口: 由此图可见,此颗粒为八位总线,地址数据复用,芯片为SOP48封装。 软件驱动:(此部分写的是伪码,仅用于解释含义,可用代码参见附件) 主程序: 1. #define BUFFER_SIZE 0x2000 //此部分定义缓冲区大小,即一次写入的数据 2. #define NAND_HY_MakerID 0xAD //NAND厂商号 3. #define NAND_HY_DeviceID 0xF1 //NAND器件号

大容量NAND Flash在多媒体手机中的应用

大容量NAND Flash 在多媒体手机中的应用 1 引言随着手机市场竞争的日趋激烈,多媒体手机逐渐成为市场的宠儿。 因为有大量的多媒体数据,因此大容量存储是多媒体手机所要解决的首要问题。NOR 和NAND 是现在市场上两种主要的非易失闪存技术。NOR 的特点是芯片 内执行(XIP,eXecuteInPlace),这样应用程序可以直接在flash 闪存内运行, 不必再把代码读到系统RAM 中。NOR 的传输效率很高,在1~4MB 的小容量 时具有很高的成本效益,但是很低的写入和擦除速度大大影响了它的性能。NAND 结构能提供极高的单元密度,可以达到高存储密度,并且写入和擦除的 速度也很快,是大数据量存储的最佳选择。在选择存储方案的时候,设计师必 须综合考虑以下因素:(1)NOR 的读速度比NAND 稍快一些。(2)NAND 的 写入速度比NOR 快很多(3)NAND 的4ms 擦除速度远比NOR 的5s 快。(4)大多数写入操作需要先进行擦除操作。(5)NAND 的擦除单元更小,相应的擦 除电路更少。(6)NAND 闪存中每个块的最大擦写次数是一百万次,而NOR 的擦写次数是十万次。此外,NAND 的使用比NOR 的使用复杂的多。在NOR 器件上运行代码不需要任何的软件支持,在NAND 器件上进行同样操作时,通 常需要驱动程序,也就是内存技术驱动程序(MTD),NAND 和NOR 器件在 进行写入和擦除操作时都需要MTD.使用NOR 器件时所需要的MTD 要相对少 一些,许多厂商都提供用于NOR 器件的更高级软件,这其中包括M-System 的TrueFFS 驱动,该驱动被 WindRiverSystem、Microsoft、QNXSoftwareSystem、Symbian 和Intel 等厂商所采用。2 TC58DDM82A1XBJ5 在多媒体手机中的应用在多媒体手机中,TC58DDM82A1XBJ5 主要用来存储图片、声音文件等数据量较大的文件。 TC58DDM82A1XBJ5 是Toshiba 公司生产的256MbitsNANDEEPROM.工作电压

如何用SmartPRO 6000纠正NAND Flash烧录过程位反转

如何用SmartPRO 6000纠正NAND Flash烧录过程位反转 近日某电子科技有限公司的客户邮件反馈:使用我们的SmartPRO 6000F-Plus烧录MICRON厂家的TSOP48封装的Nand Flash MT29F2G08ABAEA,不良率比较高,甚至达到了10%的烧录不良率,而烧录SAMSUNG厂家的TSOP48封装的K9F1G08U0E这颗芯片就不会有这种状况,由此可以确定烧录器与烧录座本身固件是没有问题的,所以客户怀疑应该是芯片算法有问题,需要我们重新优化下。 烧录器的功能很简单、很专一,那就是把数据完完整整、重复地复制到每一颗芯片上,复制成功了就提示Pass,复制失败了就提示Fail;SmartPRO 6000F-Plus是一台全心专注于高品质、高效率的Flash专用烧录编程器;目前为止,有广泛的、优秀的烧录客户群,软件、硬件和算法都是客户批量生产验证过的,非常成熟。 那问题究竟出在哪里呢,让我们继续看吧! 先友情提醒一下,我们的烧录软件做有一个监控“电子眼”(操作日记),时刻记录着客户对每颗芯片的烧录情况;客户有任何违规操作或者烧录异常现象,我们都可以迅速重返到“案发现场”,找到问题的根源;

我们第一时间让客户把操作日记发过来,从操作日记上看,客户反馈的现象确实存在,日志也帮助我们很快找到了这种异常: 但是这种现象并不是因为烧录器造成,而是芯片本身存在的工艺差异原因导致的;可能有人就会马上反驳,明显地出现如此高的烧录不良率,编程器原厂就没有任何责任,而是一句话就把问题推到芯片原厂?不要着急,继续往下看。 首先,我们普及一下Nand Flash的一个特性:位反转;Nand Flash由于本身硬件的内在特性,会导致(极其)偶尔的出现位反转的现象。所谓的位反转(bit flip),指的是原先Nand Flash中的某个位变化了,即要么从1变成0了,要么从0变成1了。而出现这种怪异的现

如何用jlink烧写uboot到nand flash

1.通过Nor Flash下载 a. speed 12000 //设置TCK为12M,下载程序时会很快 b. loadbin d:\u-boot.bin 0x30000000 注意:0x30000000是你想要下载u-boot.bin到开发板的内存地址, 内存地址根据不同的开发板设定不同,因为本文中使用的是FL2440, 片上系统是S3C2440,内存挂载的地址区域是 0x30000000~0x33ffffff, 我们只需要把u-boot.bin下载到这片区域即可 然后我们在U-boot命令行模式输入NAND Flash擦除和写入命令即可: c.nand erase 0 40000 // 擦除从0地址开始的大小为0x40000的Nnad Flash扇区,0x40000是待写入的U-boot.bin的大致长度, 长度必须为NAND Flash页大小的整数倍,通常会需要比u-boot.bin实际长度长。 d.nand write 30000000 0 40000 // 把前面下载到0x30000000的 u-boot.bin烧写到Nand去 二、方法二,直接通过JLink 假如你的开发板没有NOR Flash或者是你使用的NOR Flash还未被J-FLASH ARM所支持, 这时上面的方法你就无法使用了,这时候你需要一个初始化内存SDRAM的程序, 这个程序完成的功能也就是配置好SDRAM的寄存器,使它能正常工作, fl2440的内存初始化程序下载地址:“2440init.bin”。你还需要准备一个特殊的u-boot_SDRAM.bin, 它与你要烧写到NAND Flash的u-boot.bin有区别,u-boot_SDRAM.bin编译时需要在include/configs/开发板配置文件.h文件中添加: #define CONFIG_SKIP_LOWLEVEL_INIT 1 //用来支持uboot在内存中直接运行 添加这个宏定义之后,U-boot就跳过了内存初始化的部分,因为此时我们的内存已经先由“2440init.bin“初始化好了,再次初始化会出现内存数据的丢失。 做好上面的准备工作之后,首先将开发板设为从NAND Flash启动,启动 J-Link commander,先假设“u-boot.bin”和“2440init.bin”在电脑的D盘根目录下。 1.loadbin d:\2440init.bin 0 2.setpc 0 3.g 为什么需要把"2440init.bin"复制到0x0地址是因为S3C2440有4K的SRAM,它不需要初始化就可以直接执行程序,从NAND Flash启动时, 这个SRAM的地址会挂载到0x0~0x1000的地址空间, 我们先把"2440init.bin"复制到SRAM中运行, 第 1 页

相关主题
文本预览
相关文档 最新文档