当前位置:文档之家› GH4163高温合金成分及性能

GH4163高温合金成分及性能

GH4163高温合金成分及性能
GH4163高温合金成分及性能

GH4163高温合金

概述:

GH4163高温合金是Ni-Cr-Co基沉淀硬化型变形高温合金,使用温度可达850℃。合金在800℃以下具有较好的抗氧化性能,具有较高的屈服强度好蠕变强度,应变时效裂纹倾向性小,抗冷热疲劳强度性能好。合金具有满意的成形性能和焊接性能。适于制作航空发动机主燃烧室和加力燃烧室的板材焊接结构件和承力件,主要产品有热轧和冷轧板材、热轧和锻制棒材、冷拔(轧)无缝管和环形件等。

GH4163高温合金已用于制作航空发动机火焰筒、加力筒体、安装边、安装座和管件等。批产和使用情况良好。

零件须在固溶状态下进行焊接,可采用点焊、缝焊和氩弧焊等方法进行焊接。合金在高温长期时效或长期应力时效中,有η相析出。

GH4163高温合金化学成分

.

摘自GB/T141992,杂质元素分析有区别的摘自GB/ 15062、GJB 1952A、GJB 2297A、GJB

3165A、

GJB 3317A和GJB5301,见表

热处理制度

摘自HB/Z 140,各品种的标准热处理制度为:

固溶处理:1150℃±10℃;时效处理:1150℃±10℃×8h/AC。其中:

A 锻件、环形件,固溶保温时间(1.5~2.5)h,水冷;

B 管件,固溶保温时间≤15min,空冷或适当冷却;

C 板材、带材,固溶保温时间:δ≤4mm,(5~15)min,空冷;4mm﹤δ≤10 mm,≤30 min,空冷或适当冷却;δ﹥10 mm,≤120 min,空冷

D 热轧和锻制棒材,固溶保温时间:d≤8mm,30 min,水冷(空冷或油冷);d﹥8 mm,

(90~150)min,水冷(空冷或油冷)。

规格范围:

板材:厚壁规格(min-max):Φ0.1mm-Φ200.0mm

丝材:Φ0.1mm-Φ3.0mm

直条或卷条:Φ2.0mm–Φ300.0mm

产品:哈氏合金、高温合金、铜镍合金、英科乃尔、蒙乃尔、钛合金、沉淀硬化钢等各种中高端不锈钢,镍基合金等。

高温合金系列GH3030,GH4169,GH3128,GH145,GH3039,GH4099,GH605,GH5188等Inconel系列(600,601,617, 625,690,718,X-750,)

纯镍/钛合金系列N4,N5(N02201)N6,Nickel200,Nickel201等

Incoloy系列(800/800H/800HT, 825, 926,A-286,925,660A)

Nimonic系列(Nimonic80A,Nimonic901)Udimet L-605

Monel系列(Monel 400,Monel K500);

哈氏合金(Hastelloy C-276);C-22(N06022),C-2000,等

精密合金系列(1J06,1J22,1J50,3J01,3J53,4J29,4J36);

耐热钢(C-276,314,2014,1Cr18Ni9Ti,904L)

冶韩实业电热合金周工/TEL:①③⑧---①⑥①⑥---⑥③④③

(Ni70Cr30,Ni80Cr20,Ni60Cr15,Ni35Cr20,Ni30Cr20,0Cr25Al5,0Cr21Al6N

b,0Cr27Al7Mo2)等。棒材,板材,管材,带材,丝材,锻件,法兰等,也可非标定做,来样检测。我公司材料之多不能一一列出,以上部分供参考。欢迎来电咨询。

变形高温合金的特性、分类及用途

科技名词定义 塑性变形 科技名词定义 中文名称:塑性变形 英文名称:plastic deformation 定义:岩体、土体受力产生的、力卸除后不能恢复的那部分变形。 应用学科:水利科技(一级学科);岩石力学、土力学、岩土工程(二级学科);土力学(水利)(三级学科) 本内容由全国科学技术名词审定委员会审定公布 塑性变形(Plastic Deformation),的定义是物质-包括流体及固体在一定的条件下,在外力的作用下产生形变,当施加的外力撤除或消失后该物体不能恢复原状的一种物理现象。

目录 介绍 机理 影响 介绍 机理 影响 展开 编辑本段介绍 材料在外力作用下产生而在外力去除后不能恢复的那部分变形 塑性变形 。材料在外力作用下产生应力和应变(即变形)。当应力未超过材料的弹性极限时,产生的变形在外力去除后全部消除,材料恢复原状,这种变形是可逆的弹性变形。当应力超过材料的弹性极限,则产生的变形在外力去除后不能全部恢复,而残留一部分变形,材料不能恢复到原来的形状,这种残留的变形是不可逆的塑性变形。在锻压、轧制、拔制等加工过程中,产生的弹性变形比塑性变形要小得多,通常忽略不计。这类利用塑性变形而使材料成形的加工方法,统称为塑性加工。 编辑本段机理 固态金属是由大量晶粒组成的多晶体,晶粒内的原子按照体心立方、面心立方或紧密六方等方式排列成有规则的空间结构。由于多种原因,晶粒内的原子结构会存在各种缺陷。原

塑性变形 子排列的线性参差称为位错。由于位错的存在,晶体在受力后原子容易沿位错线运动,降低晶体的变形抗力。通过位错运动的传递,原子的排列发生滑移和孪晶(图1)。滑移是一部分晶粒沿原子排列最紧密的平面和方向滑动,很多原子平面的滑移形成滑移带,很多滑移带集合起来就成为可见的变形。孪晶是晶粒一部分相对于一定的晶面沿一定方向相对移动,这个晶面称为孪晶面。原子移动的距离和孪晶面的距离成正比。两个孪晶面之间的原子排列方向改变,形成孪晶带。滑移和孪晶是低温时晶粒内塑性变形的两种基本方式。多晶体的晶粒边界是相邻晶粒原子结构的过渡区。晶粒越细,单位体积中的晶界面积越大,有利于晶间的移动和转动。某些金属在特定的细晶结构条件下,通过晶粒边界变形可以发生高达300~3000%的延伸率而不破裂。 编辑本段影响 金属在室温下的塑性变形,对金属的组织和性能影响很大,常会出现加工硬化、内应力和各向异性等现象。 加工硬化 塑性变形引起位错增殖,位错密度增加,不同方向的位错发 塑性变形力学原理 生交割,位错的运动受到阻碍,使金属产生加工硬化。加工硬化能提高金属的硬度、强度和变形抗力,同时降低塑性,使以后的冷态变形困难。

高温合金材料设计与制备的基础研究

项目名称:高温合金材料设计与制备的基础研究首席科学家:孙晓峰中国科学院金属研究所起止年限:2010年1月-2014年8月 依托部门:中国科学院

一、研究内容 1. 拟解决的关键科学问题 高温合金中通常含有十几种强化元素,合金化程度较高,强化机理复杂,有的强化元素之间还存在较强的交互作用,认识复杂体系中合金化元素的作用机制是高温合金成分优化和发展先进合金的理论基础,但迄今为止,部分元素的作用机制仍不清楚。高温合金中的纯净化冶炼及凝固缺陷控制是改善材料综合性能、提高产品合格率的关键环节,但我国的冶炼水平与欧美等发达国家存在较大差距,对于凝固缺陷的形成机理尚不明确,实际工程中仍然靠经验和反复试制来解决问题,此外,在前期工作中发现现有凝固理论中的枝晶生长机制尚不完善,有待于进一步研究。在热加工方面,粉末冶金与喷射成形为获得均质近终成形大型铸锻件提供了新的短流程、低成本技术途径,然而,对于热加工过程中的塑性变形动力学、原始颗粒边界和夹杂物等缺陷的形成机理和控制方法等方面仍缺乏系统的理论研究工作。抗高温氧化腐蚀防护涂层为高温合金构件的长寿命服役提供了重要的保障,但由于高温防护涂层服役环境的特殊性与防护涂层的多界面特性,使得抗高温腐蚀涂层的防护机理以及陶瓷涂层与金属涂层界面的相容性等科学问题尚没有得到有效的解决。为了保证发动机的安全可靠性,高温合金材料的性能评价方法和基础数据测试是发动机设计选材的重要依据,国内在高温结构材料的使用性能表征方法以及在服役环境下的损伤特征和寿命预测方面开展了一些研究工作,但还没有形成系统的理论体系。针对上述高温合金设计与制备中存在的问题,本项目拟解决的关键科学问题如下: (1)复杂多元先进高温合金成分设计及强韧化机理 溶质原子Co、W、Mo、Re、Ru等及微量元素C、B、Hf等在先进单晶高温合金中的原子占位、偏聚与扩散行为;强化相的晶体结构、析出规律及稳定性对高温合金组织及性能的影响;热-力耦合作用下固相扩散诱发的合金微结构演变动力学;溶质原子间的交互作用;多元强化合金的成分设计、高温度梯度定向凝固组织与性能调控。 (2)高温合金纯净化冶炼及凝固缺陷形成与控制 高温合金纯净化冶炼过程中杂质元素去除热力学和动力学,高温熔体中亚结构的表征及演化动力学;熔体结构及熔体热历史对凝固组织和缺陷的影响规律;多场耦合作用下胞状枝晶生长机制及凝固组织演变过程;多元复杂合金凝固过程动力学模型的建立、多场耦合求解及凝固组织演变“可视化”数值模拟;高温合金缺陷形成机理与控制基础理论。

中外常用钢材料牌号对照表

常用国内外钢材牌号对照表 中国 美国 日本 德国 英国 法国 前苏联 国际标准化组织 GB AST JIS DIN 、DINEN BS 、BSEN NF 、NFEN ΓOCT ISO 630 品 名 牌号 牌号 牌号 牌号 牌号 牌号 牌号 Q195 Cr.B Cr.C SS330 SPHC SPHD S185 040 A10 S185 S185 CT1K П CTlC П CTl ПC Q215A Cr.C Cr.58 SS 330 SPHC 040 A12 CT2K П—2 CT2C П—2 CT2ПC —2 Q235A Cr.D SS400 SM400A 080A15 CT3K П—2 CT3C П—2 CT3ПC —2 E235B Q235B Cr.D SS400 SM400A S235JR S235JRGl S235JRG2 S235JR S235JRGl S235JRG2 S235JR S235JRGl S235JRG2 CT3K П—3 CT3C П—3 CT3ПC —3 E235B Q255A SS400 SM400A CT4K П—2 CT4C П—2 CT4ПC —2 普 通 碳 素 结 构 钢 Q275 SS490 CT5C П—2 CT5ПC —2 E275A

中国 美国 日本 德国 英国 法国 前苏联 国际标准化组织 GB AST JIS DIN 、DINEN BS 、BSEN NF 、NFEN ΓOCT IS0 630 品 名 牌号 牌号 牌号 牌号 牌号 牌号 牌号 08F 1008 1010 SPHD SPHE 040A10 80K П 10 1010 S10C S12C CKl0 040A12 XCl0 10 C101 15 1015 S15C S17C CKl5 Fe360B 08M15 XCl2 Fe306B 15 C15E4 20 1020 S20C S22C C22 IC22 C22 20 25 1025 S25C S28C C25 IC25 C25 25 C25E4 40 1040 S40C S43C C40 IC40 080M40 C40 40 C40E4 45 1045 S45C S48C C45 IC45 080A47 C45 45 C45E4 50 1050 S50C S53C C50 IC50 080M50 C50 50 C50E4 优 质 碳 素 结 构 钢 15Mn 1019 080A15 15r

常用合金钢

常用合金钢(知识扩展)一.合金钢分类与编号二.低合金结构钢Q345、Q420 三. 机器零件用钢40Cr、65Mn、60Mn2Si、20Cr、20CrMnTi、GCr15 四.合金工具钢9SiCr、CrWMn、W18Cr4V、Cr124Cr5MoSiV 五.特殊性能钢1Cr13、9Cr18、1Cr17、1Cr18Ni9Ti、ZGMn13 合金钢分类 1.按合金元素含量多少分类:按合金元素含量多少分类:按合金元素含量多少分类低合金钢(合金总量低于5 %)中合金钢(合金总量为5 %~10 %)高合金钢(合金总量高于10 %)2.按用途分类:按用途分类:按用途分类合金结构钢低合金结构钢(也称普通低合金钢) 合金渗碳钢、合金调质钢、合金弹簧钢滚珠轴承钢合金工具钢合金刃具钢(含低合金刃具钢、高速钢) 合金模具钢(含冷模具钢、热模具钢) 量具用钢特殊性能钢不锈钢、耐热钢、耐磨钢合金钢编号首部用数字标明碳质量分数: 结构钢以万分之一为单位的数字(两位数), 工具钢和特殊性能钢以千分之一为单位的数字(一位数)来表示碳质量分数,而工具钢的碳质量分数超过1%时,碳质量分数不标出。在表明碳质量分数数字之后,用元素的化学符号表明钢中主要合金元素,质量分数由其后面的数字标明:平均质量分数少于 1.5%时不标数, 平均质量分数为 1.5%~2.49%、 2.5%~3.49%……时,相应地标以2、3……。专用钢用其用途的汉语拼音字首来标明. 如GCr15表示碳质量分数约1.0%、铬质量分数约 1.5%(特例)的滚珠轴承钢. Y40Mn,表示碳质量分数为0.4%、锰质量分数少于 1.5%的易切削钢. 普通低合金钢Q345 用途主要用于制造桥梁,船舶,车辆,锅炉,压力容器,输油输气管道,大型钢结构等.在热轧空冷状态下使用,组织为细晶粒的F+P,不再热处理. 化学成分wt% C Mn Si V Nb Ti 0.015 0.18 ~ 1.0 ~0.55 0.02 0.20 1.6 ~0.15 ~0.06 厚度mm <16 16~35 35~50 σs MPa ≥345 ≥325 ≥295 σb MPa 470~630 0.02 ~0.2 机械性能δ5 % Akv(20℃) J 34 21~22 GB/T1591-1994 Q345包括旧钢号12MnV ,14MnNb ,16Mn ,18Nb ,16MnCu Q420 普通低合金钢在正火状态下使用,组织为F+S 化学成分wt% V Nb Ti 0.02 ~0.2 0.015 ~0.06 0.02 ~0.2 δ5 % C ≤0.20 厚度mm <16 Mn Si Cr ≤0.40 Ni ≤0.70 1.0 ~0.55 1.7 34 18~19 16~35 GB/T1591-1994 ≥380 35~50 Q345包括旧钢号15MnVN ,14MnVTiRE 机械性能σs MPa σb MPa ≥420 520~680 ≥400 Akv(20℃) J 合金调质钢(低淬透性) 40Cr 热处理毛坯尺寸<25mm 用途:用于制造汽车、拖拉机、机床和其它机器上的各种重要零件,如机床齿轮、主轴、汽车发动机曲轴、连杆、螺栓、进气阀主要化学成分wt% C Mn Si Cr Mo 机械性能(≥)退火态H B 淬火℃回火℃σb σs δ5 ψ Akv % % J MP MP a a 0.37 0.5 0.17 0.8 0.07 850 520 980 785 9 45 47 2 0 油水~~~~~0.44 0.8 0.37 1.1 0.12 7 油(GB/T3077-1999)合金弹簧钢钢号C 65Mn 60Mn2Si 主要成分w % Mn Si Cr 热处理淬火℃回火℃机械性能σs MPa σb MPa δ10 ψ % % 65Mn 0.62 ~0.70 60Si2 0.56 Mn ~0.64 0.90 ~1.20 0.60 ~0.90 0.17 ~0.37 1.50 ~2.00 ≤ 830 540 0.25 油800 1000 8 30 ≤ 870 480 1200 1300 5 0.35 油GB/T1222-1985 25 65Mn 60Mn2Si钢应用举例:截面≤25mm的弹簧,例如车箱缓冲卷簧合金渗碳钢(低淬透性合金渗碳钢低淬透性) 20Cr 低淬透性用途:可制造汽车、拖拉机中的变速齿轮,内燃机上的凸轮轴、活塞销等机器零件.能同时承受强烈的摩擦磨损,较大的交变载荷,特别是冲击载荷机械性能(≥)主要化学成分wt% 热处理℃C Mn Si Cr 渗预淬回σb σs δ ψ Akv 5 碳备火火MP M J % % a P 处 a 理0.17 0.5 0.20 0.7 9 ~~~~3 0.24 0.8 0.40 1.0 0 8 8 0 水油780 2 0 ~820 0 水, 油8 3 5 5 4 0 毛坯尺寸m m 10 4 47 <0 1 5 GB/T3077-1999 合金渗碳钢(中淬透性合金渗碳钢中淬透性) 中淬透性20CrMnTi 主要化学成分wt% C Mn Si Cr Ti 毛渗预淬回σb σs δ ψ Ak 坯尺v 碳备火火MP MP % % 2 0 寸处℃m a a 理J m 9 3 0 8 8 0 油7 2 7 0 0 0 油1 85 1 4 55 < 0 0 0 5 15 8 GB/T3077-1999 0 热处理℃机械性能(≥)0.17 0.80 0.1 1.0 7~~~~0.23 1.10 0.3 1.3 7 0.04 ~0.10 滚珠轴承钢GCr15 用途:制造滚动轴承的滚动体(滚珠、滚柱、滚针),内外套圈等. 或制造精密量具、冷冲模、机床丝杠等耐磨件. 淬回

铸造合金成分设计与过程控制读书报告

铸造合金成分设计与过程控制 读书报告 1.合金成分设计之关于共晶点的移动 (1)为了达到时效强化的效果,一般采取相图上对应温度有固溶段的成分做为合金的成分;随着固溶度的增加强度增加,到达共晶点处时,因为此处熔 点低结晶温度区间几乎为0,故而缩孔等少合晶强度会在此处突增,不过 有时为了降低熔点也会采用共晶处成分的合金。单相区间的合金具有良好 的压力加工性能;两相区的合金成分可以调控致使具有一相硬而一相软的 基体以加强耐磨性。 (2)两组元A,B构成共晶相图时,平衡条件下共晶温度共晶成分的点两相具有从液相中相同的析出动力,但是组元A熔点高或是结构复杂或光滑界面非 金属的一侧相其扩散速度小或为光滑界面式的长大【螺旋位错式v=u2*Δ Tk^2/ 二维形核式v=exp(-u3/ΔTk)】没有熔点低B侧或粗糙界面侧的组 元基相【连续长大v=u1*ΔTk,u1>u2>u3】的长大速度快,所以共晶相A 应当没有共晶相B的多,所以一般共晶相图中共晶点应当靠近低熔点简单 侧,而加入的合金元素由于表面能低活性大吸附于某侧阻碍此侧共晶相的 生长那么将致使共晶点向远离这一侧相的基组元方向移动。但实际上共晶 点的位置是由L,α,β各相的G自由能曲线在共晶温度下的公切线上L 的公切点位置。 (3)在非平衡条件下,因为来不及扩散析出,所以在共晶线以下才达到析出条件,而且出现伪共晶区,凡在伪共晶区内的合金成分可以达到析出共晶组 织的条件而伪共晶区常偏向高熔点结构复杂或光滑界面的组员一侧。这是 因为平衡时共晶点偏向低熔点组元侧,所以以低熔点组元为基的组成相与 液态合金成分差别较小,则通过扩散而达到该组成相的成分较容易,其结 晶速度较大,为了达到共晶成分两相具有相同的结晶条件形成两组元相的 扩散要求,需要使得伪共晶区偏向高熔点组元侧,使高熔点组元侧相也具 有相同的析出条件。 (4)单相合金凝固中液体前沿溶质分配,原理是质量守恒与菲克定律,(CL-Cs*)

合金熔炼课程设计

《铸造合金及其熔炼》 课程设计报告 题目:上端盖RuT420的配料及熔炼 姓名: 学号: 班级:材料成型及控制工程1104班学院:机械工程学院 指导老师: 日期:2015年1月13日 山东理工大学

目录 一零件原始要求…………………………………………………………… 零件名称,结构及尺寸要求,材料,机械性能要求 二选材……………………………………………………………………… 材料牌号成分,力学性能 三选用炉料………………………………………………………………… 炉料来源炉料配比计算 四.炉体设计…………………………………………………………………… 冲天炉炉径设计炉身高度有效高度前炉送风系统画图 五.确定熔炼工艺过程……………………………………………………… 确定主要工艺参数熔炼前准备冲天炉熔炼操作炉况判断及常见故障特殊处理 六.热处理……………………………………………………………………七.参考资料…………………………………………………………………

一、零件原始要求 (一)零件名称:上端盖 (二)零件特点:轮廓尺寸Φ420*157 属于小型端盖圆盘类,形状简单,壁厚均匀,在15.7-18之间,铸件毛重34.3kg,精度不高,采用湿砂型铸造。 (三)要求铸铁牌号:RuT420.抗拉强度:σb≥420Mpa 融化率:冲天炉融化率为2吨每小时 (四)零件的结构及尺寸:

二、选材 (一)牌号:RuT420 (二)标准:GB/T9439-2010 (三)化学成分选择:C:3.5%~3.9%,Si:1.8%~2.6%,Mn:0.5%~0.8%,S:<0.06%,P:<0.08% Xt残:0.02%~0.05%,Mg: 0.015%~0.025% 三、选用炉料 (一)炉料来源:原生铁回炉铁废钢硅铁锰铁 1、原生铁,又称高炉生铁,是含碳量大于2%的铁碳合金,工业生铁含碳量一般在2.11%~4.3%,并含有C、Si、Mn、S、P等元素,是铁矿石经高炉冶炼的产品。是冲天炉炉料的主要组成物。 2、回炉铁,是蠕墨铸铁浇注完后清理的浇冒口、废铸件。按配料的需要加入一定量,降低铸件成本。 3、废钢,包括废钢件、钢料、刚屑等,加入废钢可以降低铁水含碳量。 4、铁合金,包括硅铁、锰铁、铬铁等铁中间化合物,可以调整铁水的化学成分或配制合金铸铁。 (二)炉料化学成分:

GH4163高温合金成分及性能

GH4163高温合金 概述: GH4163高温合金是Ni-Cr-Co基沉淀硬化型变形高温合金,使用温度可达850℃。合金在800℃以下具有较好的抗氧化性能,具有较高的屈服强度好蠕变强度,应变时效裂纹倾向性小,抗冷热疲劳强度性能好。合金具有满意的成形性能和焊接性能。适于制作航空发动机主燃烧室和加力燃烧室的板材焊接结构件和承力件,主要产品有热轧和冷轧板材、热轧和锻制棒材、冷拔(轧)无缝管和环形件等。 GH4163高温合金已用于制作航空发动机火焰筒、加力筒体、安装边、安装座和管件等。批产和使用情况良好。 零件须在固溶状态下进行焊接,可采用点焊、缝焊和氩弧焊等方法进行焊接。合金在高温长期时效或长期应力时效中,有η相析出。 GH4163高温合金化学成分 . 摘自GB/T141992,杂质元素分析有区别的摘自GB/ 15062、GJB 1952A、GJB 2297A、GJB 3165A、 GJB 3317A和GJB5301,见表 热处理制度 摘自HB/Z 140,各品种的标准热处理制度为: 固溶处理:1150℃±10℃;时效处理:1150℃±10℃×8h/AC。其中: A 锻件、环形件,固溶保温时间(1.5~2.5)h,水冷; B 管件,固溶保温时间≤15min,空冷或适当冷却; C 板材、带材,固溶保温时间:δ≤4mm,(5~15)min,空冷;4mm﹤δ≤10 mm,≤30 min,空冷或适当冷却;δ﹥10 mm,≤120 min,空冷 D 热轧和锻制棒材,固溶保温时间:d≤8mm,30 min,水冷(空冷或油冷);d﹥8 mm, (90~150)min,水冷(空冷或油冷)。 规格范围: 板材:厚壁规格(min-max):Φ0.1mm-Φ200.0mm 丝材:Φ0.1mm-Φ3.0mm 直条或卷条:Φ2.0mm–Φ300.0mm 产品:哈氏合金、高温合金、铜镍合金、英科乃尔、蒙乃尔、钛合金、沉淀硬化钢等各种中高端不锈钢,镍基合金等。 高温合金系列GH3030,GH4169,GH3128,GH145,GH3039,GH4099,GH605,GH5188等Inconel系列(600,601,617, 625,690,718,X-750,) 纯镍/钛合金系列N4,N5(N02201)N6,Nickel200,Nickel201等 Incoloy系列(800/800H/800HT, 825, 926,A-286,925,660A) Nimonic系列(Nimonic80A,Nimonic901)Udimet L-605 Monel系列(Monel 400,Monel K500); 哈氏合金(Hastelloy C-276);C-22(N06022),C-2000,等 精密合金系列(1J06,1J22,1J50,3J01,3J53,4J29,4J36); 耐热钢(C-276,314,2014,1Cr18Ni9Ti,904L) 冶韩实业电热合金周工/TEL:①③⑧---①⑥①⑥---⑥③④③

几种常见的合金设计方法及其在铝合金设计中的应用

几种常见的合金设计方法及其 在铝合金设计中的应用 1.现代合金设计简介 1.1合金设计概述 材料设计的设想始于20世纪50年代,前苏联科学家进行了初期的研究,在理论上提出了人工半导体超晶格的概念。到1985年,日本学者山岛良绩正式提出了“材料设计学”这一专门的研究方向,将材料设计定义为利用现有的材料、科学知识和实践经验,通过分析和综合,创造出满足特殊要求的新材料的一种活动过程,其目的是改进已有的材料和创造新材料。现在材料设计已基本上形成一套特殊的方法,就是根据性能要求确定设计目标,有效地利用现有资源,通过成份、结构、组织、合成和工艺过程的合理设计来制造材料。其中,关键是材料的成份、结构和组织的设计[1]。 合金设计的概念和方法是当材料科学深人到原子的电子结构层次之后。在科学文献中才明确提出。合金设计是国外70年代发展起来的一门新兴的交叉学科。现今,根据科学理论,由人们能动地设计出具有预想性能的材料的所谓“材料设计”已经逐步兴起,在金属材料中“合金设计”这一科学方法,更为广大冶金工作者所广泛采用。这一方法必将逐步代替传统的、耗时费事的试探筛选方法。由于在金属与合金设计中成分参数与组织参数不易控制,合金性能的推断也有一定困难,所以完善的金属与合金设计有待于材料科学与工程的进一步的发展。 1.2合金设计的依据 合金设计是一门总和学科,它必须依据几个方面来总和考虑,包括:我们要充分了解合金在服役条件下的使用性能(如机械性能,物理性能);要了解合金从生产到制成产品的工艺过程(如铸造,锻造,焊接,切削加工等);还需要考虑一些重要的经济因素(如原料,价格,市场等)。由此可见,合金设计是通过合金成分和组织的严格控制与合理配合而获得预期的性能,它是建立在合金成分—组织—性能—工艺的定量关系基础上的综合结果。 2.几种合金设计的方法 合金设计应包括成分设计、宏观加工和对显微组织的设计,也包括了对合金性能的预测。Yukawa和Morinaga等人利用变分原子簇法计算一些金属间化合物和合金的电子结构,计算出其轨道能级和键级,并将其应用于合金设计。此外,利用热力学的特征数据也可进行合金相的设计、计算合金的相图,也可根据振动自由能通过从头计算来预测合金相图。还可利用模糊分析方法来实现复相材料的设计,即通过确定复相材料组织参量对性能的隶属函数,并运用模糊线性加权变换来完成对性能的分析与评判。 2.1 经验法和半经验法 长期以来,合金研究通常采用配方法来进行,即根据大量的实验数据对成分—组织—性

部分高温合金牌号及成分

部分高温合金牌号及成分

部分特种合金牌号及成分Monel 400 相近牌号 UNS Trademark W.Nr N04400Monel400 2.4360 Monel 400 的化学成分: Monel 400 的物理性能: 在常温下合金的机械性能的最小值: Monel 400

Monel 400特性: Monel400是一种用量最大、用途最广、综合性能极佳的耐蚀合金。此合金在氢氟酸和氟气介质中具有优异的耐蚀性,对热浓碱液也有优良的耐蚀性。同时还耐中性溶液、水、海水、大气、有机化合物等的腐蚀。该合金的一个重要特征是一般不产生应力腐蚀裂纹,切削性能良好。 Monel 400 的金相结构: Monel400合金的组织为高强度的单相固溶体。 Monel 400 的耐腐蚀性: Monel400合金在氟气、盐酸、硫酸、氢氟酸以及它们的派生物中有极优秀的耐蚀性。同时在海水中比铜基合金更具耐蚀性。酸介质:Monel400在浓度小于85%的硫酸中都是耐蚀的。Monel400是可耐氢氟酸中为数极少的重要材料之一。水腐蚀:Monel400合金在多数水腐蚀情况下,不仅耐蚀性极佳,而且孔蚀、应力腐蚀等也很少发现,腐蚀速度小于0.025mm/a。高温腐蚀:Monel400在空气中连续工作的最高温度一般在600℃左右,在高温蒸汽中,腐蚀速度小于0.026mm/a。氨:由于Monel400合金镍含量高,故可耐585℃以下无水氨和氨化条件下的腐蚀。

Monel 400 应用领域: Monel400合金是一种多用途的材料,在许多工业领域都能应用: 1.动力工厂中的无缝输水管、蒸汽管 2.海水交换器和蒸发器 3.硫酸和盐酸环境 4.原油蒸馏 5.在海水使用设备的泵轴和螺旋桨 6.核工业用于制造铀提炼和同位素分离的设备 7.制造生产盐酸设备使用的泵和阀 Monel K500 相近牌号 UNS Trademark N05500MonelK500 Monel K500 的化学成分:

国内外常用钢材标准牌号对照表20200711165902.doc

国内外常用钢材标准牌号对照表 种中国日本美国英国德国法国前苏联类CB JIS AISI 、ASTM BS DIN NF ΓOCT Q235-A · F SS41 A36、A283C Ust37-2 Q235-A SS41A、B Rst37-2 CT2 20 S20C C1020 En2C C22 C20 20 碳35 S35C C1035 En8A C35 XC38 35 素钢 20g SB42 A285、Gr.B A414、Gr.B 1633Gr.B Ast41 A42C 20K 20(管道用)STPG38、42 A106 、A53 st35.4 16Mn S M50B SM22 1633.Gr.1 st52-3 16Γ 低A516 、 合16MnR SPV36 A515、Gr·60、19Mn5 金Gr·70 钢 15MnV HTP57VW A225 、Gr.A A225、Gr.B 40Mn C1036 En15B 40MnA 40Mn5 40Γ 40Cr SCr4 5140 E n18 S117 41Cr4 38C4 40X 12CrMo A335 、P2 A213、Gr.B 3064-660 1501-620 13CrMo44 12CD4 12XM STT42 15CrMo STC42 A387、Gr.B 1653 16CrMo44 15CD4 15XM STB42 35CrMo SCM3 E4132 E4135 En19B 34CD4 35CD4 35XM 高0Cr13 SUS410 410S S41000 X7Cr13 Z6C13 08X13 合金0Cr18Ni9 SUS304 304 S30400 304S15 X5CrNi189 ZCN18.09 08X18H10 钢 0Cr18Ni10Ti SUS321 321 S32100 321S12 321S20 X10CrNiTi189 Z6CNT18.10 08X18H10T 0Cr17Ni12Mo2 SUS316 316 S31600 316S16 X5CrNiMo1810 Z6CND17.13 08X17H13M2

ABS合金配方设计,生产配方工艺大全

ABS合金配方设计,生产配方工艺大全 导读:本文详细介绍了ABS合金的研究背景,理论基础,参考配方等,本文中的配方数据经过修改,如需更详细资料,可咨询我们的技术工程师。 PC/ABS合金塑料广泛用于汽车、电子、机械零部件等,禾川化学专业从事PC/ABS塑料成分分析、配方还原、研发外包服务,为改性塑料相关企业提供一整套配方技术解决方案。 一、背景 ABS合金塑料广泛用于汽车、电子、机械零部件等,丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile-butadiene-Styrene copolymers,简称ABS)是一种应用广泛的工程塑料,在汽车保险杠、手机以及电脑外壳等制品上应用广泛。大部分ABS无毒,略透水蒸气但不透水,吸水率低,抗冲击性极好,冲击强度在低温下也不会快速下降,大多数ABS的拉伸性能在35.2~46.2Mpa,特殊品种可达63.3Mpa,屈服伸长率为2~4%,在负荷为14.1Mpa、温度为50℃条件下压缩24h,其尺寸变化在0.2~1.7%之内,半硬质和硬质ABS的弯曲强度约为28.1Mpa和63.3~70Mpa。ABS耐磨性很好,摩擦系数很低,不能作为自润滑材料,但可作为中转速轴承材料。因品种不同其抗蠕变性能不同,但总体而言升温时抗蠕变应力不会迅速下降。ABS电性能稳定,受温度、湿度影响较小;水、无机盐、酸、碱类对其性能影响较小,在醛、酮、酯、盐酸中会溶解或形成乳浊液,不溶于大部分醇和烃,但在烃中会软化或溶胀。 在加工中,ABS的加工性由剪切速率调节,而并非温度。成分中的丁二烯橡胶相提供塑料以强韧性,聚苯乙烯相提供塑料以电气性、成型性和透明性。近年来,随着经济的发展,特别是当今社会提倡的可持续发展,人们的环保和安全意识

高温合金

1、高温合金简介 (1) 2、高温合金的主要类别 (1) 2.1变形高温合金 (2) 2.1.1固溶强化型合金 (2) 2.1.2时效强化型合金 (2) 2.2铸造高温合金 (2) 2.3粉末冶金高温合金 (3) 2.4氧化物弥散强化(ODS)合金 (3) 2.5金属间化合物高温材料 (3) 3、高温合金的强化机理 (3) 3.1固溶强化 (3) 3.2沉淀强化及第二相强化 (4) 3.3晶界强化 (4) 3.4碳化物强化及质点弥散强化 (5) 4、常用高温合金的分类 (6) 4.1铁基超耐热合金 (6) 4.1.1铁基高温合金的成分和性能 (6) 4.2镍基超耐热合金 (6) 4.2.1镍基高温合金的组织特点 (6) 4.3钴基超耐热合金 (7) 4.3.1钴基高温合金的成分 (7) 4.3.2钴基高温的高温性能 (7) 5、高温合金的几种制造工艺 (7) 6、高温合金的应用 (8) 7、参考文献 (8)

1、高温合金简介 高温合金分为三类材料:760℃高温材料、1200℃高温材料和1500℃高温材料,抗拉强度800MPa。或者说是指在760--1500℃以上及一定应力条件下长期工作的高温金属材料,具有优异的高温强度,良好的抗氧化和抗热腐蚀性能,良好的疲劳性能、断裂韧性等综合性能,已成为军民用燃气涡轮发动机热端部件不可替代的关键材料。 按照现有的理论,760℃高温材料按基体元素主要可分为铁基高温合金、镍基高温合金和钴基高温合金。按制备工艺可分为变形高温合金、铸造高温合金和粉末冶金高温合金。按强化方式有固溶强化型、沉淀强化型、氧化物弥散强化型和纤维强化型等。高温合金主要用于制造航空、舰艇和工业用燃气轮机的涡轮叶片、导向叶片、涡轮盘、高压压气机盘和燃烧室等高温部件,还用于制造航天飞行器、火箭发动机、核反应堆、石油化工设备以及煤的转化等能源转换装置。 2、高温合金的主要类别 2.1变形高温合金 变形高温合金是指可以进行热、冷变形加工,工作温度范围-253~1320℃,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能的一类合金。按其热处理工艺可分为固溶强化型合金和时效强化型合金。GH后第一位数字表示分类号即1、固溶强化型铁基合金2、时效硬化型铁基合金3、固溶强化型镍基合金4、钴基合金GH后,二,三,四位数字表示顺序号。 2.1.1固溶强化型合金 使用温度范围为900~1300℃,最高抗氧化温度达1320℃。例如GH128合金,室温拉伸强度为850MPa、屈服强度为350MPa;1000℃拉伸强度为140MPa、延伸率为85%,1000℃、30MPa 应力的持久寿命为200小时、延伸率40%。固溶合金一般用于制作航空、航天发动机燃烧室、机匣等部件。 2.1.2时效强化型合金 使用温度为-253~950℃,一般用于制作航空、航天发动机的涡轮盘与叶片等结构件。制作涡轮盘的合金工作温度为-253~700℃,要求具有良好的高低温强度和抗疲劳性能。例如:GH4169合金,在650℃的最高屈服强度达1000MPa;制作叶片的合金温度可达950℃,例如:GH220合金,950℃的拉伸强度为490MPa,940℃、200MPa的持久寿命大于40小时。变形高温合金主要为航天、航空、核能、石油民用工业提供结构锻件、饼材、环件、棒材、板材、管材、带材和丝材。 2.2铸造高温合金 铸造高温合金是指可以或只能用铸造方法成型零件的一类高温合金。其主要特点是: 1.具有更宽的成分范围由于可不必兼顾其变形加工性能,合金的设计可以集中考虑优化其使用性能。如对于镍基高温合金,可通过调整成分使γ’含量达60%或更高,从而在高达合金熔点85%的温度下,合金仍能保持优良性能。

高温合金GH4169

常州市天志金属材料有限公司 一、GH4169 概述 GH4169合金是以体心四方的γ"和面心立方的γ′相沉淀强化的镍基高温合金,在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能和长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温度范围内获得了极为广泛的应用。 该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的各种零件。供应的品种有锻件、锻棒、轧棒、冷轧棒、圆饼、环件、板、带、丝、管等。可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构件、机匣等零部件在航空上长期使用。 1.1 GH4169 材料牌号 GH4169(GH169) 1.2 GH4169 相近牌号 Inconel 718(美国),NC19FeNb(法国) 1.3 GH4169 材料的技术标准 GJB 2612-1996 《焊接用高温合金冷拉丝材规范》 HB 6702-1993 《WZ8系列用GH4169合金棒材》 GJB 3165 《航空承力件用高温合金热轧和锻制棒材规范》 GJB 1952 《航空用高温合金冷轧薄板规范》 GJB 1953《航空发动机转动件用高温合金热轧棒材规范》 GJB 2612 《焊接用高温合金冷拉丝材规范》 GJB 3317《航空用高温合金热轧板材规范》 GJB 2297 《航空用高温合金冷拔(轧)无缝管规范》 GJB 3020 《航空用高温合金环坯规范》 GJB 3167 《冷镦用高温合金冷拉丝材规范》 GJB 3318 《航空用高温合金冷轧带材规范》 GJB 2611《航空用高温合金冷拉棒材规范》 YB/T5247 《焊接用高温合金冷拉丝》 YB/T5249 《冷镦用高温合金冷拉丝》 YB/T5245 《普通承力件用高温合金热轧和锻制棒材》 GB/T14993《转动部件用高温合金热轧棒材》 GB/T14994 《高温合金冷拉棒材》 GB/T14995 《高温合金热轧板》 GB/T14996 《高温合金冷轧薄板》 GB/T14997 《高温合金锻制圆饼》 GB/T14998 《高温合金坯件毛坏》 GB/T14992 《高温合金和金属间化合物高温材料的分类和牌号》 HB 5199《航空用高温合金冷轧薄板》 HB 5198 《航空叶片用变形高温合金棒材》 HB 5189 《航空叶片用变形高温合金棒材》 HB 6072 《WZ8系列用GH4169合金棒材》

几种常见的合金设计方法及其在铝合金设计中的应用

几种常见的合金设计方法及其在铝合金设计中的应用 1.现代合金设计简介 1.1合金设计概述 材料设计的设想始于20世纪50年代,前苏联科学家进行了初期的研究,在理论上提出了人工半导体超晶格的概念。到1985年,日本学者山岛良绩正式提出了“材料设计学”这一专门的研究方向,将材料设计定义为利用现有的材料、科学知识和实践经验,通过分析和综合,创造出满足特殊要求的新材料的一种活动过程,其目的是改进已有的材料和创造新材料。现在材料设计已基本上形成一套特殊的方法,就是根据性能要求确定设计目标,有效地利用现有资源,通过成份、结构、组织、合成和工艺过程的合理设计来制造材料。其中,关键是材料的成份、结构和组织的设计[1]。 合金设计的概念和方法是当材料科学深人到原子的电子结构层次之后。在科学文献中才明确提出。合金设计是国外70年代发展起来的一门新兴的交叉学科。现今,根据科学理论,由人们能动地设计出具有预想性能的材料的所谓“材料设计”已经逐步兴起,在金属材料中“合金设计”这一科学方法,更为广大冶金工作者所广泛采用。这一方法必将逐步代替传统的、耗时费事的试探筛选方法。由于在金属与合金设计中成分参数与组织参数不易控制,合金性能的推断也有一定困难,所以完善的金属与合金设计有待于材料科学与工程的进一步的发展。 1.2合金设计的依据 合金设计是一门总和学科,它必须依据几个方面来总和考虑,包括:我们要充分了解合金在服役条件下的使用性能(如机械性能,物理性能);要了解合金从生产到制成产品的工艺过程(如铸造,锻造,焊接,切削加工等);还需要考虑一些重要的经济因素(如原料,价格,市场等)。由此可见,合金设计是通过合金成分和组织的严格控制与合理配合而获得预期的性能,它是建立在合金成分—组织—性能—工艺的定量关系基础上的综合结果。 2.几种合金设计的方法 合金设计应包括成分设计、宏观加工和对显微组织的设计,也包括了对合金性能的预测。Yukawa和Morinaga等人利用变分原子簇法计算一些金属间化合物和合金的电子结构,计算出其轨道能级和键级,并将其应用于合金设计。此外,利用热力学的特征数据也可进行合金相的设计、计算合金的相图,也可根据振动自由能通过从头计算来预测合金相图。还可利用模糊分析方法来实现复相材料的设计,即通过确定复相材料组织参量对性能的隶属函数,并运用模糊线性加权变换来完成对性能的分析与评判。

部分高温合金牌号及成分(DOC)

部分特种合金牌号及成分 Monel 400 相近牌号 UNS Trademark W.Nr N04400Monel400 2.4360 Monel 400 的化学成分: Monel 400 的物理性能: 在常温下合金的机械性能的最小值: Monel 400特性: Monel400是一种用量最大、用途最广、综合性能极佳的耐蚀合金。此合金在氢氟酸和氟气介质中具有优异的耐蚀性,对热浓碱液也有优良的耐蚀性。同时还耐中性溶液、水、海水、大气、有机化合物等的腐蚀。该合金的一个重要特征是一般不产生应力腐蚀裂纹,切削性能良好。 Monel 400 的金相结构: Monel400合金的组织为高强度的单相固溶体。 Monel 400 的耐腐蚀性: Monel400合金在氟气、盐酸、硫酸、氢氟酸以及它们的派生物中有极优秀的耐蚀性。同时在海水中比铜基合金更具耐蚀性。酸介质:Monel400在浓度小于85%的硫酸中都是耐蚀的。Monel400是可耐氢氟酸中为数极少的重要材料之一。水腐蚀:Monel400合金在多数水腐蚀情况下,不仅耐蚀性极佳,而且孔蚀、应力腐蚀等也很少发现,腐蚀速度小于0.025mm/a。高温腐蚀:Monel400在空气中连续工作的最高温度一般在600℃左右,在高温蒸汽中,腐蚀速度小于0.026mm/a。氨:由于Monel400合金镍含量高,故可耐585℃以下无水氨和氨化条件下的腐蚀。

Monel 400 应用领域: Monel400合金是一种多用途的材料,在许多工业领域都能应用: 1.动力工厂中的无缝输水管、蒸汽管 2.海水交换器和蒸发器 3.硫酸和盐酸环境 4.原油蒸馏 5.在海水使用设备的泵轴和螺旋桨 6.核工业用于制造铀提炼和同位素分离的设备 7.制造生产盐酸设备使用的泵和阀 Monel K500 相近牌号 UNS Trademark N05500MonelK500 Monel K500 的化学成分: Monel K500 的物理性能: Monel K500 在常温下合金的机械性能的最小值: 此合金具有以下特性: Monel K500具有与Monel 400 相同的耐蚀性能,但是具有更高的机械强度和硬度。具有较好的耐热腐蚀性能和长期组织稳定性。主要用于制造航空发动机上的工作温度在750℃以下的涡轮叶片及燃气轮机叶片;用于制造船舶上的紧固件、弹簧;化工设备上的泵、阀门零部件;造纸设备上的刮浆刀片等。 Nickel 201 相近牌号

Al-Mg-Si系铝合金成分设计 文献综述

Al-Mg-Si系铝合金成分设计 摘要:本文通过对Al-Mg-Si系铝合金成分设计相关文献的查阅,深入对铝合金中合金元素元素对微观组织性能影响、Al-Mg-Si系铝合金热处理及析出相研究现状,以及铝合金成分设计进行总结探讨。 关键字:Al-Mg-Si系铝合金,析出相,成分设计 引言 为避免合金设计过程中的盲目性和复杂性,以及对复杂工程结构材料的长期研究和反复使用验证过程中,研究者们开发了多种实用设计方法如元素当量法、与电子理论相关的方法以及使用Thermo-Calc软件计算相图对铝合金成分设计进行优化设计等方法[1-3],并用来进行合金的开发与制备。本文先对Al-Mg-Si系铝合金中合金元素在成分设计中的影响和作用做总结,继而通过元素在热处理过程中沉淀析出相的生成规律做简要概述,最后对合金元素进行调整来优化合金组织及性能。 合金元素影响 Mg元素。镁对铝的强化是明显的,每增加1%镁,抗拉强度大约升高34MPa[4]。M.S. Salleh[5]等研究者对Al-Si-Cu合金触变成形研究中,发现一定量(1.2wt%)Mg元素的加入可以细化α-Al及共晶硅组织,并在T6热处理下,触变合金力学性能显著改善。 Si元素。改善合金流动性的主要元素。从共晶到过共晶都能得到最好的流动性。但析出Si易形成硬点,使切削性变差,一般将温度保持在共晶点以下。此外,Si可改善抗拉强度、硬度、切削性及高温强度。在Al-Mg-Si合金中,Si不是杂质而是作为主要合金元素加入,它与Mg形成主要强化相Mg2S i(β)相,其平衡重量比为Mg2Si=1.73, 当Mg含量过剩时,Mg2Si在固溶体中的溶解度会降低,影响其强化效果;而当Si含量过剩,合金虽稍有晶间腐蚀倾向,但合金的强度

铸造高温合金发展的回顾与展望

第20卷 第1期2000年3月 航 空 材 料 学 报 JOURNAL OF AERONAUT ICAL M ATERIALS Vol.20,No.1 M arch2000 铸造高温合金发展的回顾与展望 陈荣章1 王罗宝1 李建华2 (1.北京航空材料研究院,北京100095; 2.中国人民大学,北京100872) 摘要:回顾了20世纪40年代以来铸造高温合金发展中的若干重大事件:叶片以铸代锻;真空 熔炼技术;定向凝固及单晶合金;合金成分设计;Ni3Al基铸造高温合金;合金凝固过程数值 模拟;细晶铸造。展望了铸造高温合金21世纪的发展:单晶高温合金仍然是最重要的涡轮叶 片材料;继续靠工艺的发展挖掘合金潜力;发展有希望的替代材料。 关键词:合金发展;铸造高温合金;燃气涡轮叶片 中图分类号:T G24 文献标识码:A 文章编号:1005 5053(2000)01 0055 07 自从20世纪40年代初期第一台航空喷气发动机采用第一个铸造涡轮工作叶片以来,铸造高温合金的发展经历了一段曲折而又辉煌的历程。众所周知,航空发动机的发展与高温合金的发展是齐头并进、密不可分的,前者是后者的主要动力,后者是前者的重要保证。占据着航空发动机中温度最高、应力最复杂的位置的铸造涡轮叶片的合金发展尤其是这样。半个世纪以来,航空发动机涡轮前温度从40年代的730 提高到90年代的1677 ,推重比从大约3提高到10[1],这一巨大进展固然离不开先进的设计思想、精湛的制造工艺以及有效的防护涂层,但是,高性能的铸造高压涡轮叶片合金的应用更是功不可没。40年代以来,标志着铸造高温合金性能水平的在140M Pa/100h条件下的承温能力从750 左右提高到当前的1200 左右(图1),是十分令人鼓舞的巨大成就。在这世纪之初回顾铸造高温合金发展的历程,不能不提到如下几件使人难忘的重大事件。 叶片以铸代锻 1943年,美国GE公司为其J 33航空发动机选用了钴基合金H S 21制作涡轮工作叶片,代替原先用的锻造高温合金H astelloy B。当时为了考核铸造高温合金作为转动件的可靠性,宇航局(NASA)有关部门曾对两种合金叶片同时进行台架试车鉴定。结果表明, HS 21完全可以代替H astelloy B制作涡轮转子叶片,从此开创了使用铸造高温合金工作叶片的历史[2,3]。之后,又谨慎地对X 40,GM R 235等铸造合金进行类似的考核研究,使铸造叶片的应用有所扩大。随着发动机推力的增大,叶片尺寸增大,当时发现叶片的主要失效模式从蠕变断裂转变为疲劳断裂,而铸造叶片由于晶粒粗大且不均匀,疲劳性能远低于锻造合金,加之当时出现了性能较高的沉淀硬化型镍基锻造高温合金,例如Nimonic80A, Udimet500,W aspaloy, 437 , 617等,而且锻造技术有所进步,这就使设计师又把叶片选 收稿日期:1999 09 20 作者简介:陈荣章(1937 ),男,研究员

相关主题
文本预览
相关文档 最新文档