当前位置:文档之家› 万兆以太网交换机知识

万兆以太网交换机知识

万兆以太网交换机知识
万兆以太网交换机知识

万兆交换机的出现彻底实现了私有网络到大众网络的融合,并且其能够提供在一

秒钟超过一千个G的吞吐量,这是传统的交换机所不能做到的。作为兼容于以往的最

新以太网技术,万兆以太网不仅仅是以太网的“高速翻版”,万兆以太网第一次提出了

万兆广域以太网技术,第一次实现了私有网络到公众网络的融合。

NS10480,是丰润达自主研发的一款万兆以太网交换机,专为构建高安全高性能

网络需求而研发,是新一代万兆二层网管交换机。具有完善的QoS策略以及丰富的VLAN功能、易于管理维护,其智能以太环网保护技术,毫秒级的收敛时间,满足企业、小区、酒店、办公网及园区网的组网及接入要求。

万兆以太网交换机(NS10480)特色

工业级环网协议,收敛速度更快,零延时,零丢包

万兆环网收敛时间更短,零延时,零丢包。万兆主干环网,自愈保护能力取决于

交换机环网保护协议的优越性。目前大多厂商万兆环网使用最普通的生成树协议:IEEE802.1D STP(收敛时间50秒)和IEEE802.1W RSTP(收敛时间1秒),而RUNDATA万兆环网方案采用工业级环网协议ERPS。与EAPS、RRPP协议相同,都是用在电力,交通,金融等高要求的领域中,相比普通的生成树协议,收敛时间可以缩

短至50毫秒左右,也就是说是STP的1/1000的时间。

无节点限制,环网无限扩容

万兆环网交换机节点数量无限制,可根据网络规模随意扩容。万兆主干环网,由

一批支持环网协议的交换机通过万兆端口相互连接,根据终端数量调整交换机数量即可。简单的说,终端PC增加,只需在任意两台交换机之间增加一台环网交换机即可,不影响其他业务。目前大多厂商研发的环网交换机组环最多支持8台,也就是说,网

络规模再大,超过8台交换机以后环网将失效,只能组第2个环网。

万兆环网交换机采用工业级环网协议,并且对环网协议做了进一步优化,彻底解

决了交换机组环数量的限制,进一步简化网络的复杂度及维护的难度。

万兆端口精准对接,转发性能更高

万兆交换机优化万兆端口参数,将万兆转发性能发挥至极致。针对万兆环网方案,当交换机与交换机互联时,可通过“端口配置”页面,更改万兆口工作模式为“switch”,精准匹配交换机芯片参数;当交换机与服务器连接时,可通过“端口配置”页面,更改万兆口工作模式为“server”,精准匹配万兆网卡芯片参数,从而最大的发挥万兆环网性能。目前大多厂商采用中庸模式,局限在与交换机/服务器能通信的模式下,转发性能大打折扣。

硬件转发,更突显环网速度

万兆环网交换机拥有强大的二、三层硬件转发特性,基于 VCore-III MIPS-based CPU强大、稳定的处理能力,将万兆/千兆端口数据流通过硬件转发芯片高速转发,配合主干全万兆、千兆到客户端的构架,更突显环网速度。

全新节能设计,引领低碳通信

遵循IEEE 802.3az(Energy Efficient Ethernet 能效以太网),提供端口低耗电闲置模式,根据线缆长度进行相应输出功率调整,并且支持无连接时端口休眠,大幅度

降低功耗。

3.万兆以太网规范

万兆以太网规范 从前面的介绍可以得出,就目前来说,万兆以太网标准和规范都比较繁多,在标准方面,有2002年的IEEE ,2004年的IEEE ,2006年的IEEE 、IEEE 和2007年的IEEE ;在规范方面,总共有10多个(是一比较庞大的家族,比千兆以太网的9个又多了许多)。在这10多个规范中,可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线(或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。下面分别予以介绍。 1.基于光纤的局域网万兆以太网规范 就目前来说,用于局域网的基于光纤的万兆以太网规范有:10GBase-SR、 10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR和10GBase-LX4这六个规范。 10GBase-SR 10GBase-SR中的"SR"代表"短距离"(short range)的意思,该规范支持编码方式为64B/66B的短波(波长为850nm)多模光纤(MMF),有效传输距离为2~300m,要支持300m传输需要采用经过优化的50μm线径OM3(Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50μm光纤称为OM2光纤,而线径为μm的光纤称为OM1光纤)。 10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。 10GBase-LR 10GBase-LR中的"LR"代表"长距离"(Long Range)的意思,该规范支持编码方式为64B/66B的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。 10GBase-LR的光纤模块比下面将要介绍的10GBase-LX4光纤模块更便宜。 10GBase-LRM 10GBase-LRM中的"LRM"代表"长度延伸多点模式"(Long Reach Multimode),对应的标准为2006年发布的IEEE 。在1990年以前安装的FDDI m多模光纤的FDDI 网络和100Base-FX网络中的有效传输距离为220m,而在OM3光纤中可达260m,在连接长度方面,不如以前的10GBase-LX4规范,但是它的光纤模块比10GBase-LX4规范光纤模块具有更低的成本和更低的电源消耗。 10GBase-ER

万兆技术及万兆网络设计

万兆技术及万兆网络设 计 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

万兆技术及万兆网络设计 摘要:本文主要参考了万兆技术的发展,万兆技术的优势和应用特点,分析了万兆技术在校园网网络建设中的需求,阐述了构建万兆园区网的主要架构,并描述和万兆网络布线相关的经验。 关键词:万兆万兆网络 一、万兆技术的出现 目前应用最为广泛的以太网技术最早出现于1973年,当初的速率只有3M,后来陆续出现了10M、100M、1000M、10G的以太网技术,在30多年的时间里,以太网技术得到了飞速的发展,增长了3千多倍,推动了各行业信息化的突飞猛进。 2002年6月份,万兆以太网技术基于光纤传输的第一个标准IEEE 获得了通过。这个统一的标准,使用户在选择时不必再担心厂商之间的产品不能兼容的问题,大大规范了产商之间的竞争。其最终对万兆以太网技术发展的促进意义,是显而易见的。目前,包括锐捷网络、Cisco、华为3Com等公司在内的多家厂商已推出多款万兆以太网交换机产品,成就了今天以太网技术的全新局面。万兆以太网采用了以太网媒体访问控制(MAC)协议、以太网帧格式,保留以太网的最大帧长和最小帧长。万兆以太网是以太网在速度和距离方面的进化,定义了广域网和局域网两种物理层,是一种只采用全双工的技术。 二、万兆以太网的技术特色和应用特征 1、从技术角度分析,万兆以太网具有以下特色: 首先,万兆以太网相对于以往代表最高适用度的千兆以太网拥有着绝对的优势和特点。其技术特色首先表现在物理层面上。万兆以太网是一种只采用全双工与光纤的技术,

其物理层(PHY)和OSI模型的第一层(物理层)一致,它负责建立传输介质(光纤或铜线)和MAC层的连接,MAC层相当于OSI模型的第二层(数据链路层)。 其次,万兆以太网技术基本承袭了以太网、快速以太网及千兆以太网技术,因此在用户普及率、使用方便性、网络互操作性及简易性上皆占有极大的引进优势。在升级到万兆以太网解决方案时,用户不必担心既有的程序或服务是否会受到影响,升级的风险非常低,同时在未来升级到100G都将是很明显的优势。 第三,万兆标准意味着以太网将具有更高的带宽(10GB)和更远的传输距离(最长传输距离可达80公里)。 第四、在企业网中采用万兆以太网可以最好地连接企业网骨干路由器,这样大大简化了网络拓扑结构,提高网络性能。 第五、万兆以太网技术提供了更多的更新功能,大大提升QoS,具有相当的革命性,因此,能更好的满足网络安全、服务质量、链路保护等多个方面需求。 最后,随着网络应用的深入,WAN/MAN与LAN融和已经成为大势所趋,各自的应用领域也将获得新的突破,而万兆以太网技术让工业界找到了一条能够同时提高以太网的速度、可操作距离和连通性的途径,万兆以太网技术的应用必将为三网发展与融和提供新的动力。 2、万兆以太网还有十分明显的应用特征: 1、万兆以太网结构简单、管理方便、价格低廉。由于没有采用访问优先控制技术,简化了访问控制的算法,从而简化了网络的管理,并降低了部署的成本,因而得到了广泛的应用。

万兆以太网规范

百度文库-让每个人平等地提升自我 10GBase-ER 5.5.1万兆以太网规范 5.5.1万兆以太网规范 从前面的介绍可以得出,就目前来说,万兆以太网标准和规范都比较繁多,在标准方面,有2002 年的IEEE ,2004 年的IEEE ,2006 年的IEEE、IEEE 和2007 年的IEEE ;在规范方面,总共有10多个(是一比较庞大的家族,比千兆以太网的9个又多了许多)。在这 10多个规范中,可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线 (或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。下面分别予 以介绍。 1 ?基于光纤的局域网万兆以太网规范 就目前来说,用于局域网的基于光纤的万兆以太网规范有:10GBase-SR、10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR 和10GBase-LX4 这六个规范。 10GBase-SR 10GBase-SR中的"SR"代表”短距离”(short range)的意思,该规范支持编码方式为 64B/66B的短波(波长为850nm)多模光纤(MMF ),有效传输距离为2?300m,要支持300m 传输需要采用经过优化的50艸线径0M3 (Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50 ^m光纤称为OM2光纤,而线径为叩的光纤称为OM1光纤)。 10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。 10GBase-LR 10GBase-LR中的"LR"代表"长距离”(Long Range)的意思,该规范支持编码方式为 64B/66B的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。 10GBase-LR的光纤模块比下面将要介绍的10GBase-LX4光纤模块更便宜。 10GBase-LRM 10GBase-LRM中的"LRM"代表"长度延伸多点模式"(Long Reach Multimode ),对应的标准为2006年发布的IEEE。在1990年以前安装的FDDI ?m多模光纤的FDDI网络和100Base-FX网络中的有效传输距离为220m,而在OM3光纤中可达260m,在连接长度方面,不如以前的10GBase-LX4规范,但是它的光纤模块比10GBase-LX4规范光纤模块具有更低的成本和更低的电源消耗。

以太网交换机配置基础

实验1以太网交换机配置基础 一、实验内容与目标 完成本实验,您应该能够: ●掌握以太网交换机的基本配置方法 ●掌握以太网交换机的常用配置命令 二、实验组网图 三、实验设备 PC:两台有以太网接口和COM口的PC 线缆:普通网线两根,Console线缆一根 以太网交换机:Quidway S3100-26C-SI或Quidway S3610-28TP 四、实验过程 实验任务一:使用以太网交换机的console口进行配置Console口配置是路由器最基本、最直接的配置方式,当路由器第一次被配置时,console口配置成为配置的唯一手段。因为其它配置方式都必须预先在交换机上进行一些初始化配置。 1、console配置线缆的连接。 ①将配置电缆的DB-9(或DB-25)孔式插头接到要对路由器进行配置的微机或终端的串口上; ②将配置电缆的RJ45一端连到路由器的配置口(console)上。 2、运行主机上的终端软件。 ①首先启动超级终端,点击windows的开始→程序→附件→通讯→超级终端,启动超级终端; ②根据提示输入连接描述名称后确定,在选择连接时使用相应的COM口后单击“确

定”按钮,在弹出的COM1属性窗口中单击“还原为默认值”按钮后单击“确定”按钮。 ③此时,我们已经成功完成超级终端的启动。如果您已经将线缆按照要求连接好,并且交换机已经启动,此时按Enter 键,将进入交换机的用户视图并出现如下标识符:。否则您将启动交换机,超级终端会自动显示交换机的整个启动过程。 实验任务二:交换机的用户界面配置 1、 进入用户视图 交换机开机直接进入用户视图,此时交换机在超级终端中的标识符为。在该视图下可以查询交换机的一些基础信息,如版本号(display version ) %May 18 08:04:16:482 2000 AL3SW1 SHELL/4/LOGIN: Console login from aux0 display version H3C Comware Platform Software Comware software, Version 5.20, Release 0001P02 Copyright (c) 2004-2007 Hangzhou H3C Tech. Co., Ltd. All rights reserved. H3C S3610-28TP uptime is 3 weeks, 0 day, 14 hours, 51 minutes …… 从上面的信息中我们可以看到该S3610-28TP 三层以太网交换机的版本号为:

关于万兆以太网标准

万兆以太网标准 关于万兆以太网标准 万兆以太网物理层规格 在IEEE 802.3ae中定义了万兆以太网物理层规格(PHY)和支持光模块,如下图所示(左)。在以太网标准中,光模块被正式定义为一种物理媒体依赖接口(PMD)。右图显示了PMD、PHY和MAC(媒体访问控制)在交换路由器板卡上的逻辑设计。万兆以太网MAC(右图)在服务接口(向PHY)以 10Gb/s的速率运行,在MAC PHY层之间适应速率,通过调试Inter-Packet Gaps (IPG)以适应LAN PHY和WAN PHY的略有不懂的数据速率。速率适应机制在IEEE 802.3ae中叫做Open Loop Control。 Stack Diagram of 10GE PHYS & PMDs Typical Switch Card Layout 万兆以太网物理层规格(PHY)为: 连续LAN PHY 连续物理层由64b/66b多媒体数字信号编解码器(译码/解码)配置和serializer/deserializer (SerDes)组成。64b/66b多媒体数字信号编解码器配置是执行包描绘的块状编码配置。SerDes为连续光模块或PMD,在传送器上将16- bit并行数据路径(每个644 Mb/s)排序到一个10.3Gb/s的连续数据流,并将一个10.3Gb/s的连续数据流去序列化到16-bit并行数据路径(每个 644Mb/s)。 连续WAN PHY 连续WAN PHY由WAN接口子层(WIS)、64b/66b多媒体数据信号编解码器配置(与上文描述一样)、和SerDes组成,SerDes也与上文描述一样,除了连续数据流的速度为9.95Gb/s(OC-192),每个16-bit并行数据路径为622Mb/s。WIS为SONET framing和X7+ X6 + 1 scrambling专门设计。与SONET OC-192

万兆以太网技术

万兆以太网技术

目录 1.基于光纤的局域网万兆以太网规范 (1) 2.基于双绞线(或铜线)的局域网万兆以太网规范 (2) 3.基于光纤的广域网万兆以太网规范 (3) 4.万兆以太网物理层规格 (4) 4.1万兆以太网物理层规格(PHY) (4) 4.2相关物理介质层(PMD) (7)

万兆以太网技术 万兆以太网标准和规范都比较繁多,在标准方面,有2002年的IEEE 802.3ae,2004年的IEEE 802.3ak,2006年的IEEE 802.3an、IEEE 802.3aq和2007年的IEEE 802.3ap。在规范方面,总共有10多个,总共可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线(或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。下面分别予以介绍。 1. 基于光纤的局域网万兆以太网规范 目前,基于光纤的万兆以太网规范有:10GBase-SR、10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR和10GBase-LX4这六个规范。 (1)10GBase-SR 10GBase-SR中的“SR”代表“短距离”(short range)的意思,该规范支持编码方式为64B/66B 的短波(波长为850nm)多模光纤(MMF),有效传输距离为2~300m,要支持300m传输需要采用经过优化的50μm线径OM3(Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50μm光纤称为OM2光纤,而线径为62.5μm的光纤称为OM1光纤)。 10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。 (2)10GBase-LR 10GBase-LR中的“LR”代表“长距离”(Long Range)的意思,该规范支持编码方式为64B/66B 的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。 10GBase-LR的光纤模块比下面将要介绍的10GBase-LX4光纤模块更便宜。 (3)10GBase-LRM 10GBase-LRM中的“LRM”代表“长度延伸多点模式”(Long Reach Multimode),对应的标准为2006年发布的IEEE 802.3aq。在1990年以前安装的FDDI 62.5μm多模光纤的FDDI网络和100Base-FX网络中的有效传输距离为220m,而在OM3光纤中可达260m,在连接长度方面,不如以前的10GBase-LX4规范,但是它的光纤模块比10GBase-LX4规范光纤模块具有更低的成本和更低的电源消耗。 (4)10GBase-ER 10GBase-ER中的“ER”代表“超长距离”(Extended Range)的意思,该规范支持超长波(1550nm)单模光纤(SMF),有效传输距离为2m到40km。 (5)10GBase-ZR 几个厂商提出了传输距离可达到80km超长距离的模块接口,这就是10GBase-ZR规范。它使用的也是超长波(1550nm)单模光纤(SMF)。但80km的物理层不在EEE 802.3ae标准之内,是厂商自己在OC-192/STM-64 SDH/SONET规范中的描述,也不会被IEEE 802.3工作组接受。 (6)10GBase-LX4 10GBase-LX4采用波分复用技术,通过使用4路波长统一为1300 nm,工作在3.125Gb/s的分离光源来实现10Gb/s传输。该规范在多模光纤中的有效传输距离为2~300m,在单模光纤下

万兆以太网规范

5.5.1 万兆以太网规范 5.5.1 万兆以太网规范 从前面的介绍可以得出,就目前来说,万兆以太网标准和规范都比较繁多,在标准方面,有2002年的IEEE 802.3ae,2004年的IEEE 802.3ak,2006年的IEEE 802.3an、IEEE 802.3aq 和2007年的IEEE 802.3ap;在规范方面,总共有10多个(是一比较庞大的家族,比千兆以太网的9个又多了许多)。在这10多个规范中,可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线(或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。下面分别予以介绍。 1.基于光纤的局域网万兆以太网规范 就目前来说,用于局域网的基于光纤的万兆以太网规范有:10GBase-SR、10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR和10GBase-LX4这六个规范。 10GBase-SR 10GBase-SR中的"SR"代表"短距离"(short range)的意思,该规范支持编码方式为 64B/66B的短波(波长为850nm)多模光纤(MMF),有效传输距离为2~300m,要支持300m传输需要采用经过优化的50μm线径OM3(Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50μm光纤称为OM2光纤,而线径为62.5μm的光纤称为OM1光纤)。 10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。 10GBase-LR 10GBase-LR中的"LR"代表"长距离"(Long Range)的意思,该规范支持编码方式为 64B/66B的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。 10GBase-LR的光纤模块比下面将要介绍的10GBase-LX4光纤模块更便宜。 10GBase-LRM 10GBase-LRM中的"LRM"代表"长度延伸多点模式"(Long Reach Multimode),对应的标准为2006年发布的IEEE 802.3aq。在1990年以前安装的FDDI 62.5?m多模光纤的FDDI 网络和100Base-FX网络中的有效传输距离为220m,而在OM3光纤中可达260m,在连接长度方面,不如以前的10GBase-LX4规范,但是它的光纤模块比10GBase-LX4规范光纤模块具有更低的成本和更低的电源消耗。 10GBase-ER

万兆以太网技术发展及应用

万兆以太网技术发展及应用摘要:随着互联网技术的更新与发展,万兆以太网(10GBase-T)技术将在不久的将来成为网络应用的主流,本文综合阐述了10GBase-T技术、市场及应用。应用10GBase-T铜缆布线解决方案构建高性能网络核心成为行业发展趋势。 关键字:万兆以太网802.3ae10GE标准10GBase-T铜缆布线线性传输性能 一以太网技术的发展 以太网(Ethernet)技术由施乐公司(Xerox)于1973年提出并实现,它采用“载波监听多路访问/冲突检测CSMA/CD(Carrier Sense Multiple Access/Collision Detection)”的共享访问方案,将多个工作站都连接在一条总线上,所有的工作站都不断向总线发出监听信号。但在同一时刻,只能有一个工作站在总线上传输,其它工作站必须等待传输结束后,再开始自己的传输。由于以太网技术具有共享性、开放性、加上设计技术上的一些优势(如结构简单、算法简洁、良好的兼容性和平滑升级)以及关键的传输速率的大幅提升,它不但在局域网领域站稳了脚跟,而且在城域网甚至广域网范围内都得到了进一步的应用。 最早的以太网传输速率为10Mbps。采用CSMA/CD介质访问控制方式的局域网技术,由Xerox公司于1975年研制成功。而在1979年7月至1982年间,当时的DEC、Intel和Xerox三家公司共同制定了以太网的技术规范DIX。在这个技术规范的基础上,形成了IEEE802.3以太网标准,并在1989年正式成为一种以太网技术的国际标准。在20多年中,以太网

技术经历了不断发展,成为迄今最广泛应用的局域网技术。 千兆以太网技术作为一种高速以太网技术,给用户带来了提高核心网络的有效解决方案。它继承了传统以太网技术价格便宜的特点,采用与10M 以太网相同的帧格式、帧结构、网络协议、全/半双工工作方式、流控模式以及布线系统。由于这项技术可以不用改变传统以太网的桌面应用和操作系统,因此可与10M或100M的以太网很好地配合工作。在升级到千兆以太网时,不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地保护用户投资,所以这项技术的市场前景十分被用户看好。 再发展就进入到以太网的万兆时代。万兆以太网使用IEEE 802.3以太网介质接入控制(MAC)协议、IEEE 802.3以太网帧格式和IEEE 802.3帧格式,不需要修改以太网介质接入控制(MAC)协议或分组格式。所以,能够支持所有网络的上层服务,包括在OSI七层模型的第二/三层或更高层次上运行的智能网络服务,具有高可用性、多协议标记交换(MPLS)、含IP语音(VoIP)在内的服务质量(QoS)、安全与策略实施、服务器负载均衡(SLB)和Web高速缓存等特点。 二10GBase-T万兆以太网技术 万兆以太网技术(10GBase-T)始于2002年6月802.3ae10GE标准的正式发布。在物理层,802.3ae大致分为两种类型,一种为与传统以太网连接速率为10Gbps的“LANPHY”,另一种为连接SDH/SONET速率为9.58464Gbps的“WANPHY”;WANPHY与SONETOC-192帧结构的融合,可以与OC-192电路和SONET/SDH设备一起运行,保护了传统基础设施投资,使运营商能够在不同地区中通过城域网提供端到端以太网。

以太网交换机技术原理

以太网交换机技术原理 接入网产品部网络组

目录 第一章以太网交换技术概述 (1) 1.1交换式以太网的发展 (1) 1.2以太网的基本概念 (1) 1.3交换机工作原理 (2) 第二章物理端口和介质 (4) 2.1以太网命名方法 (4) 2.2 RJ-45的相关知识 (5) 第三章以太网交换机管理的概念 (6) 3.1带外管理 (6) 3.2带内管理 (6) 第四章以太网交换机重要功能 (8) 4.1 VLAN (8) 4.2 IGMP S NOOPING (11) 4.3生成树协议(S PANNING T REE P ROTOCOL) (12) 4.4链路聚合(T RUNKING) (14) 4.5端口工作状态 (15) 4.6流量控制 (16) 4.7数据帧过滤 (16) 4.8端口镜像 (16)

4.9端口锁定 (17) 4.10以太网交换机的Q O S (17) 第五章产品及应用 (19) 5.1交换机产品系列 (19) 5.2主要特点 (19) 5.3典型应用 (19) 5.4组网示意图 (20)

第一章以太网交换技术概述 1.1交换式以太网的发展 “以太网”是Ethernet的中译名,是在二十世纪七十年代由施乐(Xerox)公司 的Palo Alto研究中心(PARC)开发的,是一种局域网技术。让我们首先回顾一 下以太网的发展过程。 1982年12月,IEEE802.3标准的出现标志着以太网技术的起步,同时也标志 着符合国际标准、具有高度互通性的以太网产品的面世。 1990年,出现了第一台以太网交换机。 1993年,全双工以太网的出现改变了以太网半双工的工作模式,彻底解决了 多个端口的信道竞争。 1995年3月,IEEE802.3u规范的通过,标志着100Mbps快速以太网时代的 到来。 1998年6月,通过了IEEE802.3z规范,以太网速度达到了1000Mbps(即 1Gbps),以太网进入高速网络的行列。 1.2以太网的基本概念 CSMA/CD 以太网的访问是竞争式的,这种技术称为CSMA/CD(带冲突检测的载波侦听多 路访问) “载波侦听”表示希望发送的站点先要侦听线路,如果其他站点正在发送,则等 待到线路空闲为止。 “多路访问”是指多个站点共享媒体。 冲突检测”是指站点在发送时要监测媒体,从而知道是否有冲突发生—即有其 他站点同时在发送。 IEEE802.3帧结构 8 6 6 2 可变 4 前同步码 目的地址 源地址 长度 数据 FCS 这是IEEE802.3帧格式。这和传统的以太网帧略有差别,但IEEE802.3是一个 标准,多数厂商推出的都是兼容IEEE802.3的硬件和软件,当我们提到一个以

计算机网络 万兆以太网

计算机网络万兆以太网 随着千兆以太网的标准化以及在生产实践中的广泛应用,以太网技术逐渐延伸到城域网的汇聚层。千兆以太网通常用作将小区用户汇聚到城域节点,或者将汇聚层设备连接到骨干层。虽然以太网多链路聚合技术已完成标准化且多厂商互通指日可待,可以将多个千兆链路捆绑使用。但是考虑光纤资源以及波长资源,链路捆绑等因素,它一般只用在点内或者短距离应用环境。 为了解决由带宽及传输距离而导致以太网技术不适于用在城域网骨干/汇聚层的问题,1999年IEEE标准委员会成立了IEEE 802.3ae工作组进行研究。在2002年6月由IEEE正式发布了IEEE 802.3ae 10Gbps以太网标准,自此以太网的发展势头又进一步增强。这标志着万兆位以太网标准的统一,使用户在选择时不必再担心厂商之间的产品不能互相兼容的问题,也规范了各厂商间的竞争。目前包括华为3Com、Cisco、Avaya、Enterasys、Foundry和Riverstone 公司在内的多家厂商已经推出多款万兆位以太网交换机产品,成就了今天以太网技术的全新局面。 网络拓扑结构的设计和操作也随着智能化万兆位以太网多层交换机的推出发生了转变。比如第三层路由和第四层至第七层智能,包括服务质量(QoS)、服务级别(CoS)、高速缓存、服务器负载均衡、安全性和基于策略的网络功能。万兆以太网的主要特点包括以下几个方面。 ●保留802.3以太网帧格式; ●保留802.3以太网的最大帧长和最小帧长; ●只使用全双工工作模式,彻底改变了传统以太网的半双工广播工作模式; ●使用光纤作为传输媒体,已不再适用铜缆; ●使用点对点链路,支持星型结构的LAN; ●数据传输率非常高,不直接和端用户相连; ●制定了新的光物理媒体相关(PMD)子层; ●与SONET OC-192帧结构的融合,可以与OC-192电路和SONET/SDH设备仪器运行。

以太网交换机基础培训教材

以太网交换机基础培训教材 Catalog 目录 1 以太网概述 (7) 2 以太网的基础知识 (8) 2.1MAC地址 (8) 2.2以太网帧的帧格式 (9) 2.2.1以太网Ⅱ (10) 2.2.2带有802.2逻辑链路控制的IEEE 802.3 (10) 2.2.3IEEE 802.3子网访问协议(以太网SNAP) (10) 2.2.4Novell以太网 (11) 2.3CSMA/CD (11) 2.4冲突域和广播域 (12) 2.5以太网的典型设备-HUB (13) 2.6全双工以太网 (13) 3 二层交换机的基本原理 (14) 3.1二层交换机 (14) 3.2支持VLAN的二层交换机 (17) 3.2.1VLAN的概念 (18) 3.2.2VLAN的划分 (19) 3.2.3VLAN的标准 (21) 3.2.4支持VLAN交换机的转发流程 (23) 4 三层交换机基本原理 (26) 4.1三层交换机的提出 (27) 4.2三层交换机基本特征 (28) 4.3三层交换机的功能模型 (28) 4.4三层交换机转发流程 (30) 4.4.1IP网络规则 (30) 4.4.2三层转发流程 (31) 4.4.3选路过程 (33) 4.5路由器和交换机 (36) 4.5.1接口 (36) 4.5.2特点对照 (37) 5 交换机相关协议和技术 (37) 5.1物理层特性(接口) (37)

5.1.1自协商 (37) 5.1.2智能MDI/MDIX自识别 (38) 5.1.3流控机制 (39) 5.1.4POE供电 (40) 5.1.5端口镜像 (41) 5.2二层协议和特性 (41) 5.2.1STP/RSTP/MSTP协议 (41) 5.2.2GARP/GVRP/GMRP (43) 5.2.3聚合特性 (45) 5.2.4Isolate-user-vlan (45) 5.2.5二层多播 (46) 5.2.6QinQ (47) 5.3三层特性 (48) 5.3.1SuperVLAN (48) 5.4Qos/ACL (49) 5.5安全特性 (49) 5.5.1802.1X (50) 5.5.2PORTAL (51) 5.6管理特性 (54) 5.6.1集群管理 (54) 5.6.2WEB网管 (55) 5.7IRF (56) 5.8与路由器相同的一些特性 (58) 6 以太网交换机主要厂商 (58) 6.1Cisco (59) 6.2Extreme (59) 6.3Foundry (59) 6.4港湾 (59) 7 参考资料 (59)

万兆以太网技术

‘农业网络信息》2007年第11期一蝽与电子商务/政务 万兆以太网技术 王树广 山东理工大学网络中心,山东淄博255049) 摘要:奉文舟绍了当前阿摧电最新技术一万兆旺太厨。文章详细说明了万兆以太两标准lEEE8023鹏的主要内客、万兆以太网的应用以;阿时也介绍7万兆以太网的铜癌标准。 美键词:以太网;万晃以太网;局域网;广蛾网;物理层 中圈分类号:TP399文献标识码:B文章编码:1672-625112007}11—0098—03 10GE山ern“ WANGshu—gIl蛳g (sl画一gu血哪酊0f‰h叫。盯,zib0255049,chiM) ^b咖cl:11liB删cleimrodu哪岫l岫ln咖Ⅲktec洲唧一10cm唧eL‰枷de慨plai哪‰m且in删删0flEEE8023胛,tlleap一;c出∞0f10GElhem吐hd豳吐‰oopp肝c出es诅nd埘面丑l吕oi曲甜u∞也 E时woIds:E山唧H;10GE血唧一;L衄dⅢ札n咖ork;Wide删nn珊Ik;Pll撺i脚hy盯 1IEEE802.3∞标准的诞生 2002年6月12日.IEEEE终于批准了10c以太网的标准802.3ae一万兆位,秒的媒体接人控制参数、 物理层和管理参数。802.3ae的批准进一步确定了以太网在未来局域网的霸主地位。也使得以太网未来在城域网、广域网中将占有重要的一席之地。自1973年施乐公司开发出以太网.以太网从粗缆的10B船e5到细缆的10BaBe2.再到双绞线10B鹳e—T.又到五类线的100B衄e—1x。随后又出现了现在还未来得及大面积使用的千兆以太网1000BaBe_Sx、100Ba8e—u、1000Ba∞一T。以太网在过去的30年中击败了TokenRiIlg和FDDI.成为局域冈的首选。万兆网的出现叉开创了以太网的新纪元。IEEE8023.耻是由3C哪、CiBco、Ex骶Ⅱ坨、Intel、Nonel、slln等组成的10cEA(万兆以太网联盟)创立的。我国的中兴、华为等公司也是10GEA的戚员,这对我国高速局域网的发展起了重要的作用。 2IEEE802.3ae标准的主要内容 2.1万兆以太网的主要技术特点 保留802.3以太网的帧格式;保留802.3以太网的最大帧长和最小帧长;使用光纤作为传输媒体(丽不使用铜线);只使用全双工工作方式,彻底改变了传统以太网的半双工的广播工作方式;使用点对点链路,支持星形结构的局域网;数据率非常高,不直接和端用户相连;创造了新的光物理媒体相关(PMD)子层。 2.2万兆以太网的模型 万兆以太网属于以太网,但它是一种只适用于全双工模式并且只能使用光纤的技术.所以它不需要带有冲突检测的载波侦听多路访问协议(csMA/cD)。除此之外,万兆以太网与原来的噬太网模型完全相同。其模型如图1。在以太网中.PHY表示以太网的物理层设备。它对应于OsI模型的第一层。PHY通过连接介质(光纤或铜线)与MAC层相连,而MAC层对应的是OsI模型中的第二层。在万兆以太网的体系结构中。PHY(第一层)进一步划分为物理介质相关层(PMD)和物理编码子层(PCS)。万兆以太网有两种不同的物理层:局域网物理层和广域网物理层.这两种物理层的数据率并不一样。局域网物理层使用简单的编码机制传送数据。而广域网物理层则需要增加一个s0N明ysDH组帧子层(wIs层),以便利用sONE鹏DH作为第一层来传送数据。 PMD(Phy8icalMediumDependent)子层:PMD子层的功能是支持在PMA子层和介质之间交换串行化的符号代码位,PMD子层将这些电信号转换成适合于在某种特定介质上传输的形式。PMD是物理层的最低子 杖稿日期:2007埘埘 作者筒舟:王树广(1968一),男,工程师,研究方向卅算机罔络和信息系统。 一98—

多模光纤万兆以太网的PMD之争

多模光纤万兆以太网的PMD之争 本文关键字: 光纤收发器网络千兆以太网数据通信IEEE802.3FDDI 2.5G 激光 多模光纤是用户驻地网络中最受欢迎的光纤媒质,因为多模光纤可以使用便宜的LED和VCSEL作为光源,对于数据通信来说这种特性占有很大优势。随着多模光纤网络使用者对带宽的需求越来越高,多模光纤标准和收发器技术也跟着向更高速率演进。 这些标准必须考虑多模光纤的模式色散,因为模式色散决定了光纤的带宽上限,而模式色散与波长、入射光的特性和光纤的折射率分布有关。通过这个带宽上限,可以在波长、发射条件、传输距离和数据速率之间建立联系。IEEE已经制定了快速以太网(100Mbps),吉比特以太网(1Gbps)和万兆以太网(10Gbps)支持单模和多模光纤的光学标准。 图:多模光纤的种类不同,万兆以太网PMD的性能也随之不同 网络建设者必须确定哪种PMD能够满足其对成本和性能的要求。 尤其是万兆以太网,标准制定者必须考虑各种光纤中的模式色散问题。由此提出了数种光纤和光收发器标准,网络规划者们在设计网络时必须考虑这些标准。在多模光纤网络的实际部署当中,有几个因素会影响收发器的选型。 从千兆以太网到万兆以太网 要了解使用多模光纤万兆以太网技术的演进,最好先看看千兆以太网的发展历史。IEEE P802.3标准化组织发布了两个关于多模光纤千兆以太网的标准,一个是1000Base-SX,另一个是1000Base-LX。1000Base-SX标准在通信光接口方面更加成功一些。现在,每个季度会有150万到200万端口的1000Base-SX设备交货。1000Base-SX标准只适用于各种多模光纤,工作波长为850nm。 1000Base-LX标准在1310nm波长工作,所以通常使用单模光纤(SMF)。不过它也可以使用一些多模光纤。目前,每个季度会有几十万端口的1000Base-LX设备交货。 与千兆以太网类似,万兆以太网标准为各种多模光纤制定了两个不同的PMD(physical media dependents,与物理介质相关的规范),另外还有第三个标准正在标准委员会的评审

关于万兆以太网交换机的一些知识

万兆以太网作为最新以太网技术,不仅是以太网的“高速翻版”,更是从私有网 络到公众网络的融合。作为网络的核心设备,万兆以太网交换机需要满足更高的需求。 近年来,从局域网到城域网,从城域网到广域网,以太网技术以惊人的速度正占 据着越来越多的市场,尤其在企业网络和运营商网络中,以太网技术越来越多地成为 毫无争议的选择。从快速以太网到千兆以太网,再到万兆以太网,技术上的更新满足 了新一代互联网技术所带来的高速带宽增长和新一代应用的需求。 应市场及广大用户的需求,丰润达首次推出48口万兆以太网交换机,性能超群,相当于4~6台普通交换机进行集群的容量,并且能够达到更高的可靠性,零延迟、零丢包,无论是大型网吧还是大型企业,均能满足其组网及接入需求。 大家知道,用户购买万兆以太网交换机,是因为需要能够在任何情况下线速处理 数据包的转发,需要能够处理新一代的互联网应用,同时也需要交换机能够提供最好 的投资保护、能够占用最少的机架空间、能够尽量地节省电量、能够看得见用户的流 量等。 很显然,千兆交换机不能容纳大容量万兆端口的线速转发,目前的千兆交换机只 能够提供几十到几百个G的吞吐量,而新一代的万兆交换机能够提供每秒处理一千个 G以上的吞吐。万兆交换机不仅应该提供大容量的背板交换矩阵,还应该提供大容量 的本地交换矩阵,无阻塞的并行交换矩阵是目前最为先进的技术。 衡量万兆以太网交换机时要测试哪些方面 首先是测试它是否能够达到线速转发的吞吐量,同时观察端到端的传输延迟,一 台优秀的万兆交换机应该能够在加载关键应用的前提下(如组播应用、IPv6 应用、大容量访问列表控制),线速无阻塞地转发数据包,并且保证端到端的数据延迟尽可能 地小。 其次,衡量万兆交换机还需通过测试关键协议,如BGP4的容量、路由收敛和路 由震荡来检验,测试针对攻击的防范特性、测试流量管理的关键特性。冗余性的测试 也非常重要,冗余性包含硬件系统的冗余性和软件特性的冗余性。 可以说,选择万兆以太网交换机不仅仅是几个单项功能的选择,更是一项全面评 估的系统选择。丰润达万兆以太网交换机正好满足上面指标,是转发性能优异、且低 碳节能环保全新交换机。

万兆以太网标准的核心内容

万兆以太网标准的核心内容 以太网从诞生到现在已经有25年的历史,由于它成本低、可靠性高、安装和维护相对简单,因此大受人们欢迎。今天,以太网几乎承担了Internet上所有的通信任务。 随着技术的发展和网络速度的提高,万兆(10G)以太网技术开始列入业界的议事日程。拟议中的万兆以太网标准与早期的以太网标准之间存在巨大差别,特别是万兆以太网只用光纤,并且只在全双工模式下运行。这就是说,万兆以太网将不再使用冲撞检测协议。 万兆以太网不会使现有的网络基础设施投资变成明日黄花。它依旧是以太网标准,现有的各种以太网标准可以很方便地移植到未来的新标准中。万兆标准开发特别工作组正在努力使万兆以太网能够与其他网络技术实现互通。此外,该工作组还在向新标准添加一些特别的技术,使以太网数据包能够在SONET中顺利通行。 万兆以太网标准计划在2002年中期开始采用。由于在当前的网络通信中,分组交换数据量已经超过语音通信量,占据了主导地位,因此,业界希望新的万兆以太网标准能够将原来主要用于语音通信的网络和数据网络融合为一体。 本期“万兆以太网主题报道”全面介绍万兆以太网标准的制订情况、标准核心内容、市场应用等,为读者全面展示网络发展的核心方向和它的市场前景,包括以下几篇文章: 万兆以太网标准的核心内容D10 标准制订流程D11 万兆以太网市场蓄势待发D12 10G技术的更高应用D12 10G遭遇障碍D13 以太网发展小史D13 在国际标准组织开放式系统互联(OSI)参考模型下,以太网是第二层协议。万兆以太网使用IEEE 802.3以太网介质访问控制协议

(MAC)、IEEE 802.3以太网帧格式以及IEEE 802.3最小和最大帧尺寸。 正如1000Base-X和1000Base-T(千兆以太网)都属于以太网一样,从速度和连接距离上来说,万兆以太网是以太网技术自然发展中的一个阶段。但是,因为它是一种只适用于全双工模式,并且只能使用光纤的技术,所以它不需要带有冲突检测的载波侦听多路访问协议(CSMA/CD)。除此之外,万兆以太网与原来的以太网模型完全相同。 在以太网中,PHY表示以太网的物理层设备,它对应于OSI模型的第一层。PHY通过连接介质(光纤或铜线)与MAC层相连,而MAC 层对应的是OSI模型中的第二层。在以太网的体系结构中,PHY(第一层)进一步划分为物理介质层(PMD)和物理编码子层(PCS)。例如,光纤收发机属于PMD,PCS由编码器和一个并串转换器或复用功能组成。 802.3ae规范定义了两种PHY类型:局域网PHY和广域网PHY。广域网PHY在局域网PHY功能的基础上增加了一个扩展特性集。这些PHY惟一的区别在PCS上。同时,PMD也有多种类型(请参见图1)。 芯片接口(XAUI) 在万兆以太网特别工作组的诸多创新中,有一个被称做XAUI(读作“Zowie”)的接口。其中的“AUI”部分指的是以太网连接单元接口(Ethernet Attachment Unit Interface)。“X”代表罗马数字10,它意味着每秒万兆(10Gbps)。XAUI被设计成一个接口扩展器,它扩展的接口就是XGMII(与介质无关的万兆接口)。XGMII是一个74位信号宽度的接口(发送与接收用的数据路径各占32位),可用于把以太网MAC层与物理层(PHY)相连。在大多数典型的以太网MAC和PHY相连的、芯片对芯片的应用中,XAUI可用来代替或者扩展XGMII。 XAUI是一种从1000Base-X万兆以太网的物理层直接发展而来的低针数、自发时钟串行总线。XAUI接口的速度为1000Base-X 的2.5倍。通过调整4根串行线,这种4bit的XAUI接口可以支持万兆以太网10倍于千兆以太网的数据吞吐量。

计算机网络应用 万兆以太网

计算机网络应用万兆以太网 在前面讲到的千兆以太网通常用作将小区用户汇聚到网络的交换中心,或者将汇聚层设备连接到骨干层。虽然以太网多链路聚合技术已完成标准化且多厂商互通指日可待,可以将多个千兆链路捆绑使用,但是考虑光纤资源以及波长资源,链路捆绑等因素,它一般只用在POP点内或者短距离应用环境。 为了解决由带宽及传输距离而导致以太网技术不适用于用在城域网骨干/汇聚层的问题,随后由IEEE 802.3委员会成立的IEEE 802.3ae工作组制定了IEEE 802.3ae 10Gbps(10000Mbps)以太网标准,从而解决了该问题。 万兆以太网能够应用到核心层之间,以及核心层与汇聚层之间的链路上,目前包括华为3Com、Cisco、Avaya、Enterasys、Foundry和Riverstone公司在内的多家厂商已经推出多款万兆以太网交换机产品,成就了今天以太网技术的全新局面。 万兆以太网同样保留了IEEE 802.3的大部分格式,但它只支持全双工工作模式、使用光纤作为传输媒体,制定了新的光物理媒体相关子层(PMD)具有更高的数据传输速率。 万兆以太网包括IEEE 802.3ae万兆以太网标准和IEEE 802.3ak万兆以太网标准两种技术标准。 1.IEEE 802.3ae万兆以太网标准 IEEE 802.3ae万兆以太网标准是基于光纤设计的,它定义了在光纤上传输10Gbps以太网的标准,传输距离从300米到40公里,它将物理层分为局域网物理层(LAN PHY)和广域网物理层(WAN PHY)两个层次,其体系结构如图5-10所示。 10GBASE-R10GBASE-W10GBASE-X 图5-10 IEEE 802.ae定义的LAN和WAN物理层结构 其中,局域网物理层是指与标准以太网的连接,其速率为10Gbps;广域网物理层是指与SDH/SONET的连接,其速率为9.58464Bbps。每种PHY分别可以使用10Gbase-S(850nm 短波)、10Gbase-L(1310nm长波)、10Gbase-E(1550nm长波)3种规格,其最大传输距离分别为300m、10km、40km。 10GBase-S 10GBase-S是针对有850nm激光接收器和10Gbps带宽的多模式光纤(MMF)而设计的。

相关主题
文本预览
相关文档 最新文档