当前位置:文档之家› 第七章 导行电磁波 北航2系电磁场课件

第七章 导行电磁波 北航2系电磁场课件

第七章 导行电磁波 北航2系电磁场课件
第七章 导行电磁波 北航2系电磁场课件

第七章 导行电磁波

§7.1导行电磁波及其导行系统

1 导行电磁波就是在导行系统(统称传输线,有时指波导)中传输的电磁波,简称导波。

2 在一个实际射频、微波系统里,传输线是最基本的构成,它不仅起连接信号作用,而且传输线本身也可以成为某些元件,如电容、电感、变压器、谐振电路、滤波器、天线等等。

3 传输线的主要指标:1)损耗。损耗来源于导体、介质、辐射、模式转换;2)色散和单模工作频带宽度。取决于传输线的结构;3)制造成本。取决于是否可以集成。

4 几种典型微波传输线,结构演化、特点。1)双线;2)同轴线;3)波导;4)微带线;5)介质波导与光纤;6)空间。

§7.2 导波的一般分析方法

1导波的一般分析方法:先求出场纵向分量,然后由场纵向分量导出其余的场横向分量。 2 导波场横向分量与场纵向分量关系:

Step1:设导波的传播方向(纵向)为z 方向,传播无衰减,传输线横截面保持不变,则有

z

jk z jk z z

e y x H H e y x E E --==),(),(00 (1)

式中z k 是导波沿传播方向(z 方向)的传播常数,有

2

22222

2

z T z y x k k k k k k

+=++==μεω(2)

把(1)式代入直角坐标系中的波动方程,简化后可得

2222

=+?=+?H k H E k E T T T T

(3) Step2:将(1)式代入Maxwell 方程组的两个旋度方程,直角坐标系中展开后可得场横向分量与场纵向分量关系:

???????

???????????? ????+

??-=????

????-

??=???

? ????+

??-=???? ????+

??-=y H x

E k k k j H x H y

E k k k j H x H k y E k k j E y H k x E k k j E z

z z T z y z

z z T z x z

z z T z y z

z z T z x ωεωεωμωμ2222(4)

在圆柱坐标系里也能导出类似的关系式。

3 由场纵向分量导出场横向分量方法的好处:1)简化计算:六个分量的求解简化为两个分量的求解。场纵向分量相当于位函数。2)便于波型分类

4 导波波型的分类:

1) TE 波(横电波,或H 波):0=z

E ,电磁场只有五个分量 2) TM 波(横磁波,或E 波):0=z

H 电磁场只有五个分量

3) TEM 波:0=z

E 和0=z

H ,电磁场只有四个分量

欲横向场存在,由(4)式可知,必须0=T k ,这样首先方程(3)变为

22

=?=?H E T T

这样TEM 波的电磁场在横截面上的分布满足拉普拉斯方程,因此TEM 波的电磁场在横截面上的特性与静电场、静磁场一样。其次(2)式变为

2

2

2

z k k

==μεω

即TEM 波传播常数与相应自由空间的均匀平面波的传播常数一样。

由上述两点可得TEM 波存在条件:首先要有两个以上导体,其次传输线中的媒质是均匀媒质。

4)混合模:电磁场六个分量都有。

5 波阻抗-导波电磁场横向分量之间的关系

在均匀平面波中,横向电场与横向磁场幅度之比值称为波阻抗,它仅仅与媒质参数有关。在导波情况下,波阻抗不仅与波导填充媒质参数有关,还与导波频率有关,而且不同的波型,波阻抗也不同。 1)TE 波

令方程(4)中0=z

E ,可得 H

z

z

y z y

x H Z k H

E k H

E Z -=-

==

=ωμ

ωμ

H Z 具有阻抗的量纲,

z

y H

E 为负值是因为导波传播方向是+z 方向,不是-z 方向。

2) TM 波

同理

H

z

z

y z

y

x E Z k H

E k H

E Z -=-

===ωε

ωε

3) TEM 波

在Maxwell 旋度方程中直接把0,0==z

z

H E 代入,展开后可得

TEM

x

y z

z

y

x TEM Z H

E k

k k H

E Z -==

=

=

=

= ε

μωε

ωε

ωμ

4) 混合模:需要分解。

§7.3 矩形波导中的导波

1 矩形波导横截面为封闭的矩形金属管,因此不能存在TEM 波,它的尺度一般与工作波长相当。

2 TM 波

3 TE 波

4 矩形波导中导波的模式: 由导波场强表示式可知,波导中的导波在横截面上的分布呈驻波状态,n m ,值分别代表沿x 方向,y 方向的驻波个数。导波表示式中n m ,值的不同,导波的分布也不同,每种场分布(n m ,值)代表一个电磁场导波的模式。实际波导里导波有什么模式存在,不仅取决于波导本身,也取决于波导激励或耦合的情况。例如波导-同轴转换。

5 矩形波导的传播特性1)截止特性,截止波长与截止频率:: 矩形波导中的电磁波沿传播方向的分布规律是)

(z k t j z e

-ω,因此导波的传播特性决定于传播

常数z k ,而z k 又决定于波导的横向尺寸和传播模式。

2

222

2

2

??

?

??-??? ??-=-=b n a m k k k T

z ππμεω

如果频率高,有22

T k k >,02

>z k ,z k 为实数,导波在波导中传播无衰减;反之如果频率

低,有2

2

T k k

<,02

分布规律是t

j z

z k t j e

e

e z ωαω--=)

(,导波沿波导衰减,而且不再是波了,这种现象称为截止。

两者情况之间的临界状态T k k =下的波长称为截止波长c λ,频率称为截止频率c f ,波数称为截止波数)(c T c k k k =。

截止波数2

2

??

?

??+??? ??=

b n a m k

c ππ

它只与矩形波导尺寸和模式参数有关,与介质参数无关。 截止波长:T

c

c k k ππλ22==

对于矩形波导:2

2

2

2

22??

?

??+??? ??=

??

? ??+??? ??=

b n a m b n a m

c πππ

λ

它只与矩形波导尺寸和模式参数有关,与介质参数无关。这个结论也适合其它结构的金属波

导。

截止频率:με

πλ2c c

c k v f =

=

对于矩形波导:2

2212??

? ??+??? ??=

=

b n a m k f

c c μεμε

π

它不但与矩形波导尺寸和模式参数有关,而且与介质参数也有关。

2)这些参数的意义:截止波长、截止频率和截止波数都与电磁波的工作频率f 无关,它们反映了波导本身的特性。一个具体电磁波在波导中的传播特性,取决于改电磁波的工作频率、波导的截止频率等波导结构参数。可分为以下几种情况:

A :工作频率大于截止频率:c f f >,这时满足这些条件的电磁波模式可以在波导中传播。

B :工作频率小于截止频率:c f f <,满足这些条件的电磁波模式不能在波导中传播。

C :工作频率等于截止频率:c f f =。 3)再论模式,模式兼并:mn

TM

与mn

TE

模截止波长、相速等传播特性完全一样,但两者的

场分布不一样。这种现象称为模式简并。一般要避免这种现象发生,方法是结构上抑制。 4)波导工作方式,主模与高次模 6 :

例子1:波导的单模工作范围。 例子2:同轴-波导转换

7 矩形波导中导波的相速、波导波长与色散特性

2

2

2

2

22

2111???

?

??-=??

?

?

??-=??

?

?

??-=-=

-=c c c c

T z k f f k k k k k k k k k λλ 等相面方程:C z k t z =-ω 相速度:2

2

2

11/1/)(???

?

??-=

??

?

?

??-=

??

?

?

??-=

=

=

c c c z

mn p v f f k

k k k

k dt

dz v λλωωω

首先波导中的相速大于光速,是快波。其次,这种相速与频率有关的现象称为色散现象,在波导中的这种色散不是由于波导的填充媒质的色散引起,而是由波导的结构引起的。称为波

导色散。

导波波长(相波长):

2

2

2

11122)(???

?

??-=

??

?

?

??-=

??

?

?

??-=

=c c c z

mn g k k k k k k λλλ

λ

π

πλ

8 波阻抗

§7.4 矩形波导中的场分布(场结构)

1波导中的场分布(场结构):通常指波导中的电力线、磁力线和电流线分布,即关于场的形象描述(场的可视化)。方法是由波导中的电磁场表示式出发,画出电力线、磁力线和电流线。

2掌握波导中的场分布的用途:1)理解,2)分析耦合、激发、辐射。3)模式抑制。 3 波导中10H 模式的电场分布即电力线:

0)sin(00

)sin()cos(

00

=-=====---x

z

jk x y z

y

z

jk x z x

z

jk z E e x a H k j E E H

e x a

H k k j H e

x a

H H z z

z πωμππ

4波导中10H 模式的磁场分布即磁力线: 5 波导中10H 模式的电流分布即电流线:

波导内部只有位移电流:E j t

D J d

ωε=??= 故只要把电力线图沿传播方向z 向前移动4/g λ即位移电流分布图。

内壁上的表面电流:H n J l

?=

6 画场分布注意:1)mn E H )/(中的m 代表波导x 方向该模式驻波数(也就是半波长数),n 代表波导方向该模式驻波数(也就是半波长数)。2)mn E H )/(模式的场分布可以由

11)/(E H 的场分布组合出。3)同时注意场分量与xy 坐标的函数关系以及各个场分量之间

的相位关系。4)电力线、磁力线关系再描述:2/π相位与不再环绕,实际同步;在波导不

一定要成环。

7 波导中场分布的应用例子:测量线,裂缝天线,波导-同轴转换,模式抑制。

§7.5 7.6 7.9圆波导及其他波导结构

1 圆波导

2 脊波导

3 减高波导

4 过模波导

5 同轴线

6 介质波导

7 带状线

8 微带

§7.7 波导中的传输功率与导波的衰减

1 波导最大传输功率:不考虑波导的介质损耗和导体损耗,并设行波状态,则波导各个横截面上的传输功率一样,为波导横截面上轴向平均坡印亭矢量的面积分。

ds H Z ds E Z

ds S s d S P s

T s

T avz s

s

avz ?

?

??

=

=

=?=

2

2

2

21

对矩形波导中的10H 模,设)sin(

)sin(

x a

E x a

H

k E m x

y ππωμ==

代入上式,有

22

214

10

m TE

E a ab P ??

? ??-=

λμ

ε

如果波导填充媒质的击穿强度是b E ,则行波状态下波导传输10H 模的最大极限功率是

22

214

b b E a ab P ??

? ??-=

λμ

ε

2影响波导最大传输功率的因素:

1) 由上式可见波导最大传输功率正比于波导横截面面积,而且越接近截止状态,最大传输

功率就越小。2)潮湿:潮湿会减小b E ,从而减小最大传输功率。3)驻波:驻波越大,最大传输功率越小。4)波导内部表面平整度:越粗糙,最大传输功率越小。

综合上述因素,一般实际波导最大传输功率只有理论值的30%~50%。在厘米波段,大约有几百千瓦。 3 导波的衰减:

导波的衰减来源于波导内壁的导体损耗和内部介质的介质损耗。由于波导中的电磁波幅度沿传播方向按指数律z

e

α-衰减,因此传输功率将按z

e

α

2

-方式衰减,即

z

e

P P α20-=

式中α为衰减常数。严格计算衰减常数很困难,一般采用近似微扰方法。如果单位长度的损耗功率为l p ,则

P e

P dz

dP p z

l ααα2220==-

=-,故

P

p l 2=α=(单位长度的损耗功率)/(2×传输功率)

近似微扰方法思想是:首先在假定波导是理想导体,介质是理想介质情况下计算波导中的电磁场分布,然后以这个场分布用前面式子计算传输功率;其次用这个场分布计算波导内壁的表面电流,然后用实际波导的电导率及表面电阻σ

ωμ2=

s R 计算波导的导体损耗功率,用

这个场分布和实际介质的介电常数的虚部计算波导的介质损耗。这个方法的误差来源于实际波导与理想导体介质的波导两者之间的场分布不同。如果波导用铜等良导体制成,这个近似方法的误差很小。

矩形波导10H 模的衰减(不考虑介质损耗):

]221[2122

2

2

2

??

? ??+?

?

?

??-==

?

?a a b a b

R ds

H dl

H Z

R s

s

T

l

t s λλε

μα

4有多个模式存在情况下衰减常数: 如果这些模式相互正交,也就是这些模式之间没有能量交换,各个模式的衰减常数可单独计算;如果模式不正交,相互之间有能量耦合,就不能单独直接计算,对每个模式而言,除了上述的导体、介质损耗外,还有模式转换损耗。

5 影响衰减的因素:1)波导材料的电导率;2)工作频率;3)波导内壁的光滑度;4)波导的尺寸;5)填充媒质的损耗;6)工作模式。

§7.8 导波的驻波及谐振腔

1 什么是谐振和谐振腔:

2 微波谐振腔的物理结构:

为了从低频集中参数振荡回路过渡到微波谐振腔,必须1)减少电容、电感值,因为谐振频率LC

f 10=

,方法参考教科书图7.8.1(a),(b);2)减少损耗,特别是辐射损耗,方法参考

教科书图7.8.1(c),(d)。

总之微波谐振腔的物理结构是把电磁波能量集中在一个局部范围的系统。 3微波谐振腔与外界耦合的方式:

耦合也就是谐振腔与外界有能量交换,其目的是激励(耦合)出所希望的电磁场模式,方法是耦合(激励)装置能在谐振腔中建立与所希望电磁场模式有最大一致性的电场、磁场、或电流分布。其常用方式有1)环耦合;2)探针耦合;3)孔耦合。 参考教科书图7.8.2 4 谐振腔的主要参数:

1) 谐振频率或谐振波长:表示有那些频率的电磁波有可能在谐振腔中存在并且谐振。它不

是或者不一定是电磁波的工作频率。前者与谐振腔的形状、大小和其中的媒质常数有关,

而且每个具体的谐振腔的谐振频率(及谐振模式)有无数个。

谐振频率的计算在电磁学领域属本征值问题,即没有激励源。一般需要用数值方法求解,也可以借助EDA 软件。有些规则形状的谐振腔可以有解析方法求解,如矩形谐振腔。 2) 谐振腔的品质因数Q 值:表示谐振腔中电磁波谐振可以持续的次数,它反映了谐振腔的

频率选择性。其定义:

T

W W Q π

2=

式中W 为谐振腔内的平均电磁储能;T W 为谐振腔一个周期时间内所损耗的能量,它包括谐振腔本身的能量损耗0W 及在一个周期内输出的能量E W :

只考虑谐振腔本身的能量损耗的品质因数0Q 称为固有品质因数或无载品质因数:

02W W Q π

=

E

E W W Q π

2=

则有:

E

Q Q Q

1110

+

=

因此谐振腔接有负载时,谐振腔品质因数会下降。但如果外界有能量耦合进谐振腔(谐振腔接有源)时,E W 为负,E Q 也负,谐振腔品质因数会增加。

只考虑导体损耗的谐振腔品质因数近似式(思想类似于导波衰减常数的计算):

??

=

=s

t V

s

ds

H

dv

H R W W Q 20

2

000

02μωπ

故谐振腔品质因数取决于:1)谐振腔内壁的电导率和平滑度;2)谐振腔的形状和大小,一般正比于谐振腔的线度,形状球形为好;3)谐振模式和谐振频率。 5 矩形谐振腔:

矩形谐振腔可以看成矩形波导的两端各放置一个短路板,其尺寸为d b a ??。电磁波在这个封闭的谐振腔里来回反射形成驻波。下面以H 型波为例,说明矩形谐振腔的谐振频率、谐振模式和场分布。

谐振腔里既有反射波,又有入射波,故总场是两者的叠加。(教科书242页7.8.31、7.8.32式反射波磁场前面丢掉了负号)

0)sin()cos(][)cos()sin(][)

cos()sin()]([)sin()cos(

][)cos(

)cos(][2

02

002

002

000

0=??

? ??-=??

? ??-=??

?

??-+=??

?

??+=+=--+--+--+--+--+z

T z z

jk z jk y

T z z

jk z jk x

T

z

jk z jk y T

z

jk z jk x z

jk z jk z

E y b n x a m b n k k j

e H e H H

y b n x a m a m k k j

e H e H H y b

n x a

m a m k j

e H e H E y b n x a

m b n k j

e H e H E y b n x a

m e H e H H

z z z z z z z z z z ππππ

πππππωμπππωμππ

上式已满足谐振腔横截面四周的边界条件,只需满足在谐振腔的两端0=z 和d z =处的边

界条件,即电场的切线分量和磁场的法向分量为零。由0=z 的条件,可得

-+-=0

H

H

由d z =处的条件,可得

,3,2,1==

p d

p k z π(教科书7.8.35式笔误)

把这两个条件代入前面场强表示式就可以得到各个谐振模式场的表示式,而且有谐振频率

2

222

2

2

02221

21

1

21

??

?

??+??? ??+??? ??=

??

?

??+??? ??+??? ??=

=

d p b n a m d p b n a m k f με

ππππ

μεπμε6 微波谐振腔的特点:1)多模性:一般有无数个谐振模式及谐振频率;2)Q 值大,可达几千到几万,远高于低频集中参数谐振电路。

7 其它形式的谐振腔:1)圆波导;2)同轴腔;3)微带;4)介质腔 8 谐振腔的用途:1)滤波;2)信号源;3)音箱

(完整版)电磁场与电磁波答案(第四版)谢处方

一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ; (4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ ===A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7) cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+? B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。 解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=?=?=E v B e e B e 故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。设0.2a m =、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

《电磁场与电磁波》期末复习题及答案

《电磁场与电磁波》期末复习题及答案 一,单项选择题 1.电磁波的极化特性由__B ___决定。 A.磁场强度 B.电场强度 C.电场强度和磁场强度 D. 矢量磁位 2.下述关于介质中静电场的基本方程不正确的是__D ___ A. ρ??=D B. 0??=E C. 0C d ?=? E l D. 0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量 z = n e )通过电流I ,则圆环中心处的磁感应强度B 为 __D ___A. 02r I a μe B.02I a φμe C. 02z I a μe D. 02z I a μπe 4. 下列关于电力线的描述正确的是__D ___ A.是表示电子在电场中运动的轨迹 B. 只能表示E 的方向,不能表示E 的大小 C. 曲线上各点E 的量值是恒定的 D. 既能表示E 的方向,又能表示E 的大小

5. 0??=B 说明__A ___ A. 磁场是无旋场 B. 磁场是无散场 C. 空间不存在电流 D. 以上都不是 6. 下列关于交变电磁场描述正确的是__C ___ A. 电场和磁场振幅相同,方向不同 B. 电场和磁场振幅不同,方向相同 C. 电场和磁场处处正交 D. 电场和磁场振幅相同,方向也相同 7.关于时变电磁场的叙述中,不正确的是:(D ) A. 电场是有旋场 B. 电场和磁场相互激发 C.电荷可以激发电场 D. 磁场是有源场 8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___ A. 不再是平面波 B. 电场和磁场不同相 C.振幅不变 D. 以TE波形式传播 9. 两个载流线圈之间存在互感,对互感没有影响的是_C __

电磁场与电磁波答案(无填空答案).

电磁场与电磁波复习材料 简答 1. 简述恒定磁场的性质,并写出其两个基本方程。 2. 试写出在理想导体表面电位所满足的边界条件。 3. 试简述静电平衡状态下带电导体的性质。 答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分) 导体内部电场强度等于零,在导体表面只有电场的法向分量。(3分) 4. 什么是色散?色散将对信号产生什么影响? 答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。 (3分) 色散将使信号产生失真,从而影响通信质量。 (2分) 5.已知麦克斯韦第二方程为t B E ??- =?? ,试说明其物理意义,并写出方程的积分形式。 6.试简述唯一性定理,并说明其意义。 7.什么是群速?试写出群速与相速之间的关系式。

8.写出位移电流的表达式,它的提出有何意义? 9.简述亥姆霍兹定理,并说明其意义。 答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。 (3分) 亥姆霍兹定理告诉我们,研究任意一个矢量场(如电场、磁场等),需要从散度和旋度两个方面去研究,或者是从矢量场的通量和环量两个方面去研究 10.已知麦克斯韦第二方程为S d t B l d E S C ???-=???,试说明其物理意义,并写出方程的微 分形式。 答:其物理意义:随时间变化的磁场可以产生电场。 (3分) 方程的微分形式: 11.什么是电磁波的极化?极化分为哪三种? 答:电磁波的电场强度矢量的方向随时间变化所描绘的轨迹称为极化。(2分) 极化可以分为:线极化、圆极化、椭圆极化。 12.已知麦克斯韦第一方程为 t D J H ??+ =?? ,试说明其物理意义,并写出方程的积分形式。

第七章 导行电磁波 北航2系电磁场课件

第七章 导行电磁波 §7.1导行电磁波及其导行系统 1 导行电磁波就是在导行系统(统称传输线,有时指波导)中传输的电磁波,简称导波。 2 在一个实际射频、微波系统里,传输线是最基本的构成,它不仅起连接信号作用,而且传输线本身也可以成为某些元件,如电容、电感、变压器、谐振电路、滤波器、天线等等。 3 传输线的主要指标:1)损耗。损耗来源于导体、介质、辐射、模式转换;2)色散和单模工作频带宽度。取决于传输线的结构;3)制造成本。取决于是否可以集成。 4 几种典型微波传输线,结构演化、特点。1)双线;2)同轴线;3)波导;4)微带线;5)介质波导与光纤;6)空间。 §7.2 导波的一般分析方法 1导波的一般分析方法:先求出场纵向分量,然后由场纵向分量导出其余的场横向分量。 2 导波场横向分量与场纵向分量关系: Step1:设导波的传播方向(纵向)为z 方向,传播无衰减,传输线横截面保持不变,则有 z jk z jk z z e y x H H e y x E E --==),(),(00 (1) 式中z k 是导波沿传播方向(z 方向)的传播常数,有 2 22222 2 z T z y x k k k k k k +=++==μεω(2) 把(1)式代入直角坐标系中的波动方程,简化后可得 2222 =+?=+?H k H E k E T T T T (3) Step2:将(1)式代入Maxwell 方程组的两个旋度方程,直角坐标系中展开后可得场横向分量与场纵向分量关系: ??????? ???????????? ????+ ??-=???? ????- ??=??? ? ????+ ??-=???? ????+ ??-=y H x E k k k j H x H y E k k k j H x H k y E k k j E y H k x E k k j E z z z T z y z z z T z x z z z T z y z z z T z x ωεωεωμωμ2222(4) 在圆柱坐标系里也能导出类似的关系式。 3 由场纵向分量导出场横向分量方法的好处:1)简化计算:六个分量的求解简化为两个分量的求解。场纵向分量相当于位函数。2)便于波型分类 4 导波波型的分类:

电磁场与电磁波(第三版)课后答案第1章

第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B ;(4)A B θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= = =e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 ( 4 ) 由 c o s AB θ =1 1 2 3 8 = A B A B , 得 1 c o s A B θ- =(135.5- = (5)A 在B 上的分量 B A =A c o s AB θ = =- A B B (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 1 230 4 1 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()?=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123P P P ?是否为一直角三角形; (2)求三角形的面积。

“电磁场理论”课程教学大纲

西安交通大学 “电磁场理论”课程教学大纲 英文名称:Theory of Electromagnetic Field 课程编码:PHYS2012 学时:64 学分:4 适用对象:电子科学与技术专业本科生 先修课程:普通物理,数理方程,矢量与张量分析 使用教材及参考书: 金泽松,《电磁场理论>>, 电子科技大学出版社, 1995 郭硕鸿,《电动力学》,高等教育出版社,1989 冯慈璋,《电磁场》高等教育出版社,1983 李承祖,《电动力学教程》(修订版),国防科技大学出版社,1997 一、课程性质、目的和任务 本课程是电子科学与技术系各专业本科生必修的一门工程基础课.通过本课程的学习,使学生熟悉电磁场的基本理论,掌握基本规律,加深对电磁场的性质和时空概念的理解,获得分析和处理一些电磁现象的方法和能力,为以后的专业课程学习打下基础。 二、教学基本要求 1. 了解电磁现象的普遍规律,掌握库仑定律、高斯定理、毕奥定律、电磁感应定律和麦克斯韦方程组, 熟悉电磁场的边值关系。 2. 了解静电场和稳恒电流磁场的性质,熟悉静电势和微分方程、磁矢势和微分方程,掌握求解静电场和磁场问题的常用分析方法。 3.掌握波动方程和亥姆霍兹方程,熟悉平面电磁波的性质, 掌握电磁波传播的规律。 4.了解时变电磁场的性质和势,掌握辐射电磁场的规律和计算方法。 5.了解狭义相对论和相对论电动力学,掌握电磁场量在不同参考系间的变化规律。了解带电粒子和电磁场的相互作用,掌握运动带电粒子的位和电磁场,了解加速运动带电粒子的辐射。 三、教学内容及要求 第一章:电磁现象的普遍规律 1.了解电荷和电场、电流和磁场。 2.掌握库仑定律、高斯定理、毕奥定律、电磁感应定律。 3.重点掌握麦克斯韦方程组和电磁场的边值关系。 4.了解介质的电磁性质。 5.掌握电磁场的能量和能流密度表示式,了解电磁能量的传输。

《电磁场与电磁波》期末复习题-基础

电磁场与电磁波复习题 1.点电荷电场的等电位方程是( )。A . B . C . D . C R q =04πεC R q =2 04πεC R q =024πεC R q =2 024πε2.磁场强度的单位是( )。 A .韦伯 B .特斯拉 C .亨利 D .安培/米 3.磁偶极矩为的磁偶极子,它的矢量磁位为( )。 A . B . C . D .024R m e R μπ?u r r 02 ·4R m e R μπu r r 02 4R m e R επ?u r r 2 ·4R m e R επu r r  4.全电流中由电场的变化形成的是( )。A .传导电流 B .运流电流 C .位移电流 D .感应电流 5.μ0是真空中的磁导率,它的值是( )。 A .4×H/m B .4×H/m C .8.85×F/m D .8.85×F/m π7 10-π7 107 10-12 106.电磁波传播速度的大小决定于( )。 A .电磁波波长 B .电磁波振幅 C .电磁波周期 D .媒质的性质7.静电场中试验电荷受到的作用力大小与试验电荷的电量( )A.成反比 B.成平方关系 C.成正比 D.无关8.真空中磁导率的数值为( ) A.4π×10-5H/m B.4π×10-6H/m C.4π×10-7H/m D.4π×10-8H/m 9.磁通Φ的单位为( )A.特斯拉 B.韦伯 C.库仑 D.安/匝10.矢量磁位的旋度是( )A.磁感应强度 B.磁通量 C.电场强度 D.磁场强度11.真空中介电常数ε0的值为( )A.8.85×10-9F/m B.8.85×10-10F/m C.8.85×10-11F/m D.8.85×10-12F/m 12.下面说法正确的是( ) A.凡是有磁场的区域都存在磁场能量 B.仅在无源区域存在磁场能量 C.仅在有源区域存在磁场能量 D.在无源、有源区域均不存在磁场能量13.电场强度的量度单位为( )A .库/米 B .法/米 C .牛/米D .伏/米14.磁媒质中的磁场强度由( )A .自由电流和传导电流产生B .束缚电流和磁化电流产生C .磁化电流和位移电流产生D .自由电流和束缚电流产生15.仅使用库仓规范,则矢量磁位的值( )A .不唯一 B .等于零 C .大于零D .小于零16.电位函数的负梯度(-▽)是( )。?A.磁场强度 B.电场强度 C.磁感应强度 D.电位移矢量 17.电场强度为=E 0sin(ωt -βz +)+E 0cos(ωt -βz -)的电磁波是( )。 E v x e v 4πy e v 4π A.圆极化波 B.线极化波 C.椭圆极化波 D.无极化波 18.在一个静电场中,良导体表面的电场方向与导体该点的法向方向的关系是( )。

电磁场与电磁波试题答案

《电磁场与电磁波》试题1 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为,则磁感应强度和磁场满足的方程为:。 2.设线性各向同性的均匀媒质中,称为方程。 3.时变电磁场中,数学表达式称为。 4.在理想导体的表面,的切向分量等于零。 5.矢量场穿过闭合曲面S的通量的表达式为:。 6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。 8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。 二、简述题(每小题5分,共20分) 11.已知麦克斯韦第二方程为,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题(每小题10分,共30分) 15.按要求完成下列题目 (1)判断矢量函数是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。

16.矢量,,求 (1) (2) 17.在无源的自由空间中,电场强度复矢量的表达式为 (1)试写出其时间表达式; (2)说明电磁波的传播方向; 四、应用题(每小题10分,共30分) 18.均匀带电导体球,半径为,带电量为。试求 (1)球内任一点的电场强度 (2)球外任一点的电位移矢量。 19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。 20.如图2所示的导体槽,底部保持电位为,其余两面电位为零,(1)写出电位满足的方程; (2)求槽内的电位分布

导行电磁波

导行电磁波 1. TEM波的特点:传播方向上不存在()分量。 2.TEM波参数相速度:() 3.相速度仅与媒质参数有关,而与导波装置的()无关 4.可传输TEM波的导波装置:任何能确立静态场的均匀导波装置,也能维持TEM 波。例如,双线传输线、同轴线系统,而()则不可能存在TEM波 5.TE波的特点:传播方向上不存在()分量 6.可传输TE波的导波装置:()波导、平行板介质波导、光纤等 7.TM波的特点:传播方向上不存在()分量 8.可传输TM波的导波装置:空心金属波导、()波导、光纤等 9.在微波波段,为了减小传输损耗并防止电磁波向外泄漏,采用空芯的金属管作为传输电磁波能量的导波装置,这种空芯金属导波装置通常称为() 10.常用的波导是()波导和圆柱形波导 11.波导存在的模式:()波和()波 12.波导呈现高通滤波器的特性,只有工作频率高于截止频率时电磁波才能通过。这一点和()波不同,()波是没有截止频率的。 13.波的优点:采用这种模式,可以由设计波导尺寸实现()传输 14.在同一截止波长下,传输波所要求的a边尺寸()

15.从波到次一高阶模波之间的间距比其他高阶模之间的间距大,因 此可以使波在大于()的波段上传播 16.波在波导中可以获得()方向极化. 17.对于一定的比值a/b,在给定的工作频率下波具有最小的() 18.同轴线也可看作圆形波导,其可传输的模式有()。 19.对矩形波导,在()附近,衰减骤增。对同一b/a,波的衰减最小。对同一模式,b/a增大,则衰减降低 20.对圆柱形波导,模和模各有一最小衰减点,而模则没有衰减点,而且其损耗随频率增加而() 21.在一般情况下,圆柱形波导的衰减比矩形波导() 22.()是一个完全用金属面封闭的空腔,只要空腔的尺寸设计合理,就可维持电磁震荡 23.谐振腔的型式很多,有同轴线形、()形、()形和环形等 24.谐振腔的主要参数有:谐振波长和()Q 25.()形谐振腔是由一段长度为d,半径为a的圆柱形波导两端短路构成 26.电路参数沿线均匀分布的传输线称为()线。 27.传输线上任一点的电压和电流的比值定义为该点朝负载端看去的()。 28.传输线上某点的反射波电压与入射波电压之比定义为该点处的()。

电子科技大学 历年电磁场与电磁波考试大纲

2009年电磁场与电磁波考试大纲 考试科目813电磁场与电磁波考试形式笔试(闭卷) 考试时间180分钟考试总分150分 参考书目《电磁场与电磁波》(第四版) 谢处方高等教育出版社 2006年 一、总体要求 二、内容及比例 第1章矢量分析 1.1 矢量代数 1.1.1 标量和矢量,1.1.2 矢量的加法和减法,1.1.3 矢量的乘法 1.2 三种常用的正交坐标系 1.2.1 直角坐标系,1.2.2 圆柱坐标系,1.2.3 球坐标系 1.3 标量场的梯度 1.3.1 标量场的等值面,1.3.2 方向导数,1.3.3 梯度 1.4 矢量场的通量与散度 1.4.1 矢量场的矢量线,1.4.2 通量,1.4.3 散度,1.4.4 散度定理 1.5 矢量场的环流与旋度 1.5.1 环流,1.5.2 旋度,1.5.3 斯托克斯定理 1.6 无旋场与无散场 1.6.1 无旋场,1.6.2 无散场 1.7 拉普拉斯运算与格林定理 1.7.1拉普拉斯运算,1.7.2 格林定理 1.8 亥姆霍兹定理 第2章电磁场的基本规律 2.1 电荷守恒定律 2.1.1 电荷及电荷密度,2.1.2 电流及电流密度,2.1.3 电荷守恒定律与电流连续性方程 2.2 真空中静电场的基本规律 2.2.1 库仑定律电场强度,2.2.2 静电场的散度与旋度 2.3 真空中恒定磁场的基本规律 2.3.1安培力定律磁感应强度,2.3.2 恒定磁场的散度与旋度 2.4 媒质的电磁特性 2.4.1电介质的极化电位移矢量,2.4.2磁介质的磁化磁场强度,2.4.3 媒质的传导特性 2.5 电磁感应定律和位移电流 2.5.1 法拉第电磁感应定律,2.5.2 位移电流 2.6 麦克斯韦方程组 2.6.1 麦克斯韦方程组的积分形式,2.6.2 麦克斯韦方程组的微分形式,2.6.3 媒质的本构关系 2.7 电磁场的边界条件 2.7.1 边界条件的一般形式,2.7.2 两种特殊情况下的边界条件 第3章静态电磁场及其边值问题的解 3.1 静电场分析 3.1.1 静电场的基本方程和边界条件、3.1.2 电位函数、3.1.4 静电场的能量

《电磁场与电磁波》期末复习题-基础

电磁场与电磁波复习题 1. 点电荷电场的等电位方程是( )。 A .C R q =04πε B .C R q =204πε C .C R q =02 4πε D .C R q =202 4πε 2. 磁场强度的单位是( )。 A .韦伯 B .特斯拉 C .亨利 D .安培/米 3. 磁偶极矩为m 的磁偶极子,它的矢量磁位为( )。 A .024R m e R μπ? B .02 ?4R m e R μπ C .024R m e R επ? D .02 ?4R m e R επ 4. 全电流中由电场的变化形成的是( )。 A .传导电流 B .运流电流 C .位移电流 D .感应电流 5. μ0是真空中的磁导率,它的值是( )。 A .4π×710-H/m B .4π×710H/m C .8.85×710-F/m D .8.85×1210F/m 6. 电磁波传播速度的大小决定于( )。 A .电磁波波长 B .电磁波振幅 C .电磁波周期 D .媒质的性质 7. 静电场中试验电荷受到的作用力大小与试验电荷的电量( ) A.成反比 B.成平方关系 C.成正比 D.无关 8. 真空中磁导率的数值为( ) A.4π×10-5H/m B.4π×10-6H/m C.4π×10-7H/m D.4π×10-8H/m 9. 磁通Φ的单位为( ) A.特斯拉 B.韦伯 C.库仑 D.安/匝 10. 矢量磁位的旋度是( ) A.磁感应强度 B.磁通量 C.电场强度 D.磁场强度 11. 真空中介电常数ε0的值为( ) A.8.85×10-9F/m B.8.85×10-10F/m C.8.85×10-11F/m D.8.85×10-12F/m 12. 下面说法正确的是( ) A.凡是有磁场的区域都存在磁场能量 B.仅在无源区域存在磁场能量 C.仅在有源区域存在磁场能量 D.在无源、有源区域均不存在磁场能量 13. 电场强度的量度单位为( ) A .库/米 B .法/米 C .牛/米 D .伏/米 14. 磁媒质中的磁场强度由( ) A .自由电流和传导电流产生 B .束缚电流和磁化电流产生 C .磁化电流和位移电流产生 D .自由电流和束缚电流产生 15. 仅使用库仓规范,则矢量磁位的值( ) A .不唯一 B .等于零 C .大于零 D .小于零 16. 电位函数的负梯度(-▽?)是( )。 A.磁场强度 B.电场强度 C.磁感应强度 D.电位移矢量 17. 电场强度为E =x e E 0sin(ωt -βz +4π)+y e E 0cos(ωt -βz -4 π)的电磁波是( )。 A.圆极化波 B.线极化波 C.椭圆极化波 D.无极化波 18. 在一个静电场中,良导体表面的电场方向与导体该点的法向方向的关系是( )。

电磁场与电磁波试题及答案

《电磁场与电磁波》试题2 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的介电常数为ε,则电位移矢量D ?和电场E ? 满足的 方程为: 。 2.设线性各向同性的均匀媒质中电位为φ,媒质的介电常数为ε,电荷体密度为V ρ,电位 所满足的方程为 。 3.时变电磁场中,坡印廷矢量的数学表达式为 。 4.在理想导体的表面,电场强度的 分量等于零。 5.表达式()S d r A S ? ????称为矢量场)(r A ? ?穿过闭合曲面S 的 。 6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生 。 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 。 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 。 9.对横电磁波而言,在波的传播方向上电场、磁场分量为 。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 场,因此,它可用磁矢位函数的旋度来表示。 二、简述题 (每小题5分,共20分) 11.试简述磁通连续性原理,并写出其数学表达式。 12.简述亥姆霍兹定理,并说明其意义。 13.已知麦克斯韦第二方程为S d t B l d E S C ???????-=???,试说明其物理意义,并写出方程的微 分形式。 14.什么是电磁波的极化?极化分为哪三种? 三、计算题 (每小题10分,共30分) 15.矢量函数 z x e yz e yx A ??2+-=? ,试求 (1)A ? ?? (2)A ? ?? 16.矢量 z x e e A ?2?2-=? , y x e e B ??-=? ,求 (1)B A ? ?- (2)求出两矢量的夹角

导行电磁波

导行电磁波 本章讨论导行电磁波的传播特性。主要内容包括:导行电磁波的一般特性、矩形波导、圆柱形波导、波导中的能量传输与损耗、谐振腔以及传输线上波的传输特性。 一.教学基本要求 波导中的纵向场分析法是求解波导中场分布的重要方法,要理解该方法的思路。对于该方法中涉及到有关物理量如传播常数Γ、截止波数h 等是讨论波导中波传播特性的关键。必须牢固掌握其物理意义和计算公式。 波导中三种模式的传播条件和传播特性是这一章的重点,应掌握三种模式的分类方法和传播特性参数如截止频率c f (截止波长c λ)、相位常数β、波导波长g λ、相速度p v 、波阻抗Z 的计算公式。并应用它们分析具体给定波导中不同模式的传播特性。 对于矩形波导的主模10TE 是实现单模传输的模式,要求对其场分布、场图及管壁电流分布有所了解,并掌握波导尺寸设计的原理。 掌握TEM 波传输线的分布参数的概念,建立传输线方程,理解传输线上电压波、电流波的特点。 传输线的特性参数、波的传播特点及工作状态分析也是这一章的重点,要求掌握特性阻抗0Z 、输入阻抗()in Z z 、反射系数()z ρ、终端反射系数2ρ、驻波系数S 的定义、计算公式和物理意义。掌握传输线三种不同工作状态的条件和特点。 关于谐振腔,要求了解振荡模式的特点,掌握谐振频率的计算公式,理解品质因数的物理意义,了解其计算方法。 二.知识脉络 三.基本内容概述 电磁波在导波系统中的传输问题,可归结为求解满足特定边界条件的波动方程。根据其解的性质,可了解在各种导波装置中各种模式电磁波的传播特性。

8.1 沿均匀导波系统传播的波的一般特性 所谓均匀导波系统是指在任何垂直于电磁波传播方向的横截面上,导波装置具有相同的截面形状和截面面积。 1.纵向场分析法 设均匀导波系统的轴向为z 轴方向,则电场和磁场可分别表示为 (,,)(,)z x y z x y e Γ-=E E (8.1.1) (,,)(,)z x y z x y e Γ-=H H (8.1.2) 式中Γ为传播常数。 根据麦克斯韦方程,可得到横向场分量与纵向场分量的关系 221()z z x E H E j k x y ΓωμΓ??=- ++?? (8.1.3) 22 1 ()z z y E H E j k y x ΓωμΓ??=--+?? (8.1.4) 221 ()z z x H E H j k x y ΓωεΓ??=--+?? (8.1.5) 22 1 ()z z y H E H j k y x ΓωεΓ??=-++?? (8.1.6) 式中k = 由以上式可知,在波导中的电磁场的6个分量中,独立的只有2个,即z E 和z H 。只要知道z E 和z H ,则可求出全部场分量。而纵向场分量z E 和z H 满足的标量波动方程为 222222 ()0z z z E E k E x y Γ??+++=?? (8.1.7) 2222 22 ()0z z z H H k H x y Γ??+++=?? (8.1.8) 2.导行电磁波的三种模式 根据纵向场分量z E 和z H 存在与否,可将导波系统中电磁波分为三种模式。 (1)横电磁波(TEM 波):0,0z z E H == 由式(8.1.3)~(8.1.6)可知,导波系统中传播TEM 波的条件是 220k Γ+= (8.1.9) 由此得到 TEM jk j Γ== (8.1.10) 相速

电磁波与电磁场期末复习题(试题+答案)

电磁波与电磁场期末试题 一、填空题(20分) 1.旋度矢量的散度恒等与零,梯度矢量的旋度恒等与零。 2.在理想导体与介质分界面上,法线矢量n 由理想导体2指向介质1,则磁场满 足的边界条件:0 1=?B n ,s J H n =?1 。 3.在静电场中,导体表面的电荷密度σ与导体外的电位函数?满足的关系式 n ??=?ε σ-。 4.极化介质体积内的束缚电荷密度σ与极化强度P 之间的关系式为P ?-?=σ。 5.在解析法求解静态场的边值问题中,分离变量法是求解拉普拉斯方程的最基本方法;在某些特定情况下,还可用镜像法求拉普拉斯方程的特解。 6.若密绕的线圈匝数为N ,则产生的磁通为单匝时的N 倍,其自感为单匝的2N 倍。 7.麦克斯韦关于位移电流的假说反映出变化的电场要产生磁场。 8.表征时变场中电磁能量的守恒关系是坡印廷定理。 9.如果将导波装置的两端短路,使电磁波在两端来回反射以产生振荡的装置称为 谐振腔 。 10.写出下列两种情况下,介电常数为ε的均匀无界媒质中电场强度的量值随距离r 的变化规律:带电金属球(带电荷量为Q )E = 2 4r Q πε;无限长线电荷(电荷线 密度为λ)E =r πελ 2。 11.电介质的极性分子在无外电场作用下,所有正、负电荷的作用中心不相重合, 而形成电偶极子,但由于电偶极矩方向不规则,电偶极矩的矢量和为零。在外电场作用下,极性分子的电矩发生转向,使电偶极矩的矢量和不再为零,而产生极化。

12.根据场的唯一性定理在静态场的边值问题中,只要满足给定的边界条件,则泊松方程或拉普拉斯方程的解是唯一的。 二、判断题(每空2分,共10分) 1.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。(×) 2.一个点电荷Q 放在球形高斯面中心处。如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。(×) 3.在线性磁介质中,由I L ψ= 的关系可知,电感系数不仅与导线的几何尺寸、 材料特性有关,还与通过线圈的电流有关。(×) 4.电磁波垂直入射至两种媒质分界面时,反射系数ρ与透射系数τ之间的关系为1+ρ=τ。(√) 5.损耗媒质中的平面波,其电场强度和磁场强度在空间上互相垂直、时间上同相位。(×) 三、计算题(75分) 1.半径为a 的导体球带电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的电流线密度。(10分) 解:以球心为坐标原点,转轴(一直径)为Z 轴。设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则p 点的线速度为 θ ωωφsin a e r v =?= 球面上电荷面密度为 2 4a Q πσ= 故 θ ωπθωπσφ φ sin 4sin 42 a Q e a a Q e v J s === 2.真空中长直线电流I 的磁场中有一等边三角形,边长为b ,如图所示,求三角形回路内的磁通。(10分) 解:根据安培环路定律,得到长直导线的电流I 产生的磁场: Z

电磁场与电磁波期末试题2010A

一、简答题(30分) 1.写出静电场的电位泊松方程,并给出其两种理想介质分界面的边界条件。 2ρ ?ε ?=-; 在两种完纯介质分界面上电位满足的边界条件: 12??= 12 12s n n ??εερ??-=-?? 2.讨论均匀平面波在无界空间传播时本征阻抗与波阻抗的区别。 3.写出均匀平面波在无界良导体中传播时相速的表达式。 4.写出时谐电磁场条件下亥姆霍兹方程。 5.写出传输线输入阻抗公式。 6.证明电场矢量和磁场矢量垂直。 证明:任意的时变场(静态场是时变场的特例)在一定条件下都可以通过Fourier 展开为不同频率正弦场的叠加。 垂直。 也与垂直 与垂直。 与乘定义,可知根据E H H X ∴=?-=?-??- =??B B E B E k B j E k j t B E ωω 7.写出线性各向同性的电介质、磁介质和导电介质的本构关系式。 E J H B E D σμε=== 8.写出均匀平面波在两介质分界面的发射系数和投射系数表达式。 9.写出对称天线的归一化方向函数。 10.解释TEM 、TE 、TM 波的含义。 二、计算题 1. (10分)已知矢量222 ()()(2)x y z x axz xy by z z czx xyz =++++-+-E e e e ,试确 2 1 21 2212rm im tm im E E E E ηηηηητηη-Γ==+== +

定常数a 、b 、c 使E 为无源场。 解 由(2)(2)(122)0x az xy b z cx xy ?=++++-+-= E ,得 2,1,2a b c ==-=- 2.已知标量函数22223326u x y z x y z =+++--。(1)求u ?;(2)在哪些点上u ?等于零。 解 (1)(23)(42)(66)x y z x y z u u u u x y z x y z ????=++=++-+-???e e e e e e ; (2)由(23)(42)(66)0x y z u x y z ?=++-+-=e e e ,得 32,12,1x y z =-== 3. 两块很大的平行导体板,板间距离为d ,且d 比极板的长和宽都小得多。两板接上直 流电压为U 的电源充电后又断开电源,然后在板间放入一块均匀介质板,它的相对介电常数为9r ε= ,厚度比d 略小一点,留下一小空气隙,如图所示。试求放入介质板前后,平行导体板间各处的电场强度。并由此讨论电介质的作用。(20分) 解: (1)建立坐标系如图。加入介质板前,因两极板已充电,板间电压为U ,间距d 远小于平板尺寸,可以认为极板间电场均匀,方向与极板垂直。所以板间电场为 0z U d =-E e 设两极板上所带自由电荷面密度分别为s ρ和s ρ-,根据高斯定理 s s s d d Q S ερ===???D S E S 即 000s D E S S ερ=?=? 得 0000 s U D E d ερε=== r ε =d U z

电磁场与电磁波复习重点

电磁场与电磁波知识点要求 第一章 矢量分析和场论基础 1、理解标量场与矢量场的概念; 场是描述物理量在空间区域的分布和变化规律的函数。 2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公式和方法(限直角坐标系)。 梯度:x y z u u u u x y z ????= ++???e e e , 物理意义:梯度的方向是标量u 随空间坐标变化最快的方向; 梯度的大小:表示标量u 的空间变化率的最大值。 y x z A A A x y z ?????=++???A 散度:单位空间体积中的的通量源,有时也简称为源通量密度, 高斯定理: () () V S dV d ??= ???? ?? A A S , x y z y y x x z z x y z x y z A A A A A A x y z y z z x x y A A A ??????????? ???? ??= =-+-+- ? ? ????????????????e e e A e e e 旋度:其数值为某点的环流量面密度的最大值,其方向为取得环量密度最大值时面积元的法线方向。 斯托克斯定理: () () S L d d ???= ??? ? A S A l 数学恒等式:()0u ???=,()0????=A 3、理解亥姆霍兹定理的重要意义:

若矢量场 A 在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场 A 可表示为一个标量函数的梯度和一个矢量函数的旋度之和。u =??-?A F 第二、三、四章 电磁场基本理论 1、 理解静电场与电位的关系,Q P u d =??E l ,()()u =-?E r r 2、 理解静电场的通量和散度的意义, d d d 0V S V S V ρ??=???=?????D S E l ,0V ρ??=?? ??=?D E 静电场是有散无旋场,电荷分布是静电场的散度源。 3、 理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题; 唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的 镜像法:利用唯一性定理解静电场的间接方法。关键在于在求解区域之外寻找虚拟电荷,使求解区域内的实际电荷与虚拟电荷共同产生的场满足实际边界上复杂的电荷分布或电位边界条件,又能满足求解区域内的微分方程。 点电荷对无限大接地导体平板的镜像: 当两半无限大相交导体平面之间的夹角为α时,n =3600/α,n 为整数,则需镜像电荷数为n -1. 4、 了解直角坐标系下的分离变量法; 特点:把求解偏微分方程的定解问题转化为常微分方程求解。 如:2 0u ?=,令(),,()()()u x y z X x Y y Z z = 则有:22 2 ()()x d X x k X x dx =-,222()()y d Y y k Y y dy =-,222()()y d Y y k Y y dy =- XY 平面 X )

电磁场与电磁波期末试卷A卷答案

淮 海 工 学 院 10 - 11 学年 第 2 学期 电磁场与电磁波期末试卷(A 闭卷) 答案及评分标准 题号 一 二 三 四 五1 五2 五3 五4 总分 核分人 分值 10 30 10 10 10 10 10 10 100 得分 1.任一矢量A r 的旋度的散度一定等于零。 (√ ) 2.任一无旋场一定可以表示为一个标量场的梯度。 (√ ) 3.在两种介质形成的边界上,磁通密度的法向分量是不连续的。 ( × ) 4.恒定电流场是一个无散场。 (√ ) 5.电磁波的波长描述相位随空间的变化特性。 (√ ) 6.在两介质边界上,若不存在自由电荷,电通密度的法向分量总是连续的。( √) 7.对任意频率的电磁波,海水均可视为良导体。 (× ) 8.全天候雷达使用的是线极化电磁波。 (× ) 9.均匀平面波在导电媒质中传播时,电磁场的振幅将随着传播距离的增加而按指数规律衰减。 (√ ) 10.不仅电流可以产生磁场,变化的电场也可以产生磁场。 (√ ) 二、单项选择题(本大题共10小题,每题3分,共30分) 1.设点电荷位于金属直角劈上方,如图所示,则 镜像电荷和其所在的位置为[ A ]。 A 、-q(-1,2,0);q(-1,-2,0) ;-q(1,-2,0) B 、q(-1,2,0);q(-1,-2,0); q(1,-2,0) C 、q(-1,2,0);-q(-1,-2,0); q(1,-2,0); D 、-q(-1,2,0);q(-1,-2,0); q(1,-2,0)。 2.用镜像法求解静电场边值问题时,判断镜像电荷设置是否正确的依据是[ C ]。 A 、镜像电荷的位置是否与原电荷对称; B 、镜像电荷是否与原电荷等值异号; C 、待求区域内的电位函数所满足的方程与边界条件是否保持不变; D 、镜像电荷的数量是否等于原电荷的数量。 3.已知真空中均匀平面波的电场强度复矢量为 2π()120 (V/m)j z E z e e π-=x r r 则其磁场强度的复矢量为[ A ] A 、2π=(/)j z y H e e A m -r r ; B 、2π=(/)j z y H e e A m r r ; C 、2π=(/)j z x H e e A m -r r ; D 、2π=-(/)j z y H e e A m -r r 4.空气(介电常数为10εε=)与电介质(介电常数为204εε=)的分界面是0 z =的平面。若已知空气中的电场强度124x z E e e =+r r r ,则电介质中的电场强度应为 [ D ]。 A 、224x z E e e =+r r r ; B 、2216x z E e e =+r r r ; C 、284x z E e e =+r r r ; D 、22x z E e e =+r r r 单选题1

相关主题
文本预览
相关文档 最新文档