当前位置:文档之家› 高数终极复习笔记

高数终极复习笔记

高数终极复习笔记
高数终极复习笔记

两个重要的极限

一:

注:其中e为无理数,它的值为:e=2.718281828459045...

二:

例题:求

解答:令,则x=-2t,因为x→∞,故t→∞,

间断点的分类

我们通常把间断点分成两类:如果x0是函数的间断点,且其左、右极限都存在,我们把

x0称为函数的第一类间断点;不是第一类间断点的任何间断点,称为第二类间断点.

可去间断点

若x0是函数的间断点,但极限存在,那末x0是函数的第一类间断点。此

时函数不连续原因是:不存在或者是存在但≠。我们令,则可使函数在点x0处连续,故这种间断点x0称为可去间断点。

复合函数的连续性

设函数当x→x0时的极限存在且等于a,即:.而函数在点u=a 连续,那末复合函数当x→x0时的极限也存在且等于.即:

例题:求

解答:

介值定理在闭区间上连续的函数一定取得介于区间两端点的函数值间的任何值。即:

,μ在α、β之间,则在[a,b]间一定有一个ξ,使

函数的积的求导法则

法则:两个可导函数乘积的导数等于第一个因子的导数乘第二个因子,加上第一个因子乘第二

个因子的导数。用公式可写成:

函数的商的求导法则

法则:两个可导函数之商的导数等于分子的导数与分母导数乘积减去分母导数与分子导数的乘

积,在除以分母导数的平方。用公式可写成:

规则:两个可导函数复合而成的复合函数的导数等于函数对中间变量的导数乘上中间变量对自

变量的导数。用公式表示为:

,其中u为中间变量

例题:已知,求

解答:

反函数求导法则

定理:若是单调连续的,且,则它的反函数在点x可导,且有:注:通过此定理我们可以发现:反函数的导数等于原函数导数的倒数。注:这里的反

函数是以y为自变量的,我们没有对它作记号变换。即:是对y求导,是对x求导例题:求的导数.

解答:此函数的反函数为,故则:

隐函数的求导

若已知F(x,y)=0,求时,一般按下列步骤进行求解:

a):若方程F(x,y)=0,能化为的形式,则用前面我们所学的方法进行求导;

b):若方程F(x,y)=0,不能化为的形式,则是方程两边对x进行求导,并把y看成x 的函数,用复合函数求导法则进行。

例题:求隐函数,在x=0处的导数

解答:两边对x求导,故,当x=0时,y=0.故。

对数求导法

对数求导的法则:根据隐函数求导的方法,对某一函数先取函数的自然对数,然后在求导。注:

此方法特别适用于幂函数的求导问题。

例题:已知x>0,求

此题若对其直接求导比较麻烦,我们可以先对其两边取自然对数,然后再把它看成隐函数进行

求导,就比较简便些。如下

解答:先两边取对数:,把其看成隐函数,再两边求导

因为,所以

例题:已知,求

此题可用复合函数求导法则进行求导,但是比较麻烦,下面我们利用对数求导法进行求导

解答:先两边取对数再两边求导

因为,所以

微分形式不变性

设,则复合函数的微分为:,由于,故我们可以把复合函数的微分写成

由此可见,不论u是自变量还是中间变量,的微分dy总可以用与du的乘积

来表示,

我们把这一性质称为微分形式不变性。

例题:已知,求dy

解答:把2x+1看成中间变量u,根据微分形式不变性,则

导数公式微分公式

函数和、差、积、商的求导法则函数和、差、积、商的微分法则

例题:设,求对x3的导数

解答:根据微分形式的不变性

拉格朗日中值定理

如果函数在闭区间[a,b]上连续,在开区间(a,b)内可导,那末在(a,b)内至少有一点c,使

成立。

罗尔定理

若在闭区间[a,b]上连续,在开区间(a,b)内可导,且,那末在(a,b)内至少有

一点c,使成立。

柯西中值定理

如果函数,在闭区间[a,b]上连续,在开区间(a,b)内可导,且≠0,那末在

(a,b)内至少有一点c,使成立。

例题:证明方程在0与1之间至少有一个实根

证明:不难发现方程左端是函数的导数:

函数在[0,1]上连续,在(0,1)内可导,且,由罗尔定理

可知,在0与1之间至少有一点c,使,即

也就是:方程在0与1之间至少有一个实根

罗彼塔(L'Hospital)法则

当x→a(或x→∞)时,函数,都趋于零或无穷大,在点a的某个去心邻域内(或当│x│>N)时,与都存在,≠0,且存在

则:=

例题:求

解答:此题为未定式中的型求解问题,利用罗彼塔法则来求解

另外,若遇到、、、、等型,通常是转化为型后,在利用法则求解。

例题:求

解答:它为型,故可先将其转化为型后在求解,

函数增减性判定方法:

设函数在[a,b]上连续,在(a,b)内可导.

a):如果在(a,b)内>0,那末函数在[a,b]上单调增加;

b):如果在(a,b)内<0,那末函数在[a,b]上单调减少.

驻点

凡是使的x点,称为函数的驻点。

判断极值点存在的方法有两种:

方法一:

设函数在x0点的邻域可导,且.

情况一:若当x取x0左侧邻近值时,>0,当x取x0右侧邻近值时,<0,则函数在x0点取极大值。

情况一:若当x取x0左侧邻近值时,<0,当x取x0右侧邻近值时,>0,

则函数在x0点取极小值。

注:此判定方法也适用于导数在x0点不存在的情况。

用方法一求极值的一般步骤是:

a):求;

b):求的全部的解——驻点;

c):判断在驻点两侧的变化规律,即可判断出函数的极值。

例题:求极值点

解答:先求导数

再求出驻点:当时,x=-2、1、-4/5

判定函数的极值,如下图所示

方法二:

设函数在x0点具有二阶导数,且时.

则:a):当<0,函数在x0点取极大值;

b):当>0,函数在x0点取极小值;

c):当=0,其情形不一定,可由方法一来判定.

例题:我们仍以例1为例,以比较这两种方法的区别。

解答:上面我们已求出了此函数的驻点,下面我们再来求它的二阶导数。

,故此时的情形不确定,我们可由方法一来判定;

<0,故此点为极大值点;

>0,故此点为极小值点。

求某一函数的最大值、最小值的问题。

前面我们已经知道了,函数的极值是局部的。要求在[a,b]上的最大值、最小值时,可求出开区间(a,b)内全部的极值点,加上端点的值,从中取得最大值、最小值即为所求。

例题:求函数,在区间[-3,3/2]的最大值、最小值。

解答:在此区间处处可导,

先来求函数的极值,故x=±1,

再来比较端点与极值点的函数值,取出最大值与最小值即为所求。

因为,,,

故函数的最大值为,函数的最小值为。

曲线的凹性定义:

对区间I的曲线作切线,如果曲线弧在所有切线的下面,则称曲线在区间I 下凹,如果曲线在切线的上面,称曲线在区间I上凹。

曲线凹向的判定定理

定理一:设函数在区间(a,b)上可导,它对应曲线是向上凹(或向下凹)的充分必要条件是:导数在区间(a,b)上是单调增(或单调减)。

定理二:设函数在区间(a,b)上可导,并且具有一阶导数和二阶导数;那末:

若在(a,b)内,>0,则在[a,b]对应的曲线是下凹的;

若在(a,b)内,<0,则在[a,b]对应的曲线是上凹的;

例题:判断函数的凹向

解答:我们根据定理二来判定。

因为,所以在函数的定义域(0,+∞)内,<0,

故函数所对应的曲线时下凹的。

拐点的定义

连续函数上,上凹弧与下凹弧的分界点称为此曲线上的拐点。

拐定的判定方法

如果在区间(a,b)内具有二阶导数,我们可按下列步骤来判定的拐点。

(1):求;

(2):令=0,解出此方程在区间(a,b)内实根;

(3):对于(2)中解出的每一个实根x0,检查在x0左、右两侧邻近的符

号,若符号相反,则此点是拐点,若相同,则不是拐点。

不定积分的概念

函数f(x)的全体原函数叫做函数f(x)的不定积分,记作。

如果函数F(x)为函数f(x)的一个原函数,那末f(x)的不定积分就是函数族 F(x)+C.

即:=F(x)+C

求不定积分的方法

换元法

换元法(一):设f(u)具有原函数F(u),u=g(x)可导,那末F[g(x)]是f[g(x)]g'(x)的原函数.

即有换元公式:

例题:求

解答:这个积分在基本积分表中是查不到的,故我们要利用换元法。

设u=2x,那末cos2x=cosu,du=2dx,因此:

换元法(二):设x=g(t)是单调的,可导的函数,并且g'(t)≠0,又设f[g(t)]g'(t)具有原函数φ(t),

则φ[g(x)]是f(x)的原函数.(其中g(x)是x=g(t)的反函数)

即有换元公式:

例题:求

解答:这个积分的困难在于有根式,但是我们可以利用三角公式来换元.

设x=asint(-π/2

关于换元法的问题

不定积分的换元法是在复合函数求导法则的基础上得来的,我们应根据具体实例来选择所用的方法,求

不定积分不象求导那样有规则可依,因此要想熟练的求出某函数的不定积分,只有作大量的练习。

分部积分法

这种方法是利用两个函数乘积的求导法则得来的。

设函数u=u(x)及v=v(x)具有连续导数.我们知道,两个函数乘积的求导公式为:

(uv)'=u'v+uv',移项,得

uv'=(uv)'-u'v,对其两边求不定积分得:

这就是分部积分公式

例题:求

解答:这个积分用换元法不易得出结果,我们来利用分部积分法。

设u=x,dv=cosxdx,那末du=dx,v=sinx,代入分部积分公式得:

关于分部积分法的问题

在使用分部积分法时,应恰当的选取u和dv,否则就会南辕北辙。选取u和dv一般要考虑两点:

(1)v要容易求得;

(2)容易积出。

有理函数的积分举例

有理函数是指两个多项式的商所表示的函数,当分子的最高项的次数大于分母最高项的次数时

称之为假分式,

反之为真分式。在求有理函数的不定积分时,若有理函数为假分式应先利用多项式的除法,把

一个假分式化成一个多项式和一个真分式之和的形式,然后再求之。

例题:求

解答:

关于有理函数积分的问题

有理函数积分的具体方法请大家参照有关书籍,请谅。

三角函数的有理式的积分举例

三角函数的有理式是指由三角函数和常数经过有限次四则运算所构成的函数。

例题:求

解答:

关于三角函数的有理式的积分的问题

任何三角函数都可用正弦与余弦函数表出,故变量代换u=tan(x/2)对三角函数的有理式的积分

应用,在此我

们不再举例。

简单无理函数的积分举例

例题:求

解答:设,于是x=u2+1,dx=2udu,从而所求积分为:

定积分中值定理

如果f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一点ξ,使下式成立:

=f(ξ)(b-a)

牛顿-莱布尼兹公式

定理(3):如果函数F(x)是连续函数f(x)在区间[a,b]上的一个原函数,则

注意:此公式被称为牛顿-莱布尼兹公式,它进一步揭示了定积分与原函数(不定积分)之间的联系。

它表明:一个连续函数在区间[a,b]上的定积分等于它的任一个原函数再去见[a,b]上的增量。因此它就给定积分提供了一个有效而简便的计算方法。

定积分的分部积分法

设u(x)、v(x)在区间[a,b]上具有连续导数u'(x)、v'(x),则有(uv)'=u'v+uv',分别求此等式两端在[a,b]上的定积分,并移向得:上式即为定积分的分部积分公式。

例题:计算

解答:设,且当x=0时,t=0;当x=1时,t=1.由前面的换元公式得:

平面及其方程

我们把与一平面垂直的任一直线称为此平面的法线。

设给定点为Po(x0,y0,z0),给定法线n的一组方向数为{A,B,C}A2+B2+C2≠0,则过此定点且以n 为法线的平面方程可表示为:

注意:此种形式的方程称为平面方程的点法式。

例题:设直线L的方向数为{3,-4,8},求通过点(2,1,-4)且垂直于直线L的平面方程.

解答:应用上面的公式得所求的平面方程为:

(x,y)沿着平行于x轴和平行于y轴两个特殊方位变动时f(x,y)的变化率。

偏导数的定义

设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点.把y固定在y0而让x在x0有增量△x,相应地函数 z=f(x,y)有增量(称为对x的偏增量) △x z=f(x0+△x)-f(x0,y0).

如果△x z与△x之比当△x→0时的极限

存在,

那末此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数。记作:f'x(x0,y0)或

偏导数的求法

当函数z=f(x,y)在(x0,y0)的两个偏导数f'x(x0,y0)与f'y(x0,y0)都存在时,我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)在域D的每一点均可导,那末称函数f(x,y)在域D可导。此时,对应于域D的每一点(x,y),必有一个对x(对y)的偏导数,因而在域D确定了一个新的二元函数,称为f(x,y)对x(对y)的偏导函数。简称偏导数。

例题:求的偏导数。

解答:我们根据二元函数的偏导数的求法来做。

把y和z看成常量对x求导,得.

把x和z看成常量对y求导,得.

把x和y看成常量对z求导,得.

二重积分的定义

设z=f(x,y)为有界闭区域(σ)上的有界函数:

(1)把区域(σ)任意划分成n个子域(△σk)(k=1,2,3,…,n),其面积记作

△σk(k=1,2,3,…,n);

(2)在每一个子域(△σk)上任取一点,作乘积;

(3)把所有这些乘积相加,即作出和数

(4)记子域的最大直径 d.如果不论子域怎样划分以及怎样选取,上述和数当n→+∞且d→0时的极限存在,那末称此极限为函数f(x,y)在区域(σ)上的二重积分.记作:

即:=

其中x与y称为积分变量,函数f(x,y)称为被积函数,f(x,y)dσ称为被积表达式,(σ)称为积

分区域.

关于二重积分的问题

对于二重积分的定义,我们并没有f(x,y)≥0的限.容易看出,当f(x,y)≥0时,二重积分

在几何上就是以z=f(x,y)为曲顶,以(σ)为底且母线平行于z轴的曲顶柱体的体积。上

述就

是二重积分的几何意义。

二重积分的计算法

直角坐标系中的计算方法

这里我们采取的方法是累次积分法。也就是先把x看成常量,对y进行积分,然后在对x进行积分,或者是先把y看成常量,对x进行积分,然后在对y进行积分。为此我们有积分公式,如下:

在这里我们可能会有这个问题:累次积分的上下限是怎么确定的呢?

累次积分上下限的确定方法

我们先来对区域作些补充说明:如果经过区域(σ)内任意一点(即不是区域边界上的点)作平行于y轴(或x轴)的直线,且此直线交(σ)的边界不超过两点,那末称(σ)为沿y轴(x轴)方向的正规区域.如果(σ)即是沿y轴方向也是沿x轴方向的正规区域,那末(σ)就称为正规区域.下图所示的即为正规区域:

关于累次积分上下限的取法如下所述:

(1).如果(σ)为沿y轴方向的正规区域,那末二重积分可化为先对y再对x的累次积分.其中对y的积分下限是(σ)的下部边界曲线所对应的函数y1(x),积分上限是上部边界曲线所对应的函数y2(x).对x的积分下限与上限分别是(σ)的最左与最右点的横坐标a与b.

(2).如果(σ)为沿x轴方向的正规区域,那末二重积分可化为先对x再对y的累次积分.其中对x的积分下限是(σ)的左部边界曲线所对应的函数x1(y),积分上限是右部边界曲线所对应的函数x2(y).对y的积分下限与上限分别是(σ)的最低与最高点的横坐标c与d.

(3).如果(σ)为正规区域,那末累次积分可以交换积分次序。

(4).如果(σ)既不是沿y轴方向的正规区域,也不是沿x轴方向的正规区域,那末总可以把它化分成几块

沿y轴方向的正规区域或沿x轴方向的正规区域,然后根据积分的性质即可求解积分.

例题:求二重积分,其中(σ)是由所围成的区域。

解答:因为是正规区域,所以我们可先对y后对x积分,也可先对x后对y积分。这里我们采用前者先对y后对x积分:

极坐标系中的计算法

如果二重积分的被积函数和积分区域(σ)的边界方程均由极坐标的形式给出,那末我们如何计算呢?下面我们给出极坐标系中二重积分的计算公式.

如果极点O在(σ)的外部,区域(σ)用不等式表示为R1(θ)≤ρ≤R2(θ),α≤θ≤β,则积分公式如下: 如果极点O在(σ)的内部,区域(σ)的边界方程为ρ=R(θ),0≤θ≤2π,则积分公式如下:

如果极点O在(σ)的边界上,边界方程为ρ=R(θ),θ1≤θ≤θ2,则积分公式如下:

有了上面这些公式,一些在直角坐标系中不易积出而在极坐标系中易积出的函数,我们就可以把它转化为在极坐标系中的积分即可,反之依然。

注:直角坐标与极坐标的转换公式为:

例题:求,其中(σ)是圆环a2≤x2+y2≤b2

解答:由于积分域由同心圆围成以及被积函数的形式,显然,这个二重积分化为极坐标计算比较方便。

把,dσ=ρdρdθ代入,即可转化为极坐标系的积分形式。如下:

在对其进行累次积分计算:

二重积分的被积函数是一个二元函数,它的积分域是—平面区域.如果考虑三元函数f(x,y,z)在一空间区域(V)上的积分,就可得到三重积分的概念。

三重积分的概念

设函数u=f(x,y,z)在空间有界闭区域(V)任意划分成n个子域(△V1),(△V2),(△V3),…,(△Vn),它们的体积分别记作△Vk(k=1,2,…,n).在每一个子域上任取一点,并作和数

如果不论△Vk怎样划分,点怎样选取,当n→+∞而且最大的子域直径δ→0时,这个和数的极限都存在,那末此极限就称为函数在域(V)上的三重积分,记作:

即:

如果f(x,y,z)在域(V)上连续,那末此三重积分一定存在。

对于三重积分没有直观的几何意义,但它却有着各种不同的物理意义。

直角坐标系中三重积分的计算方法

这里我们直接给出三重积分的计算公式,具体它是怎样得来的,请大家参照有关书籍。

直角坐标系中三重积分的计算公式为:

此公式是把一个三重积分转化为一个定积分与一个二重积分的问题,根据我们前面所学的结论即可求出。

例题:求,其中(V)是由平面x=0,y=0,z=0及x+y+z=1所围成的区域.

解答:把I化为先对z积分,再对y和x积分的累次积分,那末应把(V)投影到xOy平面上,求出投影域(σ),它就是

平面x+y+z=1与xOy平面的交线和x轴、y轴所围成的三角区域.

我们为了确定出对z积分限,在(σ)固定点(x,y),通过此点作一条平行于z的直线,它与(V)上下边界的交

点的竖坐标:z=0与z=1-x-y,这就是对z积分的下限与上限,于是由积分公式得:

其中(σ)为平面区域:x≥0,y≥0,x+y≤1,如下图红色阴影部分所示:

再把(σ)域上的二重积分化成先对y后对x的累次积分,得:

柱面坐标系中三重积分的计算法

我们先来学习一下空间中的点用极坐标的表示方法。

平面上点P可以用极坐标(ρ,θ)来确定,因此空间中的点P可用数组(ρ,θ,z)来表示.显然,空间的点P 与数组(ρ,θ,z)之间的对应关系是一一对应关系,数组(ρ,θ,z)称为空间点P的柱面坐标.它与直角坐标的关系为:

构成柱面坐标系的三族坐标面分别为:

ρ=常数:以z轴为对称轴的同轴圆柱面族,

θ=常数:通过z轴的半平面族,

z =常数:与z轴垂直的平面族.

因此,每三个这样的坐标面确定着空间的唯一的一点,由于利用了圆柱面,所以称为柱面坐标。

柱面坐标系下三重积分的计算公式为:

此处我们不在举例。

微分方程的概念

我们把含有未知函数的导数(或微分)的方程称为微分方程。

在一个微分方程中所出现的导数的最高阶数称为微分方程的阶。当然阶数越高的微分方程越麻烦。

从微分方程求出未知函数是什么就叫做解微分方程。满足微分方程的函数(它要在某区间上连续)称为微分方程的解,微分方程的一般形式的解称为微分方程的一般解.

满足微分方程的一个有特殊要求的解称为微分方程的一特解,这种特解通常是满足一定的附加条件的解。通常,微分方程的一般解里,含有一些任意常数,其个数与微分方程的阶数相同,因此

用来确定任意常数以从一般解得出一个特解的附加条件的个数也与微分方程的阶数相同.

下面我们来学习用积分法解一阶微分方程的问题。

并不是所有的一阶微分方程都可以用积分法求解,只有一些特殊形式的一阶微分方程可以用积分法求解,并且解法也各不相同。因此,我们学习时要认清各种微分方程的特点及它们的解法。

可分离变量的微分方程

这种方程的形式为:

我们往往会以为将上式两端积分即可求解。其实是不对的。因为两端积分后,得

,右端是什么也求不出的,所以求不出y来。

其正确解法为:设y=y(x)为所求的解,于是当y=y(x)时,有

,即

这一步把y的函数及dy与x的函数及dx分开了,称为分离变量,这是求解的关键的一步,下一步我们就可由不定积分换元法进行求解了。

例题:求方程的通解。

解答:这是一个可分离变量的方程,分离变量后得

两端分别积分,得

令,得

这就是该方程的通解。

齐次微分方程

这种微分方程的形式为:

它也不能由两端积分求解。其求解步骤为:

令,则,y的微分方程就化成了u的微分方程

即:

这就化成了可分离变量的微分方程,再由上面我们所学的方法就可求出方程的通解。

例题:求方程的特解。

解答:这是一个齐次方程。令y=ux代入,得

分离变量后,得

两端分别积分,得

或其中

代回u=y/x,得原方程的通解为

将初始条件y(0)=1代入,得 C=1.

所以满足初始条件的特解为

线性微分方程

线性微分方程

这种微分方程的形式为:,其中,p,q与y,y'无关,但可以与x有关.它对y与y'而言是一次的,故被称之为一阶线性微分方程。

当q=0时称为齐次线性微分方程;当q≠0时称为非齐次线性微分方程。

齐次线性微分方程的解法

齐次线性微分方程的形式为:

此方程是可分离变量的微分方程,分离变量后,得:,这就可以由我们前面所学

的方法进行求解。

例题:求的一般解。

解答:由此方程可得,故

因此该方程的一般解为:

非齐次线性微分方程的解法

非齐次线性微分方程的形式为:

这种方程的解法为:先求出其对应的齐次线性微分方程的一般解,然后把c 看作x的函数,再代到非齐次线性微分方程中来决定c,使它能满足非齐次微分方程。

中把c作为x的函数求导数比c作为常数求导数要多处一项:,所以中

c作为x的函数代入微分方程就得到.

所以只要,即就可使非齐次线性微分方程得到满足,即为所求的一般解。

上面我们说学的这种解法被称为Lagrange常数变易法。

例题:求解

解答:相应齐次线性微分方程的一般解为:

把c看成x的函数代入得:

因此:c'=x(x+1)

故:就是非齐次线性微分方程的一般解。

可降阶的高阶方程

求解高阶微分方程的方法之一是设法降低方程的阶数。下面我们以二阶方程为例来学习三种可

以降阶的方程。

1.右端仅含x的方程:y"=f(x)

对这类方程,只须两端分别积分一次就可化为一阶方程

再次积分,即可求出方程得通解。

例题:求方程y"=cosx的通解。

解答:一次积分得:

二次积分即得到方程得通解:

2.右端不显含y的方程:y"=f(x,y')

我们为了把方程降阶,可令y'=p,将p看作是新的未知函数,x仍是自变量,于是,代入原方程得:

这就是一个一阶方程,然后即可由我们前面学的方法进行求解了。

例题:求方程的通解。

解答:令y'=p.,代入方程,得

分离变量后,得

积分,得

.即

再积分,即得原方程的通解:

.

3.右端不显含x的方程:y"=f(y,y')

我们为了把方程降阶,可令y'=p,将p看作是自变量y的函数,有

代入原方程,得

这是关于p的一阶方程,我们可由此解出通解,然后再代入原方程求解,即可。

例题:求方程的通解

解答:令代入原方程得:

它相当于两个方程:

高数笔记(全)

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=2 1) ()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1 (y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2), 则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x

考研数学一笔记.doc

高等数学 常用公式 ⒈等比数列 1 1n -=n q a a q q a s n n --=1) 1(1 ⒉等差数列 d n a a )1(1n -+= 2 )(1n a a s n n += ⒊ )12)(1(6 1 3212222++= ++++n n n n ⒋ 2 33332)1(321?? ? ???+=++++n n n 极限 一、 对于和式 n u u u ++∑=2n 1 11 进行适当放缩有两种典型的方法 ①当n 为无穷大时,则 n ?u min ≤u 1+u 2+?+u n ≤n ?u max ②当n 为有限项,且u i ≥0时,则 u max ≤u 1+u 2+?+u n ≤n ?u max 二、 常用极限: )m 3,2,1i (}max {lim .1n 21n a ==++∞→, i m m n n a a a n a b i n a b a f x f dx x f n i n i b n i i --+ =?=∑?∑=∞ →=→)(lim )(lim )(.21 a 1 ξλ n a b n a b i a f x f dx x f n i n i b n i i ---+ =?=∑?∑=∞ →=→)))(1((lim )(lim )(31 a 1 ξλ 1lim .3=∞ →n n a 为常数),(,b a ,1lim .4=+∞ →n n b an 1 lim .50 x =+→x x

,则 若a a n n =∞ →lim ..6 a n a a a n n =+++∞→ 21lim .① a a a a n a n n n n ==>∞ → 21lim )3,2,1(0.② ,则若 三、 常见等价无穷小代换总结

高等数学笔记

第1章函数 §1 函数的概念 一、区间、邻域 自然数集N整数集Z有理数集Q实数集R 建立数轴后: 建立某一实数集A与数轴上某一区间对应 区间:设有数a,b,a0),则称实数集{x|a?δ

a称为N(a,δ)的中心,δ>0称为邻域N(a,δ)的半径。 去心邻域:把N(a,δ)的中心点a去掉,称为点a的去心邻域,记为N(a^,δ)={x|0<|x?a|<δ}=N(a,δ)?{a} 注:其中,?{a}表示去掉由a这一个数组成的数集。 二、函数概念 例1. 设圆的半径为x(x>0),它的面积A=πx2,当x在(0,+∞)内任取一个数值(记为?x∈(0,+∞))时,由关系式A=πx2就可以确定A的对应数值。 文章来源:https://www.doczj.com/doc/0f6575055.html,/ 例2. 设有半径为r的圆,作圆的内接正n边形,每一边对应的圆心角α=2πn,周长S n=n?2r sinπn,当边数n在自然数 集N(n≥3)任取一个数,通过关系式S n=2nr sinπn就有一个S n对应确定数值。 函数定义:设有数集X,Y,f是一个确定的对应法则,对?x∈X,通过对应法则f都有唯一的y∈Y与x对应,记为x→f y,或f(x)=y,则称f为定义在X上的函数。 其中X称为f的定义域,常记为D f。 X——自变量,Y——因变量。 当X遍取X中的一切数时,那么与之对应的y值构成一个数集V f={y|y=f(x),x∈X},称V f为函数f的值域。 文章来源:https://www.doczj.com/doc/0f6575055.html,/ 注意: (1)一个函数是由x,y的对应法则f与x的取值范围X所确定的。把“对应法则f”、“定义域”称为函数定义的两个要素。 例如,y=arcsin(x2+2)这个式子,由于x2+2>2,而只有当|x2+2|≤1时,arcsin才有意义,因此这个式子不构成函数关系。又例如,y=ln x2与y=2ln x不是同一个函数,因为定义域不同。而y=ln x2与y=2ln|x|是同一个函数,因为定义域相同。(2)函数的值域是定义域和对应法则共同确定的。 (3)确定函数定义域时,注意:若函数有实际意义,需依据实际问题是否有意义来确定。 若函数不表示某实际问题,则定义域为自变量所能取得的使函数y=f(x)成立的一切实数所组成的数值。 函数的几何意义:设函数y=f(x)定义域为D f,?x∈D f,对应函数值y=f(x)在XOY平面上得到点(x,y),当x遍取D f中一切实数时,就得到点集P={(x,y)|y=f(x),x∈D f}。点集P称为函数y=f(x)的图形。 文章来源:https://www.doczj.com/doc/0f6575055.html,/ 三、函数的几个简单性质 1. 函数的有界性 若?M>0,s.t.|f(x)|≤M,x∈I,则称y=f(x)在区间I上有界。否则称f(x)在I上无界。 注:s.t.是“使得,满足于”的意思,I表示某个区间。

高中数学全套笔记

高中数学常用公式及常用结论 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ????U A C B ?=ΦU C A B R ?= 6 4.容斥原理 ()()card A B cardA cardB card A B =+- ()() card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+. 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的 真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p a b x ,2?-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布 依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则

高数读书笔记

高等数学读书笔记

——定积分与不定积分 马燕妮 四川农业大学 经济学院 经济学 中国成都 611130 【摘要】本文首先介绍了不定积分与定积分的基本定义,而后主要探究几种比较重要的积分法。定积分是微积分学中的主要概念之一,它是从各种各样的积累中抽象出来的数学概念,它是函数的一种特定结构和式的极限。不定积分又与定积分进行对比记忆,对不定积分的计算进行系统整理。 【关键字】定积分;不定积分;面积;凑微分法;分部积分法;换元积分法;有理函数不定积分 【Abstract 】 This paper first introduces the basic definition of indefinite integral and defin ite integral, and then explores several of the more important integral method. D efinite integral is one of the major concepts of calculus, it comes from the a ccumulation of various of abstracting mathematical concept, it is the function of the limit of a particular structure with type. Comparing the indefinite integra l and definite integral memory, calculation of indefinite integral system. 【Key words 】Definite integral ;Indefinite integral ;Area ;differentiation division integral method ;Integral method in yuan ;The indefinite integral rational function 一、不定积分与定积分的定义 (一)、定积分的定义: 设f 是定义在[a,b]上的一个函数,对于[a,b]的一个分割T={ 1,? 2?……n ?},任

大一高数笔记

导数与极限 (一)极限 1. 概念 (1)自变量趋向于有限值的函数极限定义(δε-定义) A x f a x =→)(lim ?0>?ε,0>?δ,当δ<-<||0a x 时,有ε<-|)(|A x f 。 (2)单侧极限 左极限: =-)0(a f A x f a x =-→)(lim ?0>?ε,0>?δ,当δ<-?ε,0>?δ,当δ<-?>?X ε,当 X x >,成立()ε<-A x f ,则称常数A 为函数()x f 在x 趋于无穷时的 极限,记为()A x f x =∞ →lim 。 A y =为曲线()x f y =的水平渐近线。 定义2:00>?>?X ,ε,当X x >时,成立()ε<-A x f ,则有()A x f x =+∞→lim 。 定义3:00>?>?X ,ε,当X x -<时,成立()ε<-A x f ,则有()A x f x =-∞→lim 。 运算法则: 1) 1)若()A x f =lim ,()∞=x g lim ,则()()[]∞=+x g x f lim 。 2) 2)若()()∞≠=但可为,0lim A x f ,()∞=x g lim ,则()()∞=?x g x f lim 。 3) 3)若()∞=x f lim ,则 ()01 lim =x f 。 注:上述记号lim 是指同一变化过程。 (4)无穷小的定义 ~ 0>?ε,0>?δ,当δ<-<||0a x 时,有ε<|)(|x f ,则称函数)(x f 在a x →时的无穷小(量),即 0 )(lim =→x f a x 。 (5)无穷大的定义 0>?M ,0>?δ,当δ<-<||0a x 时,有M x f >|)(|,则称函数)(x f 在a x →时的无穷大(量),记为 ∞ =→)(lim x f a x 。 直线a x =为曲线()x f y =的垂直渐近线。 2.无穷小的性质 定理1 有限多个无穷小的和仍是无穷小。 定理2 有界函数与无穷小的乘积仍是无穷小。 推论1 常数与无穷小的乘积是无穷小。 推论2 有限个无穷小的乘积是无穷小。 ! 无穷小与无穷大的关系 若∞=→)(lim x f a x ,且)(x f 不取零值,则)(1 x f 是a x →时的无穷小。 3.极限存在的判别法 (1)A x f a x =→)(lim ?A a f a f =+=-)0()0(。

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! ))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα )(1 2)1(...53arctan 121 2153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则

考研高等数学145分高手整理完整经典笔记(考研必备免费下载)

最新下载(https://www.doczj.com/doc/0f6575055.html,) 中国最大、最专业的学习资料下载站转载请保留本信息 数学重点、难点归纳辅导 第一部分 第一章集合与映射 §1.集合 §2.映射与函数 本章教学要求:理解集合的概念与映射的概念,掌握实数集合的表示法,函数的表示法与函数的一些基本性质。 第二章数列极限 §1.实数系的连续性 §2.数列极限 §3.无穷大量 §4.收敛准则 本章教学要求:掌握数列极限的概念与定义,掌握并会应用数列的收敛准则,理解实数系具有连续性的分析意义,并掌握实数系的一系列基本定理。 第三章函数极限与连续函数 §1.函数极限 §2.连续函数 §3.无穷小量与无穷大量的阶 §4.闭区间上的连续函数 本章教学要求:掌握函数极限的概念,函数极限与数列极限的关系,无穷小量与无穷大量阶的估计,闭区间上连续函数的基本性质。 第四章微分 §1.微分和导数 §2.导数的意义和性质 §3.导数四则运算和反函数求导法则 §4.复合函数求导法则及其应用 §5.高阶导数和高阶微分 本章教学要求:理解微分,导数,高阶微分与高阶导数的概念,性质及相互关系,熟练掌握求导与求微分的方法。 第五章微分中值定理及其应用 §1.微分中值定理 §2.L'Hospital法则 §3.插值多项式和Taylor公式 §4.函数的Taylor公式及其应用 §5.应用举例

§6.函数方程的近似求解 本章教学要求:掌握微分中值定理与函数的Taylor公式,并应用于函数性质的研究,熟练运用L'Hospital法则计算极限,熟练应用微分于求解函数的极值问题与函数作图问题。 第六章不定积分 §1.不定积分的概念和运算法则 §2.换元积分法和分部积分法 §3.有理函数的不定积分及其应用 本章教学要求:掌握不定积分的概念与运算法则,熟练应用换元法和分部积分法求解不定积分,掌握求有理函数与部分无理函数不定积分的方法。 第七章定积分(§1 —§3) §1.定积分的概念和可积条件 §2.定积分的基本性质 §3.微积分基本定理 第七章定积分(§4 —§6) §4.定积分在几何中的应用 §5.微积分实际应用举例 §6.定积分的数值计算 本章教学要求:理解定积分的概念,牢固掌握微积分基本定理:牛顿—莱布尼兹公式,熟练定积分的计算,熟练运用微元法解决几何,物理与实际应用中的问题,初步掌握定积分的数值计算。 第八章反常积分 §1.反常积分的概念和计算 §2.反常积分的收敛判别法 本章教学要求:掌握反常积分的概念,熟练掌握反常积分的收敛判别法与反常积分的计算。 第九章数项级数 §1.数项级数的收敛性 §2.上级限与下极限 §3.正项级数 §4.任意项级数 §5.无穷乘积 本章教学要求:掌握数项级数敛散性的概念,理解数列上级限与下极限的概念,熟练运用各种判别法判别正项级数,任意项级数与无穷乘积的敛散性。 第十章函数项级数 §1.函数项级数的一致收敛性 §2.一致收敛级数的判别与性质 §3.幂级数

《高等数学》读书笔记

类型课程学习名称:高等数学 1 时间:2006.7.7 体裁:说明文 知识内容与结构备注一.课程目录 1函数 2极限和连续 3一元函数的导数和微分 4微分中值定理和导数的应用 5一元函数积分学 6多元函数微积分 二.知识层次分解2.3说明: 函数 1.预备知识 1)集合及其运算 1>概念 集合: 元素 2>绝对值及其基本性质

>区间和邻域 2.函数 3.基本特性 4.反函数 5.复合函数 6.初等数学 7.简单函数关系的建立 极限和连续 1数列极限 2数列级数的基本概念 3函数的极限 4极限的运算法则 5无穷小(量)和无穷大(量)6两个重要的极限 7函数的连续性和连续函数 8函数的间断点 一元函数的导数和微分 1导数的概念 2求导法则

基本求导公式 4高阶导数 5函数的微分 6导数和微分在经济学中的简单应用 微分中值定理和导数的应用 1微分中值定理 2洛必达法则 3 函数的单调性 4 曲线的凹凸性和拐点 5函数的极值与最值 一元函数积分学 1原函数和不定积分的概念 2基本积分公式 3换元积分法 4分部积分法 5微分方程初步 6定积分的概念及其基本性质 7 微积分基本公式 8 定积分的换元积分法和分部积分法 9 无穷限反常积分 10 定积分的应用

1空间解析几何 2多元函数的基本概念 3偏导数 4全微分 5多元复合函数的求导法则 6隐函数及其求导法则 7二元函数的极值 8二重积分 注: 1标识符:红色已领会理解橙色已弄懂粉色已记住绿色已会用蓝色已掌握 黑色增删修内容 2 说明:凡属课程都属说明文。要掌握其整体结构和层次内容和最后一层次 的说明内容的意思 3 步骤:1 填写结构 2 对照课程阅读,理解弄懂

高等数学归纳笔记(全)

一、函数与极限 (2) 1、集合的概念 (2) 2、常量与变量 (3) 2、函数 (4) 3、函数的简单性态 (4) 4、反函数 (5) 5、复合函数 (6) 6、初等函数 (6) 7、双曲函数及反双曲函数 (7) 8、数列的极限 (9) 9、函数的极限 (10) 10、函数极限的运算规则 (12)

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

高等数学(张宇)_-_笔记_PDF

目录 第一讲极限 一极限定义 (3) 二极限性质 (4) 三函数极限基本计算 (8) 四综合计算 (11) 五数列极限计算 (14) 六函数连续与间断 (16) 第二讲一元函数微积分 一概念 (17) 1. 导数 (18) 2. 微分 (20) 3. 不定积分 (21) 4. 定积分 (23) 5. 变限积分 (28) 6. 反常积分 (29) 二计算 (29) 1. 求导 (29) 2. 求积 (33) 三应用 (40) 1. 微分应用 (40) 2. 积分应用 (43) 四逻辑推理 (43) 1. 中值定理 (49) 2. 等式证明 (50) 3. 不等式证明 (51) 第三讲多元函数的微分学(公共部分) 一概念 (51) 1. 极限的存在性 (51) 2. 极限的连续性 (52) 3. 偏导数的存在性 (52) 4. 可微性 (53) 5. 偏导数的连续性 (54) 二计算 (54) 三应用 (56) 第四讲二重积分(公共部分)

一概念与性质 (59) 二计算 (60) 1. 基础题 (60) 2. 技术题 (61) 三综合计算 (62) 第五讲微分方程 一概念及其应用 (63) 二一阶方程的求解 (64) 三高阶方程的求解 (66) 第六讲无穷级数 一数项级数的判敛 (67) 二幂级数求收敛域 (69) 三展开与求和 (69) 四傅里叶级数 (71) 第七讲多元函数微分学 一基础知识 (73) 二应用 (75) 第八讲多元函数积分学 一三重积分 (76) 二第一型曲线、曲面积分 (78) 1. 一线 (78) 2. 一面 (79) 三第二型曲线、曲面积分 (80) 1. 二线 (81) 2. 二面 (83)

高数笔记全

第一章 函数、极限和连续 § 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D内严格单调增加( ); 若f(x 1)>f(x 2 ), 则称f(x)在D内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x∈(-∞,+∞) 周期:T——最小的正数 4.函数的有界性: |f(x)|≤M , x∈(a,b) ㈢基本初等函数 1.常数函数: y=c , (c为常数) 2.幂函数: y=x n , (n为实数) 3.指数函数: y=a x , (a>0、a≠1) 4.对数函数: y=log a x ,(a>0、a≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x)

高等数学(张宇)手写笔记

?? 目录 第一讲极限 一极限定义 (3) 二极限性质 (4) 三函数极限基本计算 (8) 四综合计算 (11) 五数列极限计算 (14) 六函数连续与间断 (16) 第二讲一元函数微积分 一概念 (17) 1. 导数 (18) 2. 微分 (20) 3. 不定积分 (21) 4. 定积分 (23) 5. 变限积分 (28) 6. 反常积分 (29) 二计算 (29) 1. 求导 (29) 2. 求积 (33) 三应用 (40) 1. 微分应用 (40) 2. 积分应用 (43) 四逻辑推理 (43) 1. 中值定理 (49) 2. 等式证明 (50) 3. 不等式证明 (51) 第三讲多元函数的微分学(公共部分) 一概念 (51) 1. 极限的存在性 (51) 2. 极限的连续性 (52) 3. 偏导数的存在性 (52) 4. 可微性 (53) 5. 偏导数的连续性 (54) 二计算 (54) 三应用 (56) 第四讲二重积分(公共部分)

一概念与性质 (59) 二计算 (60) 1. 基础题 (60) 2. 技术题 (61) 三综合计算 (62) 第五讲微分方程 一概念及其应用 (63) 二一阶方程的求解 (64) 三高阶方程的求解 (66) 第六讲无穷级数 一数项级数的判敛 (67) 二幂级数求收敛域 (69) 三展开与求和 (69) 四傅里叶级数 (71) 第七讲多元函数微分学 一基础知识 (73) 二应用 (75) 第八讲多元函数积分学 一三重积分 (76) 二第一型曲线、曲面积分 (78) 1. 一线 (78) 2. 一面 (79) 三第二型曲线、曲面积分 (80) 1. 二线 (81) 2. 二面 (83)

考研高数笔记

考研高数笔记 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

第一章 函数、极限、连续 第1节 函数 a) 反函数和原函数关于y=x 对称。 b) 只有定义域关于原点对称的函数才能讨论奇偶性。 c) 多个奇函数之和为奇函数;多个偶函数之和为偶函数。 d) 2k 个奇函数的乘积是偶函数;2k+1个奇函数的乘积是偶函数;任意个偶 函数的乘积还是偶函数。(k=0,1,2......)。 e) 如果f(x)是周期函数,周期为T ,则f(ax+b)也是周期函数,周期为 |T/a|。 f) 基本初等函数包括:幂函数、指数函数、对数函数、三角函数、反三角函 数。初等函数即上述五大类函数,以及它们有限次的四则运算与复合而成的函数。 g) 一切初等函数在其定义域内都是连续的。 第2节 极限 a) 左右极限存在且相等?极限存在。 b) 如果函数在X 0极限为A ,则可以将函数改写为f(X)=A+ɑ(x),其中 0=(x)ɑlim 0 x x →。(等价无穷小) c) 极限存在?极限唯一。(极限唯一性) d) A x =→)(f lim 0 x x ,且A>0,则在x 的邻域内,f(x)>0。(保号性)

e) 函数f(x)在点x=x 0存在极限,则存在该点的一个去心邻域U ,在U 内f(x) 有界。(有界性) f) 当limf(x)=A ,limg(x)=B ,那么 lim(f(x)+g(x))=limf(x)+limg(x)=A+B lim(f(x)-g(x))=limf(x)-limg(x)=A-B lim(f(x)*g(x))=limf(x)*limg(x)=A*B lim(f(x)/g(x))=limf(x)/limg(x)=A/B limg(x)不等于0 lim(f(x))^n=(limf(x))^n=A n lim(f(x)^g(x))=A b (极限的四则运算) g) 有限个无穷小之和仍然是无穷小。有限个无穷小之积仍然是无穷小。无穷 小和有界量乘积仍然是无穷小。 h) ) ()(lim x g x f =l i. l=0,f(x)=o(g(x)). ii. l=∞,f(x)是g(x)低阶. iii. 0

数学七年级全笔记总汇

奇数表达式:2n-1 从1开始的连续奇数之和等于奇数个数的平方。偶数表达式:2n n为正整数高斯算法:首项加末项的和乘以项数除以二。 项数=末项-首项的差÷公差+1 奇数+奇数=奇数+偶数=奇 奇数-奇数=偶奇数-偶数=数 偶数+偶数=数可以用来解决:数线段、角、 偶数-偶数= (1) 2 n n 握手、单循环比赛、车票等问题 平面、立体图形分割(不论大小、形状) 平面1刀2刀3刀4刀5刀6刀n刀 切成的块数2 4 7 11 16 22 2+2+3+4 +..+n 为什么是这么多块2 2+2 2+2+3 2+2+3+4 2+2+3+4 +5 2+2+3+4 +5+6 2+2+3+4 +..+n 立体1刀2刀3刀4刀5刀6刀 切成的 块数 2 4 8 15 26 42 为什么 是这么 多块 4 4+4 8+7 立体图 形块数 结论 前一次切的块数加平面图形的前一刀得到的块数。 和一定时,两数相等(越接近)积最(越)大。 n边形(n>3),减去一刀,该多边形可变为:n边形、n-1边形、n+1边形。 中心对称图形(正方形、长方形、圆等)过对称中心的任意一条直线,都可以将它的面积两等分 2.1正数与负数 >0(正数)<0(a>0) a =0(中性数) -a =0(a=0) <0(负数)>0(a<0 按照概念分: 正整数自然数(非负数) 整数 0 负整数非正数 有 理正分数 数分数负分数 小数 有限小数 小 数无限小数无限循环小数 无限不循环小数无理数

按性质分: 正整数 正有理数非负有理数 有正分数 理 0 负整数 数负有理数非正有理数 负分数 2.2相反数 <0(a>0)非负数(非正数的相反数) -a =0(a=0) >0(a<0)非正数(非负数的相反数) 非负数与非正数互为相反数。 若a、b互为相反数,则a+b=0 若a、b互为负倒数,则乘积为-1 或a=-b 或b=-a 2.3绝对值 a(a>0) 三分法:|a|= 0(a=0) -a(a<0) a(≥0) 两分法:|a|= -a(≤0) 绝对值的性质: |a|≥0(非负数) |a|≥0(绝对值一定是非负数)绝对值最小的数是0 互为相反数的两个数绝对值相等:|a|=|-a| 若|a|=b,则a=±b;几个非负数的和为0,则这几个非负数分别为0. 若|a|=|b|,则a=±b 如:|a|+|b|=0,|a|=0、|b|=0 2.4有理数的大小比较: 1.正数大于0,负数小于0 2.正数大于一切负数 3.两个正数比较大小,绝对值大的数较大。两个负数比较大小,绝对值大的反而小。 5.求差法比大小. 6.求商法比大小. 4.一组数比较大小,要分类 5.分数比较大小,可以按情况通分,可统一分母,也可统一分子。 数串的表达(1﹚奇数位为正,偶数位为负表达为: 数串的表达(2﹚奇数位为负,偶数位为正表达为: (n是第几个数,等式中的“(-1)?﹢1”和“(-1)?”表达这个数的符号) 在数轴上,求2点间的距离共3钟方法: 1.大数-小数. 2.|小数-大数| 3.同侧:绝对值相减(大-小);异侧:绝对值相加。 2.6有理数加法: 注意:运算符号和性质符号要用括号隔开。 两数相加: 0和正数至少 0和负至少两数为0 两数和为正一正一负一个和为负一正一负一个和为0 互为两正是正数两负是负数一正一负相反数 a>0,b>0,a+b= |a+b|=|a|+|b| a>0,b<0,|a|>|b|,

大一上学期高数知识点

第二章 导数与微分 一、主要内容小结 1. 定义·定理·公式 (1)导数,左导数,右导数,微分以及导数和微分的几何意义 (2) 定理与运算法则 定理1 )(0x f '存在?='- )(0x f )(0x f +' . 定理2 若)(x f y =在点0x 处可导,则)(x f y =在点x 0处连续;反之不真. 定理3 函数)(x f 在0x 处可微?)(x f 在0x 处可导. 导数与微分的运算法则:设)(,)(x v v x u u ==均可导,则 v u v u '±'='±)(, dv du v u d ±=±)( u v v u uv '+'=')(, vdu udv uv d +=)( )0()(2≠'-'='v v v u u v v u , )0()(2≠-=v v udv vdu v u d (3)基本求导公式 2. 各类函数导数的求法 (1)复合函数微分法 (2)反函数的微分法 (3)由参数方程确定函数的微分法 (4)隐函数微分法 (5)幂指函数微分法 (6)函数表达式为若干因子连乘积、乘方、开方或商形式的微分法. 方法:对数求导法(即先对式子的两边取自然对数,然后在等式的两端再对x 求导). (7)分段函数微分法 3. 高阶导数 (1)定义与基本公式

高阶导数公式:a a a n x n x ln )()(= )0(>a x n x e e =)()( )2sin()(sin )(π?+=n kx k kx n n )2cos()(cos )(π ?+=n kx k kx n n n m n m x n m m m x -+-???-=)1()1()()( !)()(n x n n = n n n x n x )! 1()1()(ln 1)(--=- 莱布尼兹公式: (2)高阶导数的求法 ① 直接法② 间接法 4. 导数的简单应用 (1) 求曲线的切线、法线 (2) 求变化率——相关变化率 二、 例题解析 例2.1 设????? =≠?=0 ,00,1sin )(x x x x x f K , (K 为整数). 问: (1)当K 为何值时,)(x f 在0=x 处不可导; (2)当K 为何值时,)(x f 在0=x 处可导,但导函数不连续; (3)当K 为何值时,)(x f 在0=x 处导函数连续? 解 函数)(x f 在x=0点的导数: lim →x =--0)0()(x f x f 0lim →x x f x f )0()(-=0lim →x x x x K 1 sin )(? = 0lim →x x x K 1sin )(1?-= ???>≤101 K K 当, ,当发散 即 ???>≤='1,01 )0(K K f 不存在, 当1>K 时, )(x f 的导函数为: ?????=≠?-?='--0 ,00,1cos 1 sin )(21 x x x x x Kx x f K K

(完整版)数学笔记知识点汇总

数学笔记知识点汇总 一、实数 2、平方根: ①如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根。 ②一个正数有2个平方根/0的平方根为0/负数没有平方。 ③求一个数a 的平方根运算,叫做开平方,其中a 叫做被开方数。 3、算术平方根 如果一个正数x 的平方等于a ,那么这个正数x 就叫做a 的算术平方根 4、立方根: ①如果一个数x 的立方等于a ,那么这个数x 就叫做a 的立方根。 ②正数的立方根是正数/0的立方根是0/负数的立方根是负数。 ③求一个数a 的立方根的运算叫开立方,其中a 叫做被开方数。 10、非负数 11、零指数次幂、负指数次幂 二、代数式 3、整式运算: 4、分解因式:(1)概念:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式 (2)方法:提公因式法/运用公式法/分组分解法/十字相乘法 (一提二套三分组) 6、分式的运算: 为同分母的分式,再加减。 0a ≥0≥20 a ≥0a 1(0)a =≠其中1(p p a p a -=≠为正整数,a 0)

7、二次根式 ①性质 ②运算 ③最简二次根式:被开方数不含分母;被开方数中不含能开得尽的因数或因式。 ④同类二次根式:化成最简二次根式后,被开方数相同的二次根式。 ⑤有理化因式:两个含有二次根式的代数式相乘积不含有二次根式,则他们互为有理化 因式。如:⑥分母有理化:把分母中的根号化去。(方法:分子分母同乘以分母的有理化因式) 三、方程 (二)二次方程 1、概念 ①一元二次方程:只含有一个未知数.....,并且未知数的最高次数是2的整式方程叫一元二次方程 2、一元二次方程的解法:①直接开平方方法②因式分解法③配方法④公式法 3、一元二次方程根与系数的关系:一元二次方程ax 2+bx+c=0(a ≠0) 的两个实数根为x 1,x 2 则有 如:x 12+x 22=(x 1+x 2)2-2 x 1x 2 4、根的判别式 △=b 2-4ac ①△>0时,方程有两个不相等的实数根②△=0时,方程有两个相等的实数根③△<0时,方程没有实数根。 a c x x a b x x =?-=+2121,0,0)a b =≥≥0,0)a b =≥>0,0) a b =≥≥0,0) a b =≥>2 (0)a a =≥a =±±m 2 122 1 2 1 4)(x x x x x x -+=-

相关主题
文本预览
相关文档 最新文档