当前位置:文档之家› 2006-2007学年第二学期04本实变函数期末试题(A类)

2006-2007学年第二学期04本实变函数期末试题(A类)

2006-2007学年第二学期04本实变函数期末试题(A类)
2006-2007学年第二学期04本实变函数期末试题(A类)

———————————————————— 密

封 线

内 不

要 答 题

———————————————————————

—————

2006-2007学年第二学期04本实变函数期末试题(A 类)

注:A 类试卷供统招学生使用

B 类试卷供中外合作办学学生使用

一、填空:(共10分)

1.如果 则称E 是自密集,如果

则称E 是开集,如果E E ?'则称E 是

,E E E '= 称为E 的 .

2.设集合G 可表示为一列开集}{i G 之交集: ∞

==

1i i

G

G ,则G 称为 .

若集合F 可表示为一列闭集}{i F 之并集: ∞

==

1

i i

F

F ,则F 称为 .

3.(Fatou 引理)设}{n f 是可测集q R E ?上一列非负可测函数,则 . 4.设)(x f 为],[b a 上的有限函数,如果对于],[b a 的一切分划b x x x a T n =<<<= 10:,

使?

??

???-∑=-n i i i x f x f 11|)()(|成一有界数集,则称)(x f 为],[b a 上的 ,并称这个数集的上确界为)(x f 在],[b a 上的 ,记为 . 二、选择填空:(每题4分,共20分)

1.下列命题或表达式正确的是

A .}{b b ?

B .2}2{=

C .对于任意集合B A ,,有B A ?或A B ?

D .φφ?

2.下列命题不正确的是

A .若点集A 是无界集,则+∞=A m *

B .若点集E 是有界集,则+∞

C .可数点集的外测度为零

D .康托集P 的测度为零 3.下列表达式正确的是

A .}0),(max{)(x f x f -=+

B .)()()(x f x f x f -++=

C .)()(|)(|x f x f x f -+-=

D .}),(min{)]([n x f x f n = 4.下列命题不正确的是

A .开集、闭集都是可测集

B .可测集都是Borel 集

C .外测度为零的集是可测集

D .σF 型集,δG 型集都是可测集 5.下列集合基数为a (可数集)的是

A .康托集P

B .)1,0(

C .设i n n

x x x x x A R A |),,,({,21 ==?是整数,},,2,1n i =

D .区间)1,0(中的无理数全体

三、(20分)叙述并证明鲁津(Lusin )定理的逆定理

———————————————————— 密

封 线

内 不

要 答 题

———————————————————————

—————

四、(20分)设R E '?,)(x f 是E 上..e a 有限的可测函数,

证明:存在定义在R '上的一列连续函数}{n g ,使得

..)()(lim e a x f x g n n =∞

→于E

五、(10分)证明01sin )(lim sin 222007

1

0=+-∞→?dx e x n nx nx R nx n

六、(10分)设)(x f 是满足Lipschitz 条件的函数,且.

.0)(e a x f ≥'于],[b a ,则)(x f 为增函数

七、(10分)设f 是],[b a 上的有界变差函数,证明2

f

也是],[b a 上的

有界变差函数

实变函数 期末考试

黄冈师范学院 2015—2016学年度第学期一期末试卷 考试课程:实变函数 考核类型:考试A 卷 考试形式:闭卷 出卷教师:陈文略 考试专业:应数 考试班级:应数2013 一、填空题:(3分×5题=15分) 1、实数R 的基数为 。 2、设[)(]1,01,0:→f 为一一映射,则()=x f 。 3、非真正的实数是指: 。 4、在区间[]b a ,上的单调函数 连续。 5、若)(x f 在[a ,b]上严格单调,则()f V b a = 二、选择题:(3分×5题=15分) (1)与[)1,0间不存在一一对应的是( ) A 、有理数Q B 、平面2R C 、实数R (2)对于连续基数c, 下列不成立的是( ) A 、4c=c B 、c c a =+ C 、c aa = (3)f f n ?与f f n →的关系是( ) A 、f f n ?则f f n → B 、f f n →则f f n ? C 、都不是 (4)下列正确的表述是( ) A 、[][]a f E a f E B 、[][]a f E a f E =?> C 、[]??????+>=≥∞ =k a f E a f E k 11

(5)[](){}2221,,1,0R y x y x B R A ?≤+=?=,则B A ?为 A 、圆 B 、圆柱 C 、圆锥 三、计算与证明:(6分×7题=42分) (1)已知(){}2221,R y x y x E ?<+=,求'E (2)证明在区间[]1,01R ?中,不含数码7的点的全体所成之集为一零测度集. (3)证明:有理数集R Q ?为零测度集. (4)已知()()x g x f = a.e. 于E,()()x h x g = a.e. 于E . 证明:()()x h x f = a.e. 于E. (5)对于任何有限实数a ,若[]a f E ≥可测,证明[]a f E >可测. (6)()x f 为E=[0,1]上的狄利克雷函数,求()dx x f E ? (7)已知()x x f sin =,求:()f V π 20 . 四、证明:若()*0m E E φ=≠,E A ?, 则A 可测, 且 0=mA (9分) 五、已知函数()2x x f =,[]1,0∈x 求:()f E mG , (9分) 六、已知()x x f =,求当00=x 时的下列列导数 (1) {}n h 中n h n 1 = (2) {}n h 中n h n 1 -= (10分)

实变与泛函期末试题答案

06-07第二学期《实变函数与泛函分析》期末考试参考答案 1. 设()f x 是),(+∞-∞上的实值连续函数, 则对于任意常数a , })(|{a x f x E >=是一开集, 而})(|{a x f x E ≥=总是一闭集. (15分) 证明 (1) 先证})(|{a x f x E >=为开集. (8分) 证明一 设E x ∈0,则a x f >)(0,由)(x f 在),(+∞-∞上连续,知0>?δ,使得 ),(00δδ+-∈x x x 时,a x f >)(, 即 E x U ?),(0δ, 故0x 为E 的内点. 由0x 的任意性可知,})(|{a x f x E >=是一开集. 证明二 })(|{a x f x E >=可表为至多可数的开区间的并(由证明一前半部分), 由定理可知E 为开集. (2) 再证})(|{a x f x E ≥=是一闭集. (7分) 证明一 设0x E '∈, 则0x 是E 的一个聚点, 则E ?中互异点列},{n x 使得 )(0∞→→n x x n . ………………………..2分 由E x n ∈知a x f n ≥)(, 因为f 连续, 所以 a x f x f x f n n n n ≥==∞ →∞ →)(lim )lim ()(0, 即E x ∈0.……………………………………………………………………………………6分 由0x 的任意性可知,})(|{a x f x E ≥=是一闭集. …………………………………7分 证明二 对})(|{a x f x E ≥=, {|()}E x f x a E ??=?,……………………… 5分 知E E E E =?=Y ,E 为闭集. …………………………………………………… 7分 证明三 由(1)知,})(|{a x f x E >=为开集, 同理})(|{a x f x E <=也为开集, 所以})(|{a x f x CE ≥=闭集, 得证. 2. 证明Egorov 定理:设,{()}n mE f x <∞是E 上一列..e a 收敛于一个..e a 有限的函数)(x f 的可测函数, 则对0>?δ, 存在子集E E ?δ, 使)}({x f n 在δE 上一致收敛, 且 .)\(δδ,选0,i 使0 1 ,i ε<则当0i n n >时,对一切

实变函数期末考试卷A卷完整版

实变函数期末考试卷A 卷 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实变 函数 一、 判断题(每题2分,共20分) 1.若A 是B 的真子集,则必有B A <。 (×) 2.必有比a 小的基数。 (√) 3.一个点不是E 的聚点必不是E 的内点。 (√) 4.无限个开集的交必是开集。 (×) 5.若φ≠E ,则0*>E m 。 (×) 6.任何集n R E ?都有外测度。 (√) 7.两集合的基数相等,则它们的外测度相等。 (×) 8.可测集的所有子集都可测。 (×) 9.若)(x f 在可测集E 上可测,则)(x f 在E 的任意子集上也可测。(×) 10.)(x f 在E 上可积必积分存在。 (×) 1.设E 为点集,E P ?,则P 是E 的外点.( × ) 2.不可数个闭集的交集仍是闭集. ( × ) 3.设{}n E 是一列可测集,且1,1,2,,n n E E n +?=则 1( )lim ().n n n n m E m E ∞ →∞ ==(× ) 4.单调集列一定收敛. (√ ) 5.若()f x 在E 上可测,则存在F σ型集,()0F E m E F ?-=,()f x 在F 上连续.( × ) 二、填空题(每空2分,共20分) 1.设B 是1R 中无理数集,则=B c 。 2.设1,1,,3 1,21,1R n A ???????= ,则=0A φ ,='A }0{ 。 3.设 ,2,1,0),1 1,11(=++-=n n n A n ,则=?∞=n n A 0 )1,1(- ,=?∞=n n A 1 }0{ 。 4.有界变差函数的不连续点构成的点集是 至多可列 集。

(20080619)实变函数期末复习指导(文本)

(2008.06.19)实变函数期末复习指导(文本) 中央电大教育学院陈卫宏2008年07月01日 陈卫宏:大家好!这里是“实变函数”教学活动。 考试时间 实变函数期末考试时间:7月12日,8:30~10:00. 期末考试题型比例 单选题5(20分) 填空题5(20分) 证明题4(60分) 第1章考核要求 ⑴了解集合的表示,子集,理解集合的并、交、差、补等概念,特别是一列集合的并与交的概念; ⑵掌握集合的运算律,会求一列简单集合的并、交以及上极限和下极限; ⑶熟练掌握证明两个集合相等的方法(互为子集)并会具体应用; ⑷了解单射、满射、双射及对等的概念,知道基数相等与大小的定义,会用伯恩斯坦定理; ⑸理解可列集的定义及等价条件(可排成无穷序列的形式),了解可列集的运算性质,理解有理点集是可列集; ⑹了解常见的连续集和连续集的运算,知道基数无最大者。 第2章考核要求 ⑴了解距离、收敛、邻域、孤立点、边界点、内核、导集、闭包等概念,会求简单集合的内核、导集和闭包,理解聚点的定义及其等价条件; ⑵掌握波尔查诺——维尔斯特拉斯定理的条件和结论; ⑶了解开集、闭集、完备集的定义以及开集、闭集在并、交运算之下的性质,开集与闭集互为补集,掌握直线上开集的构造;

⑷了解波雷尔有限覆盖定理、距离可达定理和隔离性定理的条件和结论; ⑸理解康托集的构造及其性质。 第3章考核要求 ⑴理解勒贝格外测度的定义及其性质,知道可列集的测度为零,区间的测度等于其体积; ⑵理解可测集的(卡拉皆屋铎利)定义,了解可测集的充分必要条件以及可测集的运算性质; ⑶熟练掌握单调可测集列极限的测度; ⑷知道Gδ型集、Fσ型集以及波雷尔集的定义,了解常见的勒贝格可测集,掌握可测集同开集、闭集和可测集同Gδ型集、Fσ型集之间的关系。 第4章考核要求 ⑴知道点集上连续函数的定义和点集上连续函数列一致收敛的极限函数的连续性,了解函数列上、下极限的概念,理解“几乎处处”的概念; ⑵熟练掌握可测函数的定义及其等价条件,掌握可测函数的判定方法,理解可测函数关于四则运算和极限运算的封闭性、连续函数和简单函数皆可测以及可测函数可表示为简单函数列的极限; ⑶了解叶果洛夫定理,理解依测度收敛的定义,知道依测度收敛与几乎处处收敛二者互不包含,理解刻划依测度收敛和几乎处处收敛之间关系的勒贝格定理和黎斯定理,知道依测度收敛的极限函数是惟一的(把几乎处处相等的函数视为同一函数); ⑷理解刻划可测函数同连续函数之间关系的鲁金定理(两种形式)。 第5章考核要求 ⑴知道测度有限集合上有界函数勒贝格积分的定义,理解测度有限集合上有界函数勒贝格可积的充分必要条件是有界可测; ⑵了解测度有限集合上有界函数勒贝格积分的简单性质,理解闭区间上有界函数黎曼可积必勒贝格可积且二者积分相等; ⑶了解一般集合上非负函数勒贝格积分存在和勒贝格可积的定义,非负函数积分存在的充分必要条件是非负可测; ⑷理解一般集合上一般函数勒贝格积分存在和勒贝格可积的定义,熟练掌握一般可测集上一般函数勒贝格积分的性质; ⑸理解积分极限定理,特别是勒贝格控制收敛定理及其应用;

实变函数期末考试卷A及参考答卷

2011—2012学年第1学期 数计学院09级数学与应用数学专业(1、2班) 《实变函数》期末考试卷(A)

试卷共8 页第 1 页

实变函数期末考试卷(A) 2009级本科1、2班用 考试时间2012年01月 04日 一 填空题(每小题3分,满分24分) 1 我们将定义在可测集q E ??上的所有L 可测函数所成的集合记为()M E .任取()f M E ∈,都可以确定两个非负可测函数: 试卷 共 8 页 第 2 页

()()()(),0, 0,0.f x x E f f x x E f + ∈>?=? ∈≤? 当时当时 和()()()()0, 0, ,0. x E f f x f x x E f - ∈>?=?-∈≤? 当时当时 分别称为f 的正部和负部。请你写出()()(),,f x f x f x + -和()f x 之间的关系: ()f x = , ()f x = 。 2 上题()M E 中有些元素?被称为非负简单函数,指的是: 12k E E E E =U UL U 是有限个互不相交的可测集的并集,在i E 上()i x c ?≡ (非负常数)(1,2,,i k =L ).?在E 上的L 积分定义为: ()E x dx ?= ?, 这个积分值可能落在区间 中,但只有当 时才能说?是 L 可积的。 3 若()f M E ∈是非负函数,则它的L 积分定义为: ()E f x dx = ?, 这个积分值可能落在区间 中,但只有当 时才能说f 是 L 可积的。 4 ()M E 中的一般元素f 称为是积分确定的,如果f +和f - , 即()E f x dx + ?和()E f x dx -?的值 ;但只有当 时 才能说f 是L 可积的,这时将它的积分定义为: ()E f x dx = ?。 5 从()M E 中取出一个非负函数列(){}n f x ,则法图引理的结论是不等式: ; 如果再添上条件和 就 得到列维定理的结论: 。 6 设f 和()1,2,n f n =L 都是()M E 中的可测函数,满足 ()()lim n n f x f x a e →∞ =g g 于E 或n f f ?两个条件之一。 或 的结论:

(完整版)实变函数证明题大全(期末复习)

1、设',()..E R f x E a e ?是上有限的可测函数,证明:存在定义在'R 上的一列连续函数 {}n g ,使得lim ()()..n n g x f x a e →∞ =于E 。 证明:因为()f x 在E 上可测,由鲁津定理是,对任何正整数n ,存在E 的可测子集n E , 使得1 ()n m E E n -< , 同时存在定义在1R 上的连续函数()n g x ,使得当n x E ∈时,有()()n g x f x =所以对任意的0η>,成立[||]n n E f g E E η-≥?-由此可得 1[||]()n n mE f g n m E E n -≥≤-< ,因此lim [||]0n n mE f g n →∞-≥=即()()n g x f x ?, 由黎斯定理存在{}n g 的子列{}k n g ,使得lim ()()k n k g x f x →∞ =,..a e 于E 2、设()(,)f x -∞∞是上的连续函数,()g x 为[,]a b 上的可测函数,则(())f g x 是可测函数。 证明:记12(,),[,]E E a b =-∞+∞=,由于()f x 在1E 上连续,故对任意实数1,[]c E f c >是 直线上的开集,设11 [](,)n n n E f c α β∞ =>=U ,其中(,)n n αβ是其构成区间(可能是有限 个 , n α可 能为 -∞ n β可有为 +∞ )因此 22221 1 [()][]([][])n n n n n n E f g c E g E g E g αβαβ∞ ∞ ==>=<<=><都可测。故[()]E f g c >可测。 3、设()f x 是(,)-∞+∞上的实值连续函数,则对于任意常数a ,{|()}E x f x a =>是一开集,而{|()}E x f x a =≥总是一闭集。 证明:若00,()x E f x a ∈>则,因为()f x 是连续的,所以存在0δ>,使任意(,)x ∈-∞∞, 0||()x x f x a δ-<>就有, 即任意00U(,),,U(,),x x x E x E E δδ∈∈?就有所以是 开集若,n x E ∈且0(),()n n x x n f x a →→∞≥则,由于()f x 连续,0()lim ()n n f x f x a →∞ =≥, 即0x E ∈,因此E 是闭集。 4、(1)设2121 (0,),(0,),1,2,,n n A A n n n -==L 求出集列{}n A 的上限集和下限集 证明:lim (0,)n n A →∞ =∞设(0,)x ∈∞,则存在N ,使x N <,因此n N >时,0x n <<,即

聊城大学实变函数期末试题

《实变函数》 一、单项选择题 1、下列各式正确的是( C D ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =?? (C )1lim n n n n k n A A ∞ ∞ →∞ ===??; (D )1lim n n n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( D ) (A )=P c (B) 0m P = (C) P P =' (D) P P = 3、下列说法不正确的是( B ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( A ) (A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数 (C ){}inf ()n n f x 是可测函数;(D )若()()n f x f x ?,则()f x 可测 5. 下列说法不正确的是( C ) (A) 0P 的任一领域内都有E 中无穷多个点,则0P 是E 的聚点 (B) 0P 的任一领域内至少有一个E 中异于0P 的点,则0P 是E 的聚点 (C) 存在E 中点列{}n P ,使0n P P →,则0P 是E 的聚点 (D) 内点必是聚点 6.设)(x f 在E 上L 可积,则下面不成立的是( C ) (A))(x f 在E 上可测 (B))(x f 在E 上a.e.有限 (C))(x f 在E 上有界 (D))(x f 在E 上L 可积 7. 设}{n E 是一列可测集,12n E E E ???? ,则有(B )。 (A )1lim n n n n m E m E ∞=→∞???> ??? (B) 1lim n n n n m E m E ∞ =→∞ ???= ???

实变函数期末复习指导

实变函数期末复习指导(文本) 实变函数题型比例 单选题:5题,每题4分,共20分。 填空题:5题,每题4分,共20分。 计算与证明题:4题,每题15分,共60分。 第1章主要内容 本章所讨论的集合的基本知识是集合论的基础,包括集合的运算和集合的基数两部分. 主要内容有: 一、集合的包含关系和并、交、差、补等概念,以及集合的运算律. 关于概念的学习,应该注意概念中的条件是充分必要的,比如,B A ?当且仅当A x ∈时必有B x ∈.有时也利用它的等价形式:B A ?当且仅当B x ∈时必有A x ∈.在证明两个集合包含关系时,这两种证明方式可视具体问题而选择其一. 还要注意对一列集合并与交的概念的理解和掌握.n n A x ∞ =∈1 当且仅当x 属于这一列集 合中的“某一个”(即存在某个n A ,使n A x ∈),而n n A x ∞ =∈1 当且仅当x 属于这一列集合中 的“每一个”(即对每个n A ,都有n A x ∈).要熟练地进行集合间的各种运算,这是学习本章必备的基本技能. 读者要多做些这方面的练习. 二、映射是数学中一个基本概念,要弄清单射、满射和双射之间的区别与联系. 对集合基数部分的学习,应注意论证两个集合对等技能的训练,其方法主要有下面三种:一是依对等的定义直接构造两集间的双射;二是利用对等的传递性,如欲证C A ~,已知B A ~,此时只须证C B ~;三是应用有关定理,特别是伯恩斯坦定理,它是判断两个集合对等的常用的有效方法. 三、可列集是无限集中最重要的一类集合,它是无限集中基数最小者. 要掌握可列集的定义和运算性质,有理数集是可列的并且在直线上处处稠密,这是有理数集在应用中的两条重要性质. 四、连续集及其运算性质.要掌握长见的连续集的例子,知道基数无最大者. 第2章主要内容 本章讨论的点集理论,不仅是以后学习测度理论和新积分理论的基础,也为一般的抽象空间的研究提供了具体的模型.

(完整版)《实变函数及泛函分析基础》试卷及答案

试卷一: 一、单项选择题(3分×5=15分) 1、1、下列各式正确的是( ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =??; (C )1lim n k n n k n A A ∞ ∞ →∞ ===??; (D )1lim n k n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D) P P =ο 3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数 (C ){}inf ()n n f x 是可测函数;(D )若()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))(' x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都有

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

级实变函数期末试题B卷及答案

α α q α 2005 级 实 变 函数期末试题 B 卷 答案 一. 判断题(对的在括号内打√,错的打×)(每小题 3 分,共 18 分。) 1. 如果 R n 中可测集 E 的基数为 c ,则 mE > 0 。( × ) 2.任意个开集的并集还是开集。( √ ) 3. E ? R n ,则一定存在可测集G ,使 E ? G 并且 m * E = mG 。( √ ) 4.狄利克雷函数 D ( x ) 在[0,1]上是几乎处处连续的。( × ) 5. R n 上的非负函数总是积分确定的。( × ) 6.每个可测函数都可以表示成一列简单函数的极限。( √ ) 二.填空题(每题 3 分,共 15 分。) 1.如果 M = μ ,则 M 的幂集的基数是( 2μ )。 2.若集合 E 可以表示为可数个闭集的并集,则 E 称为( F σ 型 )集。 3.若 A , B 是 R n 中的可测集,且 A ∩ B = ? ,T 是 R n 中任一集合,则 m * (T ∩ A ) + m * (T ∩ B ) = ( m *T )。 4.如果 mE < +∞ ,f ( x ) 在 E 上有界,则 f ( x ) 在 E 上可积的充分必要条件是( f ( x ) 在 E 上可测 )。 ? + ? n ? 5.设 A 1 1 ( 1) = ?1 + , 3 + ? , (n = 1, 2, ) ,则 lim A = ( (1, 3) )。 n ? n 2 ? n n →∞ 三.(10 分)证明: E ? ∩ A α = ∪ (E ? A α ) 。 α∈I α∈I 证明:若 x ∈ E ? ∩ A α ,则 x ∈ E ,且存在α0 ∈ I ,使 x ∈/ α∈I 以 x ∈ ∪ (E ? A α ) 。 α∈I A ,故 x ∈ E ? A ,所 0 0 反之,若 x ∈ ∪ (E ? A α ) ,则存在α0 ∈ I ,使 x ∈ E ? A α0 ,从而 x ∈ E ,且 α∈I x ∈/ A 0 ,于是 x ∈ E 但 x ∈/ ∩ A α ,所以 x ∈ E ? ∩ A α 。 α∈I 综上可知 E ? ∩ A α = ∪ (E ? A α ) 。 α∈I α∈I α∈I 四.(第一小题 5 分,第二小题 8 分,共 13 分。) 设{E n } 是 R 中的可测集列,证明:

实变函数期末考试题库

《实变函数》期末考试试题汇编 目录 《实变函数》期末考试模拟试题(一) (2) 《实变函数》期末考试模拟试题(二) (7) 《实变函数》期末考试模拟试题(三) (13) 《实变函数》期末考试模拟试题(四) (18) 《实变函数》期末考试模拟试题(五) (27) 《实变函数》期末考试模拟试题(六) (30) 《实变函数》期末考试模拟试题(七) (32) 《实变函数》期末考试模拟试题(八) (36) 《实变函数》期末考试模拟试题(九) (41) 《实变函数》期末考试模拟试题(十) (47) 《实变函数》期末考试题(一) (57) 《实变函数》期末考试题(二) (63)

《实变函数》期末考试模拟试题(一) (含解答) 一、选择题(单选题) 1、下列集合关系成立的是( A ) (A )(\)A B B A B ?=? (B )(\)A B B A ?= (C )(\)B A A A ?? (D )(\)B A A ? 2、若n E R ?是开集,则( B ) (A )E E '? (B )E 的内部E = (C )E E = (D )E E '= 3、设P 是康托集,则( C ) (A )P 是可数集 (B )P 是开集 (C )0mP = (D )1mP = 4、设E 是1R 中的可测集,()x ?是E 上的简单函数,则( D ) (A )()x ?是E 上的连续函数 (B )()x ?是E 上的单调函数 (C )()x ?在E 上一定不L 可积 (D )()x ?是E 上的可测函数 5、设E 是n R 中的可测集,()f x 为E 上的可测函数,若()d 0E f x x =?,则( A ) (A )在E 上,()f z 不一定恒为零 (B )在E 上,()0f z ≥ (C )在E 上,()0f z ≡ (D )在E 上,()0f z ≠ 二、多项选择题(每题至少有两个或两个以上的正确答案) 1、设E 是[0,1]中的无理点全体,则(C 、D ) (A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0mE > 2、若1E R ?至少有一个内点,则( B 、D ) (A )* m E 可以等于零 (B )*0m E > (C )E 可能是可数集 (D )E 是不可数集 3、设[,]E a b ?是可测集,则E 的特征函数()E X x 是 (A 、B 、C ) (A )[,]a b 上的简单函数 (B )[,]a b 上的可测函数 (C )E 上的连续函数 (D )[,]a b 上的连续函数 4、设()f x 在可测集E 上L 可积,则( B 、D )

实变函数期末考试卷A卷[1]1(1)

实变函数 一、 判断题(每题2分,共20分) 1.若A 是B 的真子集,则必有B A <。 (×) 2.必有比a 小的基数。 (√) 3.一个点不是E 的聚点必不是E 的内点。 (√) 4.无限个开集的交必是开集。 (×) 5.若φ≠E ,则0*>E m 。 (×) 6.任何集n R E ?都有外测度。 (√) 7.两集合的基数相等,则它们的外测度相等。 (×) 8.可测集的所有子集都可测。 (×) 9.若)(x f 在可测集E 上可测,则)(x f 在E 的任意子集上也可测。(×) 10.)(x f 在E 上可积必积分存在。 (×) 二、填空题(每空2分,共20分) 1.设B 是1R 中无理数集,则=B c 。 2.设1,1,,3 1,21,1R n A ???????= ,则=0A φ ,='A }0{ 。 3.设 ,2,1,0),1 1,11(=++-=n n n A n ,则=?∞=n n A 0 )1,1(- ,=?∞=n n A 1 }0{ 。 4.有界变差函数的不连续点构成的点集是 至多可列 集。 5.设E 是]1,0[上的Cantor 集,则mE 0 。 6.设A 是闭集,B 是开集,则B A \是 闭 集。 7.闭区间],[b a 上的有界函数)(x f Rimann 可积的充要条件是 )(x f 是],[b a 上的几乎处处的连续函数 。 8. Rimann 函数是 Rimann 可积也是Lebesgue 可积的。 三、计算题(每题10分,共20分)

1.计算dx nx x n nx R n ?+∞→103222 1sin 1)(lim 。(提示:使用Lebesgue 控制收敛定理) 解:设nx x n nx x f n 3222 1sin 1)(+=),2,1( =n ,则 (1) 因)(x f n 在]1,0[上连续,所以是可测的; (2)]1,0[,0)(lim ∈=∞ →x x f n n ; (3)因为 x nx nx x n nx nx x n nx 2121sin 12 1222132221=≤+≤+)(x F = 显然)(x F 在]1,0[上可积。于是由Lebesgue 控制收敛定理,有 0sin 1)(lim sin 1)(lim 103222 11032221=+=+??∞→∞→dx nx x n nx L dx nx x n nx R n n 2. 设?? ???=为有理数,的无理数;为小于的无理数为大于x x x x x x f ,01,;1,)(2试计算?]2,0[)(dx x f 。 解:因为有理数集的测度为零,所以 2)(x x f = ..e a 于]1,0[, x x f =)( ..e a 于]2,1[。 于是 ? ??+=]2,1[]1,0[]2,0[)()()(dx x f dx x f dx x f dx x dx x ??+=211026 112331=+= 四、证明题(每题8分,共40分)

实变函数题库集答案

实变函数试题库及参考答案 本科 一、题 1.设,A B 为集合,则()\A B B =A B (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A ≤B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是闭集 4.有限个开集的交是开集 5.设1E 、2E 是可测集,则()12m E E ≤12mE mE +(用描述集合间关系的符号填写) 6.设n E ? 是可数集,则* m E =0 7.设()f x 是定义在可测集E 上的实函数,如果1 a ?∈ ,()E x f x a ??≥??是可测集,则称()f x 在E 上可测 8.可测函数列的上极限也是可测函数 9.设()()n f x f x ?,()()n g x g x ?,则()()n n f x g x +?()()f x g x + 10.设()f x 在E 上L 可积,则()f x 在E 上可积 11.设,A B 为集合,则()\B A A ?A (用描述集合间关系的符号填写) 12.设{} 211,2,A k k =-= ,则A =a (其中a 表示自然数集N 的基数) 13.设n E ? ,如果E 中没有不属于E ,则称E 是闭集 14.任意个开集的并是开集 15.设1E 、2E 是可测集,且12E E ?,则1mE ≤2mE 16.设E 中只有孤立点,则* m E =0 17.设()f x 是定义在可测集E 上的实函数,如果1 a ?∈ ,()E x f x a ??

实变函数期末考试卷A卷

实变函数期末考试卷A卷 The final edition was revised on December 14th, 2020.

实变 函数 一、 判断题(每题2分,共20分) 1.若A 是B 的真子集,则必有B A <。 (×) 2.必有比a 小的基数。 (√) 3.一个点不是E 的聚点必不是E 的内点。 (√) 4.无限个开集的交必是开集。 (×) 5.若φ≠E ,则0*>E m 。 (×) 6.任何集n R E ?都有外测度。 (√) 7.两集合的基数相等,则它们的外测度相等。 (×) 8.可测集的所有子集都可测。 (×) 9.若)(x f 在可测集E 上可测,则)(x f 在E 的任意子集上也可测。(×) 10.)(x f 在E 上可积必积分存在。 (×) 1.设E 为点集,E P ?,则P 是E 的外点.( × ) 2.不可数个闭集的交集仍是闭集. ( × ) 3.设{}n E 是一列可测集,且1,1,2,,n n E E n +?=则 1( )lim ().n n n n m E m E ∞ →∞ ==(× ) 4.单调集列一定收敛. (√ ) 5.若()f x 在E 上可测,则存在F σ型集,()0F E m E F ?-=,()f x 在F 上连续.( × ) 二、填空题(每空2分,共20分) 1.设B 是1R 中无理数集,则=B c 。 2.设1,1,,3 1,21,1R n A ???????= ,则=0A φ ,='A }0{ 。 3.设 ,2,1,0),1 1,11(=++-=n n n A n ,则=?∞=n n A 0 )1,1(- ,=?∞=n n A 1 }0{ 。 4.有界变差函数的不连续点构成的点集是 至多可列 集。

实变函数试卷一与参考答案

2 1考 生 答 题 不 得 超 此

(A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数 (C ){}inf ()n n f x 是可测函数;(D )若()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))(' x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都有_________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数. (填“充分”,“必要”,“充要”) 5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________________________,则称()f x 为 [],a b 上的有界变差函数。 三、下列命题是否成立?若成立,则证明之;若不成立,则举 反例说明.(5分×4=20分) 1、设1E R ?,若E 是稠密集,则CE 是无处稠密集。 2、若0=mE ,则E 一定是可数集.

实变函数期末试题

2006-2007学年第二学期04本实变函数期末试题 一、填空:(共10分) 1.如果 则称E 是自密集,如果 则称 E 是开集,如果E E ?'则称E 是 , E E E '= 称为E 的 . 2.设集合G 可表示为一列开集}{i G 之交集: ∞ ==1 i i G G ,则G 称为 . 若集合F 可表示为一列闭集}{i F 之并集: ∞ ==1 i i F F ,则F 称为 . 3.(Fatou 引理)设}{n f 是可测集q R E ?上一列非负可测函数, 则 . 4.设)(x f 为],[b a 上的有限函数,如果对于],[b a 的一切分划 b x x x a T n =<<<= 10:,使? ?? ???-∑=-n i i i x f x f 11|)()(|成一 有界数集,则称)(x f 为],[b a 上的 ,并称这个数集的上确界为)(x f 在],[b a 上的 ,记为 . 二、选择填空:(每题4分,共20分) 1.下列命题或表达式正确的是 A .}{b b ? B .2}2{= C .对于任意集合B A ,,有B A ?或A B ? D .φφ? 2.下列命题不正确的是 A .若点集A 是无界集,则+∞=A m * B .若点集E 是有界集,则+∞δ,总有 闭集E F ?δ,使δδ<-)(F E m ,且)(x f 在δF 上连续,则f 是E 上的可测函数. (5分) 证 对任意的正整数n ,存在闭集E F n ?使 n F E m n 1)(< -,且f 在n F 上连续,从而f 在n F 上可测 (5分) 设 ∞ == 1 k k F F ,则F 是可测集,且 ,2,1,=-?-n F E F E n ,于是 ,2,1,1)()(=< -≤-n n F E m F E m n f F E m ?=-?0)(在F E -上可测 (5分) 由于F F E E )(-=,只须证f 在F 上可测,事实上,

实变函数期末考试卷A卷

实 变函数 一、 判断题(每题2分,共20分) 1.若A 是B 的真子集,则必有B A <。 (×) 2.必有比a 小的基数。 (√) 3.一个点不是E 的聚点必不是E 的内点。 (√) 4.无限个开集的交必是开集。 (×) 5.若φ≠E ,则0*>E m 。 (×) 6.任何集n R E ?都有外测度。 (√) 7.两集合的基数相等,则它们的外测度相等。 (×) 8.可测集的所有子集都可测。 (×) 9.若)(x f 在可测集E 上可测,则)(x f 在E 的任意子集上也可测。(×) 10.)(x f 在E 上可积必积分存在。 (×) 1.设E 为点集,E P ?,则P 是E 的外点.( × ) 2.不可数个闭集的交集仍是闭集. ( × ) 3.设 {} n E 是一列可测集,且1,1,2, ,n n E E n +?=则 1 ( )lim ().n n n n m E m E ∞ →∞ ==(× )

4.单调集列一定收敛. (√ ) 5.若()f x 在E 上可测,则存在F σ型集,()0F E m E F ?-=,()f x 在F 上连续.( × ) 二、填空题(每空2分,共20分) 1.设B 是1R 中无理数集,则=B 。 2.设1,1,,3 1 ,21,1R n A ???????= ,则=0A φ ,='A }0{ 。 3.设 ,2,1,0),1 1 ,11(=++-=n n n A n ,则=?∞=n n A 0 )1,1(- ,=?∞=n n A 1 }0{ 。 4.有界变差函数的不连续点构成的点集是 至多可列 集。 5.设E 是]1,0[上的Cantor 集,则=mE 0 。 6.设A 是闭集,B 是开集,则B A \是 闭 集。 7.闭区间],[b a 上的有界函数)(x f Rimann 可积的充要条件是 )(x f 是],[b a 上的几乎处处的连续函数 。 8. Rimann 函数是 Rimann 可积也是Lebesgue 可积的。

相关主题
文本预览
相关文档 最新文档