当前位置:文档之家› NEC中断及按键中断

NEC中断及按键中断

NEC中断及按键中断
NEC中断及按键中断

简单的客户服务流程规范

第一章服务体系 良好的客服形象良好的技术 良好的客户关系良好的品牌 一、“5S4E”服务 “5S4E”的宗旨是“客户永远是第一位”,从客户的实际需求出发,为客户提供真正有价值的服务,帮助客户更好地使用产品。体现了“良好的客服形象、良好的技术、良好的客户关系、良好的品牌”的核心服务理念,要求以最专业性的服务队伍,及时和全方位地关注客户的每一个服务需求,并通过提供广泛、全面和快捷的服务,使客户体验到无处不在的满意和可信赖的贴心感受。 通过建立一个完善的服务体系和服务质量监督体系,从而能为用户提供“亲切、快捷、专业”的体验。 通过建立一个良好的内部激励机制,培养一支充满活力的、能兢兢业业为客户服务的“友好、高效、专业”的客户服务队伍。 二、“5S4E”服务体系简介

“5S4E服务”提出了坚持服务质量和服务满意度的5个标准及客户服务将要达到的4个核心目的,即要以smiling(微笑)和sincere(诚挚)的服务态度,客户的服务需求在第一时间得到响应,得到充分的重视;要以speciality(专业)和speedy(快速)的服务水准,建构我们规范和专业的服务体系,第一时间解决客户应用中的问题,为客户提供量身定做的专业性服务;通过长期不懈、坚持永续的服务,持续提升客户服务价值,达到客户satisfied(满意)的服务效果。最终为客户提供快捷而不失其细心,专业而不失其亲切,持续而不失其稳定的高质量服务,提供品牌的认知度。也就是我们的核心“excellent customer service visualization(良好的客服形象)、excellent technology(良好的技术)、excellent customer relationship(良好的客户关系)及excellent brand(良好的品牌)” 客户服务部:是“5S4E”服务体系的最高管理机构,负责制定“5S4E”整体发展规划、客户服务规范与管理程序、XXXX各维修及销售类产品线服务政策、对各地维修站提供支持与监督工作。同时负责处理用户投诉及800免费技术咨询热线、互联网网上技术支持的日常运作。 各地维修站及技术工程部:是XX在全国各地的服务机构,负责为所在区域的XX 客户提供全方位的技术服务,并对相关产品维护人员提供适当培训。目前XX已在全国各地建立40个维修中心,覆盖面正逐步扩大。 三、“5S4E”特色 从客户的实际需求出发,努力探寻对客户真正有价值的新的服务内容与服务方式,形成有别于业界其他厂家的服务特色,是“5S4E”的不懈追求。

51单片机独立按键程序查询法和外部中断两种

//以下程序都是在VC++6.0 上调试运行过的程序,没有错误,没有警告。 //单片机是STC89C52RC,但是在所有的51 52单片机上都是通用的。51只是一个学习的基础平台,你懂得。 //程序在关键的位置添加了注释。 //用//11111111111111111代表第一个程序。//2222222222222222222222222代表第二个程序,以此类推 //1111111111111111111111111111111111111111111111111111111111111111111 //1111111111111111111111111111111111111111111111111111111111111111111 /****************************************************************************** * * 实验名: 左右流水灯实验 * 使用的IO : LED使用P2,键盘使用P3.1 * 实验效果: 按下K1键, * 注意: ******************************************************************************* / #include #include #define GPIO_LED P2 sbit K1=P3^1; void Delay10ms( ); //延时10ms /****************************************************************************** * * 函数名: main * 函数功能: 主函数 * 输入: 无 * 输出: 无 ******************************************************************************* / void main(void) { unsigned int i,j; j=0xfe; //1111_1110 while(1) { GPIO_LED=j; if(K1==0) //检测按键K1是否按下 { Delay10ms(); //消除抖动 if(K1==0) {

中断服务程序流程图

第一讲: 第六章I/O接口原理-接口、端口、编址 回顾:微机系统的层次结构,CPU、主机、接口电路及外部设备之间的结构关联,输入/输出的一般概念。 重点和纲要:微机系统主机与外部设备之间的数据传送,包括I/O端口的寻址方式,输入/输出的传送控制方式。 讲授内容: 6. 1 输入/输出数据的传输控制方式 一、输入/输出的一般概念 1.引言 输入/输出是微机系统与外部设备进行信息交换的过程。输入/输出设备称为外部设备,与存储器相比,外部设备有其本身的特点,存储器较为标准,而外部设备则比较复杂,性能的离散性比较大,不同的外部设备,其结构方式不同,有机械式、电动式、电子式等;输入/输出的信号类型也不相同,有数字信号,也有模拟信号;有电信号,也有非电信号;输入/输出信息的速率也相差很大。因此,CPU与外部设备之间的信息交换技术比较复杂。 CPU与外设之间的信息交换,是通过它们之间接口电路中的I/O端口来进行的,由于同一个外部设备与CPU之间所要传送的信息类型不同,方向不同,作用也不一样(例如数据信息、状态信息、控制信息、输入/输出等),所以接口电路中可以设置多个端口来分别处理这些不同的信息。 2.输入/输出端口的寻址方式 微机系统采用总线结构形式,即通过一组总线来连接组成系统的各个功能部件(包括CPU、内存、I/O端口),CPU、内存、I/O端口之间的信息交换都是通过总线来进行的,如何区分不同的内存单元和I/O端口,是输入/输出寻址方式所要讨论解决的问题。

根据微机系统的不同,输入/输出的寻址方式通常有两种形式:(1).存储器对应的输入、输出寻址方式 这种方式又称为存储器统一编址寻址方式或存储器映象寻址方式。 方法:把外设的一个端口与存储器的一个单元作同等对待,每一个I/O端口都有一个确定的端口地址,CPU与I/O端口之间的信息交换,与存储单元的读写过程一样,内存单元与I/O端口的不同,只在于它们具有不同的的地址。优点: ①CPU对I/O端口的读/写操作可以使用全部存储器的读/写操作指令,也可 以用对存储器的不同寻址方式来对I/O端口中的信息,直接进行算术、逻辑运算及循环、移位等操作。 ②内存与外设地址的分配,可以用统一的分布图。 ③不需要专门的输入、输出操作指令。 缺点: ①内存与I/O端口统一编址时,在地址总线根数一定的情况下,使系统中 实际可以直 接寻址的内存单元数减少。 ②一般情况下,系统中I/O端口数远小于内存单元数,所以在用直接寻址方 式来寻址这些端口时,要表示一个端口地址,必须用与表示内存单元地址相同的字节数,使得指令代码较长,相应地读/写执行时间也较长,这对提高系统的运行速度是不利的。 Mortorola公司的M6800CPU等均采用这种寻址I/O端口的方式。 3. CPU与外设之间所传送的信息类型 CPU与I/O端口之间所交换的信息,可以有下列几种类型: ①数据信息:包括数字量、模拟量、开关量等,可以输入、也可以输出 ②状态信息:这是I/O端口送给CPU的有关本端口所对应的外设当前状态 的信息。供CPU进行分析、判断、决策。 ③控制信息:这是CPU送给I/O端口的控制命令,使相应的外部设备完成 特定的操作。 数据信息、状态信息和控制信息是不同类型的信息,它们所起的作用也不一样。但在8086/8088微机系统中,这三种不同类型的信息的输入、输出过程是相同的。为了加以区分,可以使它们具有不同的端口地址,在端口地址相同的情况下,可以规定操作的顺序,或者在输入/输出的数据中设置特征位。

单片机按键的解决方法

单片机按键的解决解决方案 1、单片机上的按键控制一般采用两种控制方法:中断和查询。中断必须借助中断引脚,而 查询按键可用任何IO端口。按键较少时,一个按键占用一个端口,而按键较多时,多采用矩阵形式(如:经常用4个端口作为输出,4个端口作为输入的4X4矩阵来获得16个按键);还可以用单片机的AD转换功能一个引脚接多个按键,根据电阻分压原理判断是哪个按键按下。 2、中断形式 STM32可支持68个中断通道,已经固定分配给相应的外部设备,每个中断通道都具备自己的中断优先级控制字节PRI_n(8位,但是STM32中只使用4位,高4位有效),每4个通道的8位中断优先级控制字构成一个32位的优先级寄存器。68个通道的优先级控制字至少构成17个32位的优先级寄存器. 4bit的中断优先级可以分成2组,从高位看,前面定义的是抢占式优先级,后面是响应优先级。按照这种分组,4bit一共可以分成5组 第0组:所有4bit用于指定响应优先级; 第1组:最高1位用于指定抢占式优先级,后面3位用于指定响应优先级; 第2组:最高2位用于指定抢占式优先级,后面2位用于指定响应优先级; 第3组:最高3位用于指定抢占式优先级,后面1位用于指定响应优先级; 第4组:所有4位用于指定抢占式优先级。 所谓抢占式优先级和响应优先级,他们之间的关系是:具有高抢占式优先级的中断可以在具有低抢占式优先级的中断处理过程中被响应,即中断嵌套。 当两个中断源的抢占式优先级相同时,这两个中断将没有嵌套关系,当一个中断到来后,如果正在处理另一个中断,这个后到来的中断就要等到前一个中断处理完之后才能被处理。如果这两个中断同时到达,则中断控制器根据他们的响应优先级高低来决定先处理哪一个;如果他们的抢占式优先级和响应优先级都相等,则根据他们在中断表中的排位顺序决定先处理哪一个。每一个中断源都必须定义2个优先级。 有几点需要注意的是: 1)如果指定的抢占式优先级别或响应优先级别超出了选定的优先级分组所限定的范围,将可能得到意想不到的结果; 2)抢占式优先级别相同的中断源之间没有嵌套关系; 3)如果某个中断源被指定为某个抢占式优先级别,又没有其它中断源处于同一个抢占式优先级别,则可以为这个中断源指定任意有效的响应优先级别。 GPIO外部中断: STM32中,每一个GPIO都可以触发一个外部中断,但是,GPIO的中断是以组为一个单位的,同组间的外部中断同一时间智能使用一个,如:PA0,PB0,PC0,PD0,PE0,PF0这些为1组,如果我们使用PA0作为外部中断源,那么别的就不能使用了,在此情况下我们使用类似于PB1,PC2这种末端序号不同的外部中断源,每一组使用一个中断标志EXTI x.EXTI0~EXTI4这5个外部中断有着自己单独的中断响应函数。EXTI5~EXTI9共用一个中断响应函数,EXTI10~EXTI15共使用一个中断响应函数。 对于中断的控制,STM32有一个专用的管理机构NVIC.中断的使能,挂起,优先级,活动等等都是由NVIC在管理的。 编写IO口外部中断步骤及其注意事项:

用51单片机中断编写的4x4键盘程序

用51单片机中断编写的4x4键盘程序 应用查询扫描编写键盘程序,由于要给按键去抖动,程序变得比较复杂和冗长(详见2013年9月29日博文《MSP430和 AT89C51单片机4x4键盘C程序》),如果用中断编写,设置中断响应在下降沿时执行中断,则程序编写不用去抖动判断,所以相比较要简单很多!下面用汇编和C语言两种方式编写4X4键盘程序! 一、汇编程序 ORG 0000H LJMP MAIN ORG 0003h Ljmp ZD0

ORG 000Bh LJMP TZD0 ORG 0013h Ljmp ZD1 ORG 001Bh LJMP TZD1 ORG 0040H MAIN: Mov TMOD,#66h MOV TH0,#0ffh MOV TL0,#0ffh MOV TH1,#0ffh MOV TL1,#0ffh SETB EA SETB ET0 SETB TR0 SETB ET1 SETB TR1 SETB IT0 SETB IT1 SETB EX0 SETB EX1 xh: mov P1,#0feh

Lcall Delay mov P1,#0fdh Lcall Delay mov P1,#0fbh Lcall Delay mov P1,#0f7h Lcall Delay SJMP xh ZD0: JNB P1.0,dat1 JNB P1.1,dat2 JNB P1.2,dat3 JNB P1.3,dat4 dat1: mov P2,#06h ;1 sjmp ZD0R dat2: mov P2,#5bh ;2 sjmp ZD0R dat3: mov P2,#4fh ;3 sjmp ZD0R dat4: mov P2,#66h ;4 ZD0R: reti ZD1: JNB P1.0,dat5

单片机按键控制蜂鸣器发声程序

#include typedef unsigned char uint8; typedef unsigned int uint16; uint8 Count,i; sbit Speak =P1A2; //蜂鸣器器控制脚 sbit keyl =卩3人2;〃按键控制引脚 sbit key2 =P3A3; sbit key3 =P3A4; /* 以下数组是音符编码 */ uint8 code SONG[] ={ 0xff,0x39,0x30,0x33,0x30,0xff,0x30,0x30,0x00,}; void Time0_Init()// 定时器 T0 方式 1 ,定时 10ms { TMOD = 0x01; IE = 0x82; TH0 = 0xDC; TL0 = 0x00; void Time0_Int() interrupt 1 { TH0 = 0xDC; TL0 = 0x00; Count++; } void delay (uint8 k)// 按键防抖延时 { uint8 j; while((k--)!=0) { for(j=0;j<125;j++) {;} } } void Delay_xMs(uint8 x)// 发声延时 { uint8 i,j; for(i=0; i

Count = 0; // 中断计数器清 0 Addr = i *3; while(1) { Temp1 = SONG[Addr++]; if (Temp1 == 0xFF) //休止符 { TR0 = 0; Delay_xMs(100); } else if (Temp1 == 0x00) //歌曲结束符 { return; } else { Temp2 = SONG[Addr++]; TR0 = 1; while(1) { Speak = ~Speak; Delay_xMs(Temp1); if(Temp2 == Count) { Count = 0; break; } } } } }void keyscan (void)// 按键切换声音函数{ if(key1==0) { delay(10); if(key1==0) {

按键中断程序

* 1个LED指示灯,对应的GPIO为 : PC0输出为1点亮LED 输出为0关闭LED 另外PC1为外部中断触发:按键按下时为低电平,即可设置为低电平触发 /* GPIO配置函数 */ void GPIO_Configuration(void) { /*定义2个结构体变量 */ GPIO_InitTypeDef GPIO_InitStructure; /*开启GPIOB,GPIOC ,复用口时钟的时钟 */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); /*给GPIOC_Pin_1一个初始值*/ GPIO_ResetBits(GPIOC, GPIO_Pin_0); 配置IO口,初始化IO GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 ; // 将连接LED的GPIO设置为推挽输出 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //设置为2MHZ的速度,响应时间,没要求越小越好GPIO_Mode_IPU为输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; //初始化GPIOC GPIO_Init(GPIOC, &GPIO_InitStructure); /*给KEY_InitStructure.GPIO_Pin KEY_InitStructure.GPIO_Mode KEY_InitStructure.GPIO_Speed付初始值*/

计算机组成原理中断实验报告

北京建筑大学 2015/2016 学年第二学期 课程设计 课程名称计算机组成原理综合实验 设计题目微程序控制器设计与实现 系别电信学院计算机系 班级计141 学生姓名艾尼瓦尔·阿布力米提 学号 完成日期二〇一六年七月八日星期五 成绩 指导教师 (签名) 计算机组成综合实验任务书

指令执行流程图; ?5、利用上端软件,把所编写的微程序控制器内容写入实验台中控制器中。 ?6、利用单拍测试控制器与编程的要求是否一致。如果有错误重新修改后再写入控制器中。 7、编写一段测试程序,测试控制器运行是否正确。 实验目的 1.融合贯通计算机组成原理课程,加深对计算机系统各模块的工作原理及相互联系(寄存器堆、运算器、存储器、控制台、微程序控制器)。 2.理解并掌握微程序控制器的设计方法和实现原理,具备初步的独立设计能力;3.掌握较复杂微程序控制器的设计、调试等基本技能;提高综合运用所学理论知识独立分析和解决问题的能力。 实验电路 1. 微指令格式与微程序控制器电路 2.微程序控制器组成 仍然使用前面的CPU组成与机器指令执行实验的电路图,但本次实验加入中断系统。这是一个简单的中断系统模型,只支持单级中断、单个中断请求,有中断屏蔽功能,旨在说明最基本的原理。

中断屏蔽控制逻辑分别集成在2片GAL22V10(TIMER1 和TIMER2)中。其ABEL语言表达式如下: INTR1 := INTR; INTR1.CLK = CLK1; IE := CLR & INTS # CLR & IE & !INTC; IE.CLK= MF; INTQ = IE & INTR1; 其中,CLK1是TIMER1产生的时钟信号,它主要是作为W1—W4的时钟脉冲,这里作为INTR1的时钟信号,INTE的时钟信号是晶振产生的MF。INTS微指令位是INTS机器指令执行过程中从控制存储器读出的,INTC微指令位是INTC机器指令执行过程中从控制存储器读出的。INTE是中断允许标志,控制台有一个指示灯IE显示其状态,它为1时,允许中断,为0 时,禁止中断。当INTS = 1时,在下一个MF的上升沿IE变1,当INTC = 1时,在下一个MF的上升沿IE变0。CLR信号实际是控制台产生的复位信号CLR#。当CLR = 0时,在下一个CLK1的上升沿IE变0。当 CLR=1 且INTS = 0 且 INTC = 0时,IE保持不变。 INTR是外部中断源,接控制台按钮INTR。按一次INTR按钮,产生一个中断请求正脉冲INTR。INTR1是INTR经时钟CLK1同步后产生的,目的是保持INTR1与实验台的时序信号同步。INTR脉冲信号的上升沿代表有外部中断请求到达中断控制器。INTQ是中断屏蔽控制逻辑传递给CPU的中断信号,接到微程序控制器上。当收到INTR脉冲信号时,若中断允许位INTE=0,则中断被屏蔽,INTQ仍然为0;若INTE =1,则INTQ =1。

按键控制单片机PWM输出设计

学号1322010110 天津城建大学 单片机原理及应用A课程 设计说明书 按键控制单片机PWM输出设计起止日期:2016年05月30日至2016年6月10日 学生姓名 班级 成绩 指导教师(签字) 控制与机械工程学院 2016年6月10日

目录 第一章系统方案设计 (1) 1.1 PWM (1) 1.2 STC12C5A60S2简介 (1) 1.3 仿真工具介绍 (2) 1.3.1 Protues简介 (2) 1.3.2 Keil uVision3简介 (4) 第二章硬件电路设计 (5) 2.1 复位电路 (5) 2.2 时钟电路 (5) 2.3 按键中断 (5) 2.4 显示电路 (6) 第三章程序设计流程图 (7) 第四章系统仿真 (8) 4.1 仿真图 (8) 4.2 程序 (8) 4.3 PCB............................................................................................................... 错误!未定义书签。参考资料 .................................................................................................................... 错误!未定义书签。

第一章系统方案设计 1.1 PWM PWM的全称是Pulse Width Modulation(脉冲宽度调制),它是通过改变输出方波的占空比来改变等效的输出电压。 1.2 STC12C5A60S2简介 STC12C5A60S2是STC生产的单时钟/机器周期(1T)的单片机,是高速、低功耗、超强抗干扰的新一代8051单片机,指令代码完全兼容传统8051,但速度快8-12倍。内部集成MAX810专用复位电路,2路PWM,8路高速10位A/D转换,针对电机控制,强干扰场合。 1)管脚说明: 1、P0.0~P0.7 P0:P0口既可以作为输入/输出口,也可以作为地址/数据复用总线使用。当P0口 作为输入/输出口时,P0是一个8位准双向口,内部有弱上拉电阻,无需外接上拉电阻。当P0作为地址/数据复用总线使用时,是低8位地址线A0~A7,数据线D0~D7 2、P1.0/ADC0/CLKOUT2 标准IO口、ADC输入通道0、独立波特率发生器的时钟输出 3、P1.1/ADC1 4、P1.2/ADC2/ECI/RxD2 标准IO口、ADC输入通道2、PCA计数器的外部脉冲输入脚,第二串口数据接收端 5、P1.3/ADC3/CCP0/TxD2 外部信号捕获,高速脉冲输出及脉宽调制输出、第二串口数据发送端 6、P1.4/ADC4/CCP1/SS非 SPI同步串行接口的从机选择信号 7、P1.5/ADC5/MOSI SPI同步串行接口的主出从入(主器件的输入和从器件的输出) 8、P1.6/ADC7/SCLK SPI同步串行接口的主入从出 9、P2.0~P2.7 10、P2口内部有上拉电阻,既可作为输入输出口(8位准双向口),也可作为高8位地址总线使用。 11、P3.0/RxD 标准IO口、串口1数据接收端 12、P3.1/INT0非 外部中断0,下降沿中断或低电平中断 13、P3.3/INT1 14、P3.4/T0/INT非/CLKOUT0 定时器计数器0外部输入、定时器0下降沿中断、定时计数器0的时钟输出 2)A/D转换器的结构: STC12C5A60AD/S2系列带A/D转换的单片机的A/D转换口在P1口,有8路10位高速A/D转换器,速度可达到250KHz(25万次/秒)。8路电压输入型A/D,可做温度检测、电池电压检测、按键扫描、频谱检测等。上电复位后P1口为弱上拉型IO口,用户可以通过软件设置将8路中的任何一路设置为A/D 转换,不须作为A/D使用的口可继续作为IO口使用。 单片机ADC由多路开关、比较器、逐次比较寄存器、10位DAC、转换结果寄存器以及ADC_CONTER

实验二 按键中断实验

实验二按键中断实验 一、实验目的 了解中断的含义 二、实验内容 板子加电后,按动板子上K1-K3按键,可控制对应的LED1-LED3的亮灭,该实验学习了外部中断(EXTI)程序的编制及控制流程。 三、实验仪器、设备 计算机、开发板、keil软件 四、硬件设计 在开发板上V6、V7、V8分别与MCU的PB5、PD6、PD3相连,如下图所示 键盘部分如下图所示: 例程所用到的列扫描线:PC5,PC2,PC3。 例程所用到的行扫描线(EXTI中断线):PE2。

五、实验要求和步骤 开发板上有3个蓝色状态指示灯V6(LED1),V7(LED2),V8(LED3),通过对应的按键K1-K3,控制LED的亮灭,将PE2引脚配置为外部中断,当其上出现下降沿时产生一个中断,根据扫描PC5,PC2,PC3来判别是哪个按键按下。 首先我们了解一下什么是外部中断/事件控制器(EXTI)。 外部中断/事件控制器由19个产生事件/中断要求的边沿检测器组成。每个输入线可以独立地配置输入类型(脉冲或挂起)和对应的触发事件(上升沿或下降沿或者双边沿都触发)。每个输入线都可以被独立的屏蔽。挂起寄存器保持着状态线的中断要求。 EXTI控制器的主要特性如下: 每个中断/事件都有独立的触发和屏蔽 每个中断线都有专用的状态位 支持多达19 个中断/事件请求 检测脉冲宽度低于APB2 时种宽度的外部信号 如要产生中断,中断线必须事先配置好并被激活。这是根据需要的边沿检测通过设置2个触发寄存器,和在中断屏蔽寄存器的相应位写“1”到来允许中断请求。当需要的边沿在外部中断线上发生时,将产生一个中断请求,对应的挂起位也随之被置1。通过写“1”到挂起寄存器,可以清除该中断请求。为产生事件触发,事件连接线必须事先配置好并被激活。这是根据需要的边沿检测通过设置2个触发寄存器,和在事件屏蔽寄存器的相应位写“1”到来允许事件请求。当需要的边沿在事件连线上发生时,将产生一个事件请求脉冲,对应的挂起位不被置1。通过在软件中断/事件寄存器写“1”,一个中断/事件请求也可以通过软件来产生。 本次实验需要组件的工程文件文档如下: USER--stm32f10x_it.c 为中断服务程序主程序,我们对主程序进行一次详细的注释。 //______________________主程序____________________________________________________________________ int main(void) { unsigned char a=0,b=0,c=0; /*完成对系统时钟的设置,例程中通过系统时钟设置函数,外接晶振采用8Mhz,经过片内频率合成,9倍频,设置为72MHz的时钟。*/ RCC_Configuration(); /*嵌套向量中断控制器

单片机外部中断详解及程序

单片机外部中断详解及程序 单片机在自主运行的时候一般是在执行一个死循环程序,在没有外界干扰(输入信号)的时候它基本处于一个封闭状态。比如一个电子时钟,它会按时、分、秒的规律来自主运行并通过输出设备(如液晶显示屏)把时间显示出来。在不需要对它进行调校的时候它不需要外部干预,自主封闭地运行。如果这个时钟足够准确而又不掉电的话,它可能一直处于这种封闭运行状态。但事情往往不会如此简单,在时钟刚刚上电、或时钟需要重新校准、甚至时钟被带到了不同的时区的时候,就需要重新调校时钟,这时就要求时钟就必须具有调校功能。因此单片机系统往往又不会是一个单纯的封闭系统,它有些时候恰恰需要外部的干预,这也就是外部中断产生的根本原由。 实际上在第二个示例演示中,就已经举过有按键输入的例子了,只不过当时使用的方法并不是外部中断,而是用程序查询的方式。下面就用外部中断的方法来改写一下第二个示例中,通过按键来更改闪烁速度的例子(第二个例子)。电路结构和接线不变,仅把程序改为下面的形式。 #include ;

unsigned int t=500; //定义一个全局变量t,并设定初始值为500次 //===========延时子函数,在8MHz晶振时约 1ms============= void delay_ms(unsigned int k) { unsigned int i,j; for(i=0;i

用计数器中断实现100以内的按键计数[1]

3.33 用计数器中断实现100以内的按键计数 一. 单片机系统功能简介: 本例利用计数器中断实现按键计数,这与此前的按键计数程序看起来比较相似,但是用方法完全不同。 本例用T0计数器中断实现按键计数,由于计数寄存器初值为1,因此P3.4引脚的每次负跳变都会触发T0中断,实现计数值累加。 二.单片机系统硬件电路设计: 2.1 proteus原理图: 2.2 原件清单:

三.软件设计: 3.1 主程序流程图: 3.2 程序清单: #include #define uchar unsigned char #define uint unsigned int uchar code DSY_CODE[]={0X3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x00 }; uchar Count=100; void main() { P0=0x00; P2=0x00; TMOD=0X06; TH0=TL0=256-1; ET0=1; EX0=1; EA=1; IP=0X02; IT0=1; TR0=1; while (1)

{ P0=DSY_CODE[Count/10]; P2=DSY_CODE[Count%10]; } } void Clear_Counter()interrupt 0 { Count=0; } void Key_Counter() interrupt 1 { Count=(Count-1)%100; } 四.系统调试 4.1 在PROTEUS7.5仿真步骤 1将程序在KEIL中编译,直到达到要求的功能为止; 2在PROTEUS中绘制硬件图(在PROTEUS仿真时可以不添加最小系统电路;实际电路中需要); 3将KEIL C中编译好的HEX文档加载到PROTEUS中; 4按下K1开始计数,按下K2可以清零。

中断法键盘扫描c程序

中断法键盘扫描c程序 /* 程序效果:按下按键,蜂鸣器响,数码管有相应的键值显示,按下E键继电器关,按下C键继电器开。 这与上一程序的功能相同,比上一程序简洁 但理解相对困难些。 运行平台:51hei单片机学习板 */ #include; //头文件 #include; #define uchar unsigned char //宏定义 #define uint unsigned int sbit jdq=P3^5; //位声明,驱动继电器管脚 sbit fmq=P3^4; //位声明,驱动蜂鸣器管脚 code uchar table[]={0x3f,0x06,0x5b,//数码管显示的数值 0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f, 0x77,0x7c,0x39,0x5e,0x79,0x71}; code uchar key_tab[17]={ //此数组为键盘编码 0xed,0x7e,0x7d,0x7b,

// 0,1,2,3, 0xbe,0xbd,0xbb,0xde, // 4,5,6,7, 0xdd,0xdb,0x77,0xb7, // 8,9,a, b, 0xee,0xeb,0xd7,0xe7,0xff}; // c,d,e,f, uchar l_key=0x00; //定义变量,存放键值 uchar l_keyold=0xff; //作为按键放开否的凭证 void readkey(); //扫描键盘,获取键值 void display(uchar *lp,uchar lc); //显示子函数void delay(); //延时子函数 void main() //主函数 { EA=1; //打开总中断 EX0=1; //打开外部中断 P0=0xf0; //键值高4位为高电平,低4位为低电平 while(1) { display(&l_key,1); //调用显示子函数 if(l_key==14) //是否按下E键,是则关闭继电器 jdq=1;

第5章 中断服务程序设计

第5章中断服务程序设计 中断服务程序(ISR)是嵌入式应用系统获取各种事件的基本手段,而“事件”是实时性问题的讨论基础和时间计算的起点。ISR的设计质量直接影响到系统的实时性指标和操作系统的工作效率。 只要没有关中断,中断服务程序可以中断任何任务的运行,可将中断服务程序可成比最高优先级(0级)还高的“任务”。 5.1中断优先级安排原则 中断源是系统及时获取异步事件的主要手段,其优先级安排原则如下: ●紧迫性:触发中断的事件允许耽误的时间越短,设定的中断优先级就越高。 ●关键性:触发中断的事件越关键(重要),设定的中断优先级就越高。 ●频繁性:触发中断的事件发生越频繁,设定的中断优先级就越高。 ●快捷性:ISR处理越快捷(耗时短),设定的中断优先级就越高。 中断服务程的功能应尽量简单,只要将获取的异步事件通信给关联任务,后续处理由关联任务完成。 5.2不受操作系统管理的中断服务程序 正常情况下,ISR应受操作系统的管理,因很多任务是靠ISR触发的。 但在两种情况下ISR不受操作系统管理:①没有必要;②操作系统没有对该ISR进行管理。 实时操作系统uC/OS-Ⅱ移植到ARM7体系的CPU上时,没有对FIQ进行处理,即FIQ 是不受操作系统管理的。 选用FIQ来响应实时性要求最高的高速采样操作是一个有效措施,保护现场的工作量很小(FIQ专有的8个寄存器不需要保护)。 在工程模板的系统启动文件Startup.s中,已经把汇编代码部分处理好,用户只需要用C 语言编写快速中断服务函数FIQ_Exception()即可,不需考虑保护现场和恢复现场的问题。 程序:Startup.s中队FIQ的处理 Reset ;异常向量表 LDR PC,ResetAddr ;跳转到复位入口地址 LDR PC,UndefinedAddr LDR PC,SWI_Addr ;跳转到软件中断入口地址 LDR PC,PrefetchAddr LDR PC,DataAbortAddr DCD 0xb9205f80 LDR PC,[PC,#-0xff0] ;跳转到向量中断入口地址(向量中断控制器) LDR PC,FIQ_Addr ;跳转到快速中断入口地址 ResetAddr DCD ResetInit UndefinedAddr DCD Undefined SWI_Addr DCD SoftwareInterrupt PrefetchAddr DCD PrefetchAbort Nouse DCD 0

定时中断T0服务程序参考框图

软件程序: ORG 0000H LJMP MAIN ORG 000BH LJMP PIT0 ORG 001BH LJMP PIT1 ORG 0100H MAIN: MOV SP,#FH ;设堆栈指针 MOV SCON,#00H ;设置串行口为方式0 MOV TMOD,#11H ;T0和T1初始化为方式1 MOV TH0, #3CH ;置时间常数,T0和T1定时100ms MOV TL0, #OB0H MOV TH1, #3CH MOV TL1, #0B0H MOV 50H, #96H ;T0中断次数计数单元 MOV 51H,#14H ;T1中断次数计数单元 MOV R1, #00H MOV R2, #00H MOV R0, #40H ;显示缓冲单元起始地址 DISP0:MOV @R0, #00H ;显示缓冲单元清零 INC R0 CJNE R0, #4CH,DISP0 MOV 44H,#01H ;设置通道号的显示缓冲单元 MOV 48H,#02H MOV R7,#40H ;置当前通道显示缓冲单元首址 MOV 53H,#40H SETB ETO ;开中断 SETB ET1 SETB EA SETB TR0 ;启动定时器 SETB TR1 LP: MOV R7, 53H ;调显示子程序 ACALL DISP AJMP JP 定时器TO中断服务程序 PIT0: MOV TH0, #3CH ;重置时间常数 MOV TL0, #OBOH DJNZ 50H,#96H PUSH ACC PUSH 03H ACALL WDXJ ;调温度巡检子程序 POP 03H POP ACC

DH0: RET1 定时器T1中断服务程序 PIT1: MOV TH1,#3CH ;重置时间常数 MOV TL0, #OBOH DJNZ 51H,DH1 ;计数20次即定时2S MOV 51H,#14H INC R2 CJNE R2,#03H,CNL0 ;根据R2中的内容确定显示缓冲区首址 MOV R2,#00H CNL0: CJNE R2,#00H,CNL1 MOV 53H,#40H SJMP DH1 CNL1: CJNE R2,#01H,CNL2 MOV 53H,#40H SJMP DH1 CNL2: MOV 53H,#48H DH1: RETI 显示子程序 DISP: CLR P3.7 ;输出锁存 MOV R3,#01H ;置显示字位码 MOV DPTR,#TAB DISP1:MOV A,R3 MOV SBUF,A ;字位码送串行口 JNB T1,$ ;等待串行转送结束 CLR T1 ;清串行中断标志 MOV A,R7 MOV R0,A MOV A,@RO ;取代显示的数据 MOVC A,@R0 ;查表求字段码 MOV SBUF, A ;字段码送串行口, JNB T1,$ ;等待串行中断标志 SETB P3.7 ;允许输出显示 ACALL DEL ;调延时子程序 MOV A,R3 JB ACC.3,DISP2 ;4位显示完否 RL A MOV R3,A INC R7 CLR P3.7 ;输出锁存 AJNP DISP1 DISP2:RET TAB : DB 3FH,06H,5BH,4FH,66H DB 6DH,7DH,07H,7FH,6FH DEL: PUSH 07H ;延时子程序

51单片机中断控制LED

单片机作业 题目要求: 设计这样一个系统:在一个51单片机最小系统板上,P1口低四位接四个四角按键,高四位接四个LED灯。按键中断作为总中断,当接中断的按键按下后,所有灯均可按照对应的按键进行点亮。当没有中断按下时,无论怎么按接在P1口低四位的按键,均不能是按键点亮。 实现步骤: 第一:电路搭建: 电路搭建说明: 1.采用AT89C52单片机,DIP40封装。 2.选用12M,并使晶振尽可能接近单片机,采用22pf的电容接在晶振两边并接地,使晶振更容易起振。 3.标号为D18的LED是中断触发指示灯,一旦中断触发,D18会一直亮着。没有中断触发时会一直灭着。 4.key1,key2,key3,key4分别控制D1,D2,D3,D4,D 5. 5.D5为复位指示灯,当复位按键按下时,D5亮。反之灭。 第二:程序实现: 本程序十分简单,秉着杜绝抄袭,自助设计的理念,本程序完全有本人设计完成。没有采用老师讲解的例程。程序的注释已经将程序称述的很明白,现做简要说明: 本人将按键查询部分都放在中断处理函数中处理。当中断触发按键按下时,D18亮,程序进入中断函数,开始不断查询按键值,并点亮相应led.。这样的程序 对CPU的占有率较高,但由于这样写代码更加简单明了,有由于题目对cpu占有率的并没有明确要求,本着开发周期尽可能短的原则,本程序选择了简单方案。

现将代码复制如下: 将KEIL与PROTEUS联调,调试结果如下: 1.启动程序: ,可以看到图中三角符号变绿。此时:

此时,图中所有led灭,无现象。 1.此时按下任意按键,比如key1,key2两个(为了方便截图,直接将开关用导线短路): 现象如下: 可以看到,并没有认可指示灯亮。 2.按复位按键观察是否正常(为了方便截图,直接将开关用导线短路):

uCOSii中断处理过程详解

一. UCOSII的中断过程简介 系统接收到中断请求后,如果CPU处于开中断状态,系统就会中止正在运行的当前任务,而按中断向量的指向去运行中断服务子程序,当中断服务子程序运行完成后,系统会根据具体情况返回到被中止的任务继续运行,或转向另一个中断优先级别更高的就绪任务。 由于UCOS II是可剥夺型的内核,所以中断服务程序结束后,系统会根据实际情况进行一次任务调度,如果有优先级更高的任务,就去执行优先级更高的任务,而不一定要返回被中断了的任务。 二.UCOSII的中断过程的示意图 三.具体中断过程 1.中断到来,如果被CPU识别,CPU将查中断向量表,根据中断向量表,获得中断服务子程序的入口地址。 2.将CPU寄存器的内容压入当前任务的任务堆栈中(依处理器的而定,也可能压入被压入被中断了的任务堆栈中。

3.通知操作系统将进入中断服务子程序。即:调用OSIntEnter()或OSIntNesting直接 加1。 4.If(OSIntNesting==1){OSTCBCur->OSTCBStrPtr=SP;} //如果是第一层中断,则将堆栈指针保存到被中断任务的任务控制块中 5.清中断源,否则在开中断后,这类中断将反复的打入,导致系统崩贵 6.执行用户ISR 7.中断服务完成后,调用OSIntExit().如果没有高优先级的任务被中断服务子程序激活而进入就绪态,那么就执行被中断了的任务,且只占用很短的时间. 8.恢复所有CPU寄存器的值. 9.执行中断返回指令.

四.相关代码 与编译器相关的数据类型: typedef unsigned char BOOLEAN; typedef unsigned char INT8U; typedef unsigned int OS_STK; //堆栈入口宽度为16 位(一) void OSIntEnter (void)的理解 uCOS_II.H中定义:

相关主题
文本预览
相关文档 最新文档