当前位置:文档之家› 直流电机原理

直流电机原理

直流电机原理
直流电机原理

直流电机是机械能和直流电能相互转换的旋转机电设备,它可以使机械能和电能之间相互转换;

如果将直流电能转换为机械能时,则为直流电动机,如:用在升降提取物品时,在上升的过程中,直流电机提起物品,电机用力方向与物品的位移方向一致,电机正向用力,进入电动状态;又如冷轧机,主机和卷取机,电机的力矩方向与电机旋转方向一致,电机正向用力,进入电动状态;

电动状态也分正电动状态和反电动状态,即电机正反转;

如果将机械能转换为直流电能时,则为直流发电机,如:用在升降提取物品时,在下降的过程中,直流电机会被重物拖动,电机反向用力,进入发电状态;又如冷轧机,放卷机被主机拖动旋转,放卷机反向用力,进入发电状态;

虽然两者都工作在发电状态,但两者的工作方式也有所不同;

(可以插图四象限运行)

电机为什么会转动?为什么电流越大,力矩就越大?电机反电动势?(附图)直流电机的励磁部分简化为两个固定的磁极N-S,磁场方向是从N到S的,如图;

当电机电枢通入直流电时,根据左手定则,电枢上半部分力矩为左,下半部分力矩为右,上下部分配合就使电机电枢,向同一个方向转动,所以通有励磁电流的直流电机,只要电枢上用电流流过,电机就会转动;而电机的力矩与电流是成正比,所以电流越大,力矩就越大;

通有电流的导体在切割磁感线时会产生一个反向的电压,称为反向电动势;

当电机转动时,因为电机电枢部分通有电流,根据电机的旋转方向和磁场方向,再由右手定则,可以确定电机电枢中会产生一个反电动势,其电压方向与外加在电枢的电压方向相反;

1、直流电机的铭牌

电机型号:Z4

电机功率:Pn=500KW

电机电压:Un=440V

电机电流:In=1136A

近似地:Pn=Un*In 电枢电阻:Ra= Un/In

励磁电压:Uf=310V 励磁选择恒压供电时的稳定供电电压

励磁电流:If=20A 励磁选择恒流供电时的稳定供电电流

励磁反馈选择电压模式时,由于电机转动时,定子磁通量会微微减少,且变化不稳定,所以造成电机运转不稳定;且不能进行弱磁升速;

励磁反馈选择电流模式时,由于定子磁通量与励磁电流近似线性变化,所以只要励磁电流稳定不变,定子磁通量就会稳定,所以电机输出力矩也稳定;且可以进行弱磁升速;

电机转速:n=500/1500 R/Min

2、直流电机各公式

电压平衡公式:Un=E+Ia*Ra

反电动势公式:E=Ce*Φ*n

电枢电流:Ia=(Un—E)/Ra 电机转动与不转动情况?

励磁回路:If=Uf/Rf 用电流或电压反馈的不同处;

力矩公式:T=Ce*Φ* Ia

T=9.55*Pn/n

功率公式:U*Ia=E*Ia + Ia*Ia*R

转速公式:n=(Un—Ia*Ra)/ Ce*Φ

出题说

3、张力与力矩的关系

F=T/R

简单说明590的卷径运算;

4、为什么要弱磁?弱磁点的状态

电压反馈时,励磁电流不变,即电机磁通量Φ稳定,速度给定相当于电枢电压给定Ua,根据电压平衡公式:

Un=E+Ia*Ra;

因为电枢电阻一般都很少,所以Ia*Ra可以先忽略不计,所以

U n≈E,

其中E=Ce*Φ*n;则

U n≈E=Ce*Φ*n,

换句话,在电压反馈时,速度给定相当于电枢电压给定Ua,电机转动的过程中,产生一个反电动势E作为速度反馈源,例如:速度给定为20%,则电枢电压给定也为20%,电机未开始转动时,反电动势E 为零,所以就形成一个速度误差,再经过电流的运算,产生一个加速力矩,使电机不断加速,反电动势E 随着转速的增加而增加,反电动势的增加就使速度误差减少,当驱动器检测到电枢两端的电压U等于电枢电压给定Ua时,电机保持力矩输出,稳速旋转,此时的转速为

n=Ua/(Ce*Φ)

所以当速度给定为100%时,电枢电压给定也为100%,反电动势也约为100%,此时的电机转速就是电机的额定转速,换句话,电机额定转速就是电枢电压达到额定电压时的电机转速;

编码器(或测速发电机)反馈时,电机运转分两个状态:

1、基速以下调速(电机在额定速度范围内调节速度,励磁电流恒定)

2、基速以上调速(电机在额定速度以上到电机最高转速的范围内调节速度,励磁电流减弱)

用编码器反馈时,电机的转速控制再不是通过检测电枢电压来完成,而是直接通过检测编码器信号来参与调速控制;

关键:弱磁点——电机励磁临界于100%与99%之间,此时电枢电压达到额定电压,电机速度也达到额定速度;

在基速以下时,也就是电机还没有到达弱磁点,速度给定再不是单纯的作为一个电压给定来控制电机,而是速度给定和速度反馈(用编码器作反馈源来举例说明),将产生速度误差,再经过电流的运算,产生一个加速力矩,使电机加速运行,此时的电枢电压E是跟随电机转速的增加而增加;当速度不断增加,速度误差就不断缩少,直到速度误差接近零时,电流环保持输出,电机力矩保持不变,电机稳定在某个速度上运行,此时的电枢电压E可通过公式计算得出;也可以通过比例得出;

Ua≈E= Ce*Φ*n

当速度给定不断向上调节时,电机转速不断增加,随之电机的电枢电压也不断增加;直至电机电枢电压等于额定电压,此时励磁电流还保持100%,电机速度为额定速度;这个就是弱磁的临界点;

此时的速度给定与电压的关系?34%---100%

当在弱磁临界点上,速度给定再增加,电机速度必定上升,假设励磁还是保持不变,即Φ不变;根据E =Ce*Φ*n,电枢电压升高,此时的电枢电压必定大于电机的额定电压;想想后果?这是不允许的!

所以此时唯一的做法就是降低励磁电流,即减少电机定子上的磁通量,根据E=Ce*Φ*n,速度增加了相对额定转速的百份之几,磁通量也相应减少相对额定磁通的百份之几(注:不是励磁电流,但励磁电流减少的百份比与磁通量减少的百分比差不多,因为励磁电流与磁通量几乎接近是成比例变化的);这样才可以保持电机不会超过额定电压运行;换句话:在基速上调节速度时,为保证电枢电压不超过电机额定

电压,励磁电流必定要随转速的变化而反比例的变化,这就是电机为什么要弱磁的最根本原因!

当然,电机转速也不是无休止地增加上去,所以励磁电流也不是减少到零为止;电机的转速也受电机铭牌上写的最高转速限制,一般最高转速为额定转速的2~3倍,所以励磁电流一般也是降低到20%~30%的额定励磁电流;所以一般的调速器都要设置一个最小励磁电流,当电机在升速过程中,励磁电流降到设置的最小励磁电流值时,驱动器会报警,一般是报超速或过电压或励磁故障等;所以设置最小励磁就是防止失速或超速的一个办法。

5、直流电机各个运行象限

第一象限:正向电动运行(图),不同速度对应的电枢电压不同,不同的励磁电流对应的速度也不相同;

1\不同速度对应不同的电枢电压,电机加减速过程

2\不同的励磁电流对应不同的速度,弱磁后的加减速过程

第二象限:正向回馈制动(图),减速过程和被拉过程

1\分析减速太快的正向反馈过程

2\分析向前被拉的制动过程

第三象限:反向电动运行(图)与象限一相反

第四象限:反向回馈制动,与象限二相反;

7、直流电机特性曲线

分析直流电机的启动过程,加速过程,稳速过程,减速过程,举例说明;

8、直流电机双闭环控制分析

速度环和电流环,结合590说两个环的用途;

9、分析电机逆变的全过程

直流电机工作原理

第二章 直流电机 2.1 概述 2.1.1 直流电机的工作原理 首先,复习e=B δlv 公式,说明e 正比于B δ。结合图2.1解释v=2πRn/60 (m/s , n (r/min)); 机械角速度Ω=v/R=2πn /60 ( r/s); 电角速度ω=p Ω=p2πn/60 (rad/s) (记下来);导体或线圈。 将直流电机的简单工作原理图结构介绍清楚。包括:N 、S 磁极和A 、B 电刷静止,换向片、线圈(导体)以及电枢逆时针旋转。将其抽象成一个平面图。 假设磁力线进入磁极为正方向,离开磁极的磁通方向为负。得气隙磁密在空间得分布曲线 B δ(θ)(0≤θ=ωt ≤2π)。进而得到导体电势e(ωt)和线圈电势e AB (ωt)。 经过合理的多个线圈均匀分布设计,按照一定规律连接起来就组成电枢绕组,便可以获得近似直流电动势。 工作原理: (1) 发电机:电枢绕组中感应的交变电势,依靠换向器的换向作用,利用静止 的电刷把同一磁极 下导体电势引出,变为直流电势输出。(发电机惯例) (2) 电动机:通过电刷和换向器的共同作用,使得同磁极下的导体边流过的电 流方向不变,导体 受力方向不变,进而产生方向恒定的电磁转矩,使电机连续转动。 结论:(1)电机内部(电刷为界),线圈中产生的感应电势、流过的电流是交流量。 (2)电机外部(电刷两端),电动机运行外加直流电;发电机运行输出直流电 (3) 从原理上讲,同一台电机既可以作电动机运行又可以作发电机运行,是可逆的。 (4)电动机惯例 发电机惯例 i i u Motor u Generator

2.1.2 直流电机的主要结构部件 定子——起机械支撑,产生磁场的作用 机座、端盖、电刷、 轴承 直流电机结构 气隙——耦合磁场 转子——产生电磁转矩、产生感应电势 电枢铁心和电枢绕组 换向器、转轴、风扇 2.1.3 直流电机的额定值 额定值:指电机正常运行时各物理量的数值。此时亦称电机满载运行。否则为欠载或过载 额定功率:指输出功率W, kW 。 发电机P N =U N I N 电动机P N =ηU N I N 额定电压U N (V), 额定电流I N (A), 额定励磁电压U fN (V), 额定励磁电流I fN (A), 额定转速n N (r/min)

无刷直流电机工作原理详解

无刷直流电机工作原理详解 日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 2.1 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图2.1.1。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。

BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图2.1.2和图 2.1.3所示。

电机与电器考题整理

1、直流电机结构和主要部件作用 主磁极:产生恒定的气隙磁通,由铁芯和励磁绕组构成 定子换向磁极:改善换向,减小电机运行时电刷与换向器之间可能产生的换向火花 电刷装置:与换向器配合,完成直流与交流的互换 几座和端盖:起支撑和固定作用;机座也是电机磁路中的一部分 电枢铁心:主磁路的一部分,放置电枢绕组 转子电枢绕组:由带绝缘的导线绕制而成,是电路部分,能量转换中枢 换向器:与电刷装置配合,完成直流与交流的互换 风扇 2.直流电机的磁场和电枢反应 空载磁场:指由主磁极单独建立的磁场,电枢电流为零磁场励磁电流所建立的磁场 负载磁场 电枢电流所建立的磁场 电枢反应:直流电机负载后,电枢绕组有电流通过,该电流所建立的磁场称为电枢磁场,电枢磁场对主磁场的影响称为电枢反应具体表现:1.使气隙磁场分布发生畸变2.去磁作用,是磁场总磁通减弱

3. 直流电机的感应电势和电磁转矩计算公式,影响因素 直流电机的感应电势: 影响因素:电枢电势(V)正比于每极磁通φ(韦伯)和转速n (r/min), 与磁密分布无关 直流电机的电磁转矩: 影响因素:它的电磁转矩正比于每极磁通和电枢电流。 直流电机的电磁功率 4.直流发电机的外特性(他励和并励) 他励直流发电机:定义:n =额定转速, I f =常数, Ua =f ( I a ) Ua=E a -I a R a =n C e φ- I a R a 外特性下垂原因: 1.电枢回路上的电阻压降增加 2.负载电流增大,电枢反应的去磁作用增强, 电动势减小 并励直流发电机:定义:n =额定转速, R f =常数, U =f ( I ) n Ce n a pN E a ??=??=φφ60a M a em I C I a pN M ??=??=φφπ2π 260 =e M C C 机械功率→Ω?=????= ???=?=em a M a e a a em M I n C I n C I E P φπ φ60 2

直流电机工作原理

第二章直流电机的基本结构和运行分析 直流电机是电能和机械能相互转换的旋转电机之一。将机械能转换为直流电能的电机称为直流发电机;将直流电能转换为机械能的电机称为直流电动机。直流发电机可作为各种直流电源;直流电动机具有宽广的调速范围,较强的过载能力和较大的起动转矩等特点,广泛应用于对起动和调速要求较高的生产机械,如电力机车、内燃机车、工矿机车、城市电车、电梯、轧钢机等的拖动电机。 本章介绍直流电机的工作原理和基本结构;分析直流电机的磁路系统、电路系统和电磁过程;导出感应电势和电磁转矩的一般计算方法;得出直流电机在不同运行状态的各种平衡方程式和运行特性。 第一节直流电机基本工作原理 直流电机是直流发电机和直流电动机的总称。直流电机具有可逆性,既可作直流发电机使用,也可作直流电动机使用。作直流发电机使用时,将机械能转换成直流电能输出;作直流电动机使用时,则将直流电能转换成机械能输出。 一、直流电机的模型结构 图2—1所示为一台直流电机简单模型图。N、S为定子上固定不动的两个主磁极,主磁极可以采用永久磁铁,也可以采用电磁铁,在电磁铁的励磁线圈上通以方向不变的直流电流,便形成一定极性的磁极。 图2-1 直流发电机工作原理

在两个主磁极N 、S 之间装有一个可以转动的、由铁磁材料制成的圆柱体,圆柱体表面嵌有一线圈(称为电枢绕组),线圈首末两端分别连接到两个弧形钢片(称为换向片)上。换向片之间用绝缘材料构成一整体,称为换向器,它固定在转轴上(但与转轴绝缘),随转轴一起转动,整个转动部分称为电枢。为了接通电枢内电路和外电路,在定子上装有两个固定不动的电刷A 和B ,并压在换向器上,与其滑动接触。 二、直流发电机的工作原理 1.感应电势的产生 当直流发电机的电枢被原动机拖动,并以恒速v逆时针方向旋转时,如图2-2(a)所示,线圈两个有效边ab 和cd 将切割磁力线,而感应产生电势e。其方向用右手定则确定,导体ab 位于N 极下,导体cd 位于S 极下,产生电势方向分别为b →a ,d →c 。若接通外电路,电流从换向片1→A →负载→B →换向片2。电流从电刷A 流出,具有正极性,用“+”表示;从电刷B 流入,具有负极性,用“一”表示。 当电枢转到90o 时,线圈有效边ab 和cd 转到N 、S 极之间的几何中心线上,此处磁密为零,故这一瞬时感应电势为零。 当电枢转到180o 时,导体ab 和cd 及换向片1、2位置互换,如图2-1(b)所示。导体加位于S 极下,导体cd 位于N极下,线圈两个有效边产生的感应电势方向分别为a →b ,c →d ,电势方向恰与开始瞬时相反。外电路中流过的电流从换向片2→A →负载→B →换向片1。由此可见,电刷A(B)始终与转到N(S)极下的有效边所连接的换向片接触,故电刷极性始终不变A 为“+”,B 为“―”。 由以上分析可知,线圈内部为一交变电势,但电刷引出的电势方向始终不变,为一单方向的直流电势。 2.电势的波形 根据电磁感应定律,每根导体产生的感应电势e为: Lv B e X = (V ) (2-1) 式中x B ——导体所在位置的磁通密度(T ); L ——导体切割磁力线的有效长度(m); v ——导体切割磁力线的线速度(m/s)。 要想知道电势的波形,先得找出磁密的波形,前已设电枢以恒速v 旋转,v=常数,L 在电机中不变,则x B e ∝,即导体电势随时间的变化规律与气隙磁密的分布规律相同。设想将

直流电机原理与控制方法

专业资料 电机简要学习手册 2015-2-3

一、直流电机原理与控制方法 1直流电机简介 直流电机(DM)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能 (直流发电机)的旋转电机。 它是能实现直流电能和机械 能互相转换的电机。当它作电 动机运行时是直流电动机,将 电能转换为机械能;作发电机 运行时是直流发电机,将机械 能转换为电能。 直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现以前基本占据了电机控制领域的整座江山。但随着交流电机控制技术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流电机所取代。但如今直流电机仍然占据着不可忽视的地位,广泛用于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然意义重大。 2 直流电动机基本结构与工作原理 2.1 直流电机结构

如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。定子按照励磁可分为直励,他励,复励。电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。 2.2 直流电机工作原理 如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和 cd收到电磁力的作用, 其方向可由左手定则判 定,两段导体受到的力 形成了一个转矩,使得 转子逆时针转动。如果 转子转到如上图(b)所 示的位置,电刷 A 和换向片2接触,电刷 B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。 此时载流导体ab和cd受到电磁力的作用方向同样可由左手定

电机与电器控制

绪论 1.电机及电力拖动概述 电机是利用电磁感应原理工作的机械,是生产、传输、分配及应用电能的主要设备。 电机按功能可分为发电机、电动机、变压器和控制电机四大类;发电机将机械能转换为电能;电动机将电能转换为机械能,作为拖动各种生产机械的动力,是国民经济各部门应用最多的动力机械,也是最主要的用电设备;变压器的作用是将一种电压等级的电能转换为同频率的另一种电压等级的电能;控制电机主要用于信号的变换与传递,如步进电动机、伺服电动机等,在各种自动化控制系统中作为多种控制元件使用,如国防工业、数控机床、计算机外围设备、机器人和音像设备等均大量使用控制电机。 按电源电流的不同,电机又分为直流电机和交流电机。 电力拖动系统是用电动机来拖动机械运行的系统。由于电力拖动具有控制简单,调节性能好、损耗小、经济、能实现远距离控制和自动控制等一系列优点,因此大多数生产机械均采用电力拖动。 电力拖动系统包括:电动机、传动机构、生产机械、控制设备和电源五个部分。各部分之间的关系如下: 电源向电动机及电气控制设备供电。电动机把电能转换成机械能,通过传动机构(如机械传动、液压传动、气动等)把电动机的运动经过中间变速或变换运动方式后,再传给生产机械(如各种机床等),驱动生产机械工作。生产机械是执行某一生产任务的机械设备,是电力拖动的对象。控制设备是由各种控制电机、电器、电子元件及控制计算机等组成,用以控制电动机的运动,从而对生产机械的运动实现自动控制。 在电力拖动的发展过程中,交、直流两种拖动方式并存于各个生产领域。在交流电出现以前,直流电力拖动是惟一的一种电力拖动方式。19世纪末期,由于研制出了经济实用的交流电动机,致使交流电力拖动在工业中得到了广泛的应用。但随着生产技术的发展,特别是精密机械加工与冶金工业生产过程的进步,对电力拖动在起动、制动、正反转以及调速精度与范围等静态特性和动态响应方面提出了新的、更高的要求。由于交流电力拖动比直流电力拖动在技术上难以实现这些要求,所以,20世纪以来,在可逆、可调速与高精度的拖动技术领域中,在相当长的时期内,几乎都在采用直流电力拖动,而交流电力拖动则主要用于恒转速系统。 20世纪60年代以后,随着电力电子技术的发展,半导体变流技术的交流调速系统得以实现。尤其是20世纪70年代以来,大规模集成电路和计算机控制技术的发展,为交流电力拖动的广泛应用创造了有利条件。诸如交流电动机的串级调速、各种类型的变频调速等,使

无刷直流电机工作原理详解

日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。 BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图和图

直流电动机的基本原理:

一、直流电动机的基本原理: 下面电机原理部分的内容主要摘自谢明琛教授编著的《电机学》: 图示为一个最简单的直流电机模型,定子上有固定的永久磁铁做磁极,转子为圆柱型的铁芯,上面嵌有线圈(图中导体ab和cd连成一个线圈),线圈的首末端分别连接在两片彼此绝缘的圆弧型换向片上,换向片固定在转轴上,换向片构成的整体称为换向器,整个转动部分成为电枢,为了把电枢和外电路接通,在换向片上放置了两件空间位置固定的电刷A和B,当电枢转动时,电刷A只能与转到上面的换向片接触,电刷B只能与转到下面的换向片接触。 当这个原理样机作为直流发电机运行时,用原动机拖动电枢,使之以恒速n沿逆时针方向旋转,若导体的有效长度为l ,线速度为v,导体所在位置的磁通密度为 ,则在每根导体中感应出电势为 = v l e.. B δ

导体感应电势的方向用右手定则确定,在图示的瞬间,ab导体处在N极下,其电动势的方向由b—a,而导体cd处·在S极下,其电动势方向由d—c,整个线圈的电动势为2e,方向由d—a,如果线圈转过180度,则ab导体和cd导体的电动势方向均发生改变,故线圈电动势为交变电动势。 但通过测量,我们却发现在电刷A/B间的电动势却是单向的,这是为什么呢?这是因为电刷A只与N极下的导体接触,当ab导体在N极下时,电动势方向为b—a—A,电刷A的极性为+,在另一个时刻,导体cd转到N极下时,电动势的方向为c—d—A,电刷A的极性仍为+,可见电刷A的极性永远为+,同理,电刷B的极性就永远为-,故电刷A/B间的电动势为直流电动势。 若把上述电机模型用做电动机运行,在电刷A/B间施加直流电压,使电流从正极电刷A流入,通过线圈abcd,经负极电刷B流出,由于电流始终从N极下的导体流入,S极下的导体流出,根据电磁力定律可知,上下两根导体受到的电磁力方向始终为逆时针方向,它们产生的电磁力矩的方向也始终是逆时针方向,使电机按逆时针方向旋转,从上面的分析可以看出,在直流电机的绕组里,电枢线圈里的电流方向是交变的,但产生的电磁转距的方向却是单向的,这也是由于有换向器的原因。 以上是直流电机运行的基本原理,而对直流电机的基本结构,相信大家已经非常熟悉,我就不再浪费大家的时间,下面,就首先从电动机的额定参数的定义开始给大家开始介绍电机的运行方程及特点。

电机与电气控制 试题 答案

石家庄职业技术学院2010-2011学年第一学期 [140705-1] 电机与电气控制 试卷(B )答案 一、填空题(每小题1分,共20分) 1、一般仪表用电压互感器二次侧额定电压为 100V ,电流互感器二次侧额定电流为 5A 。 2、直流电动机的机械特性是指 电磁转矩 与__转速__之间的关系。 3、笼式三相异步电动机常见的降压起动方法有定子串电阻或电抗降压起动、 自耦变压器减压起动 、星三角降压起动等。 4、三相异步电动机根据转子结构不同可分为 笼型 和__绕线_两类。当电源电压一定,负载转矩增加时,则转子转速 下降 ,定子电流 上升 。(填“上升”或“下降”) 5、某10极50HZ 的电动机,其三相定子磁场的转速为 600 r/min ,若额定转差率s=0.05,则转子额定转速为 570 r/min 。 6、对直流电动机的电磁转矩a T I C T Φ=公式中各物理量的含义,T C 表示转矩常数,Φ表示_每极磁通_,a I 表示 电枢电流 。 7、常用的电气控制系统图有:电气原理图 、 电气元件布置图、电气安装接线图等。 8、过电压继电器的作用为 过电压保护和控制 。 9、熔断器具有 短路 保护或 过载 保护功能。 10、低压电器中,常用的灭弧方法有双断口灭弧、 磁吹灭弧 、 栅片灭弧 、灭弧罩灭弧等。

二、判断题(正确的画√,错误的画×,每小题1分,共10分) (×)1、变压器可以改变交流电压,也可以改变直流电压。 (√)2、直流电动机的额定功率指转轴上输出的机械功率。 (√)3、变压器是一种将交流电压升高或降低,并且又能保持其频率不变的静止电气设备。 (×)4、三相笼型异步电动机的电气控制线路,如果使用热继电器作过载保护,就不必再装设熔断器作短路保护。 (√)5、螺旋式熔断器熔管内填充的石英沙是起灭弧作用的。(√)6、他励直流电动机降压或串电阻调速时,静差率越大,调速范围越大。 (×)7、一台电磁线圈额定电压为220V的交流接触器在交流220V 和直流220V的电源上均可使用。 (×)8、热继电器过载时双金属片弯曲是由于双金属片的机械强度不同。 (×)9、在电路图中,各电器元件触头所处的状态都是按电磁线圈通电或电器受外力作用时的状态画出的。 (√)10、异步电机只有转子转速和磁场转速存在差异时,才能运行。 三、选择题(每小题1分,共20分) 1、变压器空载电流小的原因是( C )。 A、一次绕组匝数多,电阻很大 B、一次绕组的漏抗很大 C、变压器励磁阻抗很大 D、变压器铁心的电阻很大

直流电机工作原理图解

直流电机工作原理图解 一.直流电机的物理模型图解释。 这是分析直流电机的物理模型图。其中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。转动部分有环形铁心和绕在环形铁心上的绕组。(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的) 上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。定子与转子之间有一气隙。在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。换向片之间互相绝缘,由换向片构成的整体称为换向器。换向器固定在转轴上,换向片与转轴之间亦

互相绝缘。在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。 二.直流发电机的工作原理 直流发电机是机械能转换为直流电能的电气设备。 如何转换?分以下步骤说明: 设原动机拖动转子以每分转n转转动; 电机内部的固定部分要有磁场。这个磁场可以是如图示的磁铁也可以是磁极铁心上绕套线圈,再通过直流电产生磁场。其中 If 称之为励磁电流。这种线圈每个磁极上有一个,也就是,电机有几个磁极就有几个励磁线圈,这几个线圈串联(或并联)起来就构成了励磁绕组。这里要注意各线圈通过电流的方向不可出错。在以上条件下环外导体将感应电势,其大小与磁通密度 B 、导体的有效长度 l 和导体切割磁场速度 v 三者的乘积成正比,其方向用右手定则判断。 但是要注意某一根转子导体的电势性质是交流电。而经电刷输出的电动势确是直流电了。这便是直流发电机的工作原理。如下动画演示: 三.直流电动机的工作原理

《电机与电气控制》课程教学大纲

《电机与电气控制》课程教学大纲 课程名称(中文):《电机与电气控制》 课程名称(英文):Electric Machinery And Electric Component Controlling 课程编号:0420420 课程性质:独立设课课程属性:专业必修课 教材及实验指导名称:《电机与电气控制》 学时-学分:总学时:64 总学分:4 实验学时: 24 开课学期:第四学期 适用专业:应用电子技术专业 先修课程:高等数学、大学物理、电工基础,自动控制原理 一、课程教学目的与任务 为使学生具备高素质劳动者和中初级专门人才所必需的电工与电子技的基本知识和基本技能,掌握基本电器元件的使用方法和以电动机或其他执行电器为控制对象的生产机械的电气控制基本原理、在掌握线路及分析方法基础上熟练地设计出简单的控制线路,为后继课程及其他程序设计课程的学习和应用打下基础。 通过本课程的学习,应使学生熟练掌握主要类型电动机的工作原理、基本结构、基本电磁关系、运行特性,三相异步电动机拖动和控制、电气控制基本环节和电气控制系统的设计,从生产实际出发,对常用设备的常见故障进行分析,为培养学生的分析、解决实际问题的能力和进行简单的电气控制系统设计的能力打下理论基础,为学习专业课做好准备,初步形成解决实际问题的能力。 二、课程教学内容和基本要求 本课程是高等职业学院工科电类相关专业一门技术基础课程,主要使学生通过学习具备高素劳动者和中高级专门人才所必需的交直流电机拖动、低压电器控制技术电工与电子技术的基本知识和基本能力。 电机与电气控制教学内容可分为常用电机与电器与电气控制线路的分析设计两大基本部分,可以归纳为如下8个方面:直流电机、变压器、三相异步电动机、常用控制电机、低压电器和基本电气控制电路、典型设备的电气控制、电气控制系统设计。 依据以上8个方面,整个教学体系的教学内容与教学基本要求如下:

有刷直流电机工作原理详解

有刷直流电机工作原理详解 日期: 2014-05-27 / 作者: admin / 分类: 技术文章 简介 有刷直流电机被广泛用于从玩具到按钮调节式汽车坐椅的应用中。有刷直流(Brushed DC,BDC)电机价格便宜、易于驱动并且易于制造成各种尺寸和形状。本应用笔记将讨论BDC电机的工作原理、驱动BDC电机的方法以及将驱动电路与PIC唀片机接口的方法。 工作原理 图1给出了一个简单BDC电机的结构。所有BDC 电机的基本组件都是一样的:定子、电刷和换向器。后面将更详细地介绍每个组件. 定子 定子会在转子周围产生固定的磁场。这一磁场可由永磁体或电磁绕组产生。BDC电机的类型由定子的结构或电磁绕组连接到电源的方式划分(欲知BDC电机的不同类型请参见步进电机的类型)。 转子 转子(也称为电枢)由一个或多个绕组构成。当这些绕组受到激励时,会产生一个磁场。转子磁场的磁极将与定子磁场的相反磁极相吸引,从而使定子旋转。在电机旋转过程中,会按不同的顺序持续激励绕组,因此转子产生的磁极绝不会与定子产生的磁极重叠。转子绕组中磁场的这种转换被称为换向。 电刷和换向器 与其他电机类型(即,无刷直流电机和交流感应电机)不同,BDC电机不需要控制器来切换电极绕组中电流的方向,而是通过机械的方

式完成BDC电机绕组的换向。在BDC电机的转轴上安装有一个分片式铜套,称为换向器。随着电机的旋转,碳刷会沿着换向器滑动,与换向器的不同分片接触。这些分片与不同的转子绕组连接,因此,当通过电机的电刷上电时,就会在电机内部产生动态的磁场。注意电刷和换向器由于两者之间存在相对滑动,因而是BDC电机中最容易损耗的部分,这一点很重要。 步进电机的类型 如前所述,BDC电机的各种类型用定子中固定磁场的产生方式来区别。本节将讨论BDC电机的不同类型,以及每种类型的优缺点。 永磁体 永磁体有刷直流(Permanent Magnet Brushed DC ,PMDC)电机是世界上最常见的BDC电机。这类电机使用永磁体产生定子磁场。PMDC电机通常用在包括分马力电动机在内的应用中,这是因为永磁体比绕组定子具有更高的成本效益。PMDC电机的缺点是永磁体的磁性会随着时间的推移逐渐衰退。某些PMDC电机的永磁体上还绕有绕组,以防止磁性丢失的情况发生。PMDC电机的性能曲线(电压与速度关系曲线)的线性非常好。电流与转矩成线性关系。由于定子磁场是恒定的,所以这类电机对电压变化的响应非常快。 并激 并激有刷直流(Shunt-wound Brushed DC,SHWDC)电机的励磁线圈与电枢并联。励磁线圈中的电流与电枢中的电流相互独立。因此,这类电机具有卓越的速度控制能力。SHWDC电机通常用在需要五个或五个以上马力的应用中。在SHWDC电机中,不会出现磁性丢失的问题,因此它们通常比PMDC电机更加可靠。

直流电动机工作原理

7.2.2 直流电动机工作原理与结构 图7-4 直流电动机模型 图7-4是一个最简单的直流电动机模型。在一对静止的磁极N和S之间,装设一个可以绕Z-Z'轴而转动的圆柱形铁芯,在它上面装有矩形的线圈abcd。这个转动的部分通常叫做电枢。线圈的两端a和d分别接到叫做换向片的两个半圆形铜环1和2上。换向片1和2之间是彼此绝缘的,它们和电枢装在同一根轴上,可随电枢一起转动。A和B是两个固定不动的碳质电刷,它们和换向片之间是滑动接触的。来自直流电源的电流就是通过电刷和换向片流到电枢的线圈里。

图7-5 换向器在直流电机中的作用 当电刷A和B分别与直流电源的正极和负极接通时,电流从电刷A流入,而从电刷B流出。这时线圈中的电流方向是从a流向b,再从c流向d。我们知道,载流导体在磁场中要受到电磁力,其方向由左手定则来决定。当电枢在图7-5(a)所示的位置时,线圈ab边的电流从a流向b,用表示,cd边的电流从c流向d,用⊙表示。根据左手定则可以判断出,ab边受力的方向是从右向左,而cd边受力的方向是从左向右。这样,在电枢上就产生了反时针方向的转矩,因此电枢就将沿着反时针方向转动起来。 当电枢转到使线圈的ab边从N极下面进入S极,而cd边从S极下面进入N极时,与线圈a端联接的换向片1跟电刷B接触,而与线圈d端联接的换向片2跟电刷A接触,如图7-5(b)所示。这样,线圈内的电流方向变为从d流向c,再从b流向a,从而保持在N极下面的导体中的电流方向不变。因此转矩的方向也不改变,电枢仍然按照原来的反时针方向继续旋转。由此可以看出,换向片和电刷在直流电机中起着改换电枢线圈中电流方向的作用。

直流电机工作原理

第三章直流电机的原理 本章主要介绍直流电机的结构和基本工作原理、直流电机绕组的构成、直流电机的电枢反应、直流电机绕组的电动势和电磁转矩、直流发电机和直流电动机的功率转矩等内容。本章共有10节课,内容和时间分配如下: 1.掌握直流电机的结构及工作原理。(2节) 2.掌握直流电机绕组有关的结构。(2节) 3.掌握直流电机绕组的电枢反应。(1节) 4.掌握直流电机的电枢电动势和电磁转矩。(1节) 5.掌握直流发电机的基本方程式和运行特性、并励发电机的条件。( 2.5节) 6.掌握直流电动机的基本方程式和运行特性。( 1.5节) 第一节直流电机的基本工作原理 一直流电机的用途 直流电动机的优点: 1 调速范围广,易于平滑调节 2 过载、启动、制动转矩大 3 易于控制,可靠性高 4 调速时的能量损耗较小 缺点: 换向困难,容量受到限制,不能做的很大。 应用: 轧钢机、电车、电气铁道牵引、造纸、纺织拖动。 直流发电机用作电解、电镀、电冶炼、充电、交流发电机励磁等的直流电源。 二、直流电机的工作原理 原理:任何电机的工作原理都是建立在电磁感应和电磁力这个基础上。 为了讨论直流电机的工作原理,我们把复杂的直流电机结构简化为工作原理图。(一)直流发电机的工作原理 1.工作原理:导体在磁场中运动时,导体中会感应出电势e 。 e=Blv。 B:磁密l:导体长度;v:导体与磁场的相对速度。 正方向:用右手定则判断。电势e正方向表示电位升高的方向,与U相反。如果同一元件上e和U正方向相同时,e= -U。

理解:电磁感应原理的变形(变化的磁通产生感应电动势) 2 发电机工作过程分析:两磁极直流发电机的工作原理图。 (1)构成: 磁场:图中N和 S是一对静止的磁极,用以产生磁场,其磁感应强度沿圆周为正弦分布。 励磁绕组——容量较小的发电机是用永久磁铁做磁极的。容量较大的发电机的磁场是由直流电流通过绕在磁极铁心上的绕组产生的。用来形成N极和S极的绕组称为励磁绕组,励磁绕组中的电流称为励磁电流If。 电枢绕组:在N极和 S极之间,有一个能绕轴旋转的圆柱形铁心,其上紧绕着一个线圈称为电枢绕组(图中只画出一匝线圈),电枢绕组中的电流称为电枢电流Ia。 换向器:电枢绕组两端分别接在两个相互绝缘而和绕组同轴旋转的半圆形铜片——换向片上,组成一个换向器。换向器上压着固定不动的炭质电刷。 电枢:铁心、电枢绕组和换向器所组成的旋转部分称为电枢。

《电机与电气控制技术》项目六t北邮电机与电气控制课后答案

项目六 三相异步电动机的基本控制电路及安装 一、选择题 1.采用星形-三角降压起动的电动机,正常工作时定子绕组接成( B )。 A .角形 B .星形 C .星形或角形 D .定子绕组中间带抽头 2.欲使接触器KM1动作后接触器KM2才能动作,需要( C )。 A .在KM1的线圈回路中串入KM2的常开触点 B .在KM1的线圈回路中串入KM2的常闭触点 C .在KM2的线圈回路中串入KM1的常开触点 D .在KM2的线圈回路中串入KM1的常闭触点 3.频敏变阻器起动控制的优点是( C )。 A .起动转矩平稳,电流冲击大 B .起动转矩大,电流冲击大 C .起动转矩平稳,电流冲击小 D .起动转矩小,电流冲击大 4.三相异步电动机Y- 降压起动时,其起动转矩是全压起动转矩的( A )倍。 A .31 B .3 1 C .21 D .不能确定 5.下列哪个控制电路能正常工作( B )。 6.适 用于电机容量较大且不允许频繁启动的降压 启动方法是( B )。 A .星 形-三角 B .自耦变压器 C .定子串 电阻 D .延边三角形 7.用来表明电机、电器实际位置的图是 ( B )。 A .电气原理图 B .电器布置图 C .功能图 D .电气系统图 8.转子绕组串电阻起动适用于( B )。 A .鼠笼式异步电动机 B .绕线式异步电动机 C .串励直流电动机 D .并励直流电动机 9.Y -△起动,起动时先把它改接成星形,使加在绕组上的电压降低到额定值的( C )。 A .1/2 B .1/3 C .1/3 D .以上都不是 10.在控制电路中,如果两个常开触点串联,则它们是( A )。 A .与逻辑关系 B .或逻辑关系 C .非逻辑关系 D .与非逻辑关系 11.电机正反转运行中的两接触器必须实现相互间( A )。 A .联锁 B .自锁 C .禁止 D .记忆 12.欠电流继电器可用于( D )保护。 A .短路 B .过载 C .失压 D .失磁 13.下列电动机中,( B )可以不设置过电流保护。 A .直流电动机 B .三相笼型异步电动机 C .绕线式异步电动机 D .以上三种电动机 14.若接触器用按钮起动,且起动按扭两端并联接触器的常开触点,则电路具有( A )。 A .零压保护功能 B .短路保护功能 C .过载保护功能 D .弱磁保护功能 二、判断题 1.电路图中,不画电器元件的实际外形图,而采用国家统一规定的电气图形符号。( √ ) 2.电气原理图设计中,应尽量减少电源的种类。( √ ) 3.电气原理图设计中,应尽量减少通电电器的数量。( √ ) 4.电气接线图中,同一电器元件的各部分不必画在一起。( × ) 5.电气原理图中所有电器的触点都按没有通电或没有外力作用时的开闭状态画出。( √ ) 6.QJ10 和XJ01系列自耦变压器减压起动器,在进入正常运行时,自耦变压器仍然带电。( √ )

直流电机原理与控制方法

电机简要学习手册 2015-2-3

一、直流电机原理与控制方法 1直流电机简介 直流电机(DM)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能 (直流发电机)的旋转电机。 它是能实现直流电能和机械 能互相转换的电机。当它作电 动机运行时是直流电动机,将 电能转换为机械能;作发电机 运行时是直流发电机,将机械 能转换为电能。 直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现以前基本占据了电机控制领域的整座江山。但随着交流电机控制技术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流电机所取代。但如今直流电机仍然占据着不可忽视的地位,广泛用于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然意义重大。 2 直流电动机基本结构与工作原理 2.1 直流电机结构

如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。定子按照励磁可分为直励,他励,复励。电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。 2.2 直流电机工作原理 如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷A 流入,经过线圈abcd,从电刷B 流出,根据电磁力定律,载流导体ab和 cd收到电磁力的作用, 其方向可由左手定则判 定,两段导体受到的力 形成了一个转矩,使得 转子逆时针转动。如果 转子转到如上图(b)所 示的位置,电刷A 和换向片2接触,电刷B 和换向片1接触,直流电流从电刷A 流入,在线圈中的流动方向是dcba,从电刷B 流出。

080801电机与电器一套卷电机学自动控制原理

请各位考生根据试卷的科目构成自行查阅各科目大纲 专业 复试专业课笔试(满分100分) 080801电机与电器 一套卷①电机学+②自动控制原理 080802电力系统及其自动化 一套卷①电力系统分析+②电力系统继电保护 080803高电压与绝缘技术 一套卷①电介质物理+②电气绝缘测试技术 080804电力电子与电力传动 一套卷①电力电子技术+②自动控制原理 080805电工理论与新技术 四套卷任选两套答题:每科50分 1.电气测量 2.电机学 3.电力电子技4.自动控制原理 081002信号与信息处理 三套卷任选两套答题,不得跨套答题:每科50分 1.信息论基础 2.高频电子技术 3.单片机原理及应用 085207电气工程四套卷任选两套答题:每科50分 1.电气测量 2.电机学 3.电力电子技4.自动控制原理 085208电子与通信工程 三套卷任选两套答题,不得跨套答题:每科50分 1.信息论基础 2.高频电子技术 3.单片机原理及应用

《电机学》考试大纲 一、 考试目的与要求 测试考生掌握变压器、感应电机、同步电机、直流电机的原理、基本理论和稳态分析方法,以及对简单工程问题的分析能力。考 生应掌握电机的基本原理、等效电路、相量图及基本参数和性能的实验方法,初步具备进行简单电机工程问题的分析能力。 二、 试卷结构(满分50分) 内容比例: 变压器基本原理与性能分析计算 约20% 交流电机理论的共同问题 约20% 感应电机 约20% 同步电机 约20% 直流电机 约15% 题型比例: 1.单项选择题 约20% 2.简答题 约25% 3.综合计算题 约55% 三、考试内容与要求 (一)磁路的基本概念 考试内容 磁路;直流磁路的分析方法;交流磁路的分析方法;铁磁材料的基本特性;磁路的基本定律。 考试要求 1. 了解磁路的基本概念及磁场分析基本量。 2. 掌握磁路的分析方法与磁路的基本定律。 3. 了解铁磁材料的基本特性。 (二)变压器 考试内容 变压器基本原理、等效电路、参数测定与计算、性能计算分析。 考试要求 1. 了解变压器的用途,结构,分类,额定值。 2. 理解变压器的基本原理与空载、负载分析方法。 3. 掌握变压器电压方程,绕组归算,等效电路,向量图,等效电路参数测定。 4. 掌握变压器的运行特性与性能指标。 (三)交流电机理论的共同问题 考试内容 交流绕组的构成、分类;交流绕组磁动势和电动势的计算与分析;三相交流绕组的联接方式与展开图。 考试要求 1. 掌握三相交流绕组联结方法、基本要求,及绕组短距与分布。 2. 掌握正弦磁场下交流绕组的感应电动势计算。 3. 掌握正弦电流下交流绕组的磁动势计算。 (四)感应电动机 考试内容 感应电机的基本原理、基本方程、等效电路、运行性能等。 考试要求 1. 掌握感应电机的用途,基本类型、主要结构、额定值、运行状态、转差率等。

直流电机分类及工作原理

直流电机 定义输出或输入为直流电能的旋转电机,称为直流电机,它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。 直流电机的结构 直流电机由定子和转子两部分组成,其间有一定的气隙。其构造的主要特点是具有一个带换向器的电枢。直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。其中主磁极是产生直流电机气隙磁场的主要部件,由永磁体或带有直流励磁绕组的叠片铁心构成。直流电机的转子则由电枢、换向器(又称整流子)和转轴等部件构成。其中电枢由电枢铁心和电枢绕组两部分组成。电枢铁心由硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。换向器是一种机械整流部件。由换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。各换向片间互相绝缘。换向器质量对运行可靠性有很大影响。 直流电机的可逆运行原理 一台直流电机原则上既可以作为电动机运行,也可以作为发电机运行,这种原理在电机理论中称为可逆原理。当原动机驱动电枢绕组在主磁极N、S之间旋转时,电枢绕组上感生出电动势,经电刷、换向器装置整流为直流后,引向外部负载(或电网),对外供电,此时电机作直流发电机运行。如用外部直流电源,经电刷换向器装置将直流电流引向电枢绕组,则此电流与主磁极N.S.产生的磁场互相作用,产生转矩,驱动转子与连接于其上的机械负载工作,此时电机作直流电动机运行。 直流电机的分类 按结果主要分为直流电动机和直流发电机 按类型主要分为直流有刷电机和直流无刷电机 直流电机的励磁方式是指对励磁绕组如何供电、产生励磁磁通势而建立主磁场的问题。根据励磁方式的不同,直流电机可分为下列几种类型。 直流电机的励磁方式 1.他励直流电机 励磁绕组与电枢绕组无联接关系,而由其他直流电源对励磁绕组供电的直流电机称为他励直流电机,接线如图(a)所示。图中M表示电动机,若为发电机,则用G 表示。永磁直流电机也可看作他励直流电机。

电机与电器控制技术复习资料

电机与电气 1、 变压器的三大作用:变电压、变电流、变阻抗,还可以起到电器隔离的作用。 2、 自耦变压器的特点:副边绕组是原边绕组的一部分,原边绕组不但有磁的耦合,还有点 的联系。(自耦变压器和普通变压器工作原理一样,所以变比相同) 3、 电流互感器的注意事项:电流互感器的原绕组匝数很少,而副绕组匝数较多,这将在副绕组中产生很高的感应电动势,因此电流互感器的副边绕组决不允许开路。 4、 为什么电流互感器在运行时严禁它的副边开路? 答:二次端开路时,电流互感器处于空载运行状态,此时一次绕组中流过的被测电流全部为励磁电流,使铁芯中的磁通急剧增大,造成铁芯过热,烧坏绕组。 5、 交流异步电动机的调速方法 三相异步 单项异步 6、 电动机制动的方法:

7、 旋转磁场的转向与什么有关?并且转速与什么有关? 答:1、旋转磁场的转向与磁极有关(只要将三相电源中任意两相与绕组端的连接顺序 对调,就可以改变旋转磁场的旋转方向) 2、转速与电流的频率和磁极对数有关 60f n = p 8、电动机的转速小于旋转磁场的转速 9、Y ---三角形降压启动时的启动电流和启动转矩分别将为原来的 1/3 倍 10、如何计算旋转磁场的速度? 60f n = p 11、10KW 以下的电动机可以直接启动 12、 13、降压启动的方法:Y —三角降压启动(只适用于定子绕组为三角形连接)、自耦变压器降压启动 、延边三角形降压启动。 14、直流电动机根据励磁方式分类为:

15、直流电动机中换相极的作用:用来改善直流电动机的换相性能。 16、电动机的额定功率等于输出功率 17、单相异步电动机只有一套绕组时启动转矩为0 根据结构不同分为:罩极式、分相式(电容分相、电阻分相、电感分相) 18、直流电动机主磁极的作用:产生恒定的、有一定空间分布形状的气隙磁通,也是磁路的一部分;主磁极由极身和极靴组成。 19、改变直流电动机的转向: 1)、改变励磁电流方向:保持电枢两端电压极性不变,把励磁绕组反接,使励磁电流方向改变,电动机反转 2)、改变电枢电流方向:保持励磁绕组电力方向不变,将电枢绕组反接,使电枢电流改变方向,电动机反转。 20、三台电动机正序启动、逆序停止:

相关主题
文本预览
相关文档 最新文档