当前位置:文档之家› 固体物理学习心得

固体物理学习心得

固体物理学习心得
固体物理学习心得

固体物理学习心得

篇一:学习固体物理后的感想

学习固体物理的感受

经过了十几周的学习,我们这门《固体物理学》也结束了最后的任务,虽然说这门课对于咱们专业的同学来说总体上难度很大,但是在您的指导下,同学们还是基本能够按时出勤,最重要的是达到了开设这门课的最初用意,能够为我们以后学习和了解更多物理学相关的知识打下良好的基础。

本课程是材料科学与工程专业的物理类基础课,包括晶格结构、晶格振动与热性质、固体电子理论、半导体、固体磁性质、绝缘体、介电体等部分。这门课程系统介绍固体物理研究的基本理论与重要试验方法提示丰富多彩的固体形态(如金属、绝缘体、磁性材料等)形成的基本物理规律,给出研究这些固体的实验(如X光衍射、中子散射、磁

散射等)设计的基本原理。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。其实固体物理学是研究固体的性质、它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性,较易研究。晶体或多或少都存在各种杂质和缺陷,它们对固体的物性,

以及功能材料的技术性能都起重要的作用。半导体的电学、发光学等性质

依赖于其中的杂质和缺陷;大规模集成电路的工艺中控制和利用杂质及缺陷是极为重要的。非晶态固体的物理性质同晶体有很大差别,这同它们的原子结构、电子态以及各种微观过程有密切联系。从结构上来分,非晶态固体有两类。一类是成分无序,在具有周期性的点阵位置上随机分布着不同的原子或者不同的磁矩;另一类是结构无序,表征长程序的周期性完全破坏,点阵失去意义。但近邻原子有一定的配位关系,类似于晶体的情形,因而仍然有确定的短程序。在无序体系中,电子态有局域态和扩展态之分。在局域态中的电子只有在声子的合作下才能参加导电,这使得非晶态半导体的输运性质具有新颖的特点。1974年人们掌握了在非晶硅中掺杂的技术,现在非晶硅已成为制备高效率太阳能电池的重要材料。无序体系是一个复杂的新领域,非晶态固体实际上是一个亚稳态。目前对许多基本问题还存在着争论,有待进一步的探索和研究。

新的实验条件和技术日新月异,为固体物理不断开拓出新的研究领域。极低温、超高压、强磁场等极端条件、超高真空技术、表面能谱术、材料制备的新技术、同步辐射技术、核物理技术、激光技术、光散射效应、各种粒子束技术、电子显微术、穆斯堡尔效应、正电子湮没技术、磁共振技术等现代化实验手段,使固体物理性质的研究不断向深度和广度发展。固体物理对于技术的发展有很多重要的应用,晶体管发明以后,集成电路技术迅速发展,电子学技术、计算技术以至整个信息产业也随之迅速发展。其经济影响和社会影响是革命性的。这种影响甚至在日常生活中也处处可见的。

由以上分析我们看到,学生在学习固体物理时,一不留神,学习中便会出现问题、出现障碍。这就要求同学们一开始在思想上便要给予足够的重视,同时要和老师密切合作,认真听讲、虚心学习是必要的。由于考试制度没改变,

所以尽管不少人高呼什么素质教育、渗透式教育、创造式教育,但当前的教育基本上还是应试教育。就当前的考试制度而言,死读书、死背书是免不了的。就是说,主要的公式、定理、定义、结论还必须记住。

学号:132411151姓名:姚松

篇二:固体物理学习总结

第二章

1、晶体有哪些宏观特性?

答:晶体的有序性、各向异性、周期性、对称性、固定的熔点

这是由构成晶体的原子和晶体内部结构的周期性决定的。说明晶体宏观特性是微观特性的反映

2、什么是空间点阵?

答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵(布拉菲点阵)。

3、什么是简单晶格和复式晶格?

答:简单晶格:如果晶体由完全相

同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。

复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。

4、试述固体物理学原胞和结晶学原胞的相似点和区别。

答:固体物理学原胞

构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。

特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。它反映了晶体结构的周期性。是最小单位。

结晶学原胞(简称晶胞)

构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。特点:结晶学原胞不

仅在平行六面体顶角上有格点,面上及内部亦可有格点。其体积不一定最小,是固体物理学原胞体积的整数倍。反应对称性。

5、晶体的7大晶系

6、答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。

立方:简单立方、体心立方、面心立方

7.密堆积结构包含哪两种?各有什么特点?

答:六角密积

第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。

第二层:占据1,3,5空位中心。

第三层:在第一层球的正上方形成ABABAB······排列方式。

六角密积是复式格,其布拉维晶格是简单六角晶格。

立方密积

第一层:每个球与6个球相切,有6个空隙,如编号为1,2,3,4,5,6。

第二层:占据1,3,5空位中心。

第三层:占据2,4,6空位中心,按ABCABCABC······方式排列,形成面心立方结构,称为立方密积。

8.倒格子与正格子(5个性质)

9.晶向指数、晶面指数、密勒指数

10.等效晶向与等效晶面

第三章

1、什么是晶体的结合能,按照晶体的结合力的不同,晶体有哪些结合类型及其结合力是什么力?

答:晶体的结合能就是将自由的原子(离子或分子)结合成晶体时所释放的能量。结合类型:离子晶体—离子键分子晶体—范德瓦尔斯力共价晶体—共价键

金属晶体—金属键氢键晶体—氢键

2、原子间的排斥力主要是什么原因引起的?

库仑斥力与泡利原理引起的

3.金属晶体的特点、一般金属晶体的

结构,最大配位数

答:特点:良好的导电性和导热性,较好的延展性,硬度大,熔点高。

金属性的结合方式导致了金属的共同特性。金属结合中的引力来自于正离子实与负电子气之间的库仑相互作用,而排斥力则有两个来源,由于金属性结合没有方向性要求的缘故,所以金属具有很大的塑性,即延展性较好。

金属晶体多采用立方密积(面心立方结构)或六角密积,配位数均为12;少数金属为体心立方结构,配位数为8。

4、为什么分子晶体是密堆积结构?

答:由于范德瓦耳斯力引起的吸引能与分子间的距离r的6次方成反比,因此,只有当分子间的距离r很小时范德瓦耳斯力才能起作用。而分子晶体的排斥能与分子间的距离r的12次方成反比,因此排斥能随分子间的距离增加而迅速减少。范德瓦耳斯力没有方向性,也不受感应电荷是否异同号的限制,因此,分子晶体的配位数越大越好。配位

数越大,原子排列越密集,分子晶体的结合能就越大,分子晶体就越稳定,在自然界排列最密集的晶体结构为面心立方或六方密堆积结构。

5、一维单、双原子链振动模型与色散关系(求解、结论)

6、玻恩卡门条件

答:方便于求解原子运动方程.

与实验结果吻合得较好.

玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.

7、什么叫格波?

答:晶格中的原子振动是以角频率为ω的平面波形式存在的,这种波就叫格波。

8、为什么把格波分为光学支与声学支?

答:因为晶格振动波矢为N,格波支数为mp,这其中,m支为声学支,m (p-1)支为光学支。

9、长光学支格波与长声学支格波本质上有何差别?

答:长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格晶体不存在光学支格波.

10、什么叫声子?与光子有何区别?

答:将格波的能量量子(hw)叫声子。

声子和光子的区别:光子是一种真实粒子,它可以在真空中存在;但声子是人们为了更好地理解和处理晶格集体振动设想出来的一种粒子,它不能游离于固体之外,更不能跑到真空中,离开了晶格振动系统,也就无所谓声子,所以,声子是种准粒子。声子和光子一样,是玻色子,它不受泡利不相容原理限制,

粒子数也不守恒,并且服从玻色-爱因斯坦统计。

11、爱因斯坦模型、为什么爱因斯坦模型计算的热容在低温下与实验值不符?

答:爱因斯坦对晶格振动采用了一个极简单的假设,即晶格中的各原子振动都是独立的,这样所有原子振动都有同一频率。按照爱因斯坦温度的定义, 爱因斯坦模型的格波的频率属于光学支频率. 但光学格波在低温时对热容的贡献非常小, 低温下对热容贡献大的主要是长声学格波. 也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源.

12.德拜模型、为什么温度很低时,德拜近似与实验符合较好,爱因斯坦近似与实验结果的偏差增大?为什么德拜近似还不能与实验完全符合?

答:在极低温下, 不仅光学波得不到激发, 而且声子能量较大的短声学格波也未被激发, 得到激发的只是声子能量

较小的长声学格波. 长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 在极低温下, 德拜模型与事实相符, 自然与实验相符.

13.晶体中波矢数目、原胞数目、自由度数之间的关系(n,l,N)

15.在利用能带理论计算晶体能带时,固体是由大量原子组成,每个原子又有原子核和电子,实际上是要解多体问题的薛定鄂方程,而我们要把多体问题转化为单电子问题,需要对整个系统进行简化,试叙述需要哪些简化近似?

答:首先应用绝热近似,由于电子质量远小于离子质量,电子的运动速度就比离子要大得多,故相对于电子,可认为离子不动,或者说电子的运动可随时调整来适应离子的运动。第二个近似是平均场近似,在多电子系统中,可把多电子中的每一个电子看作在离子场及其他电子产生的平均场中运动这种考虑叫平均场近似。第三个近似是周期场近似,每个电子都在完全相同的严格周期

性势场中运动,因此每个电子的运动都可以单独考虑。

16.布洛赫函数、布洛赫定理与布洛赫电子(周期势场)

17.近自由电子模型。

答:该模型假设晶体势很弱,晶体电子的行为很像是自由电子,我们可以在自由电子模型结果的基础上用微扰方法去处理势场的影响,这种模型得到的结果可以作为简单金属价带的粗略近似。

18.紧束缚电子模型。

答:原子势很强,晶体电子基本上是围绕一个固定电子运动,与相邻原子存在的很弱的相互作用可以当作微扰处理,所得结果可以作为固体中狭窄的内壳层能带的粗略近似。

19.能带理论

(允带、禁带、有效质量、布里渊区、费米能级)

篇三:固体物理总结

固体物理课程报告

通过30多个学时的学习,我对固体物理有了一定的了解:固体是指在承受切应力时具有一定程度刚性的物质,在压强和温度一定且无外力作用时,它的形状和体积保持不变。而固体物理学就是研究固体的性质、微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。

固体物理学的基本任务:从宏观到微观研究固体的各种物理性能并阐明其规律性;

研究对象:金属、无机半导体、无机绝缘体、晶态和非晶态固体和有机固体等;

研究内容:晶体与非晶体的微观结构、各种无激发、杂质与缺陷等。

固体物理学顾名思义就是研究固体的学科。固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性。以后进一步研究一切处于凝聚状态的物体的内部结构、内部运动

以及它们和宏观物理性质的关系。而固体指的是在承受切应力时,具有一定程度刚性的物质,包括晶态和非晶态固体。固体物理学有两个最基本的问题:第一:固体是由什么原子组成的?它们是怎样排列和组合的?第二:结构是如何形成的?固体物理的研究领域是相当广泛的,主要包括介质物理、铁电物理、晶体物理、半导体物理、铁磁物理、超导物理、纳米物理和非晶态物理。

固体物理学科的建立和发展决定于几个方面:晶体结构的认知;晶体结合的认知;晶格振动和固体比热容的认识和发展;缺陷的认知;固体电子论的发展;相变的研究;固体磁性;超导现象的认识和发展;半导体物理的研究以及无序系统和一些新的发展。

固体物理学讲述了固体中的原子结构、结合规律、运动状态和能量关系,固体中电子的运动方程、电子的能带结构、金属导体的导电机制、半导体的基本原理、超导性的基本规律,是20世纪

物理学发展最快的一门学科。

一晶体结构和周期性

晶体结构是固体物理学中非常重要的部分,它为固体物理的研究奠定了基础。固体材料是由大量的原子(分子、离子)组成的,不同原子构成的晶体具有不同的性质,即使是由同种原子构成的晶体,由于结构不同其性质也会有很大的差别。但不同的晶体之间仍然存在着某些共同的特征:长程有序、自限性与解理性、晶面角守恒、各向异性。固体物理学主要就是探讨具有周期结构特征的晶态物质的结构和性质。

晶体结构的周期性可借助于基元、布喇菲格子,即晶体结构=基元+布喇菲格子。原胞即为组成晶体结构的最小平移单位。有时为了考虑晶体结构的对称性,往往选取较大的重复单元—晶胞,而在布喇菲格子中,选一点O为原点,a1,a2,a3为原胞的基失,则格子中的任一格点可由原点O到该格点的矢量表示:即Ri=l1a1+l2a2+l3a3,但是其中的

l1,l2,l3必须是整数。

体心立方格子的晶胞基失:

a=ai, b=bj, c=ck;

体心立方格子的原胞基失:

a1=a/2

a2=a/2

a3=a/2

每个晶胞中包含两个格点,每个原胞中包含一个格点,晶胞体积是原胞的二倍,a为晶格常数。

面心立方格子的晶胞基失为:

a=ai, b=bj, c=ck;

原胞基失为:

a1=a/2 a2=a/2

每个晶胞中包含四个格点,体积为原胞的四倍。

简单格子和复式格子

简单格子:如果晶体的原胞中只含有一种粒子,在晶胞基失为坐

标轴时,则记作(hkl),又称为晶面族的密勒指数。

X射线衍射

原子散射因子是晶体中的某一个组成原子对入射波散射本领的量度,它等于该原子内所有电子在选定方向散射波的振幅与单一电子的散射波振幅之比。大小

?????为:f?????exp[r]dt,其中r为任一原子的位失?是电子在该点附近体积元dt的分布几率,k和k0为衍射波波失和入射波波失,引入

sin?r?则可以简化为径向分布函数:u?4?f??udr,其中?r02?

??k?k0。

而一个晶胞对X射线衍射的散射可用几何结构因子表示,其定义为一个晶胞内所有原子沿选定方向散射波振幅的几何和单个电子的散射波的振幅之比。

二晶格振动

晶格振动即在有限的温度下,组成晶体的原子并非固定于格点位置,而是以格点为平衡位置做热振动。显然,晶格振动将使晶体势场偏离严格的周期性,从而对布洛赫电子产生散射作用,

并影响的玉电子有关的输送性质。晶格振动的强弱依赖于温度,晶体的比热、热膨胀和热导等热学性质直接依赖于晶格振动,晶体的光吸收和光发射等光学性质也与晶格振动有关。

一维简单格子的晶格振动

一维简单格子的晶格振动是晶格振动的最简单形式,设质量为m,晶格常数为a,则第n个原子的运动方程为:d2x?为原子间谱相互作用的恢复力常数,m2?? ,其解为:dt

xn?Aexp[i]。由此可见晶体中存在角频率为?的波动,简称格波,当原子间距为2?/q的整数倍时,原子因振动而产生的位移相等。

一维复式格子的振动

两个不同原子构成的一维复式格子,同种原子的最短距离为2a,只考虑一维简单格子,可得到的原子振动方程为:

x2n?1?Aexpa??t]),x2n?2?Bexpa??t,x2n?1,x2n?2代表两种不同原子的振动位

固体物理复习整理

固体物理复习整理 第12章 1.什么是布拉菲格子? 2.布拉菲格子与晶体结构之间的关系. 3.什么是复式格子?复式格子是怎么构成的? 4.原胞和晶胞是怎样选取的?它们各自有什么特点? 5.如何在复式格子中找到布拉菲格子?复式格子是如何选取原胞和晶胞的? 6.金刚石结构是怎样构成的? 7.氯化钠、氯化铯的布拉菲格子是什么结构? 8.密堆积有几种密积结构?它们是布拉菲格子还是复式格子? 9.8种独立的基本对称操作是什么? 10.7大晶系是什么? 11.怎样确定晶列指数和晶面指数? 12.晶面指数与晶面在三坐标轴上的截距之间的关系? 13.通过原点的晶面如何求出其晶面指数? 14.倒格子的定义?正倒格子之间的关系? 内容 ?正空间:晶体的结构以及特点 ?正空间:晶体的结构参数的确定→晶向指数和晶面指数 ?从正空间到倒空间→倒格子和布里渊区 晶体所呈现的物理性质来源其特殊的空间结构,所以对其空间结构的了解以及描述很有必要;而对于涉及到波函数,比如格波→晶格振动(13章)和电子波→能带论(14章)的讨论都是在倒空间中完成的,所以本章还涉及到正空间和倒空间的相互转换,以及布里渊区概念的提出和构建。 概念 ?格点和基元 ?布拉菲格子(简单格子)和复式格子 ?原胞和晶胞 ?七大晶系和十四种布拉菲格子 ?立方晶系的三种布拉菲格子:简单立方、面心立方、体心立方的结构特点——晶 胞(立方晶系)和原胞基矢的建立 ?立方晶系的几种复式格子:氯化钠结构、氯化铯结构、金刚石结构和闪锌矿结构 ——结构特点和代表物质 ?最密堆积的两种基本方式:ABAB→六方密堆积(六方晶系的复式格子)和

ABCABC→立方密堆积(立方晶系的布拉菲格子:面心立方) ?晶体的八种独立的宏观对称要素:C1、C2、C3、C4、C6、σ、i、S4 ?32点群和230空间群 ?倒格矢和晶面以及晶面间距之间的关系? ?倒格矢和正格矢之间的关系? ?布里渊区物理性质的重复? 方法 ?一维、二维和三维晶体的原胞和晶胞的选取,以及其基矢的建立,格矢的确定?(包括 简单格子和复式格子) ?晶向指数和晶面指数的确定?(从图到指数,依据指数画图) ?正格子到倒格子的转换——原胞基矢的互换:一维、二维和三维(立方晶系的正倒格子 关系)? ?求正格子和倒格子的体积Ω和Ω*? ?布里渊区的几何画法?布里渊区边界方程应用? 第13章 1.一维单原子晶格的色散关系?色散关系周期性的物理意义? 2.一维双原子晶格的色散关系? 3.同一原胞内两种原子有什么振动特点? 4.晶格振动的波矢数、格波支数及格波数是如何确定的? 5.声子这个概念是怎样引出的?它是怎样描述晶格振动的? 内容 ?对晶格振动形态的描述:从运动方程到色散关系;(简单的一维无限长模型) ?周期边界条件以及对格波状态的讨论(多维有限长模型——原胞数有限) ?格波的能量——声子的引出 ?晶格比热——声子能量的进一步讨论 概念 1、一维单原子和一维双原子的色散关系? 2、声学波和光学波的运动特点? 3、波恩卡门条件:格波支数、每支格波格波数、总格波数(n维有限——简单或者复 式格子) 4、声子的基本概念——格波能量量子化——公式? 5、了解,晶格比热的历史沿革——经典下的矛盾,爱因斯坦和德拜模型的成功与不足?方法 1、运动方程→试探解→色散方程? 2、利用周期边界条件求格波波矢(状态)?

南昌大学机械工程控制基础考前训练题

训练一:选择题 1.设一阶系统的传递函数为 5 23 s ,则其时间常数和增益分别是(C )。 A. 2,3 B. 2,1.5 C. 0.4,0.6 D. 2.5,1.5 2.系统的传递函数(C )。 A.与外界无关 B.与系统的初始状态有关 C.反映了系统、输入、输出三者之间的关系 D.完全反映了系统的动态特性 3.以下关于线性系统时间响应的说法正确的是(C )。 A.时间响应就是系统输出的稳态值 B.由单位阶跃响应和单位脉冲响应组成 C.由强迫响应和自由响应组成 D.与系统的初始状态无关 4.以下关于系统稳态偏差的说法正确的是(C )。 A.稳态偏差值取决于系统结构和参数 B. 稳态偏差值取决于系统输入和干扰 C. 稳态偏差与系统结构、参数、输入和干扰等有关 D.系统稳态偏差始终为0

5.已知某环节频率特性Nyquist 图如图所示,则该环节为(C )。 A.比例环节 B.微分环节 C.积分环节 D.惯性环节 6.已知最小相位系统的对数幅频特性图如图所示,则系统包含(D )个环节。 A.0 B.1 C.2 D.3 7.已知单位反馈系统传递函数) 7)(2(2 )(--+= s s s s s G 则该系统(B )。 A.稳定 B.不稳定 C.临界稳定 D.无法判断 8.关于开环传递函数)(s G K 、闭环传递函数)(s G B 和辅助函数 )(1)(s G s F K +=三者之间的关系为(B )。 A.三者的零点相同 B.)(s G B 的极点与)(1)(s G s F K +=的零点相同; C.)(s G B 的极点与)(1)(s G s F K +=的极点相同; D )(s G B 的零点与)(1)(s G s F K +=的极点相同

固体物理知识点总结

一、考试重点 晶体结构、晶体结合、晶格振动、能带论得基本概念与基本理论与知识 二、复习内容 第一章晶体结构 基本概念 1、晶体分类及其特点: 单晶粒子在整个固体中周期性排列 非晶粒子在几个原子范围排列有序(短程有序) 多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积 准晶体粒子有序排列介于晶体与非晶体之间 2、晶体得共性: 解理性沿某些晶面方位容易劈裂得性质 各向异性晶体得性质与方向有关 旋转对称性 平移对称性 3、晶体平移对称性描述: 基元构成实际晶体得一个最小重复结构单元 格点用几何点代表基元,该几何点称为格点 晶格、 平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量 基矢 元胞以一个格点为顶点,以某一方向上相邻格点得距离为该方向得周期,以三个不同方向得周期为边长,构成得最小体积平行六面体。原胞就是晶体结构得最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。每个原胞含1个格点,原胞选择不就是唯一得 晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴) 为坐标轴,坐标轴上原点到相邻格点距离为边长,构成得平行六面体称为晶胞。 晶格常数 WS元胞以一格点为中心,作该点与最邻近格点连线得中垂面,中垂面围成得多面体称为WS原胞。WS原胞含一个格点

复式格子不同原子构成得若干相同结构得简单晶格相互套构形成得晶格简单格子 点阵格点得集合称为点阵 布拉菲格子全同原子构成得晶体结构称为布拉菲晶格子、 4、常见晶体结构:简单立方、体心立方、面心立方、 金刚石 闪锌矿 铅锌矿 氯化铯

氯化钠 钙钛矿结构 5、密排面将原子瞧成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成得三维结构称为密堆积。 六脚密堆积密排面按AB\AB\AB…堆积

学习固体物理后的感想

学习固体物理的感受 经过了十几周的学习,我们这门《固体物理学》也结束了最后的任务,虽然说这门课对于咱们专业的同学来说总体上难度很大,但是在您的指导下,同学们还是基本能够按时出勤,最重要的是达到了开设这门课的最初用意,能够为我们以后学习和了解更多物理学相关的知识打下良好的基础。 本课程是材料科学与工程专业的物理类基础课,包括晶格结构、晶格振动与热性质、固体电子理论、半导体、固体磁性质、绝缘体、介电体等部分。这门课程系统介绍固体物理研究的基本理论与重要试验方法提示丰富多彩的固体形态(如金属、绝缘体、磁性材料等)形成的基本物理规律,给出研究这些固体的实验(如X光衍射、中子散射、磁散射等)设计的基本原理。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。其实固体物理学是研究固体的性质、它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性,较易研究。晶体或多或少都存在各种杂质和缺陷,它们对固体的物性,

以及功能材料的技术性能都起重要的作用。半导体的电学、发光学等性质依赖于其中的杂质和缺陷;大规模集成电路的工艺中控制和利用杂质及缺陷是极为重要的。非晶态固体的物理性质同晶体有很大差别,这同它们的原子结构、电子态以及各种微观过程有密切联系。从结构上来分,非晶态固体有两类。一类是成分无序,在具有周期性的点阵位置上随机分布着不同的原子或者不同的磁矩;另一类是结构无序,表征长程序的周期性完全破坏,点阵失去意义。但近邻原子有一定的配位关系,类似于晶体的情形,因而仍然有确定的短程序。在无序体系中,电子态有局域态和扩展态之分。在局域态中的电子只有在声子的合作下才能参加导电,这使得非晶态半导体的输运性质具有新颖的特点。1974年人们掌握了在非晶硅中掺杂的技术,现在非晶硅已成为制备高效率太阳能电池的重要材料。无序体系是一个复杂的新领域,非晶态固体实际上是一个亚稳态。目前对许多基本问题还存在着争论,有待进一步的探索和研究。 新的实验条件和技术日新月异,为固体物理不断开拓出新的研究领域。极低温、超高压、强磁场等极端条件、超高真空技术、表面能谱术、材料制备的新技术、同步辐射技术、核物理技术、激光技术、光散射效应、各种粒子束技术、电子显微术、穆斯堡尔效应、正电子湮没技术、磁共振技术等现代化实验手段,使固体物理性质的研究不断向深度和广度发展。固体物理对于技术的发展有很多重要的应用,晶体管发明以后,集成电路技术迅速发展,电子学技术、计算技术以至整个信息产业也随之迅速发展。其经济影响和社会影响是革命性

史上最全最好固体物理复习资料

史上最全最好固体物理 复习资料 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章晶体的结构 a)晶体的共性: i.长程有序:晶体中的原子按一定规则排列 ii.自限性:晶体自发地形成封闭几何多面体的特性,晶面夹角守恒定律 iii.各向异性:晶体的物理性质是各向异性的,是区别晶体与非晶体的中要特征。 b)密堆积: i.正方堆积:最简单的堆积方式 ii.体心立方堆积: iii.立方堆积和六角堆积:配位数为12 c)配位数和致密度: i.配位数:一个原子球与最近邻的相切原子的个数,如配位数为12即与1个 原子求与相邻的12个原子相切。 ii.致密度:晶胞中所包含的原子体积与晶胞体积的比值。 d)布喇菲空间点阵原胞和晶胞 i.布喇菲点阵:对实际晶体结构的抽象成无数相同的点的分布,把这些点构成 的总体称为布喇菲点阵。 ii.原胞:晶体中体积最小的重复单元称为原胞,他们并不是唯一的,但是体积总是相等的。 iii.晶胞(布喇菲原胞):晶体中体积不一定是最小的,但是能够反映出晶体对称的特征的重复单元称为晶胞。 iv.原胞基矢:原胞重复单元的边长称为原胞基矢,以a1、a2、a3表示。 v.晶胞基矢:晶胞重复单元的边长称为晶胞基矢,以a、b、c表示。 e)立方晶系: i.简立方:晶胞和原胞是统一的,对应一个结点。 ii.体心立方:原胞体积V= a1 ·(a2*a3) / 2 = a^3 / 2,a是晶胞边长,又称晶格常数。一个体心立方晶胞对应两个格点。 iii.面心立方:原胞体积V=a1 ·(a2*a3)= a^3 / 4;为晶胞体积的1/4,一个面心立方晶胞对应4个格点。 iv.NaCl结构:简立方结构,一个原胞对应一个基元,包含一个钠离子一个氯离子。 v.金刚石结构:构成面心立方结构, vi.简单晶格:基元包含一个原子的晶格,又称布喇菲格子。 vii.复式晶格:基元包含两个或者以上的原子的晶格。 f)晶列、晶面指数: i.晶列的特征:1. 取向;2. 格点的周期。 ii.原胞基矢的晶列指数:设,其中l1,12,l3互质。那么称为晶列指数。晶列指数的周期为,|R|。 iii.晶胞基矢的晶列指数:设,其中m、n、p互质。那么称 [mnp] 称为晶列指数。

固体物理学整理要点

固体物理复习要点 第一章 1、晶体有哪些宏观特性? 答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点 这是由构成晶体的原子和晶体内部结构的周期性决定的。说明晶体宏观特性是微观特性的反映 2、什么是空间点阵? 答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。 3、什么是简单晶格和复式晶格? 答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。 复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。 4、试述固体物理学原胞和结晶学原胞的相似点和区别。 答:(1)固体物理学原胞(简称原胞) 构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。 特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。它反映了晶体结构的周期性。 (2)结晶学原胞(简称晶胞) 构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。 特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。其体积是固体物理学原胞体积的整数倍。 5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。 答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。 6.在晶体的宏观对称性中有哪几种独立的对称元素?写出这些独立元素。 答: 7.密堆积结构包含哪两种?各有什么特点? 答:(1)六角密积 第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。 第二层:占据1,3,5空位中心。 第三层:在第一层球的正上方形成ABABAB······排列方式。 六角密积是复式格,其布拉维晶格是简单六角晶格。 基元由两个原子组成,一个位于(000),另一个原子位于 c b a r 213132:++=即 (2)立方密积 第一层:每个球与6个球相切,有6个空隙,如编号为1,2,3,4,5,6。 第二层:占据1,3,5空位中心。 第三层:占据2,4,6空位中心,按ABCABCABC······方式排列,形成面心立方结构,称为立方密积。 8.试举例说明哪些晶体具有简单立方、面心立方、体心立方、六角密积结构。并写出这几种结构固体物理学原胞基矢。 答:CsCl 、ABO3 ; NaCl ; ; 纤维锌矿ZnS 9.会从正格基矢推出倒格基矢,并知道倒格子与正格子之间有什么区别和联系? 11.会求晶格的致密度。 14.X 射线衍射的几种基本方法是什么?各有什么特点? 答:劳厄法:(1)单晶体不动,入射光方向不变;(2)X 射线连续谱,波长在 间变化,反射球半径 转动单晶法:(1)X 射线是单色的;(2)晶体转动。 粉末法 :(1)X 射线单色(λ固定);(2)样品为取向各异的单晶粉末。 第二章 1、什么是晶体的结合能,按照晶体的结合力的不同,晶体有哪些结合类型及其结合力是什么力? 答:晶体的结合能就是将自由的原子(离子或分子)结合成晶体时所释放的能量。 结合类型:离子晶体—离子键 分子晶体—范德瓦尔斯力 共价晶体—共价键 金属晶体—金属键 氢键晶体—氢键 max min ~λλ

(完整word版)固体物理总复习资料及答案...doc

固体物理总复习题 一、填空题 1.原胞是的晶格重复单元。对于布拉伐格子,原胞只包含个原子。 2.在三维晶格中,对一定的波矢q ,有支声学波,支光学波。3.电子在三维周期性晶格中波函数方程的解具有形式,式中在晶格平移下保持不变。 4.如果一些能量区域中,波动方程不存在具有布洛赫函数形式的解,这些能 量区域称为;能带的表示有、、三种图式。 5.按结构划分,晶体可分为大晶系,共布喇菲格子。 6.由完全相同的一种原子构成的格子,格子中只有一个原子,称为 格子,由若干个布喇菲格子相套而成的格子,叫做格子。其原胞中有以上的原子。 7.电子占据了一个能带中的所有的状态,称该能带为;没有任何电子占据的能带,称为;导带以下的第一满带,或者最上面的一个满带称为;最 下面的一个空带称为;两个能带之间,不允许存在的能级宽度,称为。 8.基本对称操作包 括,,三种操作。 9. 包含一个 n 重转轴和 n 个垂直的二重轴的点群叫。 10.在晶体中,各原子都围绕其平衡位置做简谐振动,具有相同的位相和频率, 是一种最简单的振动称为。 11.具有晶格周期性势场中的电子,其波动方程 为。 12. 在自由电子近似的模型中,随位置变化小,当 作来处理。 13.晶体中的电子基本上围绕原子核运动,主要受到该原子场的作用,其他原子 场的作用可当作处理。这是晶体中描述电子状态 的

模型。 14. 固体可分 为 , , 。 15. 典型的晶格结构具有简立方结 构, , , 四种结构。 16. 在自由电子模型中,由于周期势场的微扰,能量函数将在 K= 处 断开,能量的突变为 。 17. 在紧束缚近似中,由于微扰的作用,可以用原子轨道的线性组合来描述电 子共有化运动的轨道称为 ,表达式 为 。 18.爱因斯坦模型建立的基础是认为所有的格波都以相同的 振动, 忽略了频率间的差别,没有考虑 的色散关系。 19.固体物理学原胞原子都在 ,而结晶学原胞原子可以在顶点也可以 在 即存在于 。 20.晶体的五种典型的结合形式是 、 、 、 、 。 21.两种不同金属接触后,费米能级高的带 电,对导电有贡献的是 的电子。 22.固体能带论的三个基本假设是: 、 、 。 23.费米能量与 和 因素有关。 二、名词解释 1.声子; 2.;布拉伐格子; 3. 布里渊散射; 4. 能带理论的基本假设 . 5.费米能; 9.晶体; 10. 6. 晶体的晶面; 7. 布里渊散射; 11. 喇曼散射; 晶格; 12. 8. 近自由电子近似。 喇曼散射; 三、简述题 1.试说明在范德瓦尔斯结合、金属性结合、离子性结合和共价结合中,哪一种或哪几种结合最可能形成绝缘体、导体和半导体。 2 .什么是声子?声子与光子有什么相似之处和不同之处?

固体物理知识点总结

晶格(定义):理想晶体具有长程有序性,在理想情况下,晶体是由全同的原子团在空间无限重复排列而构成的。晶体中原子排列的具体形式称之为晶格,原子、原子间距不同,但有相同排列规则,这些原子构成的晶体具有相同的晶格;由等同点系所抽象出来的一系列在空间中周期排列的几何点的集合体空间点阵;晶格是属于排列方式范畴,而空间点阵是属于晶格周期性几何抽象出来的东西。 晶面指数:晶格所有的格点应该在一簇相互平行等距的平面,这些平面称之为晶面。将一晶面族中不经过原点的任一晶面在基矢轴上的截距分别是u、v、w,其倒数比的互质的整数比就是表示晶面方向的晶面指数,一般说来,晶面指数简单的晶面,面间距大,容易解理。Miller 指数标定方法:1)找出晶面系中任一晶面在轴矢上的截距;2)截距取倒数;3)化为互质整数,表示为(h,k,l)。注意:化互质整数时,所乘的因子的正、负并未限制,故[100]和[100]应视为同一晶向。 晶向指数:从该晶列通过轴矢坐标系原点的直线上任取一格点,把该格点指数化为互质整数,称为晶向指数,表示为[h,k,l]。要弄清几种典型晶体结构中(体心、面心和简单立方)特殊的晶向。 配位数: 在晶体学中,晶体原子配位数就是一个原子周围最近邻原子的数目,是用以描写晶体中粒子排列的紧密程度物理量。将组成晶体的原子看成钢球,原子之间通过一定的结构结合在一起,形成晶格;所谓堆积比就是组成晶体的原子所占体积与整个晶体结构的体积之比,也是表征晶体排列紧密程度的物理量。密堆积结构的堆积比最大。 布拉格定律: 假设:入射波从晶体中平行平面作镜面反射,每一各平面反射很少一部分辐射,就像一个轻微镀银的镜子,反射角等于入射角,来自平行平面的反射发生干涉形成衍射束。(公式)。其中:n为整数,称为反射级数;θ为入射线或反射线与反射面的夹角,称为掠射角,由于它等于入射线与衍射线夹角的一半,故又称为半衍射角,把2θ称为衍射角。当间距为d的平行晶面,入射线在相邻平行晶面反射的射线行程差为2dsinθ,当行程差等于波长的整数倍时,来自相继平行平面的辐射就发生相长干涉,根据图示,干涉加强的条件是:,这就是所谓布拉格定律,布拉格定律成立的条件是波长λ≤2d。 布拉格定律和X射线衍射产生条件之间的等价性证明 假设:若X射线光子弹性散射,光子能量守恒,出射束频率:入射束频率: 2dSinθ= nλ Hω ω'= ck' ω= ck因此,有散射前后波矢大小相等k’=k 和k’2=k2根据X射线衍射产生条件得到(k’-k)=G 及k+G=k’两个等式;第二个式子两边平方并化简得到:2k.G+G2=0;将G用-G替换得到2k.G=G2也成立;因此得到了四个等价式子:;k+G=k’;2k.G+G2=0;以及2k.G=G2上面说明了X衍射产生条件的四个表达式等价性;下面就进一步证明布拉格定律与X射线衍射产生条件等价:证明:由 可以推出: 即可以得到即: 即:,命题得证 布里渊区定义 为维格纳-赛茨原胞(Wigner-Seitz Cell)。任选一倒格点为原点,从原点向它的第一、第二、第三……近邻倒格点画出倒格矢,并作这些倒格矢的中垂面,这些中垂面绕原点所围成的多面体称第一B.Z,它即为倒易间的Wigner-Seitz元胞,其“体积”为Ω※=b1·(b2×b3)布里渊区边界上波矢应该满足的方程形式为(公式) 因此,布里渊区实际上包括了所有能在晶体上发生布拉格反射的波的波矢k。 范德华耳斯-伦敦相互作用 答:对于组成晶体的原子,尤其是惰性气体原子,由于原子电子云是瞬间变化的,因此各个原子电子云间存在互感偶极矩,这种互感偶极矩将原子之间联系在一起形成晶体。也就是通过互感偶极矩作用即耦合作用后比没有耦合作用时要来得低,这种由于原子之间互感偶极矩所产生的相互吸引作用称之为范德华耳斯-伦敦相互作用 离子晶体中存在的相互作用: ? 异号离子间的静电吸引相互作用(主要组成部分)? 同号离子间的静电排斥相互作用(主要组成部分)? 对于具有惰性气体电子组态的离子,他们之间排斥作用有类似于惰性气体原子间的排斥相互作用? 存在很小部分的吸引性相互作用的范德华耳斯作用(大约占1%~2%)离子晶体中,吸引性相互作用的范德华耳斯部分对于晶体内聚能贡献比较小,大约1%~2%范德华耳斯相互作用是一种互感偶极相互作用,只要存在正负中心不重合的偶极子,就会存在这种相互作用,只是在离子晶体中,这种相互作用较小。

固体物理学习心得

固体物理学习心得 篇一:学习固体物理后的感想 学习固体物理的感受 经过了十几周的学习,我们这门《固体物理学》也结束了最后的任务,虽然说这门课对于咱们专业的同学来说总体上难度很大,但是在您的指导下,同学们还是基本能够按时出勤,最重要的是达到了开设这门课的最初用意,能够为我们以后学习和了解更多物理学相关的知识打下良好的基础。 本课程是材料科学与工程专业的物理类基础课,包括晶格结构、晶格振动与热性质、固体电子理论、半导体、固体磁性质、绝缘体、介电体等部分。这门课程系统介绍固体物理研究的基本理论与重要试验方法提示丰富多彩的固体形态(如金属、绝缘体、磁性材料等)形成的基本物理规律,给出研究这些固体的实验(如X光衍射、中子散射、磁

散射等)设计的基本原理。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。其实固体物理学是研究固体的性质、它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性,较易研究。晶体或多或少都存在各种杂质和缺陷,它们对固体的物性, 以及功能材料的技术性能都起重要的作用。半导体的电学、发光学等性质

依赖于其中的杂质和缺陷;大规模集成电路的工艺中控制和利用杂质及缺陷是极为重要的。非晶态固体的物理性质同晶体有很大差别,这同它们的原子结构、电子态以及各种微观过程有密切联系。从结构上来分,非晶态固体有两类。一类是成分无序,在具有周期性的点阵位置上随机分布着不同的原子或者不同的磁矩;另一类是结构无序,表征长程序的周期性完全破坏,点阵失去意义。但近邻原子有一定的配位关系,类似于晶体的情形,因而仍然有确定的短程序。在无序体系中,电子态有局域态和扩展态之分。在局域态中的电子只有在声子的合作下才能参加导电,这使得非晶态半导体的输运性质具有新颖的特点。1974年人们掌握了在非晶硅中掺杂的技术,现在非晶硅已成为制备高效率太阳能电池的重要材料。无序体系是一个复杂的新领域,非晶态固体实际上是一个亚稳态。目前对许多基本问题还存在着争论,有待进一步的探索和研究。

固体物理复习资料

一.选择题: 1、面心立方晶格的晶胞的体积是其原胞体积的( D ) A. 2 1 B. 31 C. 41 D. 61 2、下图为三维晶格的平面示意图,图中1α、2α分别表示晶格在该平面上的基矢,另一基矢3α垂直于1α、2α所在的平面。现有平行于3α的 晶面截取1α、2α(如下图(a )(b )(c )所示),图(a )中晶面的密勒指数为()100,图(b )和图(c )中晶面的密勒指数分别为( D ) (a ) (b ) (c ) A. ()110和()120 B. ()110和()210 C. ()011和()120 D. () 011和()210 3、面心立方晶格和体心立方晶格的简约布里渊区分别是( D ) A. 八面体和正十二面体 B. 正十二面体和截角八面体 C. 正十二面体和八面体 D. 截角八面体和正十二面体 4、对一个简单立方晶格,若在第一布里渊区面心上一个自由电子的动能为E ,则在该区顶角上一个自由电子的动能为 A. E B. 2E C. 3E D. 4E 5、相邻原子间距为a 的一维单原子链的第一布里渊区也是波数q 的取值范围为( B ) A.a q a π π22≤<- B. a q a π π ≤ <- C. a q a 22π π ≤ <- D. a q a 44π π ≤ <- 6、关于电子有效质量下列表述中正确的是( B ) A. 在一个能带底附近,有效质量总是负的;而在一个能带顶附近,有效质量总是正的 B. 在一个能带底附近,有效质量总是正的;而在一个能带顶附近,有效质量总是负的 C. 在一个能带底附近和能带顶附近,有效质量总是正的 D. 在一个能带底附近和能带顶附近,有效质量总是负的 7、下面几种晶格中,不是金属元素常采取的晶格结构是( A ) A. 金刚石晶格 B.面心立方晶格 C.六角密排晶格 D. 体心立方晶格 9、温度升高,费米面E F ( D ) A.不变 B. 大幅升高 C. 略为升高 D. 略为降低 10、在极低温度下,晶格的热容量C v 与温度T 的关系是 ( D ) A. C v 与T 成正比 B. C v 与2 T 成正比 C. C v 与3 T 成正比 D. C v 与T 3 成反比 11、一晶格原胞的体积为v ,则其倒格子原胞的体积为( D )

南昌大学自动控制原理实验报告实验一

南昌大学实验报告 学生姓名:王瑾然学号:6101113031 专业班级:电气131班 实验类型:■ 验证□ 综合□ 设计□ 创新实验日期:实验成绩: 一、实验项目名称 实验3.1.1 典型环节的模拟研究 二、实验要求 1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函 数表达式。 2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态 特性的影响。 三、主要仪器设备及耗材 1.计算机一台(Wind ows XP操作系统) 2.AEDK-labACT自动控制理论教学实验系统一套 https://www.doczj.com/doc/1012728092.html,bACT6_08软件一套 四、实验内容和步骤 1.观察比例环节的阶跃响应曲线 (1)打开虚拟示波器的界面,点击开始,按下信号发生器的阶跃信号按钮(0→+4V阶跃),用示波器观测A6输出端(Uo)的实际响应曲线Uo(t)。(2)改变比例系数,重新观测结果,填入实验报告。 2.观察惯性环节的阶跃响应曲线

(1)打开虚拟示波器的界面,点击开始,用示波器观测A6输出端,按下信号发生器的阶跃信号按钮时,等待完整波形出来后,移动虚拟示波器横游标到4V×0.632处,得到与惯性的曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到曲线的交点,量得惯性环节模拟电路时间常数T。A6输出端的实际响应曲线Uo(t)。 (2)改变时间常数及比例系数,重新观测结果,填入实验报告。 3.观察积分环节的阶跃响应曲线 (1)打开虚拟示波器的界面,点击开始,用示波器观测A6输出端(Uo),调节调宽电位器使宽度从0.3秒开始调到积分输出在虚拟示波器顶端为止。 (2)等待完整波形出来后,移动虚拟示波器横游标到0V处,再移动另一根横游标到ΔV=1V处,得到与积分的曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到曲线的交点,量得积分环节模拟电路时间常数Ti。A6输出端(Uo)的实际响应曲线Uo(t)。 (3)改变时间常数,重新观测结果,填入实验报告。 4、观察比例积分环节的阶跃响应曲线 (1)打开虚拟示波器的单迹界面,点击开始,用示波器观测A6输出端(Uo)。(2)待完整波形出来后,移动虚拟示波器横游标到1V(与输入相等)处,再移

南昌大学专业简介

专业简介 一、机电工程学院 1、机械设计制造及其自动化 本专业为江西省本科品牌专业。该专业培养具备创新思维和机电产品与系统研究、设计、制造及企业经营管理能力的高级工程技术人才。本着夯实基础、促进就业,“多能”与“一专”均衡发展的精神,加强基础教育、分模块突出专业特色,使学生既能够全面掌握本专业的基础知识与技能,又能在一定的专业方向上形成知识密集点。 本专业学生主修的专业基础课程包括工程制图、工程力学、工程材料、机械原理、机械设计、公差与技术测量、电工电子学、微机原理、测试技术、控制工程基础、工程经济学等,选修的专业课程包括机械产品设计、机械制造、机械自动化、制造业信息化、精密仪器及机械等不同的课程模块,工程实践包括课程实验、实习、课程设计、毕业设计等环节,以及创新设计大赛、创业大赛等课外活动。 2、材料成型及控制工程 本专业依托国家重点培育学科"材料加工工程"(江西省第一个博士点)和省部共建“先进成形与模具实验室”,为国家高等学校“第二类特色专业建设点”(我校第一个)、省级品牌专业。专业基本涵盖了机械制造领域热加工技术所有领域,分为铸造、锻压、焊接、聚合物成型、热处理五个专业方向。本专业培养具备有较强材料加工和模具设计能力,能够从事材料加工工程领域及计算机应用领域的科学研究、技术开发、设计制造、试验研究、企业管理和经营等方面工作的高素质复合型人才。

主要专业课程有:工程制图、工程力学、公差与技术测量、机械原理、机械设计、电工与电子学、C语言程序设计、微机原理及接口技术、检测技术与控制工程基础、材料成形原理、模具设计CAD/CAM技术、材料科学基础,各研究方向的专业课等。 3、热能与动力工程 该专业为江西省品牌专业,是国家未来20年就业面最宽的专业之一.主要培养从事汽车动力工程、制冷与低温技术、暖通空调,能源与环境工程、电厂热能动力、燃气工程、船舶、流体机械等方面的高级工程技术人才。同时本专业还拥有动力工程与工程热物理一级学科硕士点。 主要专业课程有:工程热力学、传热学、流体力学、工程力学、机械设计基础、微机原理与接口技术、热工测试技术、汽车构造、发动机原理、汽车电子控制技术、制冷原理、空气调节、供热工程、锅炉原理、发电厂热力设备及系统、新能源及可再生能源技术等。 学生毕业后可在汽车制造、制冷空调设备、建筑环境与设备、热力发电等相关企事业单位和科研院所从事产品研发、设计、制造与营销、教学等工作。本专业设有“昌大空调助学奖学金”,奖励热能与动力工程专业的在校统招本科生和当年第一志愿填报该专业的新生。 4、车辆工程 车辆工程专业培养具有现代汽车设计、制造、研究及服务等方面工作能力的开拓性高级专门人才。本专业目前设有汽车设计、汽车电器与电子控制技术、汽车覆盖件成型等主要专业方向,要求学生在四年的学习过程中,在打好宽广的学科基础之上,理论与实践紧密结合,学好汽车专业的主要专业课程,受到汽车工程师的专门训练。同时本专业还拥有江西省汽车电子工程技术研究中心,车辆工程硕士点。 本专业开设的主要学科基础课有:工程力学、工程制图、电工与电子技术、机械设计基础、微机原理与接口技术、控制工程基础等。开设的主要专业课程有:汽车构造、汽车发动机原理、汽车理论、汽车电器与电子控制技术、汽车设计、汽车制造工艺、汽车检测技术、汽车车身结构

固体物理总结

在没有碰撞时,电子与电子(独立电子近似)、电子与离子(自由电子近似)之间得相互作用完全忽略;无外场时,每个电子作匀速直线运动;在外场存在时,服从牛顿定律。 k空间得概念:参量空间,状态空间。把波矢k瞧作空间矢量,相应得空间称为k空间。 T=0时,N个电子得基态可从能量最低得k=0态开始,按能量从低到高,每个k态占据两个电子,依次填充。最后,占据区形成一个球,称为费米球。 能态密度:T=0时,基态,单位体积自由电子气体得基态能量E。 费米-狄拉克函数得性质:随温度发生变化。 极限情况: 一般情况:随着T得增加,发生变化得能量范围变宽,但在任何情况下,此能量范围约在附近±kBT范围内。温度不为零时,电子占据态与非占据态之间得界面不在就是某个等能面 电子占据态与非占据态得界限可以近似为一个薄层。 电子漂移速度: 等离子体频率:自由电子气体作为整体相对正电荷背景集体运动得频率。 低频端(从直流到远红外),金属对光波有明显得衰减。(安检,金属屋子信号屏蔽) 可见光到近红外波段,金属就是高反射得。(铜镜,镜子) 电磁波频率大于等离子频率时,金属就是透明得。(金属可以作为滤波片,分离近红外-可见光与XUV/x-ray)

晶体结构包括两个最主要得特征:1、重复排列得具体单元——基元。2、晶格:基元重复排列得形式,一般抽象为空间点阵,称为晶体格子,简称晶格,由布拉维格子得形式来概括。 原胞:晶体中体积最小得周期性重复单元。 某一格点为中心,作其近邻格点连线得垂直平分面,这些平面围成得以格点为中心得最小体积单元—WS原胞。 晶胞:能表现对称性得单元,但就是未必最小。 7类晶系:三斜、单斜、正交、四方、三角、六角、立方。 群由群元素集合与规定乘法定义。 封闭性:若a,b∈G,则存在唯一确定得c∈G,使得a*b=c; 结合律:任意a,b,c∈G,有(a*b)*c=a*(b*c); 单位元:存在e∈G,对任意a∈G,满足a*e=e*a=a,称e为单位元; 逆元:任意a∈G,存在唯一确定得b∈G, a*b=b*a=e(单位元),则称a与b互为逆元素,简称逆元,记作a-1=b。 点群:在点对称操作基础上组成得对称操作群称为点群。 点群得元素:点对称操作。 点群得乘法:连续操作。 点对称操作:绕固定轴得转动、镜面反映、中心反演。 对称要素:固定轴、镜像面、反演点。 倒格子定义:对布拉维格子中所有格矢,满足得全部端点得集合,构成布拉维格子,称为正格子得倒格子。 同一晶体得正格子与倒格子有相同得对称性。 体心立方得倒格子为面心立方; 面心立方得倒格子为体心立方; 简单立方得倒格子仍为简单立方。

固体物理总结

固体物理总结 晶格(定义):理想晶体具有长程有序性,在理想情况下,晶体是由全同的原子 团在空间无限重复排列而构成的。晶体中原子排列的具体形式称之为晶格,原子、原子间距不同,但有相同排列规则,这些原子构成的晶体具有相同的晶格;由等同 点系所抽象出来的一系列在空间中周期排列的几何点的集合体空间点阵;晶格是属 于排列方式范畴,而空间点阵是属于晶格周期性几何抽象出来的东西。晶面指数: 晶格所有的格点应该在一簇相互平行等距的平面,这些平面称之为晶面。将一 晶面族中不经过原点的任一晶面在基矢轴上的截距分别是u、v、w,其倒数比的互 质的整数比就是表示晶面方向的晶面指数,一般说来,晶面指数简单的晶面,面间距大,容易解理。Miller指数标定方法:1)找出晶面系中任一晶面在轴矢上的截 距;2)截距取倒数;3)化为互质整数,表示为(h,k,l)。注意:化互质整数时,所乘的因子的正、负并未限制,故[100]和[100]应视为同一晶向。晶向指数: 从该晶列通过轴矢坐标系原点的直线上任取一格点,把该格点指数化为互质整数,称为晶向指数,表示为[h,k,l]。要弄清几种典型晶体结构中(体心、面心和简单立方)特殊的晶向。 配位数: 在晶体学中,晶体原子配位数就是一个原子周围最近邻原子的数目,是用以描 写晶体中粒子排列的紧密程度物理量。将组成晶体的原子看成钢球,原子之间通过一定的结构结合在一起,形成晶格;所谓堆积 比就是组成晶体的原子所占体积与整个晶体结构的体积之比,也是表征晶体排 列紧密程度的物理量。密堆积结构的堆积比最大。布拉格定律: 假设:入射波从晶体中平行平面作镜面反射,每一各平面反射很少一部分辐 射,就像一个轻微镀银的镜子,反射角等于入射角,来自平行平面的反射发生干涉

固体物理复习重点

固体物理-复习重点

————————————————————————————————作者:————————————————————————————————日期:

晶体:是由离子,原子或分子(统称为粒子)有规律的排列而成的,具有周期性和对称性 非晶体:有序度仅限于几个原子,不具有长程有序性和对称性 点阵:格点的总体称为点阵 晶格:晶体中微粒重心,周期性的排列所组成的骨架,称为晶格 格点:微粒重心所处的位置称为晶格的格点(或结点) 晶体的周期性和对称性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质称为晶体结构的周期性。晶体的对称性指晶体经过某些对称操作后,仍能恢复原状的特性。(有轴对称,面对称,体心对称即点对称) 密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的密勒指数 配位数:可用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数 致密度:晶胞内原子所占体积与晶胞总体积之比称为点阵内原子的致密度 固体物理学元胞:选取体积最小的晶胞,称为元胞:格点只在顶角,内部和面上都不包含其他格点,整个元胞只含有一个格点:元胞的三边的平移矢量称为基本平移矢量(或者基矢);突出反映晶体结构的周期性 晶胞:体积通常较固体物理学元胞大;格点不仅在顶角上,同时可以在体心或面心上;晶胞的棱也称为晶轴,其边长称为晶格常数,点阵常数或晶胞常数;突出反映晶体的周期性和对称性。 布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合而且每个格点周围的情况都一样 复式格子:晶体由两种或者两种以上的原子构成,而且每种原子都各自构成一种相同的布拉菲格子,这些布拉菲格子相互错开一段距离,相互套购而形成的格子称为复式格子,复式格子是由若干相同的布拉菲格子相互位移套购而成的 声子:晶格简谐振动的能量化,以hv l来增减其能量,hvl就称为晶格振动能量的量子叫声子 非简谐效应:在晶格振动势能中考虑了δ2以上δ高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导 点缺陷的分类:晶体点缺陷:①本征热缺陷:弗伦克尔缺陷,肖脱基缺陷②杂质缺陷:置换型,填隙型③色心④极化子 布里渊区:在空间中倒格矢的中垂线把空间分成许多不同的区域,在同一区域中能量是连续的,在区域的边界上能量是不连续的,把这样的区域称为布里渊区 固体物理复习要点 第一章 1、晶体有哪些宏观特性? 答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点这是由构成晶体的原子和晶体内部结构的周期性决定的。说明晶体宏观特性是微观特性的反映 2、什么是空间点阵? 答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。 3、什么是简单晶格和复式晶格? 答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。 复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。 4、试述固体物理学原胞和结晶学原胞的相似点和区别。 答:(1)固体物理学原胞(简称原胞) 构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。

固体物理固体的结合总结完全版

第三章固体的结合 一、基本要求 1、掌握晶体结合能的概念;晶体内能与原子间作用力的一般特点及其与晶格常数、体弹性模量、抗张强度的关系。 2、掌握晶体结合的基本类型及相应晶体的基本性质;各种结合类型结合能的表示。 3、熟悉原子的负电性以及元素和化合物晶体结合的规律性。 二、基本概念 晶体结合能,电负性,电离能,亲和能,离子晶体,离子性结合,共价晶体,共价结合,成键态,反键态,轨道杂化,极性键,非极性键,金属,金属键,分子晶体,分子性结合,氢键晶体,氢键。 三、重点、难点 晶体结合能与内能的关系,互作用势能的关系,由晶体结合能得到的物理常数,成键态,反键态,五种晶体结合类型与其性质 四、本章构架 __________________________________________________

__________________________________________________ 1.定义:分散的原子(离子或分子)在结合成稳定晶体的过程中,所释放出来的能量,称为 晶体的结合能 2.内能:如果以组成晶体的N 个原子处于自由状态的能量作为能量的零点,则-E b 就是晶体 的内能。(当动能=0时,内能=势能=E b =E N -E 0 3.互作用力与互作用势: 4.结合能的一般形式 两个原子之间的互作用势能: 晶体的总的相互作用势: (j≠1 j=2,3,…N) (式中 r 代表最近邻的两原子间的距离。) 5.由U(r) 可求出晶体的某些物理常数 (1)晶格常数: 令 ,求得0r 即为晶格常熟 (2)体弹性模量: 当对晶体施加一定压强时,晶体体积有所改变,这种性质用压缩系数(K )或体弹性模量(k )来描述。 K= (在T =0 时,晶体的平衡体积为V0 ,则 ) (3)抗张强度: 晶体所能承受的最大张力即为抗张强度。 (1)离子键:异性离子间的互作用力称为离子键。 (2)离子性结合:当电离能较小的容易放出最外层的电子而成正离子金属原子与电子亲合能较大的容易接受前者放出的电子而变成负离子非金属原子相互接近时,出现正、负离子间的库仑作用,从而结合在一起。 (3)离子性结合的特点: a.以离子为结合单元,靠正负离子之间的库仑引力作用结合成晶体。 b.离子晶体中正、负离子是相间排列的,使异号离子之间的吸引作用强于同号离子之间的排斥作用,库仑作用的总效果是吸引的,晶体势能可达到最低值而使晶体稳定。 c.由于正、负离子的相对大小的差异,其结构形式和配位数也有所差异。 (4)离子晶体:靠离子性结合的晶体称为离子晶体或极性晶体。 (5)离子晶体的特点: a.离子晶体主要依靠较强的库仑引力而结合,故结构很稳定,结合 能很大,这导致了离子晶体熔点高、硬度大、膨胀系数小。 dr r du r f )()(-=n m r B r A r u +-=)(∑ ==N j j r u N r U 21)(2)(0|)(0=??=r r r r U )(122V U V ??=κ0 )(2200V V U V K ??=m V V V r U Pm Pm =??=-=)) ((||能合结的 体晶一、合结 性子 离

相关主题
文本预览
相关文档 最新文档