当前位置:文档之家› 基于立体视觉的无人智能车车前障碍检测研究 开题报告

基于立体视觉的无人智能车车前障碍检测研究 开题报告

基于立体视觉的无人智能车车前障碍检测研究   开题报告
基于立体视觉的无人智能车车前障碍检测研究   开题报告

毕业设计(论文)开题报告题目:基于立体视觉的无人智能车车前障碍检测研究

院(系)光电工程学院

专业光信息科学与技术

班级090108

姓名黄佩

学号090108122

导师秦文罡

2013年03 月09 日

参考文献

[1]崔高建,黄银花,田原嫄.基于立体视觉的前方车辆探测.计算机测量与控

制,2005,13(9):890-891.

[2]孙冬冬,张景,李军怀,等.基于XML、SOAP的企业应用集成技术[J].计算机工程与应用,2003,59(3x):205-207.

[3]Rong-benW,Bai-yuan G,Li-sheng J,etc.Study one Curb Detection Method

Based on 3D Range Image by Laser Radar.Proeeedings of the IEEE Intelligent Vehicles SymPosium,2005,845-84.

[4]Yajun Fang, Ichiro Masaki, Berthold Hom. Depth-based target segmentation for intelligent vehicles: fusion of radar and binocular stereo. IEEE Transactions On Intelligent Systems, 2002,3(3): 196-202

[5]Clark F.Olson, Habib Abi-Rached, Ming Ye, Jonathan P.Hendrich.Wide-baseline stereo vision for mars rovers. Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and System, LaS Vegas, Nevada,2003,1302-1307 [6]Alberto Broggi, Claudio Caraffi, Rean Isabella Fedriga, Paolo Grisleri.Obstacle detection with stereo vision for off-road vehicle navigation. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005,65-73

[7]陈尔奎,喻俊志,王硕等. 一种基于视觉的仿生机器鱼实时避障综合方法.控制与决策.2004, 19(4):452-458

[8]刘卓夫,桑恩方. 水下机器人视觉控制系统的设计与实现.应用科技.2002,29(12):34-36

[9]刘正东,高鹏,杨静宇. 一种用于道路避障的双目视觉图像分割方法.计算机应用研究.2005(4):249-251

[10] Chunping Hou, Azimov Nurlan, Sile Yu. Mathematical Models of Stereoscopic Imagery System and Methods of Controlling Stereo Parallax. Journal of Tianjin University 2005,38(5):455-460.

[11] 席志红,原新,许辉. 基于视觉的移动机器人实时避障和导航.哈尔滨工程

大学学报,2002, 23(5):107-110

[12] 文巨峰,周冀平,颜景平. 双目立体视觉的移动机器人实验平台的研究制造业自动化.2001(12):31-34

[13] 莫玉龙,张郑擎,彭明生. 具有抗噪能力的图像阈值分割法.上海大学学报.2001(6):487-491

[14] 林开颜,吴军辉,徐立鸿. 彩色图像分割方法综述.中国图像图形学报,2005, 10(1):1-10

[15] 王辉,邹伟,郑睿. 基于视觉的移动机器人实时障碍检测研究.计算机工程与应用,2005, 40(25):46-48

视觉导航智能车辆的目标识别精确性与实时性研究

视觉导航智能车辆的目标识别精确性与实时性研究 1)概述 2)视觉路径导航原理 3)识别精确性研究(提高精确性的意义和方法:滤波、自适应阈值等) 4)实时性研究(软硬件方面;软件方面:优化算法、其他处理方法(减小图像处理区域等)) 5)总结 1.概述 智能车辆技术 智能车辆(IntelligentVehicle)又称轮式移动机器人,是一个集环境感知、规划决策、自动驾驶等多种功能于一体的综合系统。它致力于提高汽车的安全性、舒适性和提供优良的人车交互界面,是目前各国重点发展的智能交通系统一个重要组成部分,也是世界车辆工程领域研究的热点和汽车工业增长的新动力。 智能车辆概述 智能车辆的研究意义 随着经济和社会的迅速发展,交通基础设施的瓶颈制约作用越来越明显。这种制约不仅体现在交通堵塞问题日益突出上,同时还体现在由于交通不畅而造成的环境污染问题及相对落后的道路和先进的车辆对人们的生命、财产所形成的安全隐患。正因为如此,智能交通系统(IntelligentTransportationSystems,ITS)日益受到欧洲、日本、美国等发达国家的重视并成为研究热点。他们相继启动了各种以智能交通系统为目标的研究与开发项目。如欧洲的PROMETHEUS和DRIVE项目,日本的VICS和ARTS项目,美国的IVHS项目等。各国家各地区研究的项目内容,对智能交通系统的定义不尽相同,各项目的重点也有所不同,但目标都是综合利用新的信息技术、计算机技术、自动化技术、管理技术等,来提高道路和车辆的利用效率,提高安全性,减少污染及阻塞的发生。

ITS一般由两部分组成,即智能道路及交通控制系统和智能车辆系统IVS(IntelligentVehicleSystem)。目前智能道路系统的构筑还处于起步阶段,相应的基础设施建设周期长且投资大,所以发展智能车辆及车辆自主行驶系统,通过提高车辆自身智能的方案是目前实现安全、高效的自主行驶的最佳选择,同时它还可为开发将来在完备的自动高速网络环境中运行的智能车辆奠定基础。 智能车辆作为智能车辆系统的基本组成单元,可以集成如视觉技术、触觉技术、自主控制和决策技术、多智能体技术、智能控制技术、多传感器集成和融合技术等许多最新的智能技术,从而能够完成很多高智能工作。我国也已经把智能车辆列入国家高新技术计划,足以证明政府有关部门对发展智能车辆的高度重视。 智能车辆的应用范围 由于智能车辆具有环境感知、规划决策、自动驾驶等功能,目前已经在以下场合得到了广泛应用。 1.智能交通系统 为解决交通问题,各发达国家在ITS的研究上均投入了大量的人力、物力。自然而然,智能车辆就成为ITS的一个重要的组成部分,得到越来越多的重视。 2.柔性制造系统和柔性装配系统 在计算机集成制造系统中,智能车辆用来运输工件,能够极大的提高生产效率,降低生产成本。 3.军事领域 智能车辆的研究也受到了军方的关注。以智能车辆作为其它智能武器的安装平台,能够实现全天候的自动搜索、攻击动静态目标,能够极大的提高在高新技术战争中的攻击力,减少人员伤亡。 4.应用于其它特殊环境 智能车辆在有毒或放射性环境下运输,还可应用于野外探险、消防、救灾等。 智能车辆的研究状况 1.国外研究概况 国外对于智能车辆技术的研究始于20世纪70年代末,最初是军方用做特殊用途的,80年代得到了更深入的研究。进入90年代后,由于与智能交通系统的结合,

基于机器视觉的工件识别和定位文献综述

基于机器视觉的工件识别和定位文献综述 1.前言 1.1工业机器人的现状与发展趋势 机器人作为一种最典型的应用范围广、技术附加值高的数字控制装备,在现代先进生产制造业中发挥的作用越来越重要,机器人技术的发展将会对未来生产和社会发展起到强有力的推动作用。《2l 世纪日本创建机器人社会技术发展战略报告》指出,“机器人技术与信息技术一样,在强化产业竞争力方面是极为重要的战略高技术领域。培育未来机器人产业是支撑2l 世纪日本产业竞争力的产业战略之一,具有非常重要的意义。” 研发工业机器人的初衷是为了使工人能够从单调重复作业、危险恶劣环境作业中解脱出来,但近些年来,工厂和企业引进工业机器人的主要目的则更多地是为了提高生产效率和保证产品质量。因为机器人的使用寿命很长,大都在10 年以上,并且可以全天后不间断的保持连续、高效地工作状态,因此被广泛应用于各行各业,主要进行焊接、装配、搬运、加工、喷涂、码垛等复杂作业。伴随着工业机器人研究技术的成熟和现代制造业对自动生产的需要,工业机器人越来越被广泛的应用到现代化的生产中。 现在机器人的价格相比过去已经下降很多,并且以后还会继续下降,但目前全世界范围的劳动力成本都有所上涨,个别国家和地区劳动力成本又很高,这就给工业机器人的需求提供了广阔的市场空间,工业机器人销量的保持着较快速度的增长。工业机器人在生产中主要有机器人工作单元和机器人工作生产线这两种应用方式,并且在国外,机器人工作生产线已经成为工业机器人主要的应用方式。以机器人为核心的自动化生产线适应了现代制造业多品种、少批量的柔性生产发展方向,具有广阔的市场发展前景和强劲生命力,已开发出多种面向汽车、电气机械等行业的自动化成套装备和生产线产品。在发达国家,机器人自动化生产线已经应用到了各行各业,并且已经形成一个庞大的产业链。像日本的FANUC、MOTOMAN,瑞典的ABB、德国的KUKA、意大利的COMAU 等都是国际上知名的被广泛用于自动化生产线的工业机器人。这些产品代表着当今世界工业机器人的最高水平。 我国的工业机器人前期发展比较缓慢。当将被研发列入国家有关计划后,发展速度就明显加快。特别是在每次国家的五年规划和“863”计划的重点支持下,我国机器人技术的研究取得了重大发展。在机器人基础技术和关键技术方面都取得了巨大进展,科技成果已经在实际工作中得到转化。以沈阳新松机器人为代表的国内机器人自主品牌已迅速崛起并逐步缩小与国际品牌的技术差距。 机器人涉及到多学科的交叉融合,涉及到机械、电子、计算机、通讯、控制等多个方面。在现代制造业中,伴随着工业机器人应用范围的扩大和机器人技术的发展,机器人的自动化、智能化和网络化的程度也越来越高,所能实现的功能也越来越多,性能越来越好。机器人技术的内涵已变为“灵活应用机器人技术的、具有实在动作功能的智能化系统。”目前,工业机器人技术正在向智能机器和智能系统的方向发展,其发展趋势主要为:结构的模块化和可重构化;控制技术的开放化、PC 化和网络化;伺服驱动技术的数字化和分散化;多传感器融合技术的实用化;工作环境设计的优化和作业的柔性化以及系统的网络化和智能化等方面。 1.2机器视觉在工业机器人中的应用 工业机器人是FMS(柔性加工)加工单元的主要组成部分,它的灵活性和柔性使其成为自动化物流系统中必不可少的设备,主要用于物料、工件的装卸、分捡和贮运。目前在全世界有数以百万的各种类型的工业机器人应用在机械制造、零件加工和装配及运输等领域,

人工智能的模式识别与机器视觉

人工智能的模式识别与机器视觉 模式识别 “模式”(Panern)一词的本意是括完整天缺的供模仿的标本或标识。模式识别就是识别出给定物体所模仿的标本或标识。计算机模式识别系统使一个计算机系统具有模拟人类通过感官接受外界信息、识别和理解周围环境的感知能力。 模式识别是一个不断发展的学科分支,它的理论基础和研究范围也在不断发展。在二维的文字、图形和图像的识别方而,已取得许多成果。三维景物和活动目标的识别和分析是目前研究的热点。语音的识别和合成技术也有很大的发展。基于人工神经网络的模式识别技术在手写字符的识别、汽车牌照的识别、指纹识别、语音识别等方面已经有许多成功的应用。模式识别技术是智能计算机和智能机器人研究的十分重要的基础 机器视觉 实验表明,人类接受外界信息的80%以上来自视觉,10%左右来自听觉,其余来自嗅觉、味觉及触觉。在机器视觉方面,只要给计算机系统装上电视摄像输入装置就可以“看见”周围的东西。但是,视觉是一种感知,机器视觉的感知过程包含一系列的处理过程,例如,一个可见的景物由传感器编码输入,表示成一个灰度数值矩阵;图像的灰度数值由图像检测器进行处理,检测器检测出图像的主要成分,如组成景物的线段、简单曲线和角度等;这些成分又校处理,以便根据景物的表面特征和形状特征来推断有关景物的特征信息;最终目标是利用某个适当的模型来表示该景物。 视觉感知问题的要点是形成一个精练的表示来取代极其庞大的未经加工的输入情息,把庞大的视觉输人信息转化为一种易于处理和有感知意义的描述。 机器视觉可分为低层视觉和高后视觉两个层次,低层视觉主要是对视觉团像执行预处理,例如,边缘检测、运动目标检测、纹理分析等,另外还有立体造型、曲面色彩等,其目的是使对象凸现出来,这时还谈不上对它的理解。高层视觉主要是理解对象,显然,实现高层视觉需要掌捏与对象相关的知识。 机器视觉的前沿研究课题包括:实时图像的并行处理,实时图像的压缩、传输与复原,三绍景物的建模识别,动态和时变视觉等。 人娄的钉能活动过程主要是一个获得知识并运用知识的过程,知识是智能的基础。为了使计算机具有钉能,能模拟人类的智能行为,就必须使它具有知识。把人类拥有的知识采用适当的模式表示出来以便存储到计算机中,这就是知识表示要解决的问题。知识表示是对知识的一种描述,或者说是一组约定,是一种计算机可以接受的用于描述知识的数据结构,对知识进行表木就是把知识表示咸便于计算机存储和利用的菜种数据结构。知识表示方法给出的知识表示形式称为知识表示程式,知识表示模式分为外部表示模式和内部表示模式两个层次。知识外部表示模式是与软件开发的工具、运行的软件平台无关的知识表示的形式化描述。知

(毕业设计)飞思卡尔智能车及机器视觉

图像处理在智能车路径识别中的应用 摘要 机器视觉技术在智能车中得到了广泛的应用,这项技术在智能车的路径识别、障碍物判断中起着重要作用。基于此,依据飞思卡尔小车的硬件架构,研究机器视觉技术应用于飞思卡尔小车。飞思卡尔智能车处理器采用了MC9S12XS128芯片,路况采集使用的是数字摄像头OV7620。 由于飞思卡尔智能车是是一款竞速小车,因此图像采集和处理要协调准确性和快速性,需要找到其中的最优控制。因此本设计主要需要完成的任务是:怎样用摄像头准确的采集每一场的图像,然后怎样进行二值化处理;以及怎样对图像进行去噪处理;最后也就是本设计的难点也是设计的核心,怎样对小车的轨迹进行补线。 本设计的先进性,在众多的图像处理技术中找到了适合飞思卡尔智能车的图像处理方法。充分发挥了摄像头的有点。经过小车的实际测试以及相关的MATLAB 仿真,最终相关设计内容都基本满足要求。小车的稳定性和快速性得到显著提高。 关键词:OV7620,视频采集,图像处理,二值化

The Application of Image Processing in the Recognition of Intelligent Vehicle Path ABSTRACT CameraMachine vision technology in the smart car in a wide range of applications, the technology identified in the path of the smart car, and plays an important role in the obstacles to judge. Based on this, based on the architecture of the Freescale car, machine vision technology used in the Freescale car. Freescale smart car the processor MC9S12XS128 chip traffic collected using a digital camera OV7620. Freescale's Smart car is a racing car, so the image acquisition and processing to coordinate the accuracy and fast, you need to find the optimal control. This design need to complete the task: how to use the camera to accurately capture every image, and then how to binarization processing; and how to image denoising; last is the difficulty of this design is the design of the core, how to fill line on the trajectory of the car. The advanced nature of the design found in many image processing techniques of image processing methods for Freescale Smart Car. Give full play to the camera a bit. The actual testing of the car and MATLAB simulation, the final design content can basically meet the requirements. The car's stability and fast to get improved significantly. KEY WORDS:OV7620,Video Capture,PictureProcessing,Binarization

机器视觉检测

机器视觉检测 一、概念 视觉检测是指通过机器视觉产品(即图像摄取装置,分 CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉检测的特点是提高生产的柔性和自动化程度。 2、典型结构 五大块:照明、镜头、相机、图像采集卡、软件 1.照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。目前没有通用的照明设备,具体应用场景选择相应的照明装置。照射方法可分为: 分类具体说明优点 背向照明被测物放在光源和摄像机之 间能获得高对比度的图像 前向照明光源和摄像机位于被测物的 同侧 便于安装 结构光将光栅或线光源等投射到被 测物上,根据它们产生的畸 变,解调出被测物的三维信 息 频闪光照明将高频率的光脉冲照射到物

体上,摄像机拍摄要求与光 源同步 2.镜头 镜头的选择应注意以下几点:焦距、目标高度、影像高度、放大倍数、影响至目标的距离、中心点/节点、畸变。 3.相机 按照不同标准可分为:标准分辨率数字相机和模拟相机等。 要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD 和面阵CCD;单色相机和彩色相机。 为优化捕捉到的图像,需要对光圈、对比度和快门速度进行调整。 4.图像采集卡 图像采集卡是图像采集部分和图像处理部分的接口。将图像信号采集到电脑中,以数据文件的形式保存在硬盘上。通过它,可以把摄像机拍摄的视频信号从摄像带上转存到计算机中。 5.软件 视觉检测系统使用软件处理图像。软件采用算法工具帮助分析图像。视觉检测解决方案使用此类工具组合来完成所需要的检测。是视觉检测的核心部分,最终形成缺陷的判断并能向后续执行机构发出指令。常用的包括,搜索工具,边界工具,特征分析工具,过程工具,视觉打印工具等。 3、关键——光源的选择 1.光源选型基本要素: 对比度机器视觉应用的照明的最重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生最大的对比度,从而易于特

基于计算机视觉的障碍物检测与测量(IJISA-V2-N2-3)

I.J. Intelligent Systems and Applications, 2010, 2, 17-24 Published Online December 2010 in MECS (https://www.doczj.com/doc/0318827965.html,/) The Obstacle Detection and Measurement Based on Machine Vision Xitao Zheng1, Shiming Wang2, Yongwei Zhang1 1College of IT, Shanghai Ocean University, Shanghai 201306, China 2College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China xtzheng@https://www.doczj.com/doc/0318827965.html,, smwang@https://www.doczj.com/doc/0318827965.html,, zhangyongwei_108@https://www.doczj.com/doc/0318827965.html, Abstract - To develop a quick obstacle detection and measurement algorithm for the image-based autonomous vehicle (AV) or computer assisted driving system, this paper utilize the previous work of object detection to get the position of an obstacle and refocus windows on the selected target. Further calculation based on single camera will give the detailed measurement of the object, like the height, the distance to the vehicle, and possibly the width. It adopts a two camera system with different pitch angles, which can perform real-time monitoring for the front area of the vehicle with different coverage. This paper assumes that the vehicle will move at an even speed on a flat road, cameras will sample images at a given rate and the images will be analyzed simultaneously. Focus will be on the virtual window area of the image which is proved to be related to the distance to the object and speed of the vehicle. Counting of the blackened virtual sub-area can quickly find the existence of an obstacle and the obstacle area will be cut to get the interested parameter measurements for the object evaluation. Index Terms - obstacle detection; object measurement, ALV, virtual window. I.I NTRODUCTION Autonomous land vehicles (ALVs) are useful for many automation applications that serve for both indoor and outdoor environments. Vision or digital image based obstacle detection for ALV navigation in outdoor road environments is a difficult and challenging task because of the great variety of object and road conditions, like irregular and unstable features on objects, moving objects, changes of illumination, and even rain. Successful ALV navigation requires the integration of the many techniques, like the environmental sensoring and learning, image processing and feature extraction, ALV location retrieving, travel path planning, vehicle wheel controlling, and so on. Vehicle intelligent drive system is also an important part of the intelligent transport system. Based on our driving experience, more than 90% of our information is from our vision and hearing, so using computer vision technique to solve this problem is a challenging work for every researcher in this field. The lane keeping and distance measurement based on the computer vision system. In reference [1], a real-time distance detection method is proposed to get the real-time distance between the camera car and the obstacle in the front. The paper uses the geometrical reasoning method to obtain the depth information. The shoot angle of the camera is the key factor that affects the accuracy of output. The work uses the two lane boundaries as a constraint to get the pitch angle. The problem is that the results are for static car tests, and algorithm needs to be combined with others to get all the required parameters. Reference [2] presents an obstacle detection method for AGV under indoor or outdoor environment. Corner or turn points are detected and tracked through an image sequencing camera and grouped into ground region using a method that is called co-planarity checking algorithm. The algorithm is initialized by 5-point planar projective and contour cue which is added to segment the ground region. The method can be applied to some ideal environment and the contour matching can be a problem in a lot of environments. Reference [3] is the previous work of this paper and it provides the quick detection of the existence of an obstacle, this is a key feature for ALV’s moving where safety is the highest requirement. The frames can be analyzed in a fragment of milliseconds and alert can be sent if an obstacle is found. But sometime the vehicle does not need to stop to wait for a clear road, it need to further analyze the situation and the surrounding environment to make decision whether to slow down or to stop, this part of job is not included in [3]. Reference [4] proposes an effective approach to obstacle detection and avoidance for ALV navigation in outdoor road environments using computer vision and image sequence techniques. To judge whether an object newly appearing in the image is an obstacle or not, the object shape boundary is first extracted from the image. After the translation from the ALV location in the current cycle to that in the next cycle, the position of the object shape in the image is predicted, using coordinate transformation techniques based on the assumption that the height of the object is zero. The predicted object shape is then matched with the extracted shape of the object in the image of the next cycle to decide whether the object is an obstacle. A reasonable distance measure is used to compute the correlation measure between two shapes for shape matching. Finally, a safe navigation point is determined, and a turn angle is computed to

机器视觉与智能检测创新实践

《机器视觉与智能检测创新实践》课程设计报告 题目:基于可见光红外光图像的处理 班级: 姓名: 学号: 指导老师: 日期:

一、实验目的 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。本实验的目的就是通过学生自身动手实验,使学生对机器视觉系统及图像处理有一定的认识。同时加深学生的动手能力和培养学生的创新能力。 二、实验设备 机器视觉实验平台,计算机,Matlab软件等 三、实验任务 (1)对采集的近红外图像进行增强、分割和细化(自己挑选成像效果较好的手背或手掌的近红外图像) 1、了解增强、分割和细化等处理的概念和效果并编程实现增强、分割和细化; 2、分别比较不同增强、分割和细化方法的优劣 (2)对采集到的可见光手掌图像进行分割得到手掌及手指的轮廓。

四、相关概念介绍 1、光谱 光谱是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案,如图1所示。 光波是由原子内部运动的电子产生的。各种物质的原子内部电子的运动情况不同,所以它们发射的光波也不同。研究不同物质的发光和吸收光的情况,有重要的理论和实际意义,已成为一门专门的学科——光谱学。 图1 可见光的光谱图 种类:发射光谱物体发光直接产生的光谱叫做发射光谱。发射光谱有两种类型:连续光谱和明线光谱。 连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱。炽热的固体、液体和高压气体的发射光谱是连续光谱。例如电灯丝发出的光、炽热的钢水发出的光都形成连续光谱。 只含有一些不连续的亮线的光谱叫做明线光谱。明线光谱中的亮线叫做谱线,各条谱线对应于不同波长的光。稀薄气体或金属的蒸气的发射光谱是明线光谱。明线光谱是由游离状态的原子发射的,所以也叫原子光谱。

智能视觉检测系统概述

智能视觉检测系统概述 随着视觉检测技术的不断发展,其应用面也越来越广,视觉检测系统从构成模式上主要分为两大类:基于X86架构的PC系统和基于ARM架构的嵌入式系统。PC系统是比较传统的方式,也是视觉检测系统最早的形式。然而随着视觉技术在不同行业的扩展应用越来越多,应用环境对视觉检测系统的结构模式要求也越来越高。那么在实际项目中到底该选择哪种模式呢?维视图像作为一家致力于视觉技术的高科技企业,在此谈一点自己的看法。 我们知道,一套完整的视觉系统是由三大核心模块构成:前端图像采集、图像处理模块、IO通讯模块。传统的PC系统是把这三部分分别集成,而嵌入式智能相机是把这三部分集成到一个模块中。从技术发展的角度来说,嵌入式智能相机是科技发展的最新成果,具有较好的前沿性。但是在实际应用中,并不一定是新的就能完全把传统的代替掉,我们需要综合考虑实际应用环境,同时还要深入的了解这两者各自的优势和劣势。下面分别从三个主要模块来详细说明。 一、前端图像采集模块 所有基于视觉技术的检测系统,图像采集部分是一切处理结果的基础,图像的质量和稳定性直接影响整套系统的结果。不管是基于PC系统还是嵌入式系统,图像采集部分无非都是由CCD机身、光学镜头、补光光源构成。 其实不管是基于ARM架构的还是基于X86架构的视觉系统,其图像采集部分都是依托于工业镜头、CCD机身、补光光源等。不过由于嵌入式视觉系统为了突出其便携性,整个装置要求设计的比较小巧,所以该系统一般配置的光学成像设备和补光设备都比较单一简单。有时候碰到一些比较特殊的检测需求时,很难依据现场实际环境去自由配置不同的成像装置。

二、图像处理模块 图像处理是整个系统的灵魂,图像处理模块是对采集到的图像的一种解读,把复杂的图像数据处理为机器可认知的数值信号。我们所谓的嵌入式系统和PC系统就是由于这部分程序的载体不同而区分的。我们知道基于ARM的嵌入式系统很难实现复杂的编程设计,那么在选择这两种模式时,首先要了解开发视觉检测程序的几种方式,然后根据实际情况选择合适的开发模式。 一般主要分三类:第一类是从底层开始写算法,以VC、VB等基础开发语言为主,这种方式的自由度非常大,可以根据不同需求分别定制,但是工作量非常大,对开发人员的编程能力和图像处理知识要求较高。

红外热成像智能视觉监控系统

红外热成像智能视觉监控系统 “红外热成像智能视觉监控系统”是我司采用国内国际先进厂商监控设备并进行二次开发的“智能监控管理系统”。包括“红外热成像防火图像监控系统”、“嵌入式智能视觉分析安保系统”及“防感应雷系统”三部分。 该系统具有热成像防火检测、防盗入侵检测、非法停车检测、遗弃物检测、物品搬移检测、自动PTZ跟踪、徘徊检测等功能模块,可以很好为场区周界防范提供各种监控管理需求。而且产品具有自学习自适应能力,即使是在各种极端恶劣的环境和照明条件下也可以保持极高的性能——在保持%超高检测率的同时,只有极低的误报率(少于1个/天)。 防火检测: 通过红外热成像防火图像监控系统,工作人员在监控中心可对监控点周边半径1公里至5公里或更大的区域(设置动态轮循状态)进行24小时实时动态系统监控,能在第一时间侦察到地表火情或烟雾,并及时触发联动报警。帮助尽早发现灾情或隐患,及时处理可能突发的火灾及其他异常事件,并且为灾情发生时现场指挥提供依据。 防盗检测: 基于嵌入式智能视觉分析技术的监控跟踪系统,具有入侵检测和自动PTZ跟踪功能模块。支持无人值守、自动检测、报警触发录像、短信自动外发报警等功能。 车辆监控: 支持车容车貌监控、场区路线、远程实时WEB监控、监控录像、视频

存储、回放查询等功能。满足中心或其他相关单位对车辆运输的监控管理。防雷系统: 考虑到野外环境下系统运行的稳定性,防止外界强电压、大电流浪涌串入系统,损坏系统的设备,造成系统不能正常运行,我们将从视频信号、RS485控制信号、网络信号、电源四个方面做好防雷保护措施,以保证系统较好的抗干扰性。 系统拓扑图: 技术说明详解: ◆前端热成像仪技术详述 1)红外成像原理 自然界中一切温度高于绝对零度(-273.16摄氏度)的物体都不断地辐射着红外线,这种现象称为热辐射。红外线是一种人眼不可见的光波,无论白天黑夜,物体都会辐射红外线,但红外线不论强弱,人们都看不到。红外热像仪就是利用红外探测器、光学成像物镜接收被测目标的红外辐射信号(一切物体,只要其温度高于绝对零度,就会有红外辐射),经过红外光学系统红外探测器的光敏源上利用电子扫描电路对被测物的红外热像进行扫描转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热图像。利用这种原理制成的仪器为红外热成像仪。下图为一个典型的红外热成像系统工作原理图: 红外热成像系统,产生的图像是热图像,这种热像图与物体表面的热分布场相对应,实质上是被测目标物体各部分红外辐射的热像分布图,由于信

机器视觉检测技术的应用

机器视觉检测技术的典型应用 机器视觉工业检测系统就其检测性质和应用范围而言,分为定量和定性检测两大类,每类又分为不同的子类。机器视觉在工业在线检测的各个应用领域十分活跃,如:印刷电路板的视觉检查、钢板表面的自动探伤、大型工件平行度和垂直度测量、容器容积或杂质检测、机械零件的自动识别分类和几何尺寸测量等。此外,在许多其它方法难以检测的场合,利用机器视觉系统可以有效地实现。机器视觉的应用正越来越多地代替人去完成许多工作,这无疑在很大程度上提高了生产自动化水平和检测系统的智能水平。 机器视觉在质量检测中的应用实例 机器视觉系统在质量检测的各个方面得到了广泛的应用,例如:采用激光扫描与CCD探测系统的大型工件平行度、垂直度测量仪,它以稳定的准直激光束为测量基线,配以回转轴系,旋转五角标棱镜扫出互相平行或垂直的基准平面,将其与被测大型工件的各面进行比较。在加工或安装大型工件时,可用该认错器测量面间的平行度及垂直度。 以频闪光作为照明光源,利用面阵和线阵CCD作为螺纹钢外形轮廓尺寸的探测器件,实现热轧螺纹钢几何参数在线测量的动态检测系统。 视觉技术实时监控轴承的负载和温度变化,消除过载和过热的危险。将传统上通过测量滚珠表面保证加工质量和安全操作的被动式测量变为主动式监控。 用微波作为信号源,根据微波发生器发出不同波涛率的方波,测量金属表面的裂纹,微波的波的频率越高,可测的裂纹越狭小。 总之,类似的实用系统还有许多,这里就不一一概述了。下面我们较详细地介绍三个实用机器视觉系统。 基于机器视觉的仪表板总成智能集成测试系统 EQ140-II汽车仪表板总成是我国某汽车公司生产的仪表产品,仪表板上安装有速度里程表、水温表、汽油表、电流表、信号报警灯等,其生产批量大,出厂前需要进行一次质量终检。检测项目包括:检测速度表等五个仪表指针的指示误差;检测24个信号报警灯和若干照明9灯是否损坏或漏装。一般采用人工目测方法检查,误差大,可靠性差,不能满足自动化生产的需要。基于机器视觉的智能集成测试系统,改变了这种现状,实现了对仪表板总成智能化、全自动、高精度、快速质量检测,克服了人工检测所造成的各种误差,大大提高了检测效率。 整个系统分为四个部分:为仪表板提供模拟信号源的集成化多路标准信号源、具有图像信息反馈定位的双坐标CNC系统、摄像机图像获取系统和主从机平行处理系统。 金属板表面自动控伤系统 金属板如大型电力变压器线圈扁平线收音机蒙胧皮等的表面质量都有很高的要求,但原始的采用人工目视或用百分表加控针的检测方法不仅易受主观因素的影响,而且可能会绘被

城轨车辆障碍物检测装置分析

技术与应用 TECHNOLOGY AND APPLICATION 城轨车辆障碍物检测装置分析◎ 徐首章 随着我国轨道交通事业迅速发展,轨道列车障碍物检测方法近年来也成为研究热点。尤其是地铁无人驾驶技术的快速发展,更加促进许多新技术在障碍物检测系统上的应用。本文针对目前主流应用的障碍物检测装置进行介绍,对障碍物检测系统的特征、方式、技术参数等做详细分析。 2011年上海地铁10号线列车运营过程中由于信号系统故障,列车切除ATP通过人工驾驶,采用电话闭塞方式列车限速运行。期间14:51分列车豫园至老西门下行区间以35Km/h的速度发生追尾,事故造成271人受伤。不仅如此,国内地铁车辆与车辆段库门碰撞事故、与线路终点止挡碰撞事故及轨道上障碍物的碰撞事故也屡见不鲜。人工驾驶容易受到工作状态、危险识别能力、个人经验等主观因素的影响,同时弯道、坡道、照明等线路环境也会对人工驾驶造成一定影响,从而引起安全风险。因此城轨车辆的障碍物检测装置成为当务之急。在无人驾驶方面,根据自动运行城市轨道交通(AUGT)标准IEC 62267的第8.5.5章节车载障碍物检测装置的规定,障碍物检测装置最迟在列车前方障碍物与该装置接触时进行探测,如发现障碍物,列车应立即施加紧急制动。同时标准中要求,发现障碍物时,应向OCC(中央控制中心)报告信息,并且只有在危险条件得到解决后才能恢复运行。目前国内外轨道车辆的障碍物检测装置主要分为接触式和非接触式两大 类。 国内现状分析 国内首条自主研发的全自动运行地 铁线路北京燕房线采用的是接触式障碍 物与脱轨检测装置,通过安装于列车转 向架位置的检测装置,检测轨道附近障 碍物,并将威胁程度不大的障碍物清出 轨道,对于威胁程度较大的障碍物,通 过碰撞来触发紧急制动信号,从而保障 行车安全。国内某些科技公司自主开发 的接触式障碍物与脱轨检测装置,检测 装置同样安装于转向架前方,当轨道上 的障碍物撞击到检测横梁或列车脱轨钢 轨撞击到检测横梁时,会使检测弹簧发 生大的变形从而触发行程开关动作,串 联到列车紧急制动回路里的行程开关使 列车产生紧急制动停车,同时通过不同 的行程开关的动作向列车TCMS 上报事件 (是障碍物还是脱轨)信息,此种方式 将障碍物检测与脱轨检测集成控制,提 高车辆的安全性能。 非接触式障碍物检测装置最早应用 于与城市交通线路混跑的有轨电车,主 要通过雷达及视频成像等技术对前方固 定范围内的障碍物进行分析、处理,起 到辅助司机驾驶的功能,在车辆存在冲 撞风险时施加相应的安全保护措施,从 而避免对人员和车辆造成伤害。由于其 能够探测的距离较远,可在车辆接触到 障碍物之前提前发出预警信号,因此该 种方式是未来障碍物检测装置的一种趋 势,但是由于该种方式为非接触直接判 断障碍物,因此对设备的稳定性和安全 性提出了更高的要求,目前也是各障碍 物检测厂家的技术突破方向。 接触式障碍物检测装置 接触式的障碍物检测装置主要由检 测横梁、检测板弹簧、限位轴、行程开 关和接线盒等组成,障碍物检测装置安 装在头车转向架构架正前方。目前多数 厂家的障碍物检测装置都集成脱轨检测 功能,当轨道上的障碍物撞击到检测横 梁或列车脱轨钢轨撞击到检测横梁时, 会使检测弹簧发生大的变形从而触发行 程开关动作,串联到列车紧急制动回路 里的行程开关使列车产生紧急制动停 车,同时,通过不同的行程开关的动作 向列车TCMS 上报事件信息,即车辆出现 障碍物检测还是脱轨。 为保证障碍物检测装置的稳定性, 新型的障碍物检测装置将板弹簧用一个 固定点(用螺栓固定)和多个限位点 (用转轴限制位移或其他方式)来约束 它的位移,使检测横梁在列车运行中不 发生相对于转向架构架的自身振动,这 样消除了误动作报警的可能,大大的提 高了装置的稳定性,克服了传统的障碍 物检测装置的悬臂梁弹簧带来的自身振 动大、容易误动作报警的缺点,同时, 由于新型障碍物检测装置消除了传统障 碍物检测装置检测横梁相对于构架的侧 60世界轨道交通2019.08

自动视觉检测的应用

智能视觉传感器及其在药品自动检测的应用 一智能视觉传感器组成及特点 智能视觉传感器,也称智能相机,是近年来机器视觉领域发展最快的一项新技术。智能视觉传感器是一个兼具图像集、图像处理和信息传递功能的小型机器视觉系统,是一种嵌入式计算机视觉系统。它将图像传感器、数字处理器、通讯模块和其他外设集成到一个单一的相机内,使相机能够完全替代传统的基于PC 的计算机视觉系统,独立地完成预先设定的图像处理和分析任务。由于采用一体化设计,可降低系统的复杂度,并提高可靠性。同时系统尺寸大大缩小,拓宽了视觉技术的应用领域。 智能视觉传感器一般由图像采集单元、图像处理单元、图像处理软件、通信装置、I/0接口等构成,视觉传感器系统构成如图所示。 智能视觉传感器系统构成图 二智能视觉传感器在药品自动检测的应用及其原理 药品的包装方式目前主要有瓶装、袋装和铝塑泡罩包装三种形式,其中铝塑泡罩包装是近几年来有较大发展的包装形式,铝塑泡罩包装不仅具有防水和对异味阻隔性好的特性,而且其封口性能、抗张强度、耐用性等各项指标都比较优良,因此其应用将越来越广泛。旧式的包装机(生产线)一般没有自动检测功能,对于这些缺陷,传统上采用人工挑选的方法来进行检测。对于人工检测,长时间操作会使人眼感觉疲劳,检测准确率降低,直接影响产品的质量与成本。视觉传感器在应用中具有体积小、多功能、方便易用、抗干扰好、集成度高等优点。 泡罩药品自动视觉检测系统可以位于泡罩药品包装工艺流程中的两个检测环节,对应于图1.1中的缺陷检测环节①和缺陷检测环节②。在缺陷检测环节①情况下,药粒已经装入PVC吸塑成型的泡罩中,但这时泡罩还没有与铝箔实现热封合。这一环节主要检测药粒的缺粒、漏装现象,由于泡罩还没有与铝塑封合,且泡罩PVC材料是透明的,所以系统可以采用背光源的透射照明方式。在缺陷检测环节②情况下,生产线上已经输出了成品药板,也就是我们日常所见的药品包装,这时由于铝箔的非透明性,要检测出药片的缺粒、破损,系统应采用前向光源的反射照明方式。由于药品装盒后就将直接面向消费者,因此为确保药品100%的合格率,有必要在药品装盒之前再次安排缺陷检测任务。本文针对泡罩药品包

相关主题
文本预览
相关文档 最新文档