当前位置:文档之家› 典型环节及其阶跃响

典型环节及其阶跃响

典型环节及其阶跃响
典型环节及其阶跃响

自动控制原理实验

典型环节及其阶跃相应

.1 实验目的

1. 学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。

2. 学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。

3. 学习用Multisim 、MATLAB 仿真软件对实验内容中的电路进行仿真。

.2 实验原理

典型环节的概念对系统建模、分析和研究很有用,但应强调典型环节的数学模型是对各种物理系统元、部件的机理和特性高度理想化以后的结果,重要的是,在一定条件下, 典型模型的确定能在一定程度上忠实地描述那些元、部件物理过程的本质特征。

1.模拟典型环节是将运算放大器视为满足以下条件的理想放大器:

(1) 输入阻抗为∞。流入运算放大器的电流为零,同时输出阻抗为零;

(2) 电压增益为∞:

(3) 通频带为∞:

(4) 输入与输出之间呈线性特性:

2.实际模拟典型环节:

(1) 实际运算放大器输出幅值受其电源限制是非线性的,实际运算放大器是有惯性的。

(2) 对比例环节、惯性环节、积分环节、比例积分环节和振荡环节,只要控制了输入量的大小或是输入量施加的时间的长短(对于积分或比例积分环节),不使其输出工作在工作期间内达到饱和值,则非线性因素对上述环节特性的影响可以避免.但对模拟比例微分环节和微分环节的影响则无法避免,其模拟输出只能达到有限的最高饱和值。

(3) 实际运放有惯性,它对所有模拟惯性环节的暂态响应都有影响,但情况又有较大的不同。

3.各典型环节的模拟电路及传递函数

(1) 比例环节的模拟电路如图.1所示,及传递函数为:

1

2)(R R S G -=

.1 比例环节的模拟电路

2. 惯性环节的模拟电路如图.2所示,及传递函数为: 其中1

2R R K = T=R 2

C

图.2 惯性环节的模拟电路

3. 积分环节的模拟电路如图.3所示,其传递函数为:

1

11R /1/)(21212212+-=+-=+-=-=TS K CS R R R CS R CS

R Z Z S G

其中

T=RC

.3 积分环节的模拟电路

4. 微分环节的模拟电路如图.4所示,及传递函数为:

TS S C R S G -=-=11)(

其中T=R 1C

1

1 1/1)(12TS

RCS R CS Z Z S G -=-=-=-

=

.4 微分环节的模拟电路

5. 比例+微分环节的模拟电路如图.5所示,及传递函数为:

)1()(+-=TS K S G 其中1

2R R K = 11C R T =

.5 比例+微分环节的模拟

6. 比例+积分环节的模拟电路如图.6所示,及传递函数为:

)11()(TS K S G +

-= 其中1

2R R K = C R T 2=

.6 比例+积分环节的模拟电路

.3 实验内容

(1)分别画出比例、惯性、积分、微分、比例+微分和比例+积分的模拟电路图。

(2)按下列各典型环节的传递函数,调节相应的模拟电路的参数,观察并记录其单位阶跃响应波形。

①比例环节 G1(S)=-1和G2(S)=-2

②惯性环节 G1(S)=-「1/(S+1)」和G2(S)=-「1/(0.5S+1)」

③积分环节 G1(S)=-(1/S)和G2(S)=-(1/(0.5S)

④微分环节 G1(S)=-0.5S和G2(S)=-S

⑤比例微分环节 G1(S)=-(2+S)和G2(S)=-(1+2S)

⑥比例积分环节(PI)G1(S)=-(1+1/S)和G2(S)=-「2(1+1/2S)」

.4 实验步骤

1. 测试系统与计算机的连接

(1)启动计算机,在桌面双击图标[自动控制实验系统]运行软件。

(2)测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原

因使通信正常后才可以继续进行实验。

2. 比例环节

(1)连接被测量典型环节的模拟电路图.1。电路的输入R(S)接A/D、D/A卡的D/Al 输出,电路的输出C(S)接A/D、D/A卡的A/Dl输入。检查无误后接通电源。

(2)在实验课题下拉菜单中选择实验一[典型环节及其阶跃响应]。

(3)鼠标单击实验课题弹出实验课题参数窗口。在参数设置窗口中设置相应的实

验参数后鼠标点击确认,等待屏幕的显示区显示实验结果。

(4)观测计算机屏幕显示出的响应曲线及数据。

(5)记录波形及数据(由实验报告确定)。

3. 惯性环节

(1)连接被测量典型环节的模拟电路图.2。电路的输入R(S)接A/D、D/A卡的D/Al 输出,电路的输出C(S)接A/D、D/A卡的A/Dl输入。检查无误后接通电源。

9. 实验步骤同比例环节的(2)~(5)

4. 积分环节

(1)连接被测量典型环节的模拟电路图.3。电路的输入R(S)接A/D、D/A卡的D/Al 输出,电路的输出C(S)接A/D、D/A卡的A/Dl输入。检查无误后接通电源。

(2)实验步骤同比例环节的(2)~(5)

5. 微分环节

(1)连接被测量典型环节的模拟电路图.4。电路的输入R(S)接A/D、D/A卡的D/Al 输出,电路的输出C(S)接A/D、D/A卡的A/Dl输入。检查无误后接通电源。

(2)实验步骤同比例环节的(2)~(5)

6. 比例+微分环节

(1)连接被测量典型环节的模拟电路图.4。电路的输入R(S)接A/D、D/A卡的D/Al 输出,电路的输出C(S)接A/D、D/A卡的A/Dl输入。检查无误后接通电源。

(2)实验步骤同比例环节的(2)~(5)

7. 比例+积分环节

(1)连接被测量典型环节的模拟电路图.4。电路的输入R(S)接A/D、D/A卡的D/Al 输出,电路的输出C(S)接A/D、D/A卡的A/Dl输入。检查无误后接通电源。

(2)实验步骤同比例环节的(2)~(5)

.5 仿真实验

1. M ultisim仿真实验

启动multisim2001,在电路工作区上可将各种电子元器件和测试仪器仪表连接成实验电路。点击鼠标左键并压住鼠标左键可在元件库中提取元件、用同样的方法可在仪器库中提取仪器到电路工作区窗口并连接成实验电路。“启动/停止”开关或“暂停/恢复”按钮可以用来控制实验的仿真进程。

(1)比例环节(K=10)仿真电路及仿真结果如图.7所示。

.7比例环节的M ultisim仿真电路

(2)惯性环节(K=2,T=0.002)仿真电路如图.8(a)所示,仿真响应结果如图.8(b)所示。为了便于观察输入与输出响应的仿真结果,在建立仿真电路时加了一级比例环节。从示波器测出的结果中可看出,他的输出无超调。稳态误差e ss≈0,调节时间t s=3T(△=0.05)。

(a)仿真电路

输入信号

输出响应

(b)仿真响应结果

.8 惯性环节M ultisim仿真

(3)积分环节(T=0.001)仿真电路如图.9(a)所示,仿真响应结果如图.9(b)所示。为了便于观察输入与输出的仿真结果,在建立仿真电路时加了一级比例环节。

(a)仿真电路

输入信号

输出响应

(b)仿真响应结果

.9 积分环节M ultisim仿真

(4)微分环节(T=0.01)仿真电路如图.10(a)所示,仿真响应结果如图.10(b)所示。为了便于观察输入与输出的仿真响应结果,在建立仿真电路时加了一级比例环节。

(a)仿真电路

输入信号输出响应

(b)仿真响应结果

.10 微分环节M ultisim仿真

(5)比例+微分环节(K=1 T=0.01)仿真电路如图.11(a)所示,仿真响应结果如图.11(b)所示。为了便于观察输入与输出的仿真响应结果,在建立仿真电路时加了一级比例环节。

(b )仿真响应结果

.11 比例+微分环节M ultisim 仿真

(6)比例+积分环节(T=0.1,K=1)仿真电路如图.12(a )所示,仿真响应结果如图.12(b )所示。为了便于观察输入与输出的仿真结果,在建立仿真电路时加了一级比例环节。

(a ) 仿真电路 输入信号

输出响应

(b )仿真响应结果

.12 比例+积分环节M ultisim 仿真

1. MATLAB 仿真实例

启动MATLAB 6.0,进入Simulink 后新建文档,分别在各文档绘制各典型环节的结构框图。双击各传递函数模块,在出现的对话框内设置相应的参数。然后点击工具栏的按钮

或simulation 菜单下的start 命令进行仿真,双击示波器模块观察仿真结果。

在仿真时设置各阶跃输入信号的幅度为1,开始时间为0(微分环节起始设为0.5,以便于观察)传递函数的参数设置为框图中的数值,自己可以修改为其他数值再仿真观察其响应结果。

(1)比例环节(K=2)MA TLAB 仿真结构框图如图.13(a )所示,仿真响应结果如图.13(b )所示。

输出响应

输入信号 (a )结构框图

(b)仿真响应结

图.13 比例环节MA TLAB仿真

(2)惯性环节(K=2,T=0.2)MA TLAB仿真结构框图如图.14(a)所示,仿真响应结果如图.14(b)所示。

(a)结构框图

(b)仿真响应结果

图.14 惯性环节MA TLAB仿真

(3)积分环节(T=0.5)MATLAB仿真结构框图如图.15(a)所示,仿真结果如图.15(b)所示。

(a)结构框图

(b)仿真结果

图.15 积分环节MA TLAB仿真

(4)微分环节(T=1)MA TLAB仿真结构框图如图.16(a)所示,仿真结果如图.16(b)所示。

(a)结构框图

(b)仿真结果

图.16 微分环节MA TLAB仿真

(4)比例+积分环节(T=10,K=2)MATLA仿真结构框图如图.17(a)所示,仿真结果如图.17(b)所示。

(a)结构框图

(b)仿真结果

图.17 比例+积分环节MATLAB仿真

(5)比例+微分环节(T=0.1,K=2)MA TLAB仿真结构框图如图.18(a)所示,仿真结果如图.18(b)所示。

(a)结构框图

(b)仿真结果

图.18 比例+微分环节MATLAB仿真

.6 预习思考题

(1) 一阶系统为什么对阶跃输入的稳态误差为零,而对单位斜坡输入的稳态误差为T?

(2) 一阶系统各典型环节电路参数对环节特性有什么影响,试说明之。

(3) 运算放大器模拟各环节的传递函数是在什么情况下推导求得的?

(4) 积分环节和惯性环节主要差别是什么?惯性环节在什么情况下可近似为积分环节?在什么条件下可近似为比例环节?

(5) 如何从其输出阶跃响应的波形中算出积分环节和惯性环节的时间常数。

(6) 一阶系统的单位斜坡响应能否由其单位阶跃响应求得?试说明之。

.7 实验总结报告

(1)画出比例、惯性、积分、微分、比例+微分、比例+积分环节的模电路,并用坐标纸画出各环节的响应曲线。

(2)由阶跃响应曲线计算出各环节的传递函数,并与电路计算的结果相比较。

(3)写出实验的心得与体会。

自动控制实验一典型环节及其阶跃响应分析

广东工业大学实验报告 分数:实验题目典型环节及其阶跃响应分析 一、实验目的 1、掌握控制模拟实验的基本原理和一般办法。 2、掌握控制系统时域性指标的测量方法。 二、实验原理 1.模拟实验的基本原理: 控制系统模拟实验采用复合网络法来来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可以进一步分析参数对系统性能的影响。 三、实验仪器 1、EL-AT-II型自动控制系统实验箱一台 2、计算机一台 四、实验内容 1、比例环节 比例环节的模拟电路及其传递函数如下 当R2=200K时,其输出波形如下图:

由上图可得,实际K=2449/1029=2.37 理论值K=2 误差:y=|k`- k|/ k *100% =|2.37-2|/2*100% =18.5% 当R2=400K时,其输出波形如下图: 由上图可得,实际K=4389/1029=4.27 理论值K=4 误差:y=|k`- k|/ k *100% =|4.27-4|/4*100% =6.75% 数据分析:从图中可以看出,比例环节最大的特点就是时间响应快,一旦有输入信号,输出立即响应。且实际K存在一定误差,分析电路可知,误差是由R1、R2的实际值存在偏差而导致的,同时和放大器的结构参数也有关系。 2、惯性环节

惯性环节的模拟电路及其传递函数如下 G(S)=-K/TS+1 K=R2/R1 T=R2C 当C=1uF 时,其输出波形如下图: 由上图可得,实际T=0.076s 理论值T=0.1s 误差:η1=|T`- T|/ T *100% =|0.076-0.1|/0.1*100% =24% 当C=2uF 时,其输出波形如下图:

典型环节频率特性分析实

实验三 典型环节频率特性分析 一.实验目的 1. 学习频率特性分析仪的使用; 2. 掌握频率特性测试方法; 3. 掌握由对象频率特性求传递函数的方法。 二.实验设备及简介 1. 实验设备 TD4011A 频率特性分析仪,微计算机,打印机。 2. TD4011A 频率特性分析仪简介 数字键区 信号发生器输出 图2 TD4011A 频率特性分析仪面板图 TD4011A 分析仪如图1所示,由信号发生器和分析器组成。其面板图如图2所示。主要按键功能: ⑴.上档键 — DELAY — 延迟时间。分0.1s 、1s 、10s 三档。每按一次,循环改变一次。 CYCLE — 积分周数。分 1、10、100、1000三档。每按一次,循环改变一次。积分周数大精度高。 AMPL — 信号发生器输出电压值。 FREQ — 信号发生器输出频率值。 F MAX — 扫频(即频率按顺序变化)频率上限。 F MIN — 扫频频率下限。 D LOG — 对数扫频增量(每倍频程扫频步数) D LIN — 线性扫频增量(单位:Hz ) PROGRAM — 前后面板输入选择。0为前面板输入,1为后面板输入。用数字键区 ※ 以上功能设定,均由 图1 TD4011A 频率特性分析仪

⑵.下档键— 下档功能中AUTO、30mV、300mV、3V、30V、300V为输入量程选择; ; ※下档键功能均为灯亮有效。 ⑶.中档键— RECYCLE —发生器输出连续扫频信号; SINGLE —发生器输出单步扫频信号; STOP —测量停止。只有此键灯亮时才能对面板状态进行设定; HOLD —将发生器信号保持在扫频范围内的某一频率上; LOG↑—对数上扫(即发生器信号频率按对数规律由F MIN至F MAX变化); LIN↑—线性上扫;LOG↓—对数下扫;LIN↓—线性下扫; OFF —关断扫频; LOCAL —与计算机进行通讯; PRINT —打印,实验中此功能不用;PROGRAM —信号源停止时的相位设置。 ※按键位于中档键标识处,特别提醒上档和下档功能设定时,均要按在中档位置。 ⑷.数字键区 Select —选择键; RESET —复位键,强迫进入初始状态; CLEAR —发生器显示清零,不清内存; ENTER —确认键。 三.实验内容及步骤 1. 已知环节1,测试其频率特性。 ⑴实验前准备内容 ①环节1网络如图3所示,K R200 1 =,K R2 2 =,F Cμ1 =。求 出环节传递函数及频率特性。 ②绘制环节的对数幅频渐近线,并进行修正;绘制其对数相频特性; 由对数频率特性确定实验频率f的最佳范围(注意:π ω2 = f仪器允许频率范围0.001 ~1000Hz)。 ⑵实验步骤 ①打开计算机,进入WIN98操作系统,将软件狗插入USB接口。

实验二 控制系统的阶跃响应及稳定性分析

实验二 控制系统的阶跃响应及稳定性分析 一、实验目的及要求: 1.掌握控制系统数学模型的基本描述方法; 2.了解控制系统的稳定性分析方法; 3.掌握控制时域分析基本方法。 二、实验内容: 1.系统数学模型的几种表示方法 (1)传递函数模型 G(s)=tf() (2)零极点模型 G(s)=zpk(z,p,k) 其中,G(s)= 将零点、极点及K值输入即可建立零极点模型。 z=[-z1,-z …,-z m] p=[-p1,-p …,-p] k=k (3)多项式求根的函数:roots ( ) 调用格式: z=roots(a) 其中:z — 各个根所构成的向量 a — 多项式系数向量 (4)两种模型之间的转换函数: [z ,p ,k]=tf2zp(num , den) %传递函数模型向零极点传递函数的转换 [num , den ]=zp2tf(z ,p ,k) %零极点传递函数向传递函数模型的转换 (5)feedback()函数:系统反馈连接

调用格式:sys=feedback(s1,s2,sign) 其中,s1为前向通道传递函数,s2为反馈通道传递函数,sign=-1时,表示系统为单位负反馈;sign=1时,表示系统为单位正反馈。 2.控制系统的稳定性分析方法 (1)求闭环特征方程的根(用roots函数); 判断以为系统前向通道传递函数而构成的单位负反馈系统的稳定性,指出系统的闭环特征根的值: 可编程如下: numg=1; deng=[1 1 2 23]; numf=1; denf=1; [num,den]= feedback(numg,deng,numf,denf,-1); roots(den) (2)化为零极点模型,看极点是否在s右半平面(用pzmap); 3.控制系统根轨迹绘制 rlocus() 函数:功能为求系统根轨迹 rlocfind():计算给定根的根轨迹增益 sgrid()函数:绘制连续时间系统根轨迹和零极点图中的阻尼系数和自然频率栅格线 4.线性系统时间响应分析 step( )函数---求系统阶跃响应 impulse( )函数:求取系统的脉冲响应 lsim( )函数:求系统的任意输入下的仿真 三、实验报告要求:

实验一、典型环节及其阶跃响应

实验一、典型环节及其阶跃响应 一、实验目的 1. 掌握控制模拟实验的基本原理和一般方法。 2. 掌握控制系统时域性能指标的测量方法。 二、实验设备 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、实验原理 1.模拟实验的基本原理: 控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 2.时域性能指标的测量方法: 超调量ó %: 1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 2)检查USB线是否连接好,在实验项目下拉框中选中任实验,点击按 钮,出 现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表 示通信 正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续 进行实验。 3)连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1 输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。 4)在实验项目的下拉列表中选择实验一[典型环节及其阶跃响应] 。 5)鼠标单击按钮,弹出实验课题参数设置对话框。在参数设置对话框 中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结 果。 6)用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调 量:

T P 与T S : 利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时 间值,便可得到T P 与T S 。 四、实验内容 构成下述典型一阶系统的模拟电路,并测量其阶跃响应: 1.比例环节的模拟电路及其传递函数如图1-1。 G(S)= -R2/R1 2.惯性环节的模拟电路及其传递函数如图1-2。 G(S)= - K/TS+1 K=R2/R1,T=R2C 3.积分环节的模拟电路及传递函数如图1-3。 G(S)=1/TS T=RC 4.微分环节的模拟电路及传递函数如图1-4。 G(S)= - RCS 5.例+微分环节的模拟电路及传递函数如图1-5(未标明的C=0.01uf)。 G(S)= -K(TS+1) K=R2/R1,T=R2C 6.比例+积分环节的模拟电路及传递函数如图1-6。 G(S)=K(1+1/TS) K=R2/R1,T=R2C 五、实验步骤 1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 2.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使通信正常后才可以继续进行实验。 比例环节 3.连接被测量典型环节的模拟电路(图1-1)。电路的输入U1接A/D、D/A卡 的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通 电源。 4.在实验项目的下拉列表中选择实验一[一、典型环节及其阶跃响应] 。 5.鼠标单击按钮,弹出实验课题参数设置对话框。在参数设置对话框中 设置 相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果

典型环节及其阶跃响

自动控制原理实验 典型环节及其阶跃相应 .1 实验目的 1. 学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。 2. 学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。 3. 学习用Multisim 、MATLAB 仿真软件对实验内容中的电路进行仿真。 .2 实验原理 典型环节的概念对系统建模、分析和研究很有用,但应强调典型环节的数学模型是对各种物理系统元、部件的机理和特性高度理想化以后的结果,重要的是,在一定条件下, 典型模型的确定能在一定程度上忠实地描述那些元、部件物理过程的本质特征。 1.模拟典型环节是将运算放大器视为满足以下条件的理想放大器: (1) 输入阻抗为∞。流入运算放大器的电流为零,同时输出阻抗为零; (2) 电压增益为∞: (3) 通频带为∞: (4) 输入与输出之间呈线性特性: 2.实际模拟典型环节: (1) 实际运算放大器输出幅值受其电源限制是非线性的,实际运算放大器是有惯性的。 (2) 对比例环节、惯性环节、积分环节、比例积分环节和振荡环节,只要控制了输入量的大小或是输入量施加的时间的长短(对于积分或比例积分环节),不使其输出工作在工作期间内达到饱和值,则非线性因素对上述环节特性的影响可以避免.但对模拟比例微分环节和微分环节的影响则无法避免,其模拟输出只能达到有限的最高饱和值。 (3) 实际运放有惯性,它对所有模拟惯性环节的暂态响应都有影响,但情况又有较大的不同。 3.各典型环节的模拟电路及传递函数 (1) 比例环节的模拟电路如图.1所示,及传递函数为: 1 2)(R R S G -=

.1 比例环节的模拟电路 2. 惯性环节的模拟电路如图.2所示,及传递函数为: 其中1 2R R K = T=R 2 C 图.2 惯性环节的模拟电路 3. 积分环节的模拟电路如图.3所示,其传递函数为: 1 11R /1/)(21212212+-=+-=+-=-=TS K CS R R R CS R CS R Z Z S G

典型环节和系统频率特性地测量

课程名称:_________控制理论(甲)实验_______指导老师:_____ ____成绩:__________________ 实验名称:___典型环节和系统频率特性的测量___实验类型:________________同组学生:__________ 一、实验目的 二、实验原理 三、实验接线图 四、实验设备 五、实验步骤 六、实验数据记录 七、实验数据分析 八、实验结果或结论 一、实验目的 1.了解典型环节和系统的频率特性曲线的测试方法; 2.根据实验求得的频率特性曲线求取传递函数。 二、实验原理 1.系统(环节)的频率特性 设G(S)为一最小相位系统(环节)的传递函数。如在它的输入端施加一幅值为X m 、频率为ω的正弦信号,则系统的稳态输出为 )sin()()sin(?ωω?ω+=+=t j G Xm t Y y m 由式①得出系统输出,输入信号的幅值比相位差 )() (ωωj G Xm j G Xm Xm Ym == (幅频特性) )()(ωωφj G ∠= (相频特性) 式中)(ωj G 和)(ωφ都是输入信号ω的函数。 2.频率特性的测试方法 2.1 沙育图形法测试 2.1.1幅频特性的测试 由于 m m m m X Y X Y j G 22)(= = ω 改变输入信号的频率,即可测出相应的幅值比,并计算 m m X Y A L 22log 20)(log 20)(==ωω (d B ) 其测试框图如下所示:

图5-1 幅频特性的测试图(沙育图形法) 注:示波器同一时刻只输入一个通道,即系统(环节)的输入或输出。 2.1.2相频特性的测试 图5-2 相频特性的测试图(沙育图形法) 令系统(环节)的输入信号为:t X t X m ωsin )(= (5-1) 则其输出为 )sin()(φω+=t Y t Y m (5-2) 对应的沙育图形如图5-2所示。若以t 为参变量,则)(t X 与)(t Y 所确定点的轨迹将在示波器的屏幕上形成一条封闭的曲线(通常为椭圆),当t=0时,0)0(=X 由式(5-2)得 )sin()0(φm Y Y = 于是有 m m Y Y Y Y 2) 0(2sin )0(sin )(1 1--==ωφ (5-3) 同理可得 m X X 2) 0(2sin )(1 -=ωφ (5-4) 其中: )0(2Y 为椭圆与Y 轴相交点间的长度; )0(2X 为椭圆与X 轴相交点间的长度。 式(5-3)、(5-4)适用于椭圆的长轴在一、三象限;当椭圆的长轴在二、四时相位φ的计算公式变为 m Y Y 2) 0(2sin 180)(1 0--=ωφ 或 m X X 2)0(2sin 180)(10--=ωφ

典型环节及其阶跃响应

自动控制原理实验 典型环节及其阶跃相应 .1 实验目的 1. 学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。 2. 学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。 3. 学习用Multisim、MATLAB仿真软件对实验容中的电路进行仿真。 .2 实验原理 典型环节的概念对系统建模、分析和研究很有用,但应强调典型环节的数学模型是对各种物理系统元、部件的机理和特性高度理想化以后的结果,重要的是,在一定条件下,典型模型的确定能在一定程度上忠实地描述那些元、部件物理过程的本质特征。 1.模拟典型环节是将运算放大器视为满足以下条件的理想放大器: (1) 输入阻抗为∞。流入运算放大器的电流为零,同时输出阻抗为零; (2) 电压增益为∞: (3) 通频带为∞: (4) 输入与输出之间呈线性特性: 2.实际模拟典型环节: (1) 实际运算放大器输出幅值受其电源限制是非线性的,实际运算放大器是有惯性的。 (2) 对比例环节、惯性环节、积分环节、比例积分环节和振荡环节,只要控制了输入量的大小或是输入量施加的时间的长短(对于积分或比例积分环节),不使其输出工作在工作期间达到饱和值,则非线性因素对上述环节特性的影响可以避免.但对模拟比例微分环节和微

分环节的影响则无法避免,其模拟输出只能达到有限的最高饱和值。 (3) 实际运放有惯性,它对所有模拟惯性环节的暂态响应都有影响,但情况又有较大的不同。 3.各典型环节的模拟电路及传递函数 (1) 比例环节的模拟电路如图.1所示,及传递函数为: 1 2)(R R S G -= .1 比例环节的模拟电路 2. 惯性环节的模拟电路如图.2所示,及传递函数为: 其中1 2R R K = T=R 2C 1 11R /1/)(21212212+-=+-=+-=-=TS K CS R R R CS R CS R Z Z S G

自动控制原理实验-典型环节及其阶跃响应

大学学生实验报告 开课学院及实验室:实验中心 2013 年 11 月4日 学 院 机电 年级、专业、班 学号 实验课程名称 成绩 实验项目名称 典型环节及其阶跃响应 指导 教师 一、实验目的 二、实验原理(实验相关基础知识、理论) 三、实验过程原始记录(程序界面、代码、设计调试过程描述等) 四、实验结果及总结 一、实验目的 1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。 2.学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。 二、实验原理及电路图 (一) 用实验箱构成下述典型环节的模拟电路,并测量其阶跃响应。 1.比例环节的模拟电路及其传递函数如图2-1。 图2-1 G(S)= -R 2 /R 1 2.惯性环节的模拟电路及其传递函数如图2-2。

图2-2 G(S)=-K/(TS+1) K=R 2 /R 1 , T=R 2 C 3.积分环节的模拟电路及其传递函数如图2-3。 图2-3 G(S)=-1/TS T=RC 4.微分环节的模拟电路及其传递函数如图2-4。

图2-4 G(S)=-RCS 5.比例+微分环节的模拟电路及其传递函数如图2-5。 图2-5 G(S)=-K(TS+1) K=R 2 /R 1 ,T=R 2 C 6.比例+积分环节的模拟电路及其传递函数如图2-6。 图2-6 G(S)=K(1+1/TS) K=R 2 /R 1 , T=R 2 C

实验截图 1.比例环节 2.惯性环节

3.积分环节 4.微分环节 5.比例+微分环节

典型环节(或系统)的频率特性测量

典型环节(或系统)的频率特性测量 一·实验目的 1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。 2.学习根据实验所得频率特性曲线求取传递函数的方法。 二·实验要求 1.用实验方法完成一阶惯性环节的频率特性曲线测试。 2.用实验方法完成典型二阶系统开环频率特性曲线的测试。 3.根据测得的频率特性曲线求取各自的传递函数。 4.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。 三·实验原理 掌握改变正弦波信号幅值和频率的方法。利用实验箱上的模拟电路单元,参考本实验附录设计并连接“一阶惯性环节”模拟电路(如用U9+U8连成)或“两个一阶惯性环节串联”的模拟电路(如用U9+U11连成)。 四·实验所用仪器 PC微机(含实验系统上位机软件)、ACT-I实验箱、USB2.0通讯线 五·实验步骤和方法 1.用实验方法完成一阶惯性环节的频率特性曲线测试。 2.用实验方法完成典型二阶系统开环频率特性曲线的测试。 3.根据测得的频率特性曲线求取各自的传递函数。 4.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。 具体步骤: 1.熟悉实验箱上的信号源,掌握改变正弦波信号幅值和频率的方法。利用实验箱上的模拟电路单元,参考本实验附录设计并连接“一阶惯性环节”模拟电路(如用U9+U8连成)或“两个一阶惯性环节串联”的模拟电路(如用U9+U11连成)。 2.利用实验设备完成一阶惯性环节的频率特性曲线测试。 无上位机时,利用实验箱上的信号源单元U2所输出的正弦波信号作为环节输入,即连接箱上U2的“正弦波”与环节的输入端(例如对一阶惯性环节即图1.5.2的Ui)。然后用示波器观测该环节的输入与输出(例如对一阶惯性环节即测试图1.5.2的Ui和Uo)。注意调节U2的正弦波信号的“频率”电位器RP5与“幅值”电位器RP6,测取不同频率时环节输出的增益和相移(测相移可用“李沙育”图形),从而画出环节的频率特性。 有上位机时,必须在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。为了利用上位机提供的虚拟示波器与信号发生器功能,接线方式将不同于上述无上位机情况。仍以一阶惯性环节为例,此时将Ui连到实验箱 U3单元的O1或O2(D/A通道的输出端,这个是通过上位机选择其中的一路输出),将Uo连到实验箱 U3单元的I1(A/D通道的输入端),然后再将你选择的D/A输出通道测试信号O1(如果选择的是O1)连接到这组A/D输入的另一采集输入端I2,然后连接设备与上位机的USB通信线。接线完成,

MATLAB下二阶系统的单位阶跃响应

二阶系统在不同参数下对单位阶跃信号的响应 一、二阶系统 所谓二阶系统就是其输入信号、输出信号的关系可用二阶微分方程来表征的系统。比如常见的RLC电路(图a)、单自由度振动系统等。 图a 图b 二阶系统传递函数的标准形式为 2 22 () 2 n n n H s s s ω ξωω = ++ 二、二阶系统的Bode图(nω=1) MATLAB程序为 >> clear >> num=[1]; >> den=[1 0.2 1]; >> bode(num,den); grid on hold on den=[1 0.4 1]; bode(num,den); >> den=[1 0.6 1]; >> bode(num,den); >> den=[1 0.8 1]; >> bode(num,den); >> den=[1 1.4 1]; >> bode(num,den); >> den=[1 2 1]; >> bode(num,den); >> legend('0.1','0.2','0.3','0.4','0.7','1.0')

运行结果为 三、二阶系统对单位阶跃信号的响应( =1) n MATLAB程序为 >> clear >> num=[1]; >> den=[1 0 1]; >> t=0:0.01:25; >> step(num,den,t) >> grid on >> hold on >> den=[1 0.2 1]; >> step(num,den,t) >> den=[1 0.4 1]; >> step(num,den,t) >> den=[1 0.6 1]; >> step(num,den,t) >> den=[1 0.8 1]; >> step(num,den,t) >> den=[1 1.0 1]; >> step(num,den,t)

典型环节及其阶跃响应

典型环节及其阶跃响应 一、实验目的 1. 掌握控制系统模拟实验的基本原理和一般方法。 2. 掌握控制系统时域性能指标的测量方法。 3. 加深典型环节的概念在系统建模、分析、研究中作用的认识。 4. 加深对模拟电路——传递函数——响应曲线的联系和理解。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、实验原理 1.模拟实验的基本原理 根据数学模型的相似原理,我们应用电子元件模拟工程系统中的典型环节,然后加入典型测试信号,测试环节的输出响应。反之,从实测的输出响应也可以求得未知环节的传递函数及其各个参数。 模拟典型环节传递函数的方法有两种:第一种方法,利用模拟装置中的运算部件,采用逐项积分法,进行适当的组合,构成典型环节传递函数模拟结构图;第二种方法将运算放大器与不同的输入网络、反馈网络组合,构成传递函数模拟线路图,这种方法可以称为复合网络法。本节介绍第二种方法。 采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络构成相应的模拟系统。将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 图1-1 模拟实验基本测量原理 模拟系统以运算放大器为核心元件,由不同的R-C输入网络和反馈网络组成的各种 典型环节,如图1-2所示。图中Z1和Z2为复数阻抗,它们都是由R、C构成。 基于图中A点的电位为虚地,略去流入运放的电流,则由图1-2得:

1 21 0)(Z Z u u s G - =-= 由上式可求得由下列模拟电路组成典型环节的传递函数及其单位阶跃响应。 2.一阶系统时域性能指标s r d t t t ,,的测量方法: 利用软件上的游标测量响应曲线上的值,带入公式算出一阶系统时域性能指标。 d t :响应曲线第一次到达其终值∞ y 一半所需的时间。 r t :响应曲线从终值∞y %10上升到终值∞ y % 90所需的时间。 s t :响应曲线从0到达终值∞y 95%所需的时间。 3.实验线路与原理(注:输入加在反相端,输出信号与输入信号的相位相反) 1.比例环节 K R R Z Z s G -=- =- =1 21 2)( 比例环节的模拟电路及其响应曲线如图1-3。 K ——放大系数。K 是比例环节的特征量,它表示阶跃输入后,输出与输 入的比例关系,可以从响应曲线上求出。改变1R 或2R 的电阻值便可以改变比例 图1-2 运放的反馈连接 t K -1 图1-3 比例环节的模拟电路及其响应曲线

一阶系统的单位阶跃响应

图3-5所示系统。其输入-输出关系为 1 1 111)()(+= +=Ts s K s R s C (3-3) 式中K T 1 = ,因为方程(3-3)对应的微分方程的最高阶次是1,故称一阶系统。 实际上,这个系统是一个非周期环节,T 为系统的时间常数。 一、一阶系统的单位阶跃响应 因为单位阶跃函数的拉氏变换为s 1,将s s R 1)(=代入方程(3-3),得 s Ts s C 1 11)(+= 将)(s C 展开成部分分式,有 11()1C s s s T =- + (3-4) 对方程(3-4)进行拉氏反变换,并用)(t h 表示阶跃响应)(t C ,有 t T e t h 1 1)(--= 0t ≥ (3-5) 由方程(3-5)可以看出,输出量)(t h 的初始值等于零,而最终将趋于1。常数项“1”是由s 1反变换得到的,显然,该分量随时间变化的规律和外作用相似(本例为相同),由于它在稳态过程中仍起作用,故称为稳态分量 (稳态响应)。方程(3-5)中第二项由1 1/()s T +反变换得到, 它随时间变化的规律取决于传递函数1/(1)Ts +的极点,即系统特 征方程()10D s Ts =+=的根(1/)T -在复平 面中的位置,若根处在复平面的左半平面 如图3-6(a)所示,则随着时间 t 的增加, 它将逐渐衰减, 最后趋于零 (如图3-6(b) 所示),称为瞬态响应。可见,阶跃响应曲线具有非振荡特性,故也称为非周期响应。 显然,这是一条指数响应曲线,其初始斜率等于1/T ,即 T e T dt dh t t T t 1 |1|01 0===-= (3-6) 这就是说,假如系统始终保持初始响应速度不变,那么当T t =时, 输出量就能达到稳态值。

典型环节与及其阶跃响应

实验一: 典型环节与及其阶跃响应 一、实验目的 1、掌握控制模拟实验的基本原理和一般方法。 2、掌握控制系统时域性能指标的测量方法。 二、实验仪器 1、EL-AT-III 型自动控制系统实验箱一台 2、计算机一台 三、实验原理 控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输 入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起 来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测 量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数, 还可进一步分析研究参数对系统性能的影响。 四、实验内容 构成下述典型一阶系统的模拟电路,并测量其阶跃响应 1、比例环节的模拟电路及其传递函数 G(S)= ?R2/R1

2、惯性环节的模拟电路及其传递函数 G(S)= ?K/TS+1 K=R2/R1 T=R2C 3、积分环节的模拟电路及传递函数 G(S)=1/TS T=RC 4、微分环节的模拟电路及传递函数 G(S)= ?RCS 5、比例+微分环节的模拟电路及传递函数 G(S)= ?K(TS+1) K=R2/R1 T=R1C 五、实验结果及分析 (注:图中黄色为输入曲线、紫色为输出曲线)1、比例环节 (1)模拟电路图:

(2)响应曲线: 2、惯性环节 (1)模拟电路图:

(2)响应曲线: (3)传递函数计算: 实验值:X1=1029ms=1.029s=4T T=0.257s K=Y2/1000=2.017 G(S)=-2.017/(0.257S+1) 理论值:G(S)=-2/(0.2S+1) 结论:实验值与理论值相近。 3、积分环节 (1)模拟电路图:

实验五典型环节和系统频率特性的测量

实验五 典型环节和系统频率特性的测量 一、实验目的 1. 了解典型环节和系统的频率特性曲线的测试方法; 2. 根据实验求得的频率特性曲线求取传递函数。 二、实验设备 同实验一。 三、实验内容 1. 惯性环节的频率特性测试; 2. 二阶系统频率特性测试; 3. 无源滞后—超前校正网络的频率特性测试; 4. 由实验测得的频率特性曲线,求取相应的传递函数; 5. 用软件仿真的方法,求取惯性环节和二阶系统的频率特性。 四、实验原理 1. 系统(环节)的频率特性 设G(S)为一最小相位系统(环节)的传递函数。如在它的输入端施加一幅值为Xm 、频率为ω的正弦信号,则系统的稳态输出为 )sin()()sin(?ωω?ω+=+=t j G Xm t Y y m ① 由式①得出系统输出,输入信号的幅值比和相位差 )()(ωωj G Xm j G Xm Xm Ym == (幅频特性) )()(ωφω=∠j G (相频特性) 式中)(ωj G 和)(ωφ都是输入信号ω的函数。 2. 频率特性的测试方法 2.1 李沙育图形法测试 2.1.1幅频特性的测试 由于 m m m m X Y X Y j G 22)(== ω 改变输入信号的频率,即可测出相应的幅值比,并计算 m m X Y A L 22log 20)(log 20)(==ωω (dB ) 其测试框图如下所示:

图5-1 幅频特性的测试图(李沙育图形法) 注:示波器同一时刻只输入一个通道,即系统(环节)的输入或输出。 2.1.2相频特性的测试 图5-2 相频特性的测试图(李沙育图形法) 令系统(环节)的输入信号为:t X t X m ωsin )(= (5.1) 则其输出为 )sin()(φω+=t Y t Y m (5.2) 对应的李沙育图形如图5-2所示。若以t 为参变量,则)(t X 与)(t Y 所确定点的轨迹将在示波器的屏幕上形成一条封闭的曲线(通常为椭圆),当t=0时,0)0(=X 由式(5.2)得 )sin()0(φm Y Y = 于是有 m m Y Y Y Y 2) 0(2sin )0(sin )(1 1--==ωφ (5.3) 同理可得 m X X 2) 0(2sin )(1 -=ωφ (5.4) 其中 )0(2Y 为椭圆与Y 轴相交点间的长度; )0(2X 为椭圆与X 轴相交点间的长度。 式(5.3)、(5.4)适用于椭圆的长轴在一、三象限;当椭圆的长轴在二、四时相位φ的计算公式变为 m Y Y 2) 0(2sin 180)(1 0--=ωφ 或 m X X 2)0(2sin 180)(10--=ωφ

陈sir-实验五 典型环节和系统频率特性的测量

姓名:陈,H 学号:XXXXXXXX 班级:电气 实验五 典型环节和系统频率特性的测量 一、实验目的 1.了解典型环节和系统的频率特性曲线的测试方法; 2.根据实验求得的频率特性曲线求取传递函数。 二、实验设备 1.THBDC-1型 控制理论·计算机控制技术实验平台; 2.PC 机一台(含“THBDC-1”软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线。 三、实验内容 1.惯性环节的频率特性测试; 2.二阶系统频率特性测试; 3.无源滞后—超前校正网络的频率特性测试; 4.由实验测得的频率特性曲线,求取相应的传递函数; 5.用软件仿真的方法,求取惯性环节和二阶系统的频率特性。 四、实验原理 1.系统(环节)的频率特性 设G(S)为一最小相位系统(环节)的传递函数。如在它的输入端施加一幅值为X m 、频率为ω的正弦信号,则系统的稳态输出为 )sin()()sin(?ωω?ω+=+=t j G Xm t Y y m 由式①得出系统输出,输入信号的幅值比相位差 ) () (ωωj G Xm j G Xm Xm Ym == (幅频特性) )()(ωωφj G ∠= (相频特性) 式中)(ωj G 和)(ωφ都是输入信号ω的函数。 2.频率特性的测试方法 2.1 李沙育图形法测试 2.1.1幅频特性的测试 由于 m m m m X Y X Y j G 22)(== ω 改变输入信号的频率,即可测出相应的幅值比,并计算 m m X Y A L 22l o g 20)(log 20)(==ωω (dB ) 其测试框图如下所示:

图5-1 幅频特性的测试图(李沙育图形法) 注:示波器同一时刻只输入一个通道,即系统(环节)的输入或输出。 2.1.2相频特性的测试 图5-2 相频特性的测试图(李沙育图形法) 令系统(环节)的输入信号为:t X t X m ωsin )(= (5-1) 则其输出为 )s i n ()(φω+=t Y t Y m (5-2) 对应的李沙育图形如图5-2所示。若以t 为参变量,则)(t X 与)(t Y 所确定点的轨迹将在示波器的屏幕上形成一条封闭的曲线(通常为椭圆),当t=0时,0)0(=X 由式(5-2)得 )s i n ()0(φm Y Y = 于是有 m m Y Y Y Y 2)0(2sin )0(sin )(1 1 --==ωφ (5-3) 同理可得 m X X 2)0(2s i n )(1 -=ωφ (5-4) 其中: )0(2Y 为椭圆与Y 轴相交点间的长度; )0(2X 为椭圆与X 轴相交点间的长度。 式(5-3)、(5-4)适用于椭圆的长轴在一、三象限;当椭圆的长轴在二、四时相位φ的计算公式变为 m Y Y 2)0(2sin 180 )(1 --=ωφ 或 m X X 2)0(2s i n 180 )(1 --=ωφ 下表列出了超前与滞后时相位的计算公式和光点的转向。

(整理)二阶系统的阶跃响应.

实验一 一、二阶系统的阶跃响应 实验报告 ___系__专业___班级 学号___姓名___成绩___指导教师__一、实验目的 1、学习实验系统的使用方法。 2、学习构成一阶系统(惯性环节)、二阶系统的模拟电路,分别推导其传递函数。了解电路参数对环节特性的影响。 3、研究一阶系统的时间常数T 对系统动态性能的影响。 4、研究二阶系统的特征参数,阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。 二、实验仪器 1、EL-AT-II 型自动控制系统实验箱一台 2、计算机一台 三、实验内容 (一) 构成下述一阶系统(惯性环节)的模拟电路,并测量其阶跃响应。 惯性环节的模拟电路及其传递函数如图1-1。 (二)构成下述二阶系统的模拟电路,并测量其阶跃响应。 典型二阶系统的闭环传递函数为 ()2222n n n s s s ωζωω?++= (1) 其中ζ和n ω对系统的动态品质有决定的影响。 图1-1 一阶系统模拟电路图 R1 R2

构成图1-2典型二阶系统的模拟电路,并测量其阶跃响应: 电路的结构图如图 1-3 系统闭环传递函数为 ()()()()2 2 2/1//11/2T S T K s T s U S U s ++==? 式中 T=RC ,K=R2/R1。 比较(1)、(2)二式,可得 n ω=1/T=1/RC ξ=K/2=R2/2R1 (3) 由(3)式可知,改变比值R2/R1,可以改变二阶系统的阻尼比。改变RC 值可以改变无阻尼自然频率n ω。 今取R1=200K ,R2=0K Ω,50K Ω,100K Ω和200K Ω,可得实验所需的阻尼比。图1-2 二阶系统模拟电路图 图1-3 二阶系统结构图 R2

典型环节的单位阶跃响应

实验二 典型环节的单位阶跃响应 一、实验目的 1、根据对象的单位阶跃响应特性,掌握和深刻理解几种典型环节的特性以及它们特性参数的含义。 2、研究对象传递函数的零极点对系统动态特性的影响。 3、学习Matlab 的基本用法 ――求取阶跃响应、脉冲响应(step, impulse) ――基本做图方法(hold, plot) 二、实验内容 1、比例环节 求取K s G )(在不同比例系数K 下的单位阶跃响应,说明比例系数对系统动态过程的影响。 0.10.20.30.40.50.60.70.80.91 G(s)=K,在不同比例系数K 下的单位阶跃响应 Time (sec) A m p l i t u d e 由上图可以看出: 因为G (s )=K ,所以被控对象是一个单纯的比例系统。随着K 的增加,系统的终值是输入信号的K 倍。 2、一阶惯性环节

(1) 求取1 )(+= Ts K s G 的单位阶跃响应,其中放大倍数K =2,时间常数T =2。 1)(+= Ts K s G 的单位阶跃响应如下图: 024681012 0.20.40.60.811.2 1.41.61.8 2G(s)=2/(2s+1)的单位阶跃响应 Time (sec) A m p l i t u d e

(2) 求取1 22 )(+= s s G 的单位脉冲响应,可否用step 命令求取它的脉冲响应? 122 )(+= s s G 的单位脉冲响应如下图: 024681012 0.10.20.30.40.50.6 0.70.80.9 1G(s)=2/(2s+1)的单位m 脉冲响应 Time (sec) A m p l i t u d e 把传递函数乘以s 再求其单位阶跃响应,就可获得乘s 前的传递函数的脉冲响应。如下图: 024681012 0.10.20.30.40.50.6 0.70.80.9 1G(s)=2*s/(2s+1)的单位m 阶跃响应 Tim e (sec) A m p l i t u d e

实验报告1典型环节及其阶跃响应分析

实验一典型环节及其阶跃响应分析 一、实验目的 1、掌握控制模拟实验的基本原理和一般方法。 2、掌握控制系统时域性能指标的测量方法。 二、实验仪器 1、EL-AT-Ⅱ型自动控制系统试验箱一台 2、计算机一台 三、实验原理 1.模拟实验的基本原理: 控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 四、实验内容 1、用运算放大器构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节 和比例积分微分环节。 2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关 系。 3、在运算放大器上实现各环节的参数变化。 五、实验步骤 六、实验步骤 1. 启动计算机,在桌面“信号、自控文件夹”中双击图 标,运行软件。 2. 测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使 通信正常后才可以继续进行实验。 3. 连接典型环节的模拟电路,电路的输入U1接A/D、D/A卡的DA1输出,电路的输 出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。 4. 在实验项目的下拉列表中选择[一、典型环节及其阶跃响应] ,鼠标单击按 钮,弹出实验课题参数设置对话框。在参数设置对话框中设置相应的实验参数 后用鼠标单击确定,等待屏幕的显示区显示实验结果. 5. 观测计算机屏幕显示出的响应曲线及数据,记录波形及数 七、实验结果 1、比例环节 K=2

典型系统的阶跃响应分析

自动控制理论实验报告 姓名 焦皓阳 学号 201423010319 班级 电气F1402 同组人 周宗耀 赵博 刘景瑜 张凯 实验一 典型系统的阶跃响应分析 一、实验目的 1. 熟悉一阶系统、二阶系统的阶跃响应特性及模拟电路; 2. 测量一阶系统、二阶系统的阶跃响应曲线,并了解参数变化对其动态特性的影响; 3. 掌握二阶系统动态性能的测试方法。 二、实验内容 1. 设计并搭建一阶系统、二阶系统的模拟电路; 2. 测量一阶系统的阶跃响应,并研究参数变化对其输出响应的影响; 3. 观测二阶系统的阻尼比分别在0<ξ<1,ξ>1两种情况下的单位阶跃响应曲线;测量二阶系统的阻尼比为2 1=ξ时系统的超调量%σ、调节时间t s (Δ= ±0.05); 4. 观测系统在ξ为定值n ω不同时的响应曲线。 三、实验结果【】 1、一阶系统 电路:

传递函数 2o(s) 1()21 R U R Ui s R CS =+ T=1结果:

T=0.1结果: 当T=1时:可以看出此时的稳态值为ΔY=4.4293,到达稳态的时间为ΔX=5.2664,调节时间为图二的ΔX=ts=2.757 当T=0.1时:由于此时的波形的起点没有在零点,所以存在着误差,此时的误差Δ=0-Y2=0.085,此时到达稳态时间为ΔX*13/21=0.5556,调节时间为X2在ΔY*0.95-Δ时的X2-X1=ts=0.375

结论:(参数变化对系统动态特性的影响分析) 参数的变化对系统动态性能的影响:T(周期)决定系统达到稳态时间的长短。在其他变量保持不变的情况下,当T 越小,该系统到达稳定状态所需时间就越少,系统对信号的响应也就越快。 2、二阶系统 电路: 传递函数 2 22221 ()1 ()Uo s C R S Ui s S RxC C R =++ (1)10n ω=,2.0=ξ结果:

自动控制原理实验典型环节及其阶跃响应,二阶系统阶跃

实验一、典型环节及其阶跃响应 实验目的 1、学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。 2、学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。 实验内容 构成下述典型环节的模拟电路,并测量其阶跃响应。 比例环节的模拟电路及其传递函数示图2-1。 G(S)=-R2/R1 惯性环节的模拟电路及其传递函数示图2-2。 G(S)=-K/TS+1 K=R2/R1 ,T=R2*C 积分环节的模拟电路及其传递函数示图2-3。 G(S)=1/TS T=RC 微分环节的模拟电路及其传递函数示图2-4。 G(S)=-RCS 比例加微分环节的模拟电路及其传递函数示图2-5。 G(S)=-K(TS+1) K=R2/R1 T=R2C 比例加积分环节的模拟电路及其传递函数示图2-6。 G(S)=K(1+1/TS) K=R2/R1,T=R2C 软件使用 1、打开实验课题菜单,选中实验课题。

2、在课题参数窗口中,填写相应AD,DA或其它参数。 3、选确认键执行实验操作,选取消键重新设置参数。 实验步骤 1、连接被测量典型环节的模拟电路及D/A、A/D连接,检查无误后接通电源。 2、启动应用程序,设置T和N。参考值:T=0.05秒,N=200。 3、观测计算机屏幕示出的响应曲线及数据记录波形及数据(由实验报告确定)。 实验报告 1、画出惯性环节、积分环节、比例加微分环节的模拟电路图,用坐标纸画出所有记录的惯性环节 、积分环节、比例加微分环节的响应曲线。 2、由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算的结果相比较。 实验二二阶系统阶跃响应 一、实验目的 1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频ωn 对系统动态性能的影响,定量分析ζ和ωn与最大超调量Mp和调节时间 ts 之间的关系。 2、进一步学习实验仪器的使用方法。 3、学会根据系统阶跃响应曲线确定传递函数。 二、实验原理及电路 典型二阶系统的闭环传递函数为

相关主题
文本预览
相关文档 最新文档