当前位置:文档之家› 电机发热和烧电机的原因分析及解决方法

电机发热和烧电机的原因分析及解决方法

电机发热和烧电机的原因分析及解决方法
电机发热和烧电机的原因分析及解决方法

烧电机的原因总结起来都有哪些呢

电源问题or负载问题...

①电源电压过高,使铁芯发热大大增加;②电源电压过低,电动机又带额定负载运行,电流过大使绕组发热;③修理拆除绕组时,采用热拆法不当,烧伤铁芯;④定转子铁芯相擦;⑤电动机过载或频繁起动;⑥笼型转子断条;⑦电动机缺相,两相运行;⑧重绕后定于绕组浸漆不充分;⑨环境温度高电动机表面污垢多,或通风道堵塞;⑩电动机风扇故障,通风不良;定子绕组故障(相间、匝间短路;定子绕组内部连接错误)。

2.故障排除:①降低电源电压(如调整供电变压器分接头),若是电机Y、Δ接法错误引起,则应改正接法;②提高电源电压或换粗供电导线;③检修铁芯,排除故障;④消除擦点(调整气隙或挫、车转子);⑤减载;按规定次数控制起动;⑥检查并消除转子绕组故障;⑦恢复三相运行;⑧采用二次浸漆及真空浸漆工艺;⑨清洗电动机,改善环境温度,采用降温措施;⑩检查并修复风扇,必要时更换

这个原因很多。

1.电源问题

a.三相电源不对称

b.接法错误包括三角形接成星形,星形接成三角形

c.电压过高或过低

2.负载问题

过载;

负载被卡住

3.电机问题

线圈匝间短路

线圈断开

电机内有异物

定转子相擦

4.其它问题

轴承问题

油脂不好

通风有问题

楼上的比较全面。一般在用户使用过程中烧毁的电机主要原因是:过载、单相、缺相、匝间。

拆开电机后检查绕组线包,可以判断出烧毁的大致原因:

1、过载机过载烧毁时,线包一般会全部烧黑。

2、单相、缺相烧毁一相线圈或两相线圈

3、匝间在线包或是线槽上会有铜线烧熔化后烧出来的洞和铜珠

另外轴承内盖配合不好或是轴承故障抱死轴烧坏电机的情况也会有,这个可以直接看到。这个属于机械方面的故障

造成电动机过负荷的原因主要有:

(1)电源电压低。当机械负载不变时,电源电压降低,就会造成电动机工作电流加大。由于电动机工作电流的增大,电动机的温度就会上升。当过负荷时间较长,电动机的温度就会超过允许温度而烧毁。实际工作表明:电动机的实际工作温度每超过允许温度8℃,其使用寿命就减少一半。

(2)频繁启动。异步电动机的启动电流为正常工作电流的5倍~7倍,如果电动机频繁启动,就会使电动机的温度上升。井下采区工作面输送机和采煤机容易出现这种过负荷现象。

(3)启动时间长。带负荷启动往往会造成启动时间长,电动机温度高的过负荷情况。例如,工作面输送机上堆满了煤,这时启动电机就会出现堵转、启动时间长的问题。

(4)机械卡堵。由于电动机轴承损坏,转子被卡,或电动机所拖动的负荷被卡等都会造成电动机过负荷。

三相异步电动机烧毁的原因及对策浅析

一、电机绕组局部烧毁的原因及对策

1.电机本身密封不良,环境跑冒滴漏,使电机内部进水或带有腐蚀性液体或气体,电机绕组绝缘受到浸蚀,最严重部位或绝缘最薄弱点一点对地、相间短路或匝间短路,从而电机绕组局部烧坏。

对策:①尽量消除工艺和机械设备的跑冒滴漏;②检修时注意电机的每个部位的密封,例如在各法兰涂少量704密封胶,

在螺栓上涂抹油脂,必要时在接线盒等处加装防滴溅盒,如电机暴漏在易侵入液体和污物的地方应作保护罩;③对环境中运行的电机要缩短小修和中修周期,严重时要中修。

2.轴承损坏,轴弯曲等原因定、转子磨擦(俗称扫膛)引起铁心温度急剧上升,烧毁槽绝缘、匝间绝缘,从面绕组匝间短路或对地“放炮”。严重时会使定子铁心倒槽、错位、转轴磨损、端盖报废等。轴承损坏由下列原因:①轴承装配不当,如冷

装时不均匀敲击轴承内圈使轴受到磨损,轴承内圈与轴承失

去过盈量或过盈量变小,跑内圈,装电机端盖时不均匀敲击端盖轴承室与轴承外圈过松跑外圈。跑内圈

跑外圈均会引起轴承运行温升急剧上升以致烧毁,是跑内圈故障会转轴严重磨损和弯曲。但间断性跑外圈情况下不会轴承温度急剧上升,只要轴承完好,允许间断性跑外圈。②轴承

腔内未清洗干净或所加油脂不干净。例如轴承架内的微小刚性物质未清理干净,运行时轴承滚道受损引起温升过高烧毁轴承。③轴承重新更换加工,电机端盖嵌套后过盈量大或椭圆度超标引起轴承滚珠游隙过小或不均匀轴承运行时磨擦力,温度急剧上升直

至烧毁。④定、转子铁心轴向错位或重新对转轴机加工后精度,轴承内、外圈不在切面上而引起轴承运行“吃别劲”后温升高直至烧毁。⑤电机本体运行温升过高,且轴承补充加油脂不轴承缺油甚至烧毁。⑥不同型号油脂混用轴承损坏。⑦轴承本身制造质量问题,例如滚道锈斑、转动不灵活、游隙超标、

架变形等。⑧备机长期不运行,油脂变质,轴承生锈而又未中修。

对策:①卸装轴承时,要对轴承加热至80℃~100℃,如采用轴承加热器,变压器油煮等,,才能轴承的装配质量。②安装轴承前对其仔细的清洗,轴承腔内留有任何杂质,填加油脂时洁净。③尽量不必要的转轴机加工

及电机端盖嵌套工作。④组装电机时要定、转子铁心对中,错位。⑤电机外壳洁净见本色,通风有,冷却装置有积垢,风叶要完好。⑥禁止多种润滑油脂混用。⑦安装轴承前先要对轴承仔细的完好性检查。⑧长期不用的电机,使用

前必要的解体检查,更新轴承油脂。

3.绕组端部较长或局部受到损伤与端盖或附件相磨擦,

绕组局部烧坏。

对策:电机在更新绕组时,按原数据嵌线。检修电机时任何刚性物体不准碰及绕组,电机转子抽芯时将转子抬起,定、转子铁芯磨擦。动用明火时将绕组与明火隔离并有

距离。电机回装前要对绕组的完好性仔细的检查确诊。

4.长过载或过热运行,绕组绝缘老化加速,绝缘最薄弱

点碳化引起匝间短路、相间短路或对地短路等使绕组局部烧毁。

对策:①尽量电动机过载运行。②电动机洁净并通

风散热。③电动机频繁启动,必要时需对电机转子做动平衡

试验。

5.电机绕组绝缘受机械振动(如启动时大电流冲击,所拖动设备振动,电机转子不平衡等)作用,使绕组匝间松驰、绝缘裂纹等不良,破坏效应积累,热胀冷缩使绕组受到磨擦,从而加速了绝缘老化,最先碳化的绝缘破坏直至烧毁绕组。

对策:①尽频繁启动,是高压电机。②被拖动设备和电机的振动值在规定范围内。

二、三相异步电动机一相或两相绕组烧毁(或过热)的原因及对策

电动机一相或两相绕组烧坏(或过热),缺相运行所致。里不作的理论分析,仅作简要说明。

当电机何种原因缺相后,电动机尚能运行,但转速下降,滑差变大,B、C两相变为串联关系后与A相并联,在负荷不变的情况下,A相电流过大,长运行,该相绕组过热而烧毁。

三相异步电动机绕组为Y接法的情况:电源缺相后,电动机尚可运行,但同样转速下降,转差变大,磁场切割导体的速率,这时B相绕组被开路,A、C两相绕组变为串联关系且电流过大,长运行,将两相绕组烧坏。

这里需要指出,停止的电动机缺一相电源合闸时,只会嗡嗡声而启动,这是电动机通入对称的三相交流电会在定子铁心中产生圆形旋转磁场,但当缺一相电源后,定子铁心中产生的是单相脉动磁场,它使电动机产生启动转矩。,电源缺

相时电动机启动。但在运行中,电动机气隙中产生的是三相谐波成分较高的椭圆形旋转磁场,,正在运行中的电动机缺相后仍能运转,只是磁场畸变,有害电流成分急剧增大,绕组烧坏。

对策:电动机是在静态,缺相运行带来的直接危害电机一相或两相绕组过热甚至烧坏。与此,电缆的过流运行加速了绝缘老化。是在静态时,缺相会在电机绕组中产生几倍于额定电流的堵转电流。其绕组烧坏的速度比运行中突然缺相更快更严重。在对电机日常和检修的,对电机的MCC功能单元的检修和试验。是要检查负荷开关、线路、静动触点的性。缺相运行。

三相异步电动机应用广泛,通常用得最多的是鼠笼式异步电动机(以下简称“电机”)。该电机具有结构简单、容易制造、价格低廉、起步方便、工作可靠、坚固耐用、运行效率较高、便于维护检修的特点。在啤酒厂、泵、风机及传动机构的驱动都离不开电机,电机出现任何故障都会对生产造成影响。因此,电气工作人员必须掌握有关异步电动机安全运行的基本知识和常见故障的处理方法,做到及时发现和消除电机事故隐患,保障安全运行。

选择电机的功率时,应考虑电机的发热、允许过载和启动能力三方面因素。一般情况下以发热问题最为重要。电机发热的原因是运转中的能量损耗在电机内部转变成了热量。电机中耐热最差的是绕组的

绝缘材料,当电机温度不超过所用绝缘材料的最高允许温度时,绝缘材料的寿命较长,可达20年以上;反之,如果温度超过上述最高温度,则绝缘材料老化、变脆,并缩短电机寿命,严重情况下,绝缘材料将碳化、变质、失去绝缘性能,从而使电机烧毁。可见,电机的故障大都因为温升不正常所致。而不同的电机绝缘等级则对应不同的电机允许温升,如下表。

绝缘等级A E B F H C

允许温度105℃120℃130℃155℃180℃180℃以上

允许温升60℃75℃80℃100℃125℃125℃以上

必须指出,在研究电机发热时,常把电机温度与周围环境温度之差称为“温升”。我国规定的环境温度为:40℃。

由温升曲线可知,发热开始时,由于温升较小、散发热量较少,大部分热量被电机吸收,因而温升τ增长较快。随温度升高,散发热量不断增长,电机散发热量由于负载不变而维持不变,电机吸收热量不断减少,温升曲线趋于平缓。最后电机温度不再升高,温升达到稳定值tw。总结电机发热过程与输出功率如下式:

PN= twAhN/(1-hN)

对同样规格的电机欲提高额定功率PN,有3种方法:

1.可以提高额定效率hN,即采取措降低电机损耗;

2.提高散热系数,即加大流通和散热面积;

3.提高绝缘材料温升。电机一旦选定,以上3项均成定数,所以生产中必须时刻监视电机各部分的温升。在实际生产中,由于电气或

机械方面的原因,常会使电机出现过热或烧毁等故障。所以通过检查电机在运行中的温度来和判断其故障尤为重要。电机发热大致有以下原因及解决办法,提出来供同行参考。

1. 电机定、转子之间气隙很小,容易导致定、转子之间相碰

在中、小型电机中,气隙一般为0.2mm~1.5mm。气隙大时,

要求励磁电流大,从而影响电机的功率因数;气隙太小,转子有可能

发生摩擦或碰撞。一般由于轴承严重超差及端盖内孔磨损变形,使机座、端盖、转子三者不同轴心引起扫膛,很容易使电机发热甚至烧毁。如发现轴承磨损应及时更换,对端盖进行更换或刷镀处理,比较简单的处理方法是给端盖镶套。

2. 电机的不正常振动或噪音容易引起电机的发热

这种情况属于电机本身引起的振动,多数是由于转子动平衡不好,以及轴承不良、转轴弯曲,端盖、机座、转子不同轴心,紧固件松动或电机安装地基不平、安装不到位造成的,也可能是机械端传递过来的,应针对具体情况排除。

振动会产生噪声,还会产生额外负荷。我公司灌装机用真空泵型号为Y160L-4 ,15KW,检查时发现温度很高(烫手),检查电压、

电流轴承等都很正常,震动也不明显,后断开联轴器发现梅花垫损坏,更换后使用温度正常。

3. 轴承工作不正常,必定造成电机发热轴承工作是否正常可凭

听觉及温度经验来判断。可用手或温度计检测轴承端判断其温度是否在正常范围内;也可用听棒(铜棒)接触轴承盒,若听到冲击声,就表示

可能有一只或几只滚珠轧碎,如果听到有咝咝声,那就是表示轴承的润滑油不足,电机应在运行3,000小时~5,000小时左右换一次润滑脂。例如,我公司制冷工段制冷压缩机电机型号为JS2-400S2-8 ,132KW,运转一年多后,轴承发出不正常的声音,用听棒接触轴承盒,听到了“咝咝”的声响,同时还有轻微的“哒哒”冲击声,停机对其

进行检修,打开发现轴承盒内缺油,同时轴承滚珠有的已有细微的麻痕。我们对轴承进行了更换并添加润滑油脂,在添加润滑脂时不易太多,如果太多会使轴承旋转部分和润滑脂之间产生很大的摩擦而发热,滚动轴承润滑脂不宜超过轴承室容积的70%。

4. 电源电压偏高,励磁电流增大,电机会过度发热

过高的电压会危及电机的绝缘,使其有被击穿的危险。电源电压过低时,电磁转矩就会大大降低,如果负载转距没有减小,转子转数过低,这时转差率增大会造成电机过载而发热,长时间过载会影响电机的寿命。当三相电压不对称时,即一相电压偏高或偏低时,会导致某相电流过大,电机发热,同时转距减小会发出“嗡嗡”声,时间长了会损坏绕组。

总之,无论电压过高、过低或三相电压不对称都会使电流增加,电机发热而损坏电机。因此按照国家标准,电机电源电压的变化应不超出额定值的±5%,电机输出功率可保持额定值。电机电源电压不允许超过额定值的±10%,三相电源电压之间的差值不应超出额定值的±5%。我公司曾发生过因为网络电压偏底,所有经变频的电机都无法启动或不能连续开机的情况。

5. 绕组短路,匝间短路,相间短路和绕组断路

绕组中相邻两条导线之间的绝缘损坏后,使两导体相碰,称为绕组短路。发生在同一绕组中的绕组短路称为匝间短路。发生在两相绕组之间的绕组短路称为相间短路。不论是那一种,都会使某一相或两相电流增加,引起局部发热,使绝缘老化损坏电机。绕组断路是指电机的定子或转子绕组碰断或烧断造成的故障。不论是绕组短路或断路都可能引起电机发热甚至烧毁。因此,发生这种情况后必须立即停机处理。

我公司包装车间杀菌机上一台水泵电机的型号是Y132M-4,5.5KW ,在工作中突然发出声响后停车,经检查后发现绕组一相断路。更换了备用电机,打开换下来的电机端盖,发现电机壳外导线与绕组连接处断开,其原因就是焊接不牢固,长期使用后松脱。打开捆绳,处理后重新焊接,包好涂上绝缘漆后继续使用。如果因故障造成的绕组被烧断则需要更换绕组。

6. 物料泄露进入电机内部,使电机的绝缘降低,从而使电机的允许温升降低

固体物料或粉尘从接线盒处进入电机内部,则会到达电机定子、转子的气隙之间,造成电机扫膛,直到磨坏电机绕组绝缘,使电机损坏或报废。如果液体和气体介质泄漏进入电机内部,将会直接造成电机绝缘下降而跳闸。一般液体和气体泄漏有以下几种表现形式:

(1)各种容器和输送管道泄漏、泵体密封泄漏、冲洗设备和地面等。如我公司洗瓶机碱液泵曾经由于机械密封磨损,水进入电机内部

而烧毁电机。

(2)机械油泄漏后从前端轴承盒缝隙中进入电机。

(3)与电机相连的减速机等油封磨损,机械润滑油顺着电机轴进入,在电机内部积聚后,溶解电机绝缘漆,使电机绝缘性能逐步降低。这也是我公司摆线针轮减速机驱动烧毁比较多的主要原因。因此,我们只要发现电机有漏油情况就立即更换处理。一般是用灯泡或碘钨灯泡进行烘烤,用500V兆欧表测量电机三相绕组对机壳的绝缘电阻值。要求电阻值高于0.5 MΩ才可使用。

7. 几乎有一半以上电机烧毁都是由于电机缺相运行引起的

缺相常常造成电机不能运行或启动后转速缓慢,或转动无力电流增大有“嗡嗡”的响声现象。如果轴上负载没有改变,则电机处于严重过载状态,定子电流将达到额定值的2倍甚至更高。短时间内电机就会发热甚至烧毁。造成缺相运行的主要原因如下:

(1)电源线路上因其它设备故障引起一相断电,接在该线路上的其它三相设备就会缺相运行。

(2)断路器或接触器一相由于偏电压烧毁或接触不良造成缺相。

(3)电机接进线由于老化、磨损等原因造成的缺相。

(4)电机一相绕组断路,或接线盒内一相接头松脱。

为了预防电机出现缺相运行,除了正确选用和安装低压电器和保护装置外,还应严格执行有关规范,敷设馈电线路,同时加强定期检查和维护。

8. 其它非机械电气故障原因

其它非机械电气故障原因造成的电机温度升高,严重时也可能导致电机故障。如环境温度高,电机缺少风扇、风扇不完整或缺少风扇罩。这种情况下必须强制冷却保证通风或更换风叶等,否则无法保证电机的正常运行。

综上所述,为了能采用正确的方法进行电机故障处理,就必须熟悉电机常见故障的特点及原因,抓住关键因素,定期检查和维护。这样才能少走弯路,节省时间,尽快地排除故障,使电机处于正常的运转状态。从而保证车间正常生产

电机发热的原因及解决的方法

1. 电机定、转子之间气隙很小,容易导致定、转子之间相碰

在中、小型电机中,气隙一般为0.2mm~1.5mm。气隙大时,要

求励磁电流大,从而影响电机的功率因数;气隙太小,转子有可能发生摩擦或碰撞。一般由于轴承严重超差及端盖内孔磨损变形,使机座、端盖、转子三者不同轴心引起扫膛,很容易使电机发热甚至烧毁。如发现轴承磨损应及时更换,对端盖进行更换或刷镀处理,比较简单的处理方法是给端盖镶套。

2. 电机的不正常振动或噪音容易引起电机的发热

这种情况属于电机本身引起的振动,多数是由于转子动平衡不好,

以及轴承不良、转轴弯曲,端盖、机座、转子不同轴心,紧固件松动或电机安装地基不平、安装不到位造成的,也可能是机械端传递过来的,应针对具体情况排除。

振动会产生噪声,还会产生额外负荷。

3. 轴承工作不正常,必定造成电机发热轴承工作是否正常可凭听觉及温度经验来判断。可用手或温度计检测轴承端判断其温度是否在正常范围内;也可用听棒(铜棒)接触轴承盒,若听到冲击声,就表示可能有一只或几只滚珠轧碎,如果听到有咝咝声,那就是表示轴承的润滑油不足,电机应在运行3,000小时~5,000小时左右换一次润滑脂。

4. 电源电压偏高,励磁电流增大,电机会过度发热

过高的电压会危及电机的绝缘,使其有被击穿的危险。电源电压过低时,电磁转矩就会大大降低,如果负载转距没有减小,转子转数过低,这时转差率增大会造成电机过载而发热,长时间过载会影响电机的寿命。当三相电压不对称时,即一相电压偏高或偏低时,会导致某相电流过大,电机发热,同时转距减小会发出“嗡嗡”声,时间长了会损坏绕组。

总之,无论电压过高、过低或三相电压不对称都会使电流增加,电机发热而损坏电机。因此按照国家标准,电机电源电压的变化应不超出额定值的±5%,电机输出功率可保持额定值。电机电源电压不允许超过额定值的±10%,三相电源电压之间的差值不应超出额定值的±5%。我公司曾发生过因为网络电压偏底,所有经变频的电机都无法启动或不能连续开机的情况。

5. 绕组短路,匝间短路,相间短路和绕组断路

绕组中相邻两条导线之间的绝缘损坏后,使两导体相碰,称为绕组短路。发生在同一绕组中的绕组短路称为匝间短路。发生在两相绕组之间的绕组短路称为相间短路。不论是那一种,都会使某一相或两相电流增加,引起局部发热,使绝缘老化损坏电机。绕组断路是指电机的定子或转子绕组碰断或烧断造成的故障。不论是绕组短路或断路都可能引起电机发热甚至烧毁。因此,发生这种情况后必须立即停机处理。

6. 物料泄露进入电机内部,使电机的绝缘降低,从而使电机的允许温升降低

固体物料或粉尘从接线盒处进入电机内部,则会到达电机定子、转子的气隙之间,造成电机扫膛,直到磨坏电机绕组绝缘,使电机损坏或报废。如果液体和气体介质泄漏进入电机内部,将会直接造成电机绝缘下降而跳闸。一般液体和气体泄漏有以下几种表现形式:

(1)各种容器和输送管道泄漏、泵体密封泄漏、冲洗设备和地面等。

(2)机械油泄漏后从前端轴承盒缝隙中进入电机。

(3)与电机相连的减速机等油封磨损,机械润滑油顺着电机轴进入,在电机内部积聚后,溶解电机绝缘漆,使电机绝缘性能逐步降低。

7. 几乎有一半以上电机烧毁都是由于电机缺相运行引起的

缺相常常造成电机不能运行或启动后转速缓慢,或转动无力电流增大有“嗡嗡”的响声现象。如果轴上负载没有改变,则电机处于严

重过载状态,定子电流将达到额定值的2倍甚至更高。短时间内电机就会发热甚至烧毁。造成缺相运行的主要原因如下:

(1)电源线路上因其它设备故障引起一相断电,接在该线路上的其它三相设备就会缺相运行。

(2)断路器或接触器一相由于偏电压烧毁或接触不良造成缺相。

(3)电机接进线由于老化、磨损等原因造成的缺相。

(4)电机一相绕组断路,或接线盒内一相接头松脱。

为了预防电机出现缺相运行,除了正确选用和安装低压电器和保护装置外,还应严格执行有关规范,敷设馈电线路,同时加强定期检查和维护。

8. 其它非机械电气故障原因

其它非机械电气故障原因造成的电机温度升高,严重时也可能导致电机故障。如环境温度高,电机缺少风扇、风扇不完整或缺少风扇罩。这种情况下必须强制冷却保证通风或更换风叶等,否则无法保证电机的正常运行。

综上所述,为了能采用正确的方法进行电机故障处理,就必须熟悉电机常见故障的特点及原因,抓住关键因素,定期检查和维护。这样才能少走弯路,节省时间,尽快地排除故障,使电机处于正常的运转状态。从而保证车间正常生产。

变频控制电机发热的原因分析及其对策

变频控制电机发热的原因分析及其对策 近年来变频控制电机在井区使用更加广泛,电机发热问题总是困扰着使用方,下面我就《变频控制电机发热的原因分析及其对策》这一课题加以阐述: 一、变频控制电机发热的原因分析 1、高次谐波引起电机的效率和功率因数变差,电机损耗增加。变频装置用交-直-交控制,变频器输出的电压、电流波形均有高次谐波。由于普遍电机是按正弦波电源制造的,当有高次谐波流过电动机绕组时,铜损增大,并引起附加损耗,从而引起绕组发热。有资料表明,变频器传动与工频电源传动相比,电流约增加10%,温升约增加20%。 2、电机低速运转,散热能力变差使用变频调速后电机往往处于低于额定转速的运行状态,标准电机的冷却风扇装在转子轴上,所以在低频下运转的电机,因电机转速降低而使冷却效果大幅度下降。 3、电压变化率du/dt增高,电机故障率增加。目前市场上的变频器大部分是交-直-交变频器,其逆变部分是将直流电压转换为三相交流电压,通过控制六个桥臂的开关元件导通、关断来实现三相交流电压的输出。如常见的改变变频器输出电压的PWM方式,它虽与正弦波电压幅值等效,但实际上是由一系列矩形波组成,由于电机绕组匝间电压变化率du/dt很高,电机绕组的电压分布变得很不均匀,使绕组匝间短路的故障增加。从我维修变频控制电机的故障情况来看,几乎全是由匝间短路引起,由此可见,变频控制对电机的绝缘等级的要求更高。

4、电机发热除上述原因外,还由于电机长期运行在粉尘含量较高的环境中,未定期清扫,造成定转子风道堵塞,致使气流不畅,散热效果降低,尤其是夏季,环境温度高,电机工作温度大大增加,导致电机过热烧毁。 二、变频控制电机发热问题的相应对策: 1、合理选用变频控制电机,原电机如果工作频率达不到30Hz,在峰值电流不致引起过电流保护动作的情况下,可以极数更高的电机替代,尤其对于恒转矩负载要适当加大电机的功率等级与电机极数,以提高其带载能力;有条件的地方,应采用变频专用电机。 2、加强电机的计划检修,尤其在夏季来临前,要对定转子风道进行清扫,改善电机的散热条件。在夏季时应采用外加风机对电机强迫风冷。 3、将电子过热保护器的整定值调小,配外加热过载继电器,最好在电机绕组内配PTC热保护。 4、提高电机的绝缘材料等级,如在电机检修时,将B级绝缘提高为F级绝缘,以提高匝间绝缘性能及绕组的耐热能力,这样可从根本上解决变频控制电机使用寿命短的问题。 5、尽可能提高电机的运行频率。使用证明电机工作频率30Hz 以上时,基本可以解决变频电机的散热问题。 这是我工作多年来的对变频控制电机发热问题的维修技术总结,供大家参考。 旗四转徐东

电动机过热的原因及处理方法

电动机过热的原因及处理方法 根据多年来从事电动机维护与检修的经验,总结出电动机常见的过热原因及处理方法。 1、负荷过大。应减轻负荷或换大容量的电动机。 2、绕组局部短路或接地,轻时电动机局部过热,严重时绝缘烧坏,散发焦味甚至冒烟。应测量绕组各相的直流电阻,或寻找短路点,用兆欧表检查绕组是否接地。 3、电动机外部接线错误,有一下两种情况: (1)应当△接法误接成Y接法,以致空载时电流很小,轻载时虽然可带动负荷,但电流超过额定值,使电动机发热。 (2)应当Y接法误接成△接法以致空载时电流可能大于额定电流,使电动机温度迅速升高。 如属上述原因,可按正确方法更改接线。 4、电源电压波动太大,应将电源电压波动范围控制在-5~10%之间,否则要控制电动机的负荷。 5、大修后线圈匝数错误或某极、相、组接线错误,可通过测量电动机三相电流与铭牌或本身三相电流比较,发现问题予以解决。 6、大修后导线截面比原来截面小,要降低负荷或更换绕组。 7、定、转子铁芯错位严重,虽然空载电流三相平衡,但大于规定值,应校正铁芯位置并设法固定。 8、电动机绕组或接线一相断路,使电动机仅两相工作。应检查三相电流,并立即切除电源,找出断路点并重新结好。

9、鼠笼转子断条或存在缺陷,电动机运转1~2h,铁芯温度迅速上升,甚至超过绕组温度,重载或满载时,定子电流超过额定值。应查出故障点,重焊或更换转子。 10、绕线式电动机的转子绕组焊接点脱焊,或检查时焊接不良,致使转子过热,转速和转矩明显下降。可检查转子绕组的直流电阻和各焊接点,重新焊接。 11、电动机绕组受潮,或有灰尘、油污等附着在绕组上,以致绝缘降低,应测量电动机的绝缘电阻并进行清扫、干燥。 12、电动机在短时间内启动过于频繁。应限制启动次数,正确选用热保护。 13、定子、转子相碰,电动机发出金属撞击声,铁芯温度迅速上升,严重时电动机冒烟,甚至线圈烧毁。应拆开电动机,检查铁芯上是否有扫膛的痕迹,找出原因,进行处理。 14、环境温度太高,应改善通风、冷却条件或更换耐热等级更高的电动机。 15、通风系统发生故障,应检查风扇是否损坏,旋转方向是否正确,通风孔道是否堵塞。 电动机发热的原因可能还有其他方面,但是我们平时要严格按照操作规程正确使用电动机,正确维护电动机,使电动机表明清洁,电流不超过额定值,振动值在范围之内,运行声音正常,轴承正切维护等,电动机的使用寿命一定会延长的。

导致电机烧的原因

烧电机的原因总结起来都有哪些呢 电源问题or负载问题... ①电源电压过高,使铁芯发热大大增加;②电源电压过低,电动机又带额定负载运行,电流过大使绕组发热;③修理拆除绕组时,采用热拆法不当,烧伤铁芯;④定转子铁芯相擦; ⑤电动机过载或频繁起动;⑥笼型转子断条;⑦电动机缺相,两相运行;⑧重绕后定于绕组浸漆不充分;⑨环境温度高电动机表面污垢多,或通风道堵塞;⑩电动机风扇故障,通风不良;定子绕组故障(相间、匝间短路;定子绕组内部连接错误)。 2.故障排除:①降低电源电压(如调整供电变压器分接头),若是电机Y、Δ接法错误引起,则应改正接法;②提高电源电压或换粗供电导线;③检修铁芯,排除故障;④消除擦点(调整气隙或挫、车转子);⑤减载;按规定次数控制起动; ⑥检查并消除转子绕组故障;⑦恢复三相运行;⑧采用二次浸漆及真空浸漆工艺;⑨清洗电动机,改善环境温度,采用降温措施;⑩检查并修复风扇,必要时更换 这个原因很多。 1.电源问题 a.三相电源不对称

b.接法错误包括三角形接成星形,星形接成三角形 c.电压过高或过低 2.负载问题 过载; 负载被卡住 3.电机问题 线圈匝间短路 线圈断开 电机内有异物 定转子相擦 4.其它问题 轴承问题 油脂不好 通风有问题 楼上的比较全面。一般在用户使用过程中烧毁的电机主要原因是:过载、单相、缺相、匝间。 拆开电机后检查绕组线包,可以判断出烧毁的大致原因:1、过载机过载烧毁时,线包一般会全部烧黑。

2、单相、缺相烧毁一相线圈或两相线圈 3、匝间在线包或是线槽上会有铜线烧熔化后烧出来的洞和铜珠 另外轴承内盖配合不好或是轴承故障抱死轴烧坏电机的情 况也会有,这个可以直接看到。这个属于机械方面的故障 造成电动机过负荷的原因主要有: (1)电源电压低。当机械负载不变时,电源电压降低,就会造成电动机工作电流加大。由于电动机工作电流的增大,电动机的温度就会上升。当过负荷时间较长,电动机的温度就会超过允许温度而烧毁。实际工作表明:电动机的实际工作温度每超过允许温度8℃,其使用寿命就减少一半。 (2)频繁启动。异步电动机的启动电流为正常工作电流的5倍~7倍,如果电动机频繁启动,就会使电动机的温度上升。井下采区工作面输送机和采煤机容易出现这种过负荷现象。 (3)启动时间长。带负荷启动往往会造成启动时间长,电动机温度高的过负荷情况。例如,工作面输送机上堆满了煤,这时启动电机就会出现堵转、启动时间长的问题。 (4)机械卡堵。由于电动机轴承损坏,转子被卡,或电动机所拖动的负荷被卡等都会造成电动机过负荷。

热继电器的选择和计算

看一下本题就知了, 有一台三相异步电动机额定电压为380伏,容量为10千瓦,功率因数为0.85,效率为0.95,选择交流接触器、热继电器及整定值。 解:已知U=380V,P=10KW,cosφ=0.85,η=0.95 电流I=P/(√3*U*cosφ*η)=10/(1.732*0.38*0.85*0.95)≈20A 选择交流接触器KM=Ie×(1.3~2)=26~40(A),选CJ10-40的接触器 选择热继电器FR=Ie×(1.1~1.5)=22~25(A),选JR16-20/30热元件22A的热继电器。 热元件整定值等于电动机额定电流,整定20A 答:电动机电流为20A,选40A的交流接触器,选额定电流30A热元件22A的热继电器,整定值20A。 I=P/(√3*U*cosφ*η)=10/(1.732*0.38*0.85*0.95)≈20A 、有一台三相异步电动机额定电压为380伏,容量为14千瓦,功率因数为0.85,效率为0.95,计算电动机电流。 解:已知U=380(V),cosφ=0.85,η=0.95,P=14(KW) 电流 此主题相关图片如下: 答:电动机电流29安培。 2、有一台三相异步电动机额定电压为380伏,容量为10千瓦,功率因数为0.85,效率为0.95,选择交流接触器、热继电器及整定值。 解:已知U=380V,P=10KW,cosφ=0.85,η=0.95 电流 此主题相关图片如下: 选择交流接触器KM=Ie×(1.3~2)=26~40(A),选CJ10-40的接触器 选择热继电器FR=Ie×(1.1~1.5)=22~25(A),选JR16-20/30热元件22A的热继电器。 热元件整定值等于电动机额定电流,整定20A 答:电动机电流为20A,选40A的交流接触器,选额定电流30A热元件22A的热继电器,整定值

电动机发热过载的原因

电动机发热过载的原因 电动机在正常运行情况下,就是负载转矩在额定转矩以下情况时,电动机总能维持负载转矩与电机输出转矩的平衡,并且保持转速变化很小,但当负载转矩过大,超过额定转矩时,电动机仍然要维持转矩平衡,只有降低转速,继续提高转矩,(如果转矩超过最大负载转矩电机将堵转)转矩的继续提高,必然导致定子电流的升高,从而导致定子绕组发热增加,如果持续大过载,会造成电动机烧毁. 电机会发热的原因是由21种原因造成:1、室温过高 2、散热不良3、过载 4、过压欠压或电压不平衡 5、频繁起停或频繁正反转 6、缺相 7、风扇坏或进出风口堵 8、轴承缺油 9、机械卡住堵转 10、负载转动惯量过大启动时间过长 11、匝间短路 12、新电机内部接线有误 13、星三角接线有误 14、星三角或自偶降压启动负载重启动时间长或因故障未正常转换 15、电机受潮 16、鼠笼式异步电机转子断条 17、绕线式异步电机转子绕组断线或电阻不平衡 18、转子扫膛19、电源谐波过大,例如附近有大型整流设备,高频设备等 20、多次维修的电机铁心磁通减小 21、有些电机绕线工艺差 电机发热故障原因分析方法: 在分析电机发热故障时,用非接触式的红外线温度计,或万用表的温度测量挡位(带温度测量的万用表),测量电机端盖的温度超过

环境温度25℃以上时,表明电机的温升已经超出了正常范围,一般电机的温升应在20℃以下。电机发热的直接原因是由于电流大引起的。电机电流I,电机的输入电动势E1,电机旋转的感生电动势(又叫反电动势)E2,与电机线圈电阻R之间的关系是:I=(E1-E2)÷R,I增大,说明R变小或E2减小了。R变小一般是线圈短路或开路引起的。E2减小一般是磁钢退磁引起的或者是线圈短路、开路引起的。在电动车的整车的维修实践中,处理电机发热故障的方法,一般是更换电机。

计算电动机电流热继电器及整定值

普通三相异步电机正常工作时绕组都是△接法,按下面公式计算的电机额定电流是电机△接法的线电流。对于普通电机,电机极数不会影响线电流的大小(参见电机技术参数表)。---------------------------------------------------------------------------------------------------------------------- 1、有一台三相异步电动机额定电压为380伏,容量为14千瓦,功率因数为0.85,效率为0.95,计算电动机电流。 解:已知U=380(V),cosφ=0.85,η=0.95,P=14(KW) 电流 答:电动机电流29安培。 2、有一台三相异步电动机额定电压为380伏,容量为10千瓦,功率因数为0.85,效率为0.95,选择交流接触器、热继电器及整定值。 解:已知U=380V,P=10KW,cosφ=0.85,η=0.95 电流 选择交流接触器KM=Ie×(1.3~2)=26~40(A),选CJ10-40的接触器 选择热继电器FR=Ie×(1.1~1.5)=22~25(A),选JR16-20/30热元件22A的热继电器。 热元件整定值等于电动机额定电流,整定20A 答:电动机电流为20A,选40A的交流接触器,选额定电流30A热元件22A的热继电器,整定值20A。 3、一台三相交流异步电动机,其型号规格为Y112M-4,4KW;额定电压380V、△接法;cosφ=0.8;η=0.85.计算该电动机的额定电流和保护用的熔体规格和热继电器的动作电流整定值是多少? 解:电动机的额定电流为 保护用的熔体规格为 Ir=(1.5~2.5)I=(1.5~2.5)×8.9A=13.4~22.3A 热继电器的电流整定值 IZ=1.0×I=1.0×8.9=8.9A 答:该电动机的额定电流为8.9A,保护用的熔体规格可选20A,热继电器的保护整定值应调在8.9A 后附三相异步电动机技术参数表供读者比较计算:

电机温度标准

GB3215-82 4.4.1 泵工作期间,轴承最高温度不超过80 JB/T5294-91 3.2.9.2 轴承温升不得超过环境温度40,最高温度不得超过80 JB/T6439-92 4.3.3 泵在规定工况下运转时,内装式轴承处外表面温度不应高出输送介质温度20,最高温度不高于80。外装式轴承处外表面温升不应高处环境温度40。最高温度不高于80 JB/T7255-94 5.15.3 轴承的使用温度。轴承温升不得超过环境温度35,最高温度不得超过75 JB/T7743-95 7.16.4 轴承温升不得超过环境温度40,最高温度不得超过80 JB/T8644-1997 4.14 轴承温升不得超过环境温度35,最高温度不得超过80 规定是这样,但是各个制造厂由于制造工艺不同可能会有点细微差别,但是不会太大的 没什么感觉30度 有暖意40以下 明显知道发热45度以下 能长久触摸并无困难50度 能长久触摸极限或只能触摸10秒55度 触摸3秒60度 触摸至感觉热后必须马上缩手70度 不敢再次触摸70以上 个人经验感觉 通常我们衡量电机发热程度是采用“温升”而不是用“温度”,当“温升”突然增大或超过最高工

作温度时,说明电机已发生故障。下面就一些基本概念进行讨论。 1 绝缘材料的绝缘等级 绝缘材料按耐热能力分为Y、A、E、B、F、H、C 7个等级,其极限工作温度分别为90、105、120、130、155、180℃、及180℃以上。 所谓绝缘材料的极限工作温度,系指电机在设计预期寿命内,运行时绕组绝缘中最热点的温度。根据经验,A级材料在105℃、B级材料在130℃的情况下寿命可达10年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命大大缩短。所以电机在运行中,温度是寿命的主要因素之一。 2 温升 温升是电机与环境的温度差,是由电机发热引起的。运行中的电机铁芯处在交变磁场中会产生铁损,绕组通电后会产生铜损,还有其它杂散损耗等。这些都会使电机温度升高。另一方面电机也会散热。当发热与散热相等时即达到平衡状态,温度不再上升而稳定在一个水平上。当发热增加或散热减少时就会破坏平衡,使温度继续上升,扩大温差,则增加散热,在另一个较高的温度下达到新的平衡。但这时的温差即温升已比以前增大了,所以说温升是电机设计及运行中的一项重要指标,标志着电机的发热程度,在运行中,如电机温升突然增大,说明电机有故障,或风道阻塞或负荷太重。 3 温升与气温等因素的关系 对于正常运行的电机,理论上在额定负荷下其温升应与环境温度的高低无关,但实际上还是受环境温度等因素影响的。 (1) 当气温下降时,正常电机的温升会稍许减少。这是因为绕组电阻r下降,铜耗减少。温度每降1℃,r约降0.4%。 (2) 对自冷电机,环境温度每增10℃,则温升增加1.5~3℃。这是因为绕组铜损随气温上升而增加。所以气温变化对大型电机和封闭电机影响较大。 (3) 空气湿度每高10%,因导热改善,温升可降0.07~0.38℃,平均为0.19℃。 (4) 海拔以1 000 m为标准,每升100 m,温升增加温升极限值的1%。 4 极限工作温度与最高允许工作温度 通常说a级的极限工作温度为105℃,a级的最高允许工作温度是90℃。那么,极限工作温度与最高允许工作温度有何不同?其实,这与测量方法有关,不同的测量方法,其反映出的数值不同,含义也不一样。 (1) 温度计法其测量结果反映的是绕组绝缘的局部表面温度。这个数字平均比绕组绝缘的实际最高温度即“最热点”低15℃左右。该法最简单,在中、小电机现场应用最广。 (2) 电阻法其测量结果反映的是整个绕组铜线温度的平均值。该数比实际最高温度按不同的绝缘等级降低5~15℃。该法是测出导体的冷态及热态电阻,按有关公式算出平均温升。 (3) 埋置温度计试验时将铜或铂电阻温度计或热电偶埋置在绕组、铁心或其它需要测量预期温度最高的部件里。其测量结果反映出测温元件接触处的温度。大型电机常采用此法来监视电机的运行温度。 各种测量方法所测量到的温度与实际最高温度都有一定差值,因此需将绝缘材料的“极限工作温度”减去此差值才是“最高允许工作温度”。 5 电机各部位的温度限度 (1) 与绕组接触的铁心温升(温度计法)应不超过所接触的绕组绝缘的温升限度(电阻法),即A级为60℃,E级为75℃,B级为80℃,F级为100℃,H级为125℃。 (2) 滚动轴承温度应不超过95℃,滑动轴承的温度应不超过80℃。因温度太高会使油

电动机启动时间计算

口诀: 电机起动星三角,起动时间好整定; 容量开方乘以二,积数加四单位秒。 电机起动星三角,过载保护热元件; 整定电流相电流,容量乘八除以七。 说明: (1)QX3、QX4系列为自动星形-三角形起动器,由三只交流接触器、一只三相热继电器和一只时间继电器组成,外配一只起动按钮和一只停止按钮。起动器在使用前,应对时间继电器和热继电器进行适当的调整,这两项工作均在起动器安装现场进行。电工大多数只知电动机的容量,而不知电动机正常起动时间、电动机额定电流。时间继电器的动作时间就是电动机的起动时间(从起动到转速达到额定值的时间),此时间数值可用口诀来算。 (2)时间继电器调整时,暂不接入电动机进行操作,试验时间继电器的动作时间是否能与所控制的电动机的起动时间一致。如果不一致,就应再微调时间继电器的动作时间,再进行试验。但两次试验的间隔至少要在90s以上,以保证双金属时间继电器自动复位。(3)热继电器的调整,由于QX系列起动器的热电器中的热元件串联在电动机相电流电路中,而电动机在运行时是接成三角形的,则电动机运行时的相电流是线电流(即额定电流)的1/√3倍。所以,热继电器热元件的整定电流值应用口诀中“容量乘八除以七”计算。根据计算所得值,将热继电器的整定电流旋钮调整到相应的刻度-中线刻度左右。如果计算所得值不在热继电器热元件额定电流调节范围,即大于或小于调节机构之刻度标注高限或低限数值,则需更换适当的热继电器,或选择适当的热元件。 回复引用举报 https://www.doczj.com/doc/107814771.html, 个人主页给TA发消息加TA为好友发表于:2006-12-10 14:50:0 0 9楼 不知道这个公式是怎么得出来的? 教科书上面有吗? 回复引用举报 bittercoffe 个人主页给TA发消息加TA为好友发表于:2006-12-10 15:05:0 0 10楼 经验吧,还有一些常用公式,我师傅留给我的,我已经传上来了. 回复引用举报 *007* 个人主页给TA发消息加TA为好友发表于:2006-12-10 18:19:0 0 11楼老兄不要骗我呀 回复引用举报

三相异步电机发热原因剖析

电动机发热原因及分析 1. 电机定、转子之间气隙很小,容易导致定、转子之间相碰 在中、小型电机中,气隙一般为0.2mm~1.5mm。气隙大时,要求励磁电流大,从而影响电机的功率因数;气隙太小,转子有可能发生摩擦或碰撞。一般由于轴承严重超差及端盖内孔磨损变形,使机座、端盖、转子三者不同轴心引起扫膛,很容易使电机发热甚至烧毁。如发现轴承磨损应及时更换,对端盖进行更换或刷镀处理,比较简单的处理方法是给端盖镶套。 2. 电机的不正常振动或噪音容易引起电机的发热 这种情况属于电机本身引起的振动,多数是由于转子动平衡不好,以及轴承不良、转轴弯曲,端盖、机座、转子不同轴心,紧固件松动或电机安装地基不平、安装不到位造成的,也可能是机械端传递过来的,应针对具体情况排除。 振动会产生噪声,还会产生额外负荷。 3. 轴承工作不正常,必定造成电机发热轴承工作是否正常可凭听觉及温度经验来判断。可用手或温度计检测轴承端判断其温度是否在正常范围内;也可用听棒(铜棒)接触轴承盒,若听到冲击声,就表示可能有一只或几只滚珠轧碎,如果听到有咝咝声,那就是表示轴承的润滑油不足,电机应在运行3,000小时~5,000小时左右换一次润滑脂。 4. 电源电压偏高,励磁电流增大,电机会过度发热

过高的电压会危及电机的绝缘,使其有被击穿的危险。电源电压过低时,电磁转矩就会大大降低,如果负载转距没有减小,转子转数过低,这时转差率增大会造成电机过载而发热,长时间过载会影响电机的寿命。当三相电压不对称时,即一相电压偏高或偏低时,会导致某相电流过大,电机发热,同时转距减小会发出“嗡嗡”声,时间长了会损坏绕组。 总之,无论电压过高、过低或三相电压不对称都会使电流增加,电机发热而损坏电机。因此按照国家标准,电机电源电压的变化应不超出额定值的±5%,电机输出功率可保持额定值。电机电源电压不允许超过额定值的±10%,三相电源电压之间的差值不应超出额定值的±5%。我公司曾发生过因为网络电压偏底,所有经变频的电机都无法启动或不能连续开机的情况。 5. 绕组短路,匝间短路,相间短路和绕组断路 绕组中相邻两条导线之间的绝缘损坏后,使两导体相碰,称为绕组短路。发生在同一绕组中的绕组短路称为匝间短路。发生在两相绕组之间的绕组短路称为相间短路。不论是那一种,都会使某一相或两相电流增加,引起局部发热,使绝缘老化损坏电机。绕组断路是指电机的定子或转子绕组碰断或烧断造成的故障。不论是绕组短路或断路都可能引起电机发热甚至烧毁。因此,发生这种情况后必须立即停机处理。 6. 物料泄露进入电机内部,使电机的绝缘降低,从而使电机的允许温升降低

计算电动机电流热继电器及整定值

计算电动机电流热继电器及整定值 1、有一台三相异步电动机额定电压为380伏,容量为14千瓦,功率因数为0.85,效率为0.95,计算电动机电流。 解:已知U=380(V),cosφ=0.85,η=0.95,P=14(KW) 电流 此主题相关图片如下: 答:电动机电流29安培。 2、有一台三相异步电动机额定电压为380伏,容量为10千瓦,功率因数为0.85,效率为0.95,选择交流接触器、热继电器及整定值。 解:已知U=380V,P=10KW,cosφ=0.85,η=0.95 电流 此主题相关图片如下: 选择交流接触器KM=Ie×(1.3~2)=26~40(A),选CJ10-40的接触器 选择热继电器FR=Ie×(1.1~1.5)=22~25(A),选JR16-20/30热元件22A的热继电器。 热元件整定值等于电动机额定电流,整定20A 答:电动机电流为20A,选40A的交流接触器,选额定电流30A热元件22A的热继电器,整定值20A。 3、一台三相交流异步电动机,其型号规格为Y112M-4,4KW;额定电压380V、△接法;cosφ=0. 8;η=0.85.计算该电动机的额定电流和保护用的熔体规格和热继电器的动作电流整定值是多少? 解:电动机的额定电流为 此主题相关图片如下: 保护用的熔体规格为

Ir=(1.5~2.5)I=(1.5~2.5)×8.9A=13.4~22.3A 热继电器的电流整定值 IZ=1.0×I=1.0×8.9=8.9A 答:该电动机的额定电流为8.9A,保护用的熔体规格可选20A,热继电器的保护整定值应调在8.9A 4、一台三相异步电动机额定电压380V;额定电流28A;cosφ=0.85;η=0.9.计算电动机的功率是多少?交流接触器应选多大规格?保护用熔断器的熔体应选多大? 解:电动机功率为P=3UeIe cosφη=3×0.38×28×0.85×0.9≈14KW 保护用的熔体规格为 Ir=(1.5~2.5)Ie=(1.5~2.5)×28=42~70A 交流接触器的电流规格为 Icj=(1.3~2)Ie=(1.3~2)×28=36.4~56A 答:电动机的功率14KW;交流接触器可选CJ20型40A;保护用的熔体可选60A。 5、一台三相异步电动机,额定功率为10KW;额定电压为380V;当电动机满载运行时效率为0.91,线电流为20A,当电动机轻载输出功为2KW时效率为0.8,线电流为10.5A,试求上述两种情况下的功率因数各为多少? 解:满载时的功率因数cosφ为 此主题相关图片如下: 轻载时的功率因数cosφ为 此主题相关图片如下: 答:该电动机满载时的功率因数0.85,轻载时的功率因数为0.36 6、一台二极的三相交流异步电动机,转速为2880转/分,接在380V、频率为50 f的三相电源上,求该电动机的转差率为多少? 答:电动机的同步转速为

电机发热原因和解决方法

电机发热原因和解决方法 1、室温过高 2、散热不良 3、过载 4、过压欠压或电压不平衡 5、频繁起停或频繁正反转 6、缺相 7、风扇坏或进出风口堵 8、轴承缺油 9、机械卡住堵转 10、负载转动惯量过大启动时间过长 11、匝间短路 12、新电机内部接线有误 13、星三角接线有误 14、星三角或自偶降压启动负载重启动时间长或因故障未正常转换 15、电机受潮 16、鼠笼式异步电机转子断条 17、绕线式异步电机转子绕组断线或电阻不平衡 18、转子扫膛 19、电源谐波过大,例如附近有大型整流设备,高频设备等 20、多次维修的电机铁心磁通减小 21、有些电机绕线工艺差 三相异步电动机应用广泛,通常用得最多的是鼠笼式异步电动机(以下简称“电机”)。该电机具有结构简单、容易制造、价格低廉、起步方便、工作可靠、坚固耐用、运行效率较高、便于维护检修的特点。在泵、风机及传动机构的驱动都离不开电机,电机出现任何故障都会对生产造成影响。因此,电气工作人员必须掌握有关异步电动机安全运行的基本知识和常见故障的处理方法,做到及时发现和消除电机事故隐患,保障安全运行。 选择电机的功率时,应考虑电机的发热、允许过载和启动能力三方面因素。一般情况下以发热问题最为重要。电机发热的原因是运转中的能量损耗在电机内部转变成了热量。电机中耐热最差的是绕组的绝缘材料,当电机温度不超过所用绝缘材料的最高允许温度时,绝缘材料的寿命较长,可达20年以上;反之,如果温度超过上述最高温度,则绝缘材料老化、变脆,

并缩短电机寿命,严重情况下,绝缘材料将碳化、变质、失去绝缘性能,从而使电机烧毁。可见,电机的故障大都因为温升不正常所致。而不同的电机绝缘等级则对应不同的电机允许温升,如下表。 绝缘等级A E B F H C 允许温度105℃ 120℃ 130℃ 155℃ 180℃ 180℃以上 允许温升60℃ 75℃ 80℃ 100℃ 125℃ 125℃以上 必须指出,在研究电机发热时,常把电机温度与周围环境温度之差称为“温升”。我国规定的环境温度为:40℃。 由温升曲线可知,发热开始时,由于温升较小、散发热量较少,大部分热量被电机吸收,因而温升τ增长较快。随温度升高,散发热量不断增长,电机散发热量由于负载不变而维持不变,电机吸收热量不断减少,温升曲线趋于平缓。最后电机温度不再升高,温升达到稳定值tw。总结电机发热过程与输出功率如下式: PN= tw AhN/(1-hN) 对同样规格的电机欲提高额定功率PN,有3种方法: 1.可以提高额定效率hN,即采取措降低电机损耗; 2.提高散热系数,即加大流通和散热面积; 3.提高绝缘材料温升。电机一旦选定,以上3项均成定数,所以生产中必须时刻监视电机各部分的温升。在实际生产中,由于电气或机械方面的原因,常会使电机出现过热或烧毁等故障。所以通过检查电机在运行中的温度来和判断其故障尤为重要。电机发热大致有以下原因及解决办法,供同行参考。 1. 电机定、转子之间气隙很小,容易导致定、转子之间相碰 在中、小型电机中,气隙一般为0.2mm~1.5mm。气隙大时,要求励磁电流大,从而影响电机的功率因数;气隙太小,转子有可能发生摩擦或碰撞。一般由于轴承严重超差及端盖内孔磨损变形,使机座、端盖、转子三者不同轴心引起扫膛,很容易使电机发热甚至烧毁。如发现轴承磨损应及时更换,对端盖进行更换或刷镀处理,比较简单的处理方法是给端盖镶套。 2. 电机的不正常振动或噪音容易引起电机的发热 这种情况属于电机本身引起的振动,多数是由于转子动平衡不好,以及轴承不良、转轴弯曲,端盖、机座、转子不同轴心,紧固件松动或电机安装地基不平、安装不到位造成的,也可能是机械端传递过来的,应针对具体情况排除。振动不仅会产生噪声,还会产生额外负荷。 3. 轴承工作不正常,必定造成电机发热轴承工作是否正常可凭听觉及温度经验来判断。可用手或温度计检测轴承端判断其温度是否在正常范围内;也可用听棒(铜棒)接触轴承盒,若听到冲击声,就表示可能有一只或几只滚珠轧碎,如果听到有咝咝声,那就是表示轴承的润滑油不足,电机应在运行3,000小时~5,000小时左右换一次润滑脂。 4. 电源电压偏高,励磁电流增大,电机会过度发热 过高的电压会危及电机的绝缘,使其有被击穿的危险。电源电压过低时,电磁转矩就会大大降低,如果负载转距没有减小,转子转数过低,这时转差率增大会造成电机过载而发热,长

三相异步电机发热的原因和解决措施

三相异步电机作为人们生产和生活中不可缺少的重要的动力提供者,在使用的过程中有些三相异步电机会出现发热很严重的现象,但是很多时候不知道怎么去解决,更加严重的是不知道是什么原因导致的电机发热,这应该是在电机的使用过程中最先掌握的,下面我们一起来了解一下电动机发热很严重常见的八大原因。 1、三相异步电机定、转子之间气隙很小,容易导致定、转子之间相碰。在中、小型三相异步电机中,气隙一般为0.2mm~1.5mm。气隙大时,要求励磁电流大,从而影响电机的功率因数;气隙太小,转子有可能发生摩擦或碰撞。一般由于轴承严重超差及端盖内孔磨损变形,使机座、端盖、转子三者不同轴心引起扫膛,很容易使电机发热甚至烧毁。如发现轴承磨损应及时更换,对端盖进行更换或刷镀处理,比较简单的处理方法是给端盖镶套。 2、电机的不正常振动或噪音容易引起电机的发热。这种情况属于电机本身引起的振动,多数是由于转子动平衡不好,以及轴承不良、转轴弯曲,端盖、机座、转子不同轴心,紧固件松动或电机安装地基不平、安装不到位造成的,也可能是机械端传递过来,应针对具体情况排除。 3. 轴承工作不正常,必定造成电机发热轴承工作是否正常可凭听觉及温度经验来判断。可用手或温度计检测轴承端判断其温度是否在正常范围内;也可用听棒(铜棒)接触轴承盒,若听到冲击声,就表示可能有一只或几只滚珠轧碎,如果听到有咝咝声,那就是表示轴承的润滑油不足,电机应在运行3,000小时~5,000小时左右换一次润滑脂。

4. 电源电压偏高,励磁电流增大,电机会过度发热。过高电压会危及电机绝缘,使其有被击穿的危险。电源电压过低时,电磁转矩就会降低,如果负载转距没有减小,转子转数过低,这时转差率增大会造成电机过载而发热,长时间过载会影响电机的寿命。当三相电压不对称时,即一相电压偏高或偏低时,会导致某相电流过大,电机发热,同时转距减小会发出“嗡嗡”声,时间长了会损坏绕组。总之,无论电压过高、过低或电压不对称都会使电流增加,电机发热而损坏电机。因此按照国家标准,电机电源电压的变化应不超出额定值的±5%,电机输出功率可保持额定值。电机电源电压不允许超过额定值的±10%,三相电源电压之间的差值不应超出额定值的±5%。 5. 绕组短路,匝间短路,相间短路和绕组断路。绕组中相邻两条导线之间的绝缘损坏后,使两导体相碰,称为绕组短路。发生在同一绕组中的绕组短路称为匝间短路。发生在两相绕组之间的绕组短路称为相间短路。不论是那一种,都会使某一相或两相电流增加,引起局部发热,使绝缘老化损坏电机。绕组断路是指电机的定子或转子绕组碰断或烧断造成的故障。不论是绕组短路或断路都可能引起电机发热甚至烧毁。因此,发生这种情况后必须立即停机处理。 6. 物料泄露进入电机内部,使电机绝缘降低,从而使电机允许温升降低。固体物料或粉尘从接线盒处进入电机内部,则会到达电机定子、转子的气隙之间,造成电机扫膛,直到磨坏电机绕组绝缘,使电机损坏或报废。如果液体和气体介质泄漏进入电机内部,将会直接造成电机绝缘下降而跳闸。一般液体和气体泄漏有以下几种表现形式:

电机发热温度标准值

电机发热温度标准值 通常我们衡量电机发热程度是采用“温升”而不是用“温度”,当“温升”突然增大或超过最高工作温度时,说明电机已发生故障。下面就一些基本概念进行讨论。 1 绝缘材料的绝缘等级 绝缘材料按耐热能力分为Y、A、E、B、F、H、C 7个等级,其极限工作温度分别为90、105、120、130、155、180℃、及180℃以上。 所谓绝缘材料的极限工作温度,系指电机在设计预期寿命内,运行时绕组绝缘中最热点的温度。根据经验,A级材料在105℃、B级材料在130℃的情况下寿命可达10年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命大大缩短。所以电机在运行中,温度是寿命的主要因素之一。 2 温升 温升是电机与环境的温度差,是由电机发热引起的。运行中的电机铁芯处在交变磁场中会产生铁损,绕组通电后会产生铜损,还有其它杂散损耗等。这些都会使电机温度升高。另一方面电机也会散热。当发热与散热相等时即达到平衡状态,温度不再上升而稳定在一个水平上。当发热增加或散热减少时就会破坏平衡,使温度继续上升,扩大温差,则增加散热,在另一个较高的温度下达到新的平衡。但这时的温差即温升已比以前增大了,所以说温升是电机设计及运行中的一项重要指标,标志着电机的发热程度,在运行中,如电机温升突然增大,说明电机有故障,或风道阻塞或负荷太重。 3 温升与气温等因素的关系 对于正常运行的电机,理论上在额定负荷下其温升应与环境温度的高低无关,但实际上还是受环境温度等因素影响的。 (1) 当气温下降时,正常电机的温升会稍许减少。这是因为绕组电阻r下降,铜耗减少。温度每降1℃,r约降0.4%。 (2)对自冷电机,环境温度每增10℃,则温升增加1.5~3℃。这是因为绕组铜损随气温上升而增加。所以气温变化对大型电机和封闭电机影响较大。 (3) 空气湿度每高10%,因导热改善,温升可降0.07~0.38℃,平均为0.19℃。 (4) 海拔以1 000 m为标准,每升100 m,温升增加温升极限值的1%。 4 极限工作温度与最高允许工作温度 通常说a级的极限工作温度为105℃,a级的最高允许工作温度是90℃。那么,极限工作温度与最高允许工作温度有何不同?其实,这与测量方法有关,不同的测量方法,其反映出的数值不同,含义也不一样。 (1) 温度计法其测量结果反映的是绕组绝缘的局部表面温度。这个数字平均比绕组绝缘的实际最高温度即“最热点”低15℃左右。该法最简单,在中、小电机现场应用最广。 (2) 电阻法其测量结果反映的是整个绕组铜线温度的平均值。该数比实际最高温度按不同的绝缘等级降低5~15℃。该法是测出导体的冷态及热态电阻,按有关公式算出平均温升。 (3) 埋置温度计试验时将铜或铂电阻温度计或热电偶埋置在绕组、铁心或其它需要测量预期温度最高的部件里。其测量结果反映出测温元件接触处的温度。大型电机常采用此法来监视电机的运行温度。 各种测量方法所测量到的温度与实际最高温度都有一定差值,因此需将绝缘材料的“极限工作温度”减去此差值才是“最高允许工作温度”。

热继电器选用计算

热继电器选用计算 (一)一般方法 保护长期工作或间断长期工作的电动机时热继电器的选用计算方法是: (1)一般情况下,按电动机的额定电流选取,使热继电器的整定值为(0.95—1.05)I N,I N为电动机的额定工作电流),或选取整定范围的中值为电动机的额定工作电流。 (2)保护Y—Δ起动电动机,当热继电器的3个热元件分别串接在Δ联结的各相绕组内,热继电器的整定电流应按电动机的额定电流整定。 (3)保护并联电容器的补偿型电动机,只有有功电流流经热继电器,热继电器的整定电流可按下式近似进行整定: 式中 It——热继电器整定电流.A; I N——电动机额定电流,A; cosφ——电动机功率因数。 (二)作图法 用于保护反复短时工作电动机的热继电器,每小时允许的操作次数,与电动机的起动过渡过程、通电持续率及负载电流等因素有关。复合加热的热继电器,在反复短时工作下每小时允许的操作次数,可按图1所示的速查曲线选用。 间接加热的热继电器每小时允许的操作次数,比按图1速查曲线选用的次数稍高。当电动机每小时的操作次数较高时,可选用带速饱和电流互感器的热继电器。图3—1及其应用方法是根据下列公式绘制和确定的。反复短时工作允许操作频率为 式中 f。——允许操作频率,次/h; Kc——计算系数,Kc=0.8—0.9; ts——电动机起动时间,s: Ks——电动机起动电流倍数(即其起动电流与其额定电流之比); K L——电动机负载电流倍数(即其负载电流与其额定电流之比): K1——热继电器额定整定电流与电动机额定电流之比: TD——通电持续率。

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)

电机运行时温度过高的原因

电机运行时温度过高的 原因 Hessen was revised in January 2021

电机运行时温度过高的原因,大致归纳为如下几个方面: (1)修过程中身故障引起的原因 ①定子绕组匝间或相间有短路故障,电流增大而发热。个别线圈局部有故障可以重新包扎绝缘,如果绕组整体绝缘老化发黑,必须重绕大修。 ②定子绕组有短路或并联绕组中某支路短线,泰州电机维修过程中引起三相电流不平衡增大损耗造成绕组过热。 ③将Δ形接成Y形,或Y形接成Δ形,在额定负载运行时,会使电机过热,要改正过来。 ④笼型转子段条引起电流过大而发热,建议改为铜笼或补焊。 ⑤定、转子扫膛、相擦,引起电机发热,因扫膛或相擦等于增加点击负载。解决办法是检查轴承,损坏的轴承要更新,另外检查电机装配质量,必要时要重新进行装配 (2)电方面引起的原因 ①电源电压高,超过电机额定电压的10%以上,引起电机铁损耗增加,使电机发热。 ②电源电压过低,低于电机额定电压的5%以上,电机在额定负载运行时会发热。泰兴电机维修解决办法是调整变压器分接开关的档次,把电源电压调整到正常的范围内。 ③过程中三相电源电压不平衡,相间电压不平衡度超过5%,引起三相电流不平衡而使电机发热。 ④缺相运行。 (3)负载方面 ①如果因为负载过大,泰州电机维修提醒应减轻负载或更换容量合适的电机。 ②启动过于频繁。 ③机械负载有故障。 (4)通风散热不良方面 ①电机通风道堵塞,应及时清扫。 ②绕组表面有灰尘和油污,影响散热,应及时清理。 ③风机故障。 ④环境温度过高,应采取降温措施。 电机过热处理办法: 1、负载过重。减轻负载或更换大的电机。 2、电机风扇损坏。更换。 3、电机轴承缺油或损坏,造成阻力增大或转子扫堂。加油或更换。

热继电器的选择和计算

热继电器的选择和计算 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

看一下本题就知了, 有一台三相异步电动机额定电压为380伏,容量为10千瓦,功率因数为,效率为,选择交流接触器、热继电器及整定值。 解:已知U=380V,P=10KW,cosφ=,η=? 电流I=P/(√3*U*cosφ*η)=10/***≈20A ? 选择交流接触器KM=Ie×(~2)=26~40(A),选CJ10-40的接触器 选择热继电器FR=Ie×(~)=22~25(A),选JR16-20/30热元件22A的热继电器。 热元件整定值等于电动机额定电流,整定20A 答:电动机电流为20A,选40A的交流接触器,选额定电流30A热元件22A的热继电器,整定值20A。 I=P/(√3*U*cosφ*η)=10/***≈20A 、有一台三相异步电动机额定电压为380伏,容量为14千瓦,功率因数为,效率为,计算电动机电流。 ?? 解:已知U=380(V),cosφ=,η=,P=14(KW) 电流 此主题相关图片如下: 答:电动机电流29安培。 2、有一台三相异步电动机额定电压为380伏,容量为10千瓦,功率因数为,效率为,选择交流接触器、热继电器及整定值。

解:已知U=380V,P=10KW,cosφ=,η= 电流 此主题相关图片如下: 选择交流接触器KM=Ie×(~2)=26~40(A),选CJ10-40的接触器 ?? 选择热继电器FR=Ie×(~)=22~25(A),选JR16-20/30热元件22A的热继电器。 ?? 热元件整定值等于电动机额定电流,整定20A ?? 答:电动机电流为20A,选40A的交流接触器,选额定电流30A热元件22A的热继电器,整定值20A。 3、一台三相交流异步电动机,其型号规格为Y112M-4,4KW;额定电压380V、△接法;cosφ=;η=.计算该电动机的额定电流和保护用的熔体规格和热继电器的动作电流整定值是多少? 解:电动机的额定电流为 此主题相关图片如下: 保护用的熔体规格为 Ir=(~)I=(~)×=~ ?热继电器的电流整定值 ???? IZ=×I=×= 答:该电动机的额定电流为,保护用的熔体规格可选20A,热继电器的保护整定值应调在 4、一台三相异步电动机额定电压380V;额定电流28A;cosφ=;η=.计算电动机的功率是多少?交流接触器应选多大规格?保护用熔断器的熔体应选多大? 解:电动机功率为P=3UeIe cosφη=3××28××≈14KW 保护用的熔体规格为 ? Ir=(~)Ie=(~)×28=42~70A 交流接触器的电流规格为 ? Icj=(~2)Ie=(~2)×28=~56A

步进电机发热原因分析,及处理方法

步进电机发热原因分析,及处理方法 步进电机启动后会有一个抑制转动作用的工作电流,就像是电梯悬停在半空中的状态。就是这个电流,会引起电机发热,这个是正常现象。 1.原因一 步进电机最有意义的一个优点就是在开环系统里可以实现精确的控制。开环控制意味着不需要关于(转子)位置方面的反馈信息。这种控制避免了使用昂贵的传感器以及象光学编码器这样的反馈设备,因为只需要跟踪输入的步进脉冲就可以知道(转子)的位置。最近部分客户向我们山社电机工程师反映步进电机也容易出现发热的问题,那么遇到这种情况该怎么解决呢? 1、减少步进电机发热,减少发热就是减少铜损和铁损。减少铜损有两个方向,减少电阴和电流,这就要求在选型时尽量选择电阻小和额定电流小的电机,对两相步进电机,能用串联的电机就不用并联电机,但是这往往与力矩和高速的要求相抵触。 2、对于已经选定的电机,则应充分利用驱动器的自动半流控制功能和脱机功能,前者在电机处于静态时自动减少电流,后者干脆将电流切断。 3、另外,细分步进电机驱动器由于电流波形接近正弦,谐波少,电机发热也会较少。减少铁损的办法不多,电压等级与之有关,高压驱动电机虽然会带来高速特性的提升,但也带来发热的增加。 4、应当选择合适的驱动电机电压等级,兼顾高带性、平稳性和发热、噪音等指标。 2.原因二 步进电机发热虽然一般不会影响电机的寿命,对大多数客户没必要理会。但是严重时会带来一些负面影响。如步进电机内部各部分热膨胀系数不同导致结构应力的变化和内部气隙的微小变化,会影响步进电机的动态响应,高速会容易失步。又如有些场合不允许步进电机的过度发热,如医疗器械和高精度的测试设备等。因此对步进电机的发热应当进行必要的控制。电机发热的原因有这几个方面: 1、驱动器所设的电流比电机的额定电流大

相关主题
文本预览
相关文档 最新文档