当前位置:文档之家› 有长连接管调压室水头损失系数计算方法研究

有长连接管调压室水头损失系数计算方法研究

第!"卷第#期水利水电科技进展!$$"年%!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!月作者简介:蔡付林(%&#"—),男,湖南桃江人,副教授,博士,从事水利水电工程水力学研究’

有长连接管调压室水头损失系数计算方法研究

蔡付林,宋长福,周建旭

(河海大学水利水电工程学院,江苏南京

!%$$&()

摘要:研究具有长连接管的阻抗式调压室水头损失系数的计算方法,给出基于)*+,-.三通水头损失系数经验公式、焊接三通水头损失实验资料以及截面突变管道水头损失资料;得出这种调压室不同流态下水头损失系数的计算方法,并将不同算法得到的调压室水头损失系数分别与水力模型试验结果进行了比较和分析’研究表明,基于)*+,-.三通水头损失系数经验公式及截面突变管道水头损失系数计算的调压室水头损失系数与试验结果具有较好的一致性’关键词:调压室;水头损失系数;)*+,-.公式;焊接三通中图分类号:/0&"!’1

文献标识码:2

文章编号:%$$#!3#43(!$$")$#!$$!3!

$"常见的阻抗式调压室结构形式有两种:第一种是调压室大井底部与输水隧洞顶部的距离很近,两者之间由隔板分开,其水头损失系数取决于隔板上阻抗孔口的形状及大小,其水头损失系数目前已有

比较系统的研究成果[%5"]

,可以引用的资料较丰富;

第二种是大井与输水隧洞之间由连接管连接,见图%,

它适合于调压室最低涌浪水位到输水隧洞顶部之间距离较大的情形,如加拿大的帕斯瀑布(6789-:

;-<:=*<<-<)

水电站[4]

的上游调压室,其大井内径为"&>#1?,

大井底板高程为"!%>1?,引水隧洞顶部高程为!%$>1?,二者垂直距离达%%%?,采用直径为

&>%1?的竖井连接调压室大井和引水隧洞,大大减少了调压室的工程量

!

图%调压室典型流态示意图

目前,关于带连接管调压室水头损失系数的研究成果较少,缺少系统性!在过渡过程中,这种调压室的流态可以概括为图%所示水流在/形三通管和截面积突变管道中的流动!鉴于各电站对调压室水头损失系数的要求不同,在方案比选阶段,其大井和连接管可以分别有几种待选直径,使调压室有不同的阻抗特性!如果通过水力模型试验测试各方案的

阻抗特性来确定连接管和大井直径的合理匹配方案,则研究周期长、代价大,而对于/形三通管和截

面突变管道的局部水头损失系数已经有丰富的研究成果,如能利用这些资料,通过适当的计算方法来初步确定调压室的水头损失特性,则可以大大加快设计方案的论证进度,提高成果的可靠性!

!

基于)*+,-.公式计算水头损失系数

!"!

/形三通管和截面突变管道水头损失系数

为了便于叙述,将有长连接管阻抗式调压室中

的流态分为两种:一种是将隧洞中水流分成两股,其中一部分进入调压室,另一部分继续沿原方向流动,这种流态简称为分流,如图%(*)中所示水流流入调压室的情形;另一种是从调压室流出的水流汇入隧洞,与隧洞中的水流合二为一,这种流态简称为合流,如图%(@)

中所示水流流出调压室时的流态!关于/形三通管在分流与合流时的水头损失特

性,早在%&!#5%&"%年,0AB-.

[1]等学者已经进行了系统的水力学模型实验!由于这种流动形式在实际

工程中广泛存在,!$世纪1$年代CDEAFG

[#]

和)*+,-.

[3]

又分别独立地对它进行了系统的试验!)*+,-.在此基础上提出了一个经验公式,称为)*+,-.公式!#$年代初期,H.*I<,-..和C*G

[(]

在研究输水系统能量损失特性时也进行了这方面的试验!3$年代CI..-+[&]

又进行了相关试验,并且对自"$年代以来各家同类试验成果和他自己的试验成果进行了综

合对比分析,其研究结果表明,除了0AB-.的成果,

?

3!? 

万方数据

自动喷水灭火系统局部水头损失计算方法

通过对自动喷水灭火系统局部水头损失计算方法及舍维列夫公式与海曾-威廉公式之间差别的分析,提出需对《自动喷水灭火系统设计规范》( GB50084 - 2001)中的管件当量长度进行修正的观点,并推得适用于舍维列夫公式的各种管径管件的当量长度。关键词局部水头损失当量长度喷头工作压力舍维列夫公式海曾-威廉公式修正系数水力计算是自动喷水灭火系统设计中的一项重要内容。水力计算结果将直接影响系统的可靠性、合理性、经济性,而合理的水力计算方法是水力计算结果正确的基础。在局部水头损失计算方法方面《自动喷水灭火系统设计规范》( GB50084 - 2001)(以下简称“新规范”) 较《自动喷水灭火系统设计规范》( GBJ 84 - 85) (以下简称“旧规范”) 作了较大的改动。笔者结合工程实例对两本规范局部水头损失的计算进行分析和探讨。 1 局部水头损失计算方法分析在“新规范”颁布实施前,对自动喷水灭火系统局部水头损失的计算国内现行设计手册及教材普遍采用估算的方法。即系统的局部水头损失仅在管道水力计算结束时取沿程水头损失的20 %。这种计算方法不足之处在于:首先,20 %的取值忽略了每个工程管网布置、配置的特殊性,误差较大;其次,在管道水力计算时忽略了局部水头损失对喷头的喷水压力影响,进而影响系统的设计流量、管道的水头损失或系统所需的扬程。由于估算法存在较大的误差,在局部水头损失的计算方法上“新规范”摒弃了“旧规范”中估算的方法。“新规范”第9.2. 3 条明确规定:“管道的局部水头损失,宜采用当量长度法计算。当量长度表见规范附录C”。当量长度法的采用既为简化局部水头损失的计算创造了条件,同时也间接确定了将局部水头损失的计算纳入到沿程水头损失的计算中,所以在计算作用面积内各喷头节点流量时,也就同时考虑了沿程水头损失和局部水头损失对各喷头节点的喷水压力影响。由此可见,在局部水头损失计算方面“新规范”弥补了“旧规范”的不足。 2 局部水头损失计算的分析与探讨对采用以镀锌钢管为输水管材的给水工程的沿程水头损失的计算,我国现行的设计手册及规范均采用舍维列

沿程水头损失计算表

DN8DN10DN15DN20DN25DN32DN40DN50DN65DN80 DN100DN125DN150DN200DN250DN300DN350DN400DN500DN600DN700DN800DN900DN100 912.515.7521.252735.7541536880.5106131156207259311363410513614702800898998 0.10.82240.53660.39730.26920.19720.13690.11460.0820.05930.04770.03330.02530.02020.0140.01040.00820.00670.00570.00430.00340.00290.00240.00210.00180.2 2.7522 1.7956 1.32960.90080.65980.45810.38330.27460.19860.15950.11150.08470.06750.04670.03490.02750.02250.01920.01440.01140.00950.00810.00690.0060.3 5.6326 3.6748 2.7212 1.8436 1.35040.93750.78450.56190.40640.3264 0.22820.17330.13810.09560.07140.05630.04610.0393 0.02940.02330.01950.01650.01420.01240.49.4149 6.1425 4.5485 3.0815 2.2571 1.567 1.31130.93920.67930.54550.38140.28970.23080.15980.11940.09410.0770.06570.04910.03890.03270.02760.02370.02070.514.0759.1831 6.8 4.6069 3.3744 2.3427 1.9604 1.4042 1.01560.81550.57030.4330.34510.23890.17850.14070.11510.09830.07340.05810.04880.04120.03550.03090.619.612.7889.4693 6.4153 4.699 3.2623 2.73 1.9553 1.4142 1.1357 0.79410.6030.48050.33270.24860.1960.16030.1368 0.1022 0.08090.0680.05740.04940.043 0.725.98216.95112.5528.5038 6.2289 4.3244 3.6188 2.5919 1.8747 1.5054 1.05270.79930.6370.4410.32950.25980.21250.18140.13550.10730.09010.07610.06550.05710.833.21321.66916.04610.8717.9626 5.528 4.626 3.3134 2.3964 1.9244 1.3456 1.02180.81430.56370.42120.33210.27160.23190.17330.13720.11520.09720.08370.07290.941.29226.9419.94913.5159.8993 6.8726 5.7512 4.1193 2.9793 2.3925 1.6729 1.2704 1.01230.70080.52370.41280.33770.28820.21540.17050.14330.12090.1040.0907150.21432.76124.25916.43512.0388.3576 6.9939 5.0093 3.6231 2.9094 2.0344 1.5448 1.23110.85230.63690.50210.41060.35050.26190.20740.17420.1470.12650.11031.159.97839.13128.97619.63114.3799.98268.3538 5.9834 4.3276 3.4751 2.43 1.8452 1.4704 1.0180.76070.59970.49050.41870.31290.24770.20810.17560.15110.13171.270.34545.89533.98523.02416.86411.7089.79787.0176 5.0756 4.0758 2.85 2.1642 1.7246 1.19390.89220.70330.57530.49110.36690.29050.24410.20590.17720.15451.382.55753.86339.88527.02119.79213.74111.4998.2359 5.9567 4.7834 3.3448 2.5399 2.024 1.4012 1.04710.82540.67510.57630.43060.34090.28640.24170.2080.18131.495.74762.46846.25731.33822.95415.93613.3369.5517 6.9084 5.5476 3.8792 2.9457 2.3474 1.6251 1.21440.95730.7830.66840.49940.39540.33220.28030.24120.21031.5109.9171.71153.10135.97526.35118.29415.30910.9657.9306 6.3684 4.4532 3.3815 2.6947 1.8655 1.394 1.09890.89890.76730.57330.45390.38140.32180.27690.24141.6125.0681.59160.41740.93129.98120.81417.41812.4769.02327.2458 5.0667 3.8474 3.0659 2.1226 1.5861 1.2504 1.02270.8730.65230.51640.43390.36610.3150.27461.7141.1892.10868.20546.20833.84623.49819.66414.08410.1868.1799 5.7198 4.3434 3.4611 2.3962 1.7906 1.4115 1.15450.98550.73640.5830.48980.41330.35560.311.8158.28103.2676.46551.80437.94526.34322.04515.7911.429.1705 6.4126 4.8694 3.8803 2.6864 2.0074 1.5825 1.2943 1.10490.82560.65360.54910.46340.39870.34761.9176.35115.0685.19757.7242.27829.35224.56217.59312.72410.2187.1449 5.4255 4.3234 2.9932 2.2367 1.7632 1.4422 1.2310.91990.72820.61190.51630.44430.38732 195.4 127.49 94.402 63.955 46.846 32.523 27.216 19.493 14.099 11.322 7.9167 6.0116 4.7905 3.3165 2.4783 1.9537 1.598 1.364 1.01930.8069 0.678 0.572 0.4922 0.4291 2.1215.43140.55104.0870.51151.64835.85630.00621.49115.54412.4828.7282 6.6278 5.2815 3.6565 2.7323 2.1539 1.7617 1.5038 1.12380.88960.74750.63070.54270.47312.2236.4415 4.26114.2377.38656.68339.35232.93123.58717.0613.6999.57937.2741 5.7965 4.013 2.9987 2.364 1.9335 1.6505 1.23330.97640.82030.69220.59560.51922.3258.42168.6124.8584.58161.95443.01135.99325.7818.64614.97310.477.9504 6.3355 4.3861 3.2776 2.5838 2.1133 1.8039 1.348 1.06710.89660.75650.6510.56752.4281.38183.58135.9492.0966 7.45846.83339.1912 8.0720.30216.30311.48.6567 6.8983 4.7758 3.5688 2.8133 2.3011 1.9642 1.4678 1.16190.97630.82370.70880.61792.5305.3219 9.2147.599.9373.19750.81742.52530.45822.02917.6912.379.39317.4852 5.1821 3.8723 3.0526 2.4968 2.1313 1.5926 1.2608 1.05930.89380.76910.6705 2.6 330.23215.45159.54108.0879.16954.96345.99532.94423.82719.13413.379 10.16 8.096 5.6049 4.1883 3.3017 2.7005 2.3052 1.7226 1.3637 1.14580.96670.83190.7252 2.7356.12232.34172.05116.5685.37759.27249.60135.52725.69520.63414.42810.9568.7307 6.0444 4.5167 3.5606 2.9123 2.4859 1.8576 1.4706 1.2356 1.04250.89710.78212.8382.99249.87185.03125.3591.81863.74453.34338.20727.63422.1915.51711.7839.3894 6.5004 4.8575 3.8292 3.132 2.6735 1.9978 1.5815 1.3288 1.12120.96480.84112.9410.83268.04198.48134.4798.49368.37957.22240.98529.64323.80416.64512.63910.072 6.973 5.2106 4.1076 3.3597 2.8679 2.143 1.6965 1.4254 1.2027 1.0350.90223439.6528 6.84212.4143.9105.473.17661.23643.8631.72225.4741 7.81313.52610.7797.4622 5.5762 4.3958 3.5954 3.0691 2.2934 1.8155 1.5254 1.2871 1.10760.96553.1469.45306.28226.8153.65112.557 8.13565.38746.83333.87227.21 9.0214.44311.5097.9679 5.9541 4.6937 3.8391 3.2771 2.4488 1.9386 1.6288 1.3743 1.1826 1.03093.2500.23326.36241.67163.73119.9383.25869.67349.90336.09328.98320.26715.3912.2648.4903 6.3445 5.0014 4.0908 3.4919 2.6093 2.0657 1.7356 1.4644 1.2602 1.09853.3531.98347.08257.01174.12127.5488.54374.09653.0738.38430.82321.55316.36713.0429.0292 6.7472 5.3189 4.3504 3.7136 2.775 2.1968 1.8458 1.5574 1.3401 1.16833.4564.71368.43272.82184.83135.3893.9978.65456.33640.74632.7222.87917.37413.8459.58477.1623 5.6462 4.6181 3.9421 2.9457 2.332 1.9593 1.6532 1.4226 1.24013.5598.42390.42289.1195.86143.4799.683.34959.69843.17834.67324.24518.41114.67110.1577.5898 5.9832 4.8937 4.1773 3.1215 2.4712 2.0763 1.7519 1.5075 1.3142 沿程水头损失计算表 流速 管径

各种管道水头损失的简便计算公式

各种管道水头损失的简便计算公式 (879) 摘要:从计算水头损失的最根本公式出发,将各种管道的计算公式加以推导,得出了计算水头损失的简便公式,使得管道工程设计人员从繁琐的计算中解脱出来,提高了工作效率。 关键词:水头损失塑料管钢管铸铁管混凝土管钢筋混凝土管 在给水工程应用中经常要用到水头损失的计算公式,一般情况下计算水头损失都是从水力摩阻系数λ等基本参数出发,一步一步的代入计算。其实各个公式之间是有一定的联系的,有的参数在计算当中可以抵消。如果公式中只剩下流速、流量、管径这些基本参数,那么就会给计算者省去不少的麻烦。在此我们充分利用了各参数之间以及水头损失与水温的关系,将公式整理简化,供大家参考。 1、PVC-U、PE的水头损失计算 根据《埋地硬聚氯乙烯给水管道工程技术规程》规定,塑料管道沿程水头损失hf应按下式计算: (式1-1) 式中λ—水力摩阻系数; L—管段长度(m); di—管道内径(m);

v—平均流速(m/s); g—重力加速度,9.81m/s2。 因考虑到在通常的流速条件下,常用热塑性塑料给水管PVC-U、PE管一般处于水力光滑区,管壁绝对当量粗糙度对结果的影响非常小或没有影响,故水力摩阻系数λ可按下式计算: (式1-2) 式中Re—雷诺数。 雷诺数Re应按下式计算: (式1-3) 式中γ—水的运动粘滞度(m3/s),在不同温度时可按表1采用。 表1水在不同温度时的γ值(×10-6) 05101520253040 水温℃ 1.78 1.52 1.31 1.14 1.000.890.80 0.66

γ(m3/s) 从前面的计算可知,若要计算水头损失,需将表1中的数据代入,并逐步计算,最少需要3个公式,计算较为繁琐。为将公式和计算简化,以减少工作量,特推导如下: 因具体工程水温的变化较大,水力计算中通常按照基准温度计算,然后根据具体情况,决定是否进行校正。冷水管的基准温度多选择10℃。 当水温为10℃时的γ=1.31×10-6 m3/s,代入式1-3 得(式1-4) 将式1-4代入式1-2 (式1-5) 再将式1-5代入式1-1 得(式1-6) 取L为单位长度时,hf即等同于单位长度的水头损失i,所以 (式1-7) 又因为(式1-8)

管路沿程水头损失实验

管路沿程水头损失实验 一、实验目的要求 1.加深了解圆管层流和紊流的沿程损失随平均流速变化的规律,绘制h曲线; l g V l g f 2.掌握管道沿程阻力系数的量测技术和应用水压差计及电测仪测量压差的 方法; 3.将测得的Re-f关系值与莫迪图对比,分析其合理性,并且与莫迪图比较,进一步提高实验成果分析能力。 二、实验装置 本实验的实验装置,如图1所示。 图1自循环沿程水头损失实验装置图 1.自循环高压恒定全自动供水器; 2.实验台; 3.回水管; 4.水压差计; 5.测压计; 6.实验管道 8.滑动测量尺; 9.测压点; 10.实验流量调节阀; 11.供水管与供水阀; 12.旁通管路与旁通阀; 13.稳压筒

实验装置配备如下: 1.测压装置:U形管水压差计和电子量测仪。 低压差用U形管水压差计量测,而高压差需要用电子量测仪来量测。电子量测仪(见图2)由压力传感器和主机两部分组成,经由连通管将其接入测点。压 差读数(以厘米水柱为单位)通过主机显示。 图2 电子量测仪 1.压力传感器; 2.排气旋钮; 3.连通管; 4.主机 2.自动水泵与稳压器: 自循环高压恒定全自动供水器由离心泵、自动压力开关、气--水压力罐式稳压器等组成。压力超高时能自动停机,过低能自动开机。为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐, 经稳压后再送向实验管道。 3.旁通管与旁通阀: 由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动。为避免这种情况出现,供水器设有与蓄水箱直通的旁通管,通过分流可使水泵持续稳定运行。旁通管中设有调节分流量至水箱的阀门, 即旁通阀。实验流量随旁通阀开度减小(分流量减小)而增大。设计上旁通阀又是本装置用以调节流量的阀门之一。所以调节流量有两种方法:一是调节实验流量调节阀(见图1);二是调节旁通阀。 4.稳压筒: 为了简化排气,并防止实验中再进气,在传感器前连接稳压筒(2只充水不满顶的密封立筒)。

输水管道水力计算公式

输水管道水力计算公式 1.常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22 **=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852.1852.167.10d C l Q h h f ***= (3) 式中 h f -----------沿程损失,m λ----------沿程阻力系数 l -----------管段长度,m d-----------管道计算内径,m g-----------重力加速度,m/s 2 C-----------谢才系数 i------------水力坡降; R-----------水力半径,m Q-----------管道流量m/s 2 v------------流速 m/s C n -----------海澄―威廉系数 其中达西公式、谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2.规范中水力计算公式的规定 3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐 采用的水力计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。 舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用较广. 柯列勃洛可公式)Re 51.27.3lg(21 λ λ+?*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000

管道水头损失产生原因及计算

流体力学二类考核 指导老师:冯亮花——小组成员:蒙伦智、周肖、王桐

供水管道水头损失产生原因及计算 摘要:水流在运动过程中克服水流阻力而消耗的能量称为水头损失,根据边界条件的不同把水头损失分为两类:对于平顺的边界,水头损失与沿程成正比的称为沿程水头损失,用hf 表示;由局部边界急剧改变导致水流结构改变、流速分布改变并产生旋涡区而引起的水头损失称为局部水头损失,用hj 表示,两者的计量单位都为米。 关键词:水头损失 原因 计算 真空有压流 1.在分析水头损失产生原因之前,首先应该明确两个概念。 1.1水流阻力 水流阻力是由于固体边界的影响和液体的粘滞性作用,使液体与固体之间、液体内有相对运动的各液层之间存在的摩擦阻力的合力,水流阻力必然与水流运动方向相反。 1.2水头损失 水流在运动过程中克服水流阻力而消耗的能量称为水头损失。其中边界对水流的阻力是产生水头损失的外因,液体的粘滞性是产生水头损失的内因,也是根本原因。根据边界条件的不同把水头损失分为两类:对于平顺的边界,水头损失与流程成正比的称为沿程水头损失,用hf 表示;由局部边界急剧改变导致水流结构改变、流速分布改变并产生旋涡区而列起的水头损失称为局部水头损失,用hj 表示,两者的计最单位都为米。 由水头损失所产生的能量消耗,将直接影响供水水泵的选型,管道材质与内径的确 定,增加机械能损耗,这一直是水利工作者在给水工程设计过程中想要尽量减小的设计 因子,要想将水头损失降低到最低限度,就要了解水头损失产生的真正原因。 2.水头损失产生的原因 2.1供水管道的糙率是产生沿程水头损失的外部原因,也是直接原因。 在理想的状态下,液体在管道内部流动是不受管道内壁影响的,但由于现在市场上 供应的各种管材,内壁绝对光滑的材质是不存在,现有的技术只是尽量减小管道材质的 糙率(即粗糙度,一般用n 表示)。如给水用的PVC 管,管道内壁糙率为一般取值0.009,球墨铸铁给水管道内壁糙率一般取值0.012-0.0 1 3,其它管材糙率国家都有相应的技术标 准。 由于管道糙率的存在,使的水流在行进过程液体与固体接触面产生摩擦阻力,水流 消耗动能,产生沿程水头损失。对沿程水头损失的计算可以参照如下经验公式。 经验公式: 3 16222**n *16*35.6h d L Q f π= — 哈森—威廉斯公式: 公式中:hf-沿程水头损失 d —管道内径

水管系统各部件局部阻力系数

并联环路压力损失的最大允许差值双管同程:15% 双管异程:25% 附录C 当量长度表

所谓水泵的选取计算其实就是估算(很多计算公式本身就是估算的),估算分的细致些考虑的内容全面些就是精确的计算。 特别补充:当设计流量在设备的额定流量附近时,上面所提到的阻力可以套用,更多的是往往都大过设备的额定流量很多。同样,水管的水流速建议计算后,查表取阻力值。 关于水泵扬程过大问题。设计选取的水泵扬程过大,将使得富裕的扬程换取流量的增加,流量增加才使得水泵噪音加大。特别的,流量增加还使得水泵电机负荷加大,电流加大,发热加大,“换过无数次轴承”还是小事,有很大可能还要烧电机的。 另外“水泵出口压力只有0.22兆帕”能说明什么呢?水泵进出口压差才是问题的关键。例如将开式系统的水泵

放在100米高的顶上,出口压力如果是0.22MPa,就这个系统将水泵放在地上向100米高的顶上送,出口压力就是0.32MPa了! 1、水泵扬程简易估算法暖通水泵的选择:通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程(mH2O): Hmax=△P1+△P2+0.05L(1+K) △P1为冷水机组蒸发器的水压降。 △P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。 L为该最不利环路的管长 K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K值取0.4~0.6 2、冷冻水泵扬程实用估算方法这里所谈的是闭式空调冷水系统的阻力组成,因为这种系统是最常用的系统。 1.冷水机组阻力:由机组制造厂提供,一般为60~100kPa。 2.管路阻力:包括磨擦阻力、局部阻力,其中单位长度的磨擦阻力即比摩组取决于技术经济比较。若取值大则管径小,初投资省,但水泵运行能耗大;若取值小则反之。目前设计中冷水管路的比摩组宜控制在150~200Pa/m 范围内,管径较大时,取值可小些。 3.空调未端装置阻力:末端装置的类型有风机盘管机组,组合式空调器等。它们的阻力是根据设计提出的空气进、出空调盘管的参数、冷量、水温差等由制造厂经过盘管配置计算后提供的,许多额定工况值在产品样本上能查到。此项阻力一般在20~50kPa范围内。 4.调节阀的阻力:空调房间总是要求控制室温的,通过在空调末端装置的水路上设置电动二通调节阀是实现室温控制的一种手段。二通阀的规格由阀门全开时的流通能力与允许压力降来选择的。如果此允许压力降取值大,则阀门的控制性能好;若取值小,则控制性能差。阀门全开时的压力降占该支路总压力降的百分数被称为阀权度。水系统设计时要求阀权度S>0.3,于是,二通调节阀的允许压力降一般不小于40kPa。 根据以上所述,可以粗略估计出一幢约100m高的高层建筑空调水系统的压力损失,也即循环水泵所需的扬程: 1.冷水机组阻力:取80kPa(8m水柱); 管路阻力:取冷冻机房内的除污器、集水器、分水器及管路等的阻力为50kPa;取输配侧管路长度300m与比摩阻200Pa/m,则磨擦阻力为300*200=60000Pa=60kPa;如考虑输配侧的局部阻力为磨擦阻力的50%,则局部阻力为60kPa*0.5=30kPa;系统管路的总阻力为50kPa+60kPa+30kPa=140kPa(14m水柱); 3.空调末端装置阻力:组合式空调器的阻力一般比风机盘管阻力大,故取前者的阻力为45kPa( 4.5水柱); 4.二通调节阀的阻力:取40kPa(0.4水柱)。 5.于是,水系统的各部分阻力之和为:80kPa+140kPa+45kPa+40kPa=305kPa(30.5m水柱) 6.水泵扬程:取10%的安全系数,则扬程H=30.5m*1.1=33.55m。 根据以上估算结果,可以基本掌握类同规模建筑物的空调水系统的压力损失值范围,尤其应防止因未经过计算,过于保守,而将系统压力损失估计过大,水泵扬程选得过大,导致能量浪费。 (1)冷、热水管路系统 闭式水系统 Hp=hf+hd+hm (10-13) 式中hf、hd——水系统总的沿程阻力和局部阻力损失,Pa

局部水头损失实验答案

《局部水头损失》实验报告 开课实验室:DA129 学院 年级、专业、班 姓名 成绩 课程 名称 流体力学与水泵实验 实验项目 名 称 局部水头损失实验 指导教师 教师评语 教师签名: 年 月 日 一、实验目的 1.掌握三点法、四点法量测局部阻力系数的技能; 2.通过对圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式的实验验证与分析,熟悉用理论分析法和实验法建立函数式的途径; 3.加深对局部阻力损失机理的理解。 二、实验原理 写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得: 1.突然扩大 采用三点法计算,下式中21-f h 由32-f h 按流长比例换算得出: 实测时,]]2)[(]2)[(2122 222111-+++-++=f j h g av p z g av p z h γγ,2 12/g av h j =ξ 理论时,221)1(A A -='ξ,g av h j 22 1ξ'=' 2.突然缩小 采用四点法计算,下式中b 点为突缩点,b f h -4由43-f h 换算得出,5-fb h 由6 5-f h 换算得出。 实测时,])2)[())2)[(5 2 55542 4 44--+++--++=fb b f j h g av p z h g av p z h γ γ,g av h j 2/2 5=ξ 经验方程式:)1(5.04 5 A A -='ξ

二、使用仪器、材料 1.自循环供水器 2.实验台 3.可控硅无级调速器 4.恒压水箱 5.溢流板 6.稳水孔板 7突然扩大试验管段8.测压针9.滑动标尺10测压管11.突然收缩试验管段12实验流量调节阀 三、实验步骤 1、熟悉有关仪器,记录有关参数。 2、打开电源供水,带水箱溢流恒定后全开流量调节阀,排除实验管道中的滞留气体。管道内气体排净后关闭流量调节阀,检查测压管液面是否齐平‘ 3、全开流量调节阀,待流量稳定后,测记测压管读数,同时用体积法测记流量,并计算通过各管道的流速,同时读取测压管液面读数。 4、调节流量调节阀开度,逐级放大流量,重复步骤3,测试5组流量,并计入表中。 5、实验完成后关闭泄水阀,检查测压管液面是否齐平,否则,需重做。齐平后关闭电源,将仪 器恢复到实验前状态。

沿程水头损失实验

沿程水头损失实验 前言: 确定沿程水头损失,首先得弄清沿程阻力系数的变化规律。1933年尼古拉兹采用不同粒径的人工粗砂粘于管道内壁模拟粗糙的方法进行了一系列管道实验,得出了管道沿程阻力系数变化的一般规律。 (1)雷诺数Re<2000 时,水流为层流,λ与Re 呈倒数关系,且λ=64/Re. (2)20004000 时,水流处于紊流状态:(a )当Re 较小时,由于粘性底层较厚,从而掩盖了圆管内壁粗糙度,流动处于紊流光滑区,λ只与Re 有关,即λ=f (Re );(b )当Re 很大时,管壁糙面凸起完全深入管内紊流流核,沿程阻力主要受水流流经管壁糙面凸起时形成的小旋涡影响,流动处于紊流粗糙区,λ 由相对粗糙度Δ/R (R 为水力半径,下同)决定,λ=f (Δ/ d );(c )当Re 介于紊流光滑区与粗糙区之间时,λ 由Re 和Δ/d 共同决定,流动处于紊流过渡粗糙区,λ=f (Δ/d ,Re )。 1937 年泰科斯达在人工加糙明渠中进行了沿程阻力实验,得出了与尼古拉兹实验相似的论,说明管流和明渠流具有相同的变化规律.为满足工程实际应用的需要,人们通过实验总结出许多经验或半经验公式λ 如适用于紊流光滑区的布拉修斯公式,适用于过渡粗糙区的柯—怀公式,适用于紊流光滑区的尼古拉兹经验公式,莫迪图经验公式,本实验采用莫迪图经验公式进行对比分析。 摘要: 本次实验内容有,测量沿程阻力系数λ,通过与莫迪图对比分析其合理性,提高实验成果分析能力;绘制lg lg f h V -曲线,加深了解圆管层流和紊流的沿程损失随平均流速变化的规律。 实验原理 由达西公式 2 2f L V h d g λ = 得 22 2 2 221(/)4f f f gdh gdh h d Q K L L Q πλυ=== 25/8K gd L π= 其中h f 为水头损失,λ为沿程阻力系数,L 为管道长度、d 为管道内径,V 为 平均流速, 另由能量方程对水平等直径圆管可得

实验三局部阻力系数的测定

实验三局部水头损失量测实验 一、实验目的 1.观察突扩管旋涡区测管水头线,以及其它各种边界突变情况下的测管水头变化情况,加深对局部水头损失的感性认识。 2.掌握测定管道局部水头损失系数的方法,并将突扩管的实测值与理论值比较,将突缩管的实测值与经验值比较。 3.学习用测压管测量压强和用体积法测流量的实验技能。 二、实验原理 有压管道恒定流遇到管道边界的局部突变→ 流动分离形成剪切层→ 剪切层流动不稳定,引起流动结构的重新调整,并产生旋涡→ 平均流动能量转化成脉动能量,造成不可逆的能量耗散(图1)。与沿程因摩擦造成的分布损失不同,这部分损失可以看成是集中损失在管道边界的突变处,每单位重量流体承担的这部分能量损失称为局部水头损失。 图1 流道的局部突变示意图 根据能量方程,局部水头损失 , 这里我们认为因边界突变造成的能量损失全部产生在1-1,2-2两断面之间,不再考虑沿程损失。

上游断面1-1应取在由于边界的突变,水流结构开始发生变化的渐变流段中,下游2-2断面则取在水流结构调整刚好结束,重新形成渐变流段的地方。总之,两断面应尽可能接近,又要保证局部水头损失全部产生在两断面之间。经过测量两断面的测管水头差和流经管道的流量,进而推算两断面的速度水头差,就可测得局部水头损失。 局部水头损失系数是局部水头损失折合成速度水头的比例系数,即 当上下游断面平均流速不同时,应明确它对应的是哪个速度水头?例如,对于突扩圆管就有 和 之分。 其它情况的局部损失系数在查表或使用经验公式确定时也应该注意这一点。通常情况下对应下游的速度水头。 局部水头损失系数随流动的雷诺数而变,即 (Re)f ζ=。 但当雷诺数大到一定程度后, 值成为常数。在工程中使用的表格 或经验公式中列出的 就是指这个围的数值。局部水头损失的机理复杂,除了突扩圆管的情况以外,一般难于用解析方法确定,而要通过实测来得到各种边界突变情况下的局部水头损失系数。 对于突扩圆管的情况,局部水头损失系数有理论结果,推导如下:流动经过突扩圆管的局部水头损失 , 取1-1,2-2两断面如图2, 这里要特别注意1-1断面取为突扩开始的断面,2-2断面则取在水流结构调整刚好结束,重新形成渐变流段的地方。两断面面积都为,而 和 则分别为细管和粗管中的平均流速。 根据动量方程可知 112222022011()()()p z A p z A Q v v γγραα+-+=- 所以有

学习单元4 水头损失计算

学习单元四水头损失计算 【教学基本要求】 1.理解水流阻力和水头损失产生的原因及分类,掌握水力半径的概念。 2.了解均匀流水头损失的特点,掌握均匀流沿程水头损失计算的达西公式和沿程水头损失系数λ的表达形式。 3.理解雷诺实验现象和液体流动两种流态的特点,掌握层流与紊流的判别方法及雷诺数Re的物理含义,弄清楚判别明渠水流和管流临界雷诺数不同的原因。 4.理解圆管均匀层流的流速分布,掌握沿程水头损失的计算及沿程水头损失系数的确定。 5.了解紊流的成因和特征,了解紊流粘性底层和边界粗糙程度对水流运动的影响,理解紊流光滑区、粗糙区和过渡区的概念,了解紊流的流速分布规律。 6.理解尼古拉兹实验中沿程水头损失系数λ的变化规律,掌握紊流3个流区沿程水头损失系数λ的确定方法,能应用达西公式计算紊流的沿程水头损失。 7.了解当量粗糙度的概念,会运用Moody图查找λ的值。 8.掌握计算沿程水头损失的经验公式——谢才公式和曼宁公式,能正确选择糙率n。 9.理解局部水头损失产生的原因,能正确选择局部水头损失系数进行局部水头损失计算。 【学习重点】 1.了解液体运动两种流态的特点,掌握流态的判别方法和雷诺数Re的物理意义。 2.掌握沿程水头损失系数λ在层流和紊流三个流区内的变化规律,并能确定λ的值。 3.会应用达西公式计算沿程水头损失 4.掌握谢才公式及曼宁公式,并会确定糙率n。 5.掌握局部水头损失计算。 【内容提要和学习指导】 本章是水力学课程中的重点,也是难点。这一章中概念多、公式多,重要的雷诺实验、尼古拉兹实验成果与半经验理论和理论分析成果相互验证和借鉴,经验公式和系数多而且集中。学习本章应该紧紧围绕达西公式中的沿程水头损失系数λ,掌握λ的影响因素和在不同流态与紊流各流区中的变化规律,弄清相关的概念和液体运动特征。最终落实到会确定λ值,并计算不同流态和流区内的沿程水头损失。 4.1 水流阻力与水头损失 水流阻力和水头损失是两个不同而又相关联的重要概念,确定它们的性质、大小和变化规律在工程实践是有十分重要的意义。

管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算 在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部障碍物处产生的损失称为局部损失,其阻力称为局部阻力。因此一般的管路系统中,既有沿程损失,又有局部损失。 4.4.1 局部损失的产生的原因及计算 一、产生局部损失的原因 产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明。 ()( ) 图4.9 局部损失的原因 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开始到消失的一段距离上。 图4.9()给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的压力。在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。 综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。在测量局部损失的实验中,实际上也包括了沿程损失。 二、局部损失的计算 如前所述,单位重量流体的局部能量损失以表示

水头损失计算

关于水头损失计算的整合与研究 摘要: 在世纪液体恒定总流量方程式中的hw,表示液体在流动过程中单位重量液体克服阻力做功所消耗的机械能,称之为水头损失(Loss head)或能量损失,它是液流机械能损耗的基本度量指标。 造成水头损失的外因是:影响相对运动与水流阻力强度的固体边界状况;水头损失内因是:相对运动与摩擦阻力的水流粘滞性,也是根本原因。产生水头损失的方式是:液体与固体边壁之间、液层与液层之间或液体质点之间的摩擦、碰撞和混掺。 关键词:水头损失计算 一:概念分析 1:沿程水头损失:克服沿程阻力做功而引起的水头损失。 局部水头损失:水流克服局部阻力做功引起的水头损失。 2:水流阻力与水头损失 水流阻力和水头损失是两个不同而又相关联的重要概念,确定它们的性质、大小和变化规律在工程实践中有十分重要的意义。 (l)水流阻力是由于固体边界的影响和液体的粘滞性作用,使液体与固体之

间、液体内有相对运动的各液层之间存在的摩擦阻力的合力,水流阻力必然与水流运动方向相反。 (2)水流在运动过程中克服水流阻力而消耗的能量称为水头损失。其中边界对水流的阻力是产生水头损失的外因,液体的粘滞性是产生水头损失的内因,也是根本原因。 (3)根据边界条件的不同把水头损失分为两类:对于平顺的边界,水头损失与流程成正比的称为沿程水头损失,用hf表示;由局部边界急剧改变导致水流结构改变、流速分布改变并产生旋涡区而引起的水头损失称为局部水头损失,用hj表示。 (4)对于在某个流程上运动的液体,它的总水头损失hw遵循叠加原理即:hw=∑ hf+∑hj(4-l) (5)为了反映过流断面面积和湿周对水流阻力和水头损失的综合影响,引入水力半径的概念,即: R=A/c(4-2) 水力半径是水力学中应用广泛的重要水力要素。 3:层流和紊流 1883年雷诺通过实验发现:流速不同时水流流动形态不同。当流速较小时,液体质点作有条不紊、互不混掺的运动,这种流动形态称为层流;当流速较大时,质点运动轨迹曲折杂乱,各流层的质点互相混掺,形成大量大小不一的涡体,这种流动形态称为紊流;紊流中各处的流速、压强等运动要素值均随时间作不规则变化的现象称为紊流脉动。 由于紊流的脉动性,在研究紊流时,把运动要素值视为由时均值和脉动值迭

管道局部水头损失实验(完成)

武汉大学教学实验报告 实验名称 管道局部水头损失实验 指导老师 姓名 吴前进 年级 11级 学号 2011301580067 成绩 一:预习部分 1:实验目的 2:实验基本原理 3:主要仪器设备(含必要的元器件,工具) 一、实验目的 1、掌握测定管道局部水头损失系数ζ的方法。 2、将管道局部水头损失系数的实测值与理论值进行比较。 3、观测管经突然扩大时旋涡区测压管水头线的变化情况和水流情况,以及其他各种边界突变情况下的测压管水头线的变化情况。 二、实验原理 由于边界形状的急剧改变,水流就会与边界分离出现旋涡以及水流流速分布的改组,从而消耗一部分机械能。单位重量液体的能量损失就是水头损失。 边界形状的改变有水流断面的突然扩大或突然缩小、弯道及管路上安装阀门等。 局部水头损失常用流速水头与与系列的乘积表示。 g v h j 2ζ= 式中:ζ—局部水头损失系数。系数ζ是流动形状与边界形状的函数,即ζ= f (Re ,边界形状)。一般水流Re 数足够大时,可认为系数ζ不再随Re 数而变化,而看作常数。 管道局部水头损失目前仅有突然扩大可采用理论分析,并可得出足够精确的结果。其他情况则需要用实验方法测定ζ值。突然扩大的局部水头损失可应用动量方程与能量方程及连续方程联合求解得到如下公式: 2 2 112 112 1 22222)1(,2)1(,2A A g v h A A g v h j j -==-==ζζζζ 式中,A 1和v 1分别为突然扩大上游管段的断面面积和平均流速;A 2和v 2分别为突然扩大下游管段的断面面积和平均流速。 三、实验设备 实验设备及各部分名称如图一所示。 二:实验操作部分 1:实验数据,表格及数据处理 2:实验操作过程(可用图表示) 3结论 图一 局部水头损失实验仪 四、实验步骤 1、熟悉仪器,记录管道直径D 和d 。 2、检查各测压管的橡皮管接头是否接紧。 3、启动抽水机,打开进水阀门,使水箱充水,并保持溢流,使水位恒定。 4、检查尾阀K 全关时测压管的液面是否齐平,并保持溢流,使水位恒定。 5、慢慢打开尾阀K ,使流量在测压管量程范围内最大,待流动稳定后,记录测压管液面标高,用体积法测量管道流量。 6、调节尾阀改变流量,重复测量5次。 五、注意事项 1、实验必须在水流稳定后方可进行。 2、计算局部水头损失系数时,应注意选择相应流速水头;所选量测断面应选在渐变流上,尤其下游断面应选在旋涡区的末端,即主流恢复并充满全管的断面上。 六、实验成果及要求 1、有关常数。 圆管直径D =2.70 cm ,圆管直径d =1.46 cm

相关主题
文本预览
相关文档 最新文档