当前位置:文档之家› 常用结构分析设计软件之比较

常用结构分析设计软件之比较

常用结构分析设计软件之比较
常用结构分析设计软件之比较

常用结构软件比较

目前的结构计算程序主要有:PKPM系列(TAT、SATWE)、TBSA系列(TBSA、TBWE、TBSAP)、BSCW、GSCAD、 SAP系列。其他一些结构计算程序如ETABS等,虽然功能强大,且在国外也相当流行,但国内实际上使用的不多,故不做详细讨论。

一、结构计算程序的分析与比较

1、结构主体计算程序的模型与优缺点

从主体计算程序所采用的模型单元来说

TAT和TBSA属于结构空间分析的第一代程序,其构件均采用空间杆系单元,其中梁、柱均采用简化的空间杆单元,剪力墙则采用空间薄壁杆单元。在形成单刚后再加入刚性楼板的位移协调矩阵,引入了楼板无限刚性假设,大大减少了结构自由度。 SATWE、TBWE和TBSAP 在此基础上加入了墙元,SATWE和TBSAP还加入了楼板分块刚性假设与弹性楼板假设,更能适应复杂的结构。SATWE提供了梁元、等截面圆弧形曲梁单元、柱元、杆元、墙元、弹性楼板单元(包括三角形和矩形薄壳单元、四节点等参薄壳单元)和厚板单元(包括三角形厚板单元和四节点等参厚板单元)。另外,通过与JCCAD的联合,还能实现基础-上部结构的整体协同计算。TBSAP提供的单元除了常用的杆单元、梁柱单元外,还提供了用以计算板的四边形或三角形壳元、墙元、用以计算厚板转换层的八节点四十八自由度三维元、广义单元(包括罚单元与集中单元),以及进行基础计算用的弹性地基梁单元、弹性地基柱单元(桩元)、三角形或四边形弹性地基板单元和地基土元。TBSAP可以对结构进行基础-上部结构-楼板的整体联算。

从计算准确性的角度来说

SAP84是最为精确的,其单元类型非常丰富,而且能够对结构进行静力、动力等多种计算。最为关键的是,使用SAP84时能根据结构的实际情况进行单元划分,其计算模型是最为接近实际结构。 BSCW和GSCAD的情况比较特殊,严格说来这两个程序均是前后处理工具,其开发者并没有进行结构计算程序的开发。但BSCW与其计算程序一起出售,因此有必要提一下。BSCW一直是使用广东省建筑设计研究院的一个框剪结构计算软件,这个程序应属于空间协同分析程序,即结构计算的第二代程序(第一代为平面分析,第二代为空间协同,第三代为空间分析)。GSCAD则可以选择生成SS、TBSA、TAT或是SSW的计算数据。SS和SSW均是广东省建筑设计研究院开发的,其中SS采用空间杆系模型,与TBSA、TAT属于同一类软件;而SSW根据其软件说明来看也具有墙元,但不清楚其墙元的类型,而且此程序目前尚未通过鉴定。

薄壁杆件模型的缺点是:

1、没有考虑剪力墙的剪切变形。

2、变形不协调。

当结构模型中出现拐角刚域时,截面的翘曲自由度(对应的杆端力为双力矩)不连续,造成误差。另外由于此模型假定薄壁杆件的断面保持平截面,实际上忽略了各墙肢的次要变形,增大了结构刚度。同一薄壁杆墙肢数越多,刚度增加越大;薄壁杆越多,刚度增加越大。但另一方面,对于剪力墙上的洞口,空间杆系程序只能作为梁进行分析,将实际结构中连梁对墙肢的一段连续约束简化为点约束,削弱了结构刚度。连梁越高,则削弱越大;连梁越多,则削弱越大。所以计算时对实际结构的刚度是增大还是削弱要看墙肢与连梁的比例。

杆单元点接触传力与变形的特点使TBSA、TAT等计算结构转换层时误差较大。因为从实际结构来看,剪力墙与转换结构的连接是线连接(不考虑墙厚的话),实际作用于转换结构的力是不均匀分布力,而杆系模型只能简化为一集中力与一弯矩。

另一方面,由于一个薄壁柱只有通过剪心传递力与位移,所以在处理多墙肢薄壁柱转换时十分麻烦,如将剪心与下层柱相连,则令转换梁过于危险,如设置实际并不存在的计算洞令力传至转换梁又会改变上层墙体的变形协调条件(不要相信TBSA手册中所言设连梁高为层高可以解决问题,一段连续约束简化成一个点约束,误差决不会小)。

为了解决薄壁柱单元造成剪力墙分析过于粗糙的问题,ETABS、SAP84、SATWE、TBWE、TUS、TBSAP等软件先后引入了墙单元。对于有墙元模型的软件,要分清楚其单元类型。

墙元有两种:一是板-梁墙元(又称Wilson嵌板单元模型),这种模型在国外应用较多。其实质是平面单元,把剪力墙简化为一个膜单元+边梁+边柱,基本上是一个由平面单元经改造成的空间单元。剪力墙洞口间部分模型化为一个梁单元,削弱了剪力墙实际的变形协调关系,由前一段的讨论可知这种单元导致整体计算结果偏柔;一是由有限元中的四节点空间壳元缩聚而来的(以下称为板壳墙元),板壳元既有平面内刚度也有平面外刚度,且剪力墙洞口间部分也作为墙元进行整体分析,因此板壳墙元更能精确地分析复杂剪力墙结构。以上几种带有墙元的软件中,ETABS和TUS采用板-梁墙元,SAP84、SATWE和TBSAP均采用壳墙元。TBWE 所采用的墙组元实际上是一种改进的薄壁杆件模型,它与普通的薄壁杆件模型的不同之处在于:

1、不强求剪力墙为开口截面,可以分析闭口及半开半闭截面;

2、其杆件未知位移取为杆端截面的横向位移和各节点的纵向位移,数目随墙肢节点数增加而增加,不象普通薄壁杆件那样固定为14个,保证了杆件的位移协调;

3、采用最小势能原理,建立考虑剪力墙剪切变形的总势能表达式,然后对其求导并令其值为0即建立考虑剪切变形的单元刚度矩阵。墙组元实际上是一种介于薄壁杆件单元和连续体有限元之间的分析单元。

从结构分析的准确性来说,从好到差排列依次为:板壳墙元、墙组元、板-梁墙元。

另外一个有争议的问题是对异形柱的处理。异形柱在广东又叫短肢剪力墙,虽然名称和剪力墙拉上了关系,但其计算却不能用剪力墙的方法来算。TBSA用户手册建议将异形柱折算成惯性矩相同的矩形截面柱进行整体分析,取得内力后再进行详细的计算。这种方法用起

来很不方便,另外这种折算只能保证两个参数的正确,其他如截面面积、转动惯量等参数都很难与原构件保持一致。

目前能直接对异形柱进行计算与绘图的软件有BSCW、 GSCAD和PKPM。由于广东省建筑设计研究院在异形柱的研究方面有比较成熟的理论,因此BSCW和GSCAD对异形柱的计算与绘图极为方便可靠,目前广东省住宅建筑设计常采用短肢剪力墙结构,导致大量的异形柱,因此这两个程序比较流行。在用PMCAD进行输入时,可以看到有不同类型的截面,采用这些截面输入的异形柱可以传递到TAT或SATWE中进行计算,并在PK中进行配筋(仅适用于99年5月以后的Windows版程序),不过PKPM中对异形柱内力的求算并不是通过查表进行(广州城市建设开发总公司设计院编制的广东省异形柱规程采用此方法,这些表格是根据有限元分析的结果编制的),而是参考了多肢剪力墙的配筋方法,在求出作用于形心的弯矩、轴力、剪力后按照材料力学公式分解到异形截面每一关键点的应力,通过积分得到每一段柱肢平面内的弯矩、轴力和剪力,然后以每一直线段柱肢作为一个矩形截面,按对称配筋计算出其钢筋面积。

二结构主体计算程序的适用性与易用性比较

从适用性(功能)的角度,按强到弱排列依次为:

ETABS>SAP84>SATWE、TBSAP>TBWE、GSCAD、TUS>TAT、TBSA >BSCW。ETABS除一般高层计算功能外,还可计算钩、顶、弹簧、结构阻尼运动、斜板、变截面梁或腋梁等特殊构件和一定的结构非线性变形;

SAP84原本是一个通用有限元程序,后来为结构分析的需要加入了墙元等专用单元,其单元库最为完备,功能强大;SATWE和TBSAP应属于同一档次的软件,都能进行楼板和剪力墙的有限元分析,适应工程的能力强,而TBWE、GSCAD和TUS则差一些,不能进行弹性楼板计算;BSCW只能进行平面为正交布置的结构计算,是没有前途的软件。

从易用性的角度来看

按好到差的顺序排列应为:

TUS>GSCAD、SATWE、TAT>TBSA、TBWE>BSCW>SAP84、ETABS。

TUS的图形界面在WINDOWS下开发,较之其它国内开发的高层计算程序的图形界面更加良好;GSCAD和新版的PKPM 均为WINDOWS界面软件,但带有DOS下的影子;SAP84和ETABS 则最为麻烦。这个排列不仅考虑了图形界面的优劣,还尽量反映各种软件前后处理过程中的方便程度。比如GSCAD、SATWE、TAT在进行图形输入时均能做到修改结构平面后不影响原有荷载,而TBSA则没有实现这一点。

从综合性能来说

PKPM系列的SATWE是最好的,主要优点在于:能适应目前复杂的结构计算要求,数据准备工作量小,计算中可考虑多种因素,施工图出图方便。SATWE经过多年发展,已经可以在

计算中考虑多种影响因素,如:

1、恒、活载分算;

2、梁活载不利布置计算;

3、柱、墙及基础活载折减;

4、钢结构计算;

5、上部结构与地下室联合工作分析及地下室设计;

6、斜梁分析与设计;

7、复杂砌块结构有限元分析与抗震验算。

这些功能的加入,使结构工程师无需在整体计算后再手算进行补充计算,减轻了工作量。

三、结构前后处理软件的比较

讲到这个问题,可以肯定的是SAP84的输入是最麻烦的,不知其新的图形输入工具(GIS)有无改进。其余软件按数据输入的麻烦程度从难到易排列:BSCW、GSCAD、PKPM、TBSA。当然这只是考虑一次性输入的情况,如果结构平面经常修改的话TBSA应被列为较麻烦的一类,主要是结构平面一改就要重新输入该层的荷载。如果想避免这种麻烦的话可以用如SASCAD等软件,既进行前处理,也能进行TBSA后处理。PKPM本身的PMCAD已经考虑到了这个问题,GSCAD、SASCAD也解决了这个问题。

以上列举的结构软件中只有PKPM、BSCW和GSCAD具有结构后处理功能。后处理的能力由大到小排列应为GSCAD> PKPM>BSCW,考虑到广东地区的特殊要求,可以说BSCW比PKPM更符合广东人的习惯。GSCAD和PKPM在形成施工图的过程中均可以进行大量的人工干预,相比较而言GSCAD对图纸的修改更为方便。GSCAD既可以很直观地在平面图上修改各种构件的配筋,也可以直接修改表格或平法中的数据,修改很方便。而且这些数据均是联动的,改动在所有的文件中都能实时反映出来,另外在修改配筋时可以方便地查询计算配筋量和弯矩包络图,这说明编制者在利用Windows界面改善易用性方面下了一番功夫。而PKPM则只能先在平面简图上进行修改,然后一次性形成表格或平法图,但PKPM中可以方便地对各种构件进行后期验算,如:梁挠度、裂缝等。

至于施工图的质量,对于广东人来说则是GSCAD最好,修改也容易。PKPM的施工图比较完备,但图面比较乱,修改起来也比较麻烦, 1:1的比例绘图不是大多数设计人员容易接受的,最好能改为真实尺寸绘图。这三种软件的配筋均比较合理,尤其是板的配筋,这对于结构人员来说是很重要的。 TBSA自身虽然没有后处理能力,但由于其流行面广,各种后处理软件很多,如:SASCAD、JYCAD、TASD、TSSD、 TBCAD、德赛的SDS和BCDS等等。从功能来说,最好的应是SASCAD,既可前处理,又可后处理,功能比较完备,也可以进行各种后期验算,免除了手算校核的麻烦。缺点是作为一个DOS下的程序,使用不如WINDOWS下的程

序方便,而且显示分辨率固定在640X480,且图面比较乱,出板配筋图时一定要人工归并板,否则板的类型太多,且梁配筋不是很合理。JYCAD(佳友)则是比较早就有了,由于建筑在AUTOCAD R12基础上,使用起来不大方便,功能也一般。

从发展来看,SASCAD要好过JYCAD,因为SASCAD已准备出WINDOWS版,显示分辨率当然不成问题,另外剪力墙施工图功能也准备加入。另外还要提一点的是SASCAD是自主开发的平台,不象其他软件是建筑在AUTOCAD的基础上的。由于目前AUTODESK公司已开始对国内设计院的D版AUTOCAD软件进行扫荡,这个因素也开始进入考虑范围了。这几种软件的共同缺点是配筋合理性不如PKPM、BSCW和GSCAD。

可以说目前没有一个前后处理软件是完全令人满意的。如果重视软件功能的话,应选择SASCAD,但每次出图都要仔细地审核每根梁的钢筋,后期调整工作量大,不过其前处理最符合CAD习惯;如果重视易用性的话,目前应选择GSCAD,前处理比SASCAD麻烦,但后期调整很方便,在Windows下灵活的调整方法让人不以为苦。然而从发展的眼光看,SASCAD可能是较好的选择,因为这个软件将要出剪力墙配筋图(这可是除PKPM外其他同类软件所没有的功能,最起码我上面提到的几个是没有的),而且随之将转换到Windows平台,更重要的一点是承诺为购买此软件的设计院定制图表,使之符合各院的习惯。

最理想的结构前后处理软件应具有如下的特征:

1、一次输入可形成多种结构计算软件的输入数据,至少包括两个采用不同计算模型的主体计算程序的数据,比如:TBSA、TAT和SATWE,当然如能形成SAP84等有限元软件的计算数据就更理想了;

2、可以使用类似AutoCAD的方法输入结构平面(SASCAD已做到),当修改结构平面时原有荷载不乱(PKPM、SASCAD、GSCAD均已做到);

3、能进行梁裂缝、挠度验算等后期计算(如PKPM、SASCAD);

4、人工修改配筋时应该既能在平面上直接选取构件并以直观的简图修改(如PKPM、SASCAD和GSCAD),又能方便地直接修改所形成的图表(如GSCAD),并且各种出图方式之间数据联动;

5、具备异形柱和剪力墙表格法出图和大样法出图(目前只有PKPM能出剪力墙配筋图,SASCAD正在做这个模块,其他软件没有);

6、允许用户定制图表与出图风格或由开发者进行调整;

7、图形界面符合Windows下软件界面风格。总而言之,前后处理软件除了要功能强大外,还要易用为主。

室内设计CAD常用快捷键

室内设计CAD常用快捷键 CAD快捷键大全 L, *LINE 直线 ML, *MLINE 多线(创建多条平行线) PL, *PLINE 多段线 PE, *PEDIT 编辑多段线 SPL, *SPLINE 样条曲线 SPE, *SPLINEDIT 编辑样条曲线 XL, *XLINE 构造线(创建无限长的线) A, *ARC 圆弧 C, *CIRCLE 圆 DO, *DONUT 圆环 EL, *ELLIPSE 椭圆 PO, *POINT 点 DCE, *DIMCENTER 中心标记 POL, *POLYGON 正多边形 REC, *RECTANG 矩形 REG, *REGION 面域 H, *BHATCH 图案填充 BH, *BHATCH 图案填充 -H, *HATCH HE, *HATCHEDIT 图案填充...(修改一个图案或渐变填充)SO, *SOLID 二维填充(创建实体填充的三角形和四边形)*revcloud 修订云线 *ellipse 椭圆弧 DI, *DIST 距离 ME, *MEASURE 定距等分 DIV, *DIVIDE 定数等分 DT, *TEXT 单行文字 T, *MTEXT 多行文字 -T, *-MTEXT 多行文字(命令行输入) MT, *MTEXT 多行文字 ED, *DDEDIT 编辑文字、标注文字、属性定义和特征控制框ST, *STYLE 文字样式 B, *BLOCK 创建块... -B, *-BLOCK 创建块...(命令行输入) I, *INSERT 插入块 -I, *-INSERT 插入块(命令行输入) W, *WBLOCK “写块”对话框(将对象或块写入新图形文件)-W, *-WBLOCK 写块(命令行输入)

(整理)各种光学设计软件介绍-学习光学必备-peter.

光学设计软件介绍 ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential),是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V是Optical Research Associates推出的大型光学设计软件,功能非常强大,价格相当昂贵CODE V提供了用户可能用到的各种像质分析手段。除了常用的三级像差、垂轴像差、波像差、点列图、点扩展函数、光学传递函数外,软件中还包括了五级像差系数、高斯光束追迹、衍射光束传播、能量分布曲线、部分相干照明、偏振影响分析、透过率计算、一维物体成像模拟等多种独有的分析计算功能。是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 CODE V是美国著名的Optical Research Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODE V程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用1994年,ORA公司聘请北京理工大学光电工程系为其中国服务中心。与国际上其它商业性光学软件相比,CODE V的优越性突出地表现在以下几个方面: 1.CODE V可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地

常用光学设计软件介绍

ZEMAX ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential)。 ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance 参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V CODE V是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 OSLO oslo是一套标准建构系统及最佳化的光学软件。最主要地,他是用来决定光学系统中最佳组件的大小和外型,如照相机、客户产品、通讯系统、军事/外层空间应用以及科学仪器等。除此之外、他也常用于仿真光学系统性能以及发展出一套对光学设计、测试和制造的专门软件工具。 LENSVIEW LensVIEW为搜集在美国以及日本专利局申请有案的光学设计的数据库,囊括超过18,000个多样化的光学设计实例,并且每一实例都显示它的空间位置。它搜集从1800年起至目前的光学设计数据,这个广博的LensVIEW数据库不仅囊括光学描述数据,而且拥有设计者完整的信息,摘要,专利权状样本,参考文件,美国和国际分类数据,和许多其它的功能。LensVIEW 并能产生各式各样像差图,做透镜的快速诊断,和绘出这个设计的剖面图。 ASAP ASAP是功能强大的光学分析软件,是专为仿真成像或光照明的应用而设计,让您的光学工程工作更加正确且迅速。ASAP让您在制作原型系统或大量生产前可以预先做光学系统的仿真以便加快产品上市的时间。 传统描光程序的速度是非常烦琐秏时的。ASAP对于整个非序列性描光工具都经过速度的优化处理,让您可以在短时间内就可做数百万条几何描光的计算。光线可不计顺序及次数的经过表面,还可向前,向后追踪。此外ASAP具有强大的指令集可以让您进行特性光线以及物体的

光学系统设计

光学系统设计(五) 一、单项选择题(本大题共 20小题。每小题 1 分,共 20 分) 在每小题列出的四个备选项中只有一个是正确的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.对于密接双薄透镜系统,要消除二级光谱,两透镜介质应满足 ( )。 A.相对色散相同,阿贝常数相差较小 B.相对色散相同,阿贝常数相差较大 C.相对色散相差较大,阿贝常数相同 D.相对色散相差较小,阿贝常数相同 2.对于球面反射镜,其初级球差表达公式为 ( )。 A.?δ2h 81L =' B. ?δ2h 81L -=' C. ?δ2h 41 L =' D. ?δ2 h 41 L -=' 3.下列光学系统中属于大视场大孔径的光学系统是 ( )。 A.显微物镜 B.望远物镜 C.目镜 D. 照相物镜 4.场曲之差称为 ( )。 A.球差 B. 彗差 C. 像散 D. 色差 5.初级球差与视场无关,与孔径的平方成 ( )。 A.正比关系 B.反比关系 C.倒数关系 D.相反数关系 6.下面各像差中能在像面上产生彩色弥散斑的像差有( )。 A.球差 B.场曲 C.畸变 D.倍率色差 7.不会影响成像清晰度的像差是 ( )。 A.二级光谱 B.彗差 C.畸变 D.像散 8.下列光学系统中属于大视场小孔径的光学系统是 ( )。 A.显微物镜 B.望远物镜 C.目镜 D. 照相物镜 9.正弦差属于小视场的 ( )。 A.球差 B. 彗差 C. 畸变 D. 色差 10.初级子午彗差和初级弧矢彗差之间的比值为 ( )。 :1 :1 C.5:1 :1 11.光阑与相接触的薄透镜重合时,能够自动校正 ( )。 A.畸变 B.场曲 C.球差 D.二级光谱 12.在子午像差特性曲线中,坐标中心为z B ',如0B '位于该点左侧,则畸变值为 ( )。 A.正值 B.负值 C.零 D.无法判断 13.厚透镜之所以在校正场曲方面有着较为重要的应用,是因为 ( )。 A.通过改变厚度保持场曲为零 B.通过两面曲率调节保持光焦度不变 C.通过改变厚度保持光焦度不变 D.通过两面曲率调节保持场曲为0 14.正畸变又称 ( )。 A.桶形畸变 B.锥形畸变 C.枕形畸变 D.梯形畸变 15.按照瑞利判断,显微镜的分辨率公式为 ( )。 A.NA 5.0λσ= B. NA 61 .0λ σ= C.D 014' '=? D. D 012' '=? 16.与弧矢平面相互垂直的平面叫作 ( )。 A.子午平面 B.高斯像面 C.离焦平面 D.主平面 17.下列软件中,如今较为常用的光学设计软件是 ( )。 软件 软件 软件 软件 18.光学传递函数的横坐标是 ( )。 A.波长数 B.线对数/毫米 C.传递函数值 D.长度单位 19.星点法检验光学系统成像质量的缺陷是 ( )。

光电软件集合

光电软件集合(转载). 1.APSS.v 2.1.Winall.Cracked 光子学设计,可用于光材料、器件、波导和光路等的设计 2.ASAP.v7.14/7.5/8.0.Winall.cracked/Full 世界各地的光学工程师都公认ASAPTM(Advanced Systems Analysis Program,高级系统分析程序)为光学系统定量分析的业界标准。 3.Pics3d.v200 4.1.28.winall.cracked 电子.光学激光2D/3D有限元分析及模形化装置软件 https://www.doczj.com/doc/0f13614285.html,stip.v2004.1.28.winall.cracked 半导体激光装置2D模拟软件 5.Apsys.2D/3D.v2004.1.28.winall.cracked 激光二极管3D模拟器 6.PROCOM.v2004.1.2.winall.cracked 化合物半导体模拟软件 7.Zemax.v2003.winall.cracked/EE ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起。 8.ZEBASE Zemax镜头数据库 9.OSLO.v6.24.winall.licensed/Premium OSLO 是一套处理光学系统的布局和优化的代表性光学设计软件。最主要的,它是用来决定光学系统中最佳的组件大小和外型,例如照相机、客户产品、通讯系统、军事/外太空应用以及科学仪器等。除此之外,它也常用于仿真光学系统性能以及发展出一套对光学设计、测试和制造的专门软件工具 10.TracePro.v324.winall.licensed/Expert TracePro 是一套能进行常规光学分析、设计照明系统、分析辐射度和亮度的软件。它是第一套以符合工业标准的ACIS(固体模型绘图软件)为核心所发展出来的光学软件,是一个结合真实固体模型、强大光学分析功能、信息转换能力强及易上手的使用界面的仿真软件,它可将真实立体模型及光学分析紧紧结合起来,其绘图界面非常地简单易学。 11.Lensview.UPS.winall.cracked LensVIEW 为搜集在美国以及日本专利局申请有案的光学设计的数据库,囊括超过18,000个多样化的光学设计实例,支持Zemax,OSLO,Code V等光学设计软件。 12.Code V.v940.winall.licensed CODE V是美国著名的Optical Research Associates公司研制的具有国际领先水平的大型光学工程软件。 13.LightTools.v4.0/sr1.winall.cracked LightTools是一个全新的具有光学精度的交互式三维实体建模软件体系,提供最现代化的手段直接描述光学系统中的光源、透镜、反射镜、分束器、衍射光学元件、棱镜、扫描转鼓、机械结构以及光路。 14.OptiSystem.v3.0.winall.cracked 光通信系统模拟软件,此软件可以设计、测试,与最佳化几乎任何一种在光网路系统的宽谱中的物理层次光连结

最新PCB设计常用快捷键

1 2 常用快捷键 3 P/P 画元件引脚 4 P/A 画弧线 5 P/L 画直线 6 P/R 画矩形 7 T/C 创建一个新的元器件 8 T/R 删除原理图元件库浏览器窗口中选中的元器件9 T/E 为原理图元件库中选中的元器件重命名 10 T/W 为原理图元件库中选中的元器件创建一个子件11 T/T 删除原理图元件库中选中的元器件子件 12 二、原理图绘制常用快捷键 13 Ctrl + 空格键重复上一次操作 14 Alt + 空格键取消上一次操作 15 PageUP 以光标当前位置为中心进行放大 16 Ctrl + PageDown 显示所有图件 17 PageDown 以光标当前位置为中心进行缩小 18 End 或 V/R 刷新工作区 19 Shift + ← 光标以十倍锁定栅格的尺寸为单位左移20 Shift + ↑ 光标以十倍锁定栅格的尺寸为单位上移21

Shift + ↓ 光标以十倍锁定栅格的尺寸为单位下移23 Shift + Insert 粘贴 24 Ctrl + Insert 复制 25 Shift + Delete 剪切 26 Ctrl + Delete 删除 27 Ctrl + F 查找元件 28 P/P 放置元件 29 P/W 画连线 30 P/B 画总线 31 P/U 画总线分支线 32 P/J 放置电路接点 33 P/O 放置电源或地 34 P/N 放置网络标号 35 三、 PCB 库元件制作常用快捷键 36 PageUP 以光标当前位置为中心进行放大 37 Ctrl + PageDown 显示所有图件 38 PageDown 以光标当前位置为中心进行缩小 39 End 或 V/R 刷新工作区 40 Shift + ← 光标以十倍锁定栅格的尺寸为单位左移41 Shift + ↑ 光标以十倍锁定栅格的尺寸为单位上移42 Shift + → 光标以十倍锁定栅格的尺寸为单位右移43

Light Tools软件介绍

LightTools 简介 LightTools 是一个全新的具有光学精度的交互式三维实体建模软件体系,提供最现代化的手段直接描述光学系统中的光源、透镜、反射镜、分束器、衍射光学元件、棱镜、扫描转鼓、机械结构以及光路。由于LightTools 把光学和机械元件集合在统一的体系下处理,并配有“放置”光源、发射光线的非顺序面光线追迹的强大功能,使它在系统初步设计、复杂系统设计规划、光机一体设计、杂光分析、照明系统设计分析、单位各部门间学术交流和数据交换、课题论证或产品推广等各环节中均可发挥重要的作用,成为人们理想的工具。 LightTools 简介 美国Optical Research Associates (ORA?) 公司以研制国际领先的CODE V? 光学工程软件而著称于世。1995年,该公司根据用户需求和计算机技术的发展,隆重推出最新产品—光学系统建模软件LightTools,马上得到各国用户的欢迎和好评,并获得国际大奖。1997年,ORA 又研制成功与LightTools 主体程序配套使用的Illumination 模块,圆满地解决了照明系统的计算机辅助设计问题。 其中的主要功能简单介绍如下: 系统建模 提供多种展现系统光机模型的方式和人机交互的手段。使用者可直接在系统的二维、三维线框图或三维实体模型图上进行各种操作。方便易用的图形交互式建模和修改功能包括元件或元件组的放置、移动、旋转、复制和缩放。操作时既可用鼠标以实时观察修改造成的效果,也可用键盘以输入准确的数据。透镜、反射镜和棱镜等光学元件及各种机械件可以极快地以图形方式“画入”系统。系统数据可以用表格和元件详情对话框的形式列出和修改。所有上述各种输入方式同时并存,可交替使用。 光机一体化设计 光学和机械元件的形状的描述是通过对软件提供的一组尺寸可变的基本实体模型做布尔运算(与、或、异等等)实现的。这些光学或机械部件的形状虽然可能非常复杂,但均可以在软件中得到精确的展现和描绘,并以光学精度进行光线追迹。遮光罩、镜筒和产品结构的设计均将大大得益于这种光机一体的考虑方法和非顺序光线追迹提供的大量信息。 复杂光路设置 在光学设计中,LightTools 可以和ORA 公司研制的CODE V 软件配合使用。特别是在多光路或折迭光路系统、带有棱镜或复杂曲面的系统的光路设置和视觉建模型验证中,LightTools 将发挥重要作用。有了LightTools,设计人员完全可以摒弃过去为了简化问题而采用的一些传统技巧,如符号规则、用多通道定义模拟变焦功能、把反射镜和棱镜展开成平板、略去非光学面和机械结构的影响、人为简化光瞳形状,等等。

办公设计软件快捷键大全+笔记本电脑快捷键

笔记本电脑快捷键大全 熟记以下快捷键,你就就能脱离鼠标,光用键盘操作电脑了! 一、常见用法: F1 显示当前程序或者windows的帮助内容。 F2 当你选中一个文件的话,这意味着“重命名” F3 当你在桌面上的时候是打开“查找:所有文件” 对话框 F10或ALT 激活当前程序的菜单栏 windows键或CTRL+ESC 打开开始菜单 CTRL+ALT+DELETE 在win9x中打开关闭程序对话框 DELETE 删除被选择的选择项目,如果是文件,将被放入回收站 SHIFT+DELETE 删除被选择的选择项目,如果是文件,将被直接删除而不是放入回收站 CTRL+N 新建一个新的文件 CTRL+O 打开“打开文件”对话框 CTRL+P 打开“打印”对话框 CTRL+S 保存当前操作的文件 CTRL+X 剪切被选择的项目到剪贴板 CTRL+INSERT 或 CTRL+C 复制被选择的项目到剪贴板 SHIFT+INSERT 或 CTRL+V 粘贴剪贴板中的内容到当前位置 ALT+BACKSPACE 或 CTRL+Z 撤销上一步的操作 ALT+SHIFT+BACKSPACE 重做上一步被撤销的操作 Windows键+M或windows+D 最小化所有被打开的窗口。 Windows键+shift+M或windows+D 重新将恢复上一项操作前窗口的大小和位置 Windows键+E 打开资源管理器 Windows键+F 打开“查找:所有文件”对话框 Windows键+R 打开“运行”对话框 Windows键+BREAK 打开“系统属性”对话框 Windows键+CTRL+F 打开“查找:计算机”对话框 SHIFT+F10或鼠标右击打开当前活动项目的快捷菜单 SHIFT 在放入CD的时候按下不放,可以跳过自动播放CD。在打开word 的时候按下不放,可以跳过自启动的宏

选择最佳的光学设计软件

用于设计攸关产品成败的光学系统的软件 选择最佳的光学设计软件 作为公司决策人,需要为解决公司的盈亏问题做出明智选择时,您会选择哪一种光学设计软件呢?如果光学系统的性能攸关产品成败,那么答案将是 CODE V ?。CODE V 能够增进设计团队的设计效率,提高首次设计和制造的成功率,加快产品上市时间,让您的产品具有所向披靡的竞争优势。 CODE V 软件由 Optical Research Associates (ORA ?) 开发而成。四十多年来,ORA 帮助许多客户走上成功之路: ? ORA 拥有世界上规模最大的商业光学工程软件开发 队伍。 ? ORA 利用最先进的软件配置管理方法,将软件开发流 程形式化,确保在这样的开发环境下能够产生创新算法,以提供高质量、高可靠性、高度精确的结果。 ? ORA 的客户支持员工具有 50 多人年的工程经 验,专门致力于帮助客户成功应用我们的产品。这是他们的全职工作,而不是额外承担的责任。 ? ORA 拥有专业软件测试员工。我们的测试人员 每天会构造和评估成百上千的测试案例,对开发中的代码进行测试。 ? ORA 的内部工程服务小组会在最尖端的真实工 程应用中验证 CODE V 的每个版本。 ? ORA 的员工中包括三名 OSA 研究员和四名 SPIE 研究员。ORA 的工程师们已发表 300 多篇学术论文,有些人还是与光学系统有关的近 100 项专利的发明人或共同发明人。 ORA 以开发世界一流的光学工程软件产品为己任。在这种力创一流的精神指引下,我们的产品使客户受益颇多,下面是其中的几个方面。 增进设计团队的设计效率 CODE V 的开发宗旨是帮助光学工程师完成从概念到制造的整个设计周期。Windows 标准图形用户界面有助于新用户快速掌握 CODE V 的强大功能。CODE V 还支持命令行输入、易于学习的宏编辑功能以及 COM 应用编程接口 (API)。所有这些将能让您的工程师们以最有效的方式使用程序,并且允许将 CODE V 与支持 COM 的其它工程软件工具整合使用。 CODE V 图形用户界面 (GUI) CODE V 有能力让工程师们为极其复杂的系统建模并进行分析。CODE V 支持多种不同的用户可编程子程序(例如: 用户编程的表面形状和用户编程的表面属性等),以充分运用系统建模的灵活性。任何基本表面形状均可应用衍射属性,以便进行光栅、kinoform 、二元光学系统等的建模。通过焦点分析、真实无焦建模(非常适合于设计目视系统)及其它功能,CODE V 支持像散光源、偏振器件、单轴晶体双折射材料、应力双折射建模。

光学设计软件zemax study

光学系统设计(Zemax初学手册)蔡长青 ISUAL 计划团队 国立成功大学物理系 (第一版,1999年7月29日) 内容纲目: 前言 习作一:单镜片(Singlet) 习作二:双镜片 习作三:牛顿望远镜 习作四:Schmidt-Cassegrain和aspheric corrector 习作五:multi-configuration laser beam expander 习作六:fold mirrors和coordinate breaks 习作七:使用Extra Date Editor, Optimization with Binary Surfaces 前言 整个福尔摩沙卫星二号「红色精灵」科学酬载计划,其量测仪器基本上是个光学仪器。所以光学系统的分析乃至于设计与测试是整个酬载发展重要一环。 这份初学手册提供初学者使用软件作光学系统设计练习,整个需要Zemax光学系统设计软件。它基本上是Zemax使用手册中tutorial的中文翻译, 由蔡长青同学完成,并在Zemax E. E. 7.0上测试过。由于蔡长青同学不在参与「红色精灵」计划,所以改由黄晓龙同学接手进行校稿与独立检验,整个内容已在Zemax E. E. 8.0版上测试过。我们希望藉此初学手册(共有七个习作)与后续更 多的习作与文件,使团队成员对光学系统设计有进一步的掌握。(陈志隆注)(回内容纲目) 习作一:单镜片(Singlet) 你将学到:启用Zemax,如何键入wavelength,lens data,产生ray fan,OPD,spot diagrams,定义thickness solve以及variables,执行简单光学设计优化。 设想你要设计一个F/4单镜片在光轴上使用,其focal length 为100mm,在可见光谱下,用BK7镜片来作。

广告设计软件快捷键

将选取物件向上对齐【T】 将选取物件向下对齐【B】 将选取物件向右对齐【R】 将选取物件向左对齐【L】 垂直对齐选取物件的中心【C】水平对齐选取物件的中心【E】重复上一个动作【Ctrl】+【R】 将选取图块或文字发送到最上层【Shift】+【PageUp】 将选取图块或文字发送到最上层【Shift】+【PageDown】

按"D"恢复到原来默认的前景色和背景色 按“X"切换前景色和背景色 一、工具箱(多种工具共用一个快捷键的可同时按【Shift】加此快捷键选取) 矩形、椭圆选框工具【M】 移动工具【V】 套索、多边形套索、磁性套索【L】 魔棒工具【W】 裁剪工具【C】 切片工具、切片选择工具【K】 喷枪工具【J】 画笔工具、铅笔工具【B】 像皮图章、图案图章【S】 历史画笔工具、艺术历史画笔【Y】 像皮擦、背景擦除、魔术像皮擦【E】 渐变工具、油漆桶工具【G】 模糊、锐化、涂抹工具【R】 减淡、加深、海棉工具【O】 路径选择工具、直接选取工具【A】 文字工具【T】 钢笔、自由钢笔【P】 矩形、圆边矩形、椭圆、多边形、直线【U】 写字板、声音注释【N】 吸管、颜色取样器、度量工具【I】 抓手工具【H】 缩放工具【Z】 默认前景色和背景色【D】 切换前景色和背景色【X】 切换标准模式和快速蒙板模式【Q】 标准屏幕模式、带有菜单栏的全屏模式、全屏模式【F】 跳到ImageReady3.0中【Ctrl】+【Shift】+【M】 临时使用移动工具【Ctrl】 临时使用吸色工具【Alt】 临时使用抓手工具【空格】 快速输入工具选项(当前工具选项面板中至少有一个可调节数字) 【0】至【9】循环选择画笔【[】或【]】 建立新渐变(在”渐变编辑器”中) 【Ctrl】+【N】

CODE V光学设计软件简介

CODE V光学设计软件简介! ??CODE V是一个光学系统设计和分析优化软件,广泛使用于照相设备、摄影机和医疗器具等,功能强大使用简单灵活。??[attachment=136] ? CODE V是美国著名的OpticalResearch Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODEV程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用。??一. 包罗万象的适用范围 ?CODEV可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心和/或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地处理屋脊棱镜、角反射镜、导光管、光纤、谐振腔等具有特殊光路的元件;而其多重结构的概念则包括了常规变焦镜头,带有可换元件、可逆元件的系统,扫描系统和多个物像共轭的系统。40多年来,世界各地的用户已成功地利用CODE V设计研制了大量照相镜头、显微物镜、光谱仪器、空间光学系统、激光扫描系统、全息平显系统、红外成像系统、紫外光刻系统等等,举不胜举。近几年内,CODE V软件又被广泛地应用于光电子和光通讯系统的设计和分析。[attachment=137] ???图1.带有非顺序面的系统及梯度折射率元件示例??二.空前强大的自动设计能力??光学设计的第一步是要为系统确定合理的初始结构。为此CODEV提供了独有的“镜头魔棒”功能,用户只需输入所要设计的系统的使用波段、相对孔径、视场、变倍比等参数,软件即可从自带的专利库中找出对应的结构以供选择。?CODEV软件中优化计算的评价函数可以是系统的垂轴像差、波像差或是用户定义的其它指标,也可以直接对指定空间频率上的传递函数值进行优化。经过改进的阻尼最小二乘优化算法用拉格朗日乘子法提供既方便又精确的边界条件控制。除了程序本身带有大量不同的优化约束量供选用外,用户还可以根据需要灵活地定义各种新的约束量。此外,以往的优化算法无法克服存在于光学系统结构参量的高度非线性解空间中的大量局部极小,故此自动设计的结果是一个与初始参数接近的像质相对较好的结构,而不一定是全局最优设计。为解决这一问题,ORA公司在CODE V软件中加入了强大的全局优化功能(Global Synthesis?)。这种被该公司严格保密的算法不仅可以跳出局部极小继续在解空间中寻找更佳设计,而且可以在优化结束时将找到的满足设计要求的各种完全不同的结构形式一一列出供使用 者根据实际需要选择。这是目前世界上唯一证实可行并已实用化的全局优化程序,其优化能力在国际上遥遥领先。四年一届的国际光学设计会议是本领域影响最大的专业技术研讨会,在90年代以来的近几届会议中,组织者每次都向世界上各有关单位和专家发出一个设计竞赛题目,而每届收到的参赛结果的前几名都是用CODEV软件优化设计出来的,充分说明CODE V的优化功能已经成为世界各地光学设计专家

常见光学仿真设计软件

1.APSS.v 2.1.Winall.Cracked 光子学设计软件,可用于光材料、器件、波导和光路等的设计 2.ASAP.v7.14/7.5/8.0.Winall.cracked/Full 世界各地的光学工程师都公认ASAPTM(Advanced Systems Analysis Program,高级系统分析程序)为光学系统定量分析的业界标准。 注:另附9张光源库 3.Pics3d.v200 4.1.28.winall.cracked 电子.光学激光2D/3D有限元分析及模形化装置软件 https://www.doczj.com/doc/0f13614285.html,stip.v2004.1.28.winall.cracked 半导体激光装置2D模拟软件 5.Apsys.2D/3D.v2004.1.28.winall.cracked 激光二极管3D模拟器 6.PROCOM.v2004.1.2.winall.cracked 化合物半导体模拟软件 7.Zemax.v2003.winall.cracked/EE ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起。 8.ZEBASE Zemax镜头数据库 9.OSLO.v6.24.winall.licensed/Premium OSLO 是一套处理光学系统的布局和优化的代表性光学设计软件。最主要的,它是用来决定光学系统中最佳的组件大小和外型,例如照相机、客户产品、通讯系统、军事 /外太空应用以及科学仪器等。除此之外,它也常用于仿真光学系统性能以及发展出一套对光学设计、测试和制造的专门软件工具。 10.TracePro.v324.winall.licensed/Expert TracePro 是一套能进行常规光学分析、设计照明系统、分析辐射度和亮度的软件。它是第一套以符合工业标准的ACIS(固体模型绘图软件)为核心所发展出来的光学软件,是一个结合真实固体模型、强大光学分析功能、信息转换能力强及易上手的使用界面的仿真软件,它可将真实立体模型及光学分析紧紧结合起来,其绘图界面非常地简单易学。 11.Lensview.UPS.winall.cracked LensVIEW 为搜集在美国以及日本专利局申请有案的光学设计的数据库,囊括超过 18,000个多样化的光学设计实例,支持Zemax,OSLO,Code V等光学设计软件。 12.Code V.v940.winall.licensed CODE V是美国著名的Optical Research Associates公司研制的具有国际领先水平的大型光学工程软件。 13.LightTools.v4.0/sr1.winall.cracked LightTools是一个全新的具有光学精度的交互式三维实体建模软件体系,提供最现代化的手段直接描述光学系统中

ZEMAX光学设计软件操作说明详解

【ZEMAX光学设计软件操作说明详解】 介绍 这一章对本手册的习惯用法和术语进行说明。ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。 活动结构 活动结构是指当前在镜头数据编辑器中显示的结构。详见“多重结构”这一章。 角放大率 像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。 切迹 切迹指系统入瞳处照明的均匀性。默认情况下,入瞳处是照明均匀的。然而,有时入瞳需要不均匀的照明。为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。 有三种类型的切迹:均匀分布,高斯型分布和切线分布。对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。在“系统菜单”这一章中有关于切迹类型和因子的讨论。ZEMAX也支持用户定义切迹类型。这可以用于任意表面。表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。 后焦距 ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。 基面 基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。 除焦平面外,所有的基面都对应一对共轭面。比如,像空间主面与物空间主面相共轭,等等。如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。 ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。 主光线 如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。 如果使用了渐晕系数,主光线被认为是通过有渐晕入瞳中心的光线,这意味着主光线不一定穿过光阑的中央。 如果有瞳面像差(这是客观存在的),主光线可能会通过近轴入 瞳中心(如果没有使用光线瞄准)或光阑中央(如果使用光线瞄准),但一般说来,不会同时通过二者中心。 如果渐晕系数使入瞳减小,主光线会通过渐晕入瞳中心(如果不使用光线瞄准)或者渐晕光阑中心(如果使用光线瞄准)。 常用的是主光线通过渐晕入瞳的中心,基本光线通过无渐晕的光阑中心。ZEMAX不使用基本光线。大部分计算都是以主光线或者中心光线作为参考。优先使用中心光线,因为它是基于所有照射到象面的光线聚合效应,而不是基于选择某一条特殊光线。

LED(Tracepro官方LED建模光学仿真设计教程)

Requirements Models: None Properties: None Editions: TracePro LC, Standard and Expert Introduction In this example you will build a source model for a Siemens LWT676 surface mount LED based on the manufacturer’s data sheet. The dimensions will be used to build a solid model and the source output will be defined to match the LED photometric curve. Copyright ? 2013 Lambda Research Corporation.

Create a Thin Sheet First analyze the package to determine the best method of constructing the geometry in TracePro. The symmetry of the package suggests starting from a Thin Sheet and extruding the top and bottom halves with a small draft angle. Construct Thin Sheet in the XY plane. 1. Start TracePro 2. Select View|Profiles|XY or click the View XY button on the toolbar, and switch to silhouette mode, View|Silhouette. 3. Select Insert|Primitive Solid and select the Thin Sheet tab. 4. Enter the four corners of the Thin Sheet in mm in the dialog box, as shown below, and click Insert. 5. Click the Zoom All button or select View|Zoom|All to see the new object.

CAD制作的常用快捷键

CAD制作的常用快捷键 在CAD软件操作中,为方便使用者,利用快捷键代替鼠标。可以利用键盘快捷键发出命令,完成绘图,修改,保存等操作。这些命令键就是CAD快捷键。

cad快捷键文字版 一、常用功能键

F1: 获取帮助 F2: 实现作图窗和文本窗口的切换 F3: 控制是否实现对象自动捕捉F4: 数字化仪控制 F5: 等轴测平面切换 F6: 控制状态行上坐标的显示方式 F7: 栅格显示模式控制 F8: 正交模式控制 F9: 栅格捕捉模式控制 F10: 极轴模式控制 F11: 对象追踪模式控制 (用ALT+字母可快速选择命令,这种方法可快捷操作大多数软件。) 二、常用CTRL,ALT快捷键 ALT+TK 如快速选择 ALT+NL 线性标注 ALT+VV4 快速创建四个视口 ALT+MUP提取轮廓 Ctrl+B: 栅格捕捉模式控制(F9) Ctrl+C: 将选择的对象复制到剪切板上 Ctrl+F: 控制是否实现对象自动捕捉(F3) Ctrl+G: 栅格显示模式控制(F7) Ctrl+J: 重复执行上一步命令 Ctrl+K: 超级链接 Ctrl+N: 新建图形文件 Ctrl+M: 打开选项对话框 Ctrl+O:打开图象文件 Ctrl+P:打开打印对说框 Ctrl+S:保存文件 Ctrl+U:极轴模式控制(F10) Ctrl+v:粘贴剪贴板上的内容 Ctrl+W:对象追踪式控制(F11) Ctrl+X:剪切所选择的内容 Ctrl+Y:重做 Ctrl+Z:取消前一步的操作 Ctrl+1:打开特性对话框 Ctrl+2:打开图象资源管理器 Ctrl+3:打开工具选项板 Ctrl+6:打开图象数据原子 Ctrl+8或QC:快速计算器 三、尺寸标注 DRA:半径标注 DDI:直径标注 DAL:对齐标注 DAN:角度标注END:捕捉到端点 MID:捕捉到中点 INT:捕捉到交点CEN:捕捉到圆心QUA:捕捉到象限点TAN:捕捉到切点PER:捕捉到垂足 NOD:捕捉到节点NEA:捕捉到最近点AA:测量区域和周长(area) ID:指定坐标LI:指定集体(个体)的坐标AL:对齐(align) AR:阵列(array) AP:加载*lsp程系AV:打开视图对话框(dsviewer) SE:打开对象自动捕捉对话框ST:打开字体设置对话框(style) SO:绘制二围面( 2d solid) SP:拼音的校核(spell) SC:缩放比例 (scale) SN:栅格捕捉模式设置(snap)

【推荐下载】新一代光学设计仿真软件FRED Optimum

新一代光学设计仿真软件FRED Optimum 设计光学元件,用于通过Luxeon® III Lambertian LED 光源在目标区域提供所需要的均匀性和高透过率分布. ?问题: 设计光学元件,用于通过Luxeon® III Lambertian LED 光源在目标区域提供所需要的均匀性和高透过率分布. 解决: 利用FRED Optimum的混合优化定义两个优化函数,包含多个变量(在这里例子中为10个)来创建两个不同的光学元件,第一个为高透过率而第二个为高透过率并且均匀. ?谁应该用我们的FRED Optimum版本呢?任何人在他们的光学工程工作中都需要优化。这包括照明工程师,需要优化拥有10万条光线的LED系统、导光管的耦合效率,背光系统:并且光学设计师需要进行非序列性优化,特别在他们系统模型中还需要形状不常见的光学元件时。 ?FRED Optimum是FRED最新版本.它包含了内置的混合优化模块,并且拥有利用当今高性能多CPU系统来加速光线追迹的能力。 ?为什么FRED Optimum的混合优化不同于透镜设计软件的优化?FRED的新混合全面优化运算是非序列性的。允许多重目标,拥有fractional weighting性能以连接变量和利用多种内置优化函数,加上用户自定义scripted优化函数可以应对非常任务。混合运算拥有对在FRED中直接建的(如上图)或者从CAD软件中导入的NURBS表面进行全面优化的能力。优化方案给了用户完全控制变量,优化函数和优化运算(1D or Downhill Simplex)以解决艰苦的照明设计问题。 ?FRED Optimum的菜单用看起来非常简单:用于优化时定义参数的内置标签电子数

平面设计快捷键大全

平面设计高手进阶快捷键 左手键盘+右手鼠标,你将提高200%的速度 :电子竞技游戏中的每分种操作数,一分钟内左手键盘+右手鼠标的操作数总和。 有一些快键从买了电脑就没用过,实际用起来之后你会发现,原来时间真的可以挤出来。 ●一级快键(实用的话50就足够了) ·系统与通用快键· 复制 粘贴 剪切 全选 新建 打开 保存 打印 后退 当前查找 打开的程序中切换 4关闭程序或窗口 直接删除不存入回收站 键截屏 返回上级文件夹 F5刷新 F2改文件名 F10激活菜单栏 ●·窗口组合快键· 窗口键开始菜单 窗口显示桌面可以来回切换 窗口显示桌面不能再转到先前打开的窗口 窗口运行窗口 窗口查找文件 窗口资原管理器 ●·实用快键· 回车快速发送,可以设为回车 快速回复(作用同上) 关闭当前窗口 快速提取消息 捕捉屏幕

打开聊天记录 全选当前对话框里的内容 对输入框里当前行的文字左对齐 对输入框里当前行的文字右对齐 对输入框里当前行的文字居中 ●一级快键(平面设计·最常用) F7显示或关闭图层选项板 F8显示或关闭信息选项板 +全选 ++反选 +D 取消选择区 +单击工作图层将图层转换为选择区 +“+”放大视窗 +“-”缩小视窗 +空格键+鼠标单击放大局部 +空格键+鼠标单击缩小局部 【】+【H】显示/隐藏选择区域 【】+【R】显示/隐藏标尺 【】+【;】显示/隐藏参考线 【】+【】+【;】贴紧参考线 【】+【】+【;】锁定参考线 【】+【】+【”】贴紧网格 【】+【】显隐工具箱外所有调板 【】+【Z】还原 ●=工具箱类【】加选快键填充为前景色:+;填充为背景色:+; 调整色阶工具:+L; 调整色彩平衡:+B; 调节色调/饱和度:+U; 自由变形:+T; 增大笔头大小:“左中括号”; 减小笔头大小:“右中括号”; 重复使用滤镜:+F; 矩形、椭圆选框工具【M】 裁剪工具【C】 移动工具【V】 套索、多边形套索、磁性套索【L】 魔棒工具【W】 画笔工具【B】 像皮图章、图案图章【S】 像皮擦工具【E】

相关主题
文本预览
相关文档 最新文档