当前位置:文档之家› 实验一-基尔霍夫定律

实验一-基尔霍夫定律

实验一-基尔霍夫定律
实验一-基尔霍夫定律

实验一-基尔霍夫定律

实验一基尔霍夫定律验证

★实验

一、实验目的

1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。

2、学会用电流插头,插座测量各支路电流的方法。

3、通过实验加强对电压、电流参考方向的掌握和运用的能力。

二、原理说明

基尔霍夫定律是电路的基本定律分为为两个方面,即基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。

1、基尔霍夫电流定律(KCL):在集总电路中,在任何一个时刻,对电路中的任何一个节点,流出(或流入)该节点电流的代数和恒等于零,即∑I=0,KCL 反映了电流的连续性,说明了节点上各支路电流的约束关系,它与电路中元件的性质无关。

2、基尔霍夫电压定律(KVL):在任何一个时刻,按约定的参考方向,电路中任一回路上全部元件两端电压的代数和恒等于零,即∑U =0,KVL说明了电路中各段电压的约束关系,它与电路中元件的性质无关。

基尔霍夫定律是电路的基本定律,测量某电路的各支路电流及多个元件两端的电压,应能分别满足基尔霍夫电流定律和电压定律。即对电路中的任一个节点而言的,应有∑I=0;对任何一个闭合回路而言,在验证KCL电流定律,可选一个电路节点,按标定的参考方向测定出各支路电流值,并约定流入或流出该节点的电流为正。在验证KVL电流定律通常规定:凡支路或元件电压的参考方向与

回路绕行方向一致者取正号,反之取负号。

运用上述定律是必须注意电流的正方向,此方向可预先任意设定。

三、实验设备

天煌教仪电子电工实验台,基尔霍夫定律验证实验板。或是:

1. 直流电压源1台0~30V可调;1组+12V固定

2. 数字万用表1块

3. 电阻5只510W×3;1KW×1;330W×1

4. 短接桥和连接导线若干

5. 实验用插件电路板1块297mm×300mm

四、实验内容和步骤

实验线路如图1-1所示

1.实验前先任意设定三支路的电流参考方向,如图中的I1,I2,I3所示,并熟悉线路结构,掌握各开关的操作使用方法。

2.分别将E1,E2两路直流稳压源(E1为+6V、+12V切换电源,E2为0~30V可调直流稳压源)接入电路,令E1=6V,E2=12V。

3.熟悉电流插头的结构,将电流插头的两端接至数字毫安表的“+、-”两端。

4.将电流插头分别插入三条支路的三个电流插座中,读出并记录电流值。

5.用直流数字电压表分别测量两电路电源及电阻元件的电压值,记入数据表中。

图1-1待

测值I1I1I3∑

I

V AB V CD V AD V DE V FA∑U回路

1(FADEF)

∑U回路

2(BADCB)

计算值测量值相

五、实验注意事项

1.验证KCL、KVL时,所有需要测量的电压值,均以电压表测量的读数为准,电压源的电压也要进行测量,不要以电源表盘指示值为准。实验中给定的值仅作为参考。

2.防止电源两端碰线短路。

3.若用指针式电流表进行测量时,要识别电流插头所接电流表的“+、-”极性,注意指针的偏转情况,防止指针打弯或损坏仪表。同时必须调换电流表极性,重新测量,此时指针正偏,按读得的电流值必须冠以正确的符号。

4.测量电压、电流时,不但要读出数值来,还要判断实际方向,并与设定的参考方向进行比较,若不一致,则该数前加“-”号。

六、预习思考题

1.根据图1-1的电路参数,计算出待测的电流I1,I2和I3和各电阻上的电压值,记入表中,以便实验测量时,可正确地选择毫安表和电压表的量程。

2.实验中,若用万用表直流毫安档测各支路电流,什么情况下可能出现毫安表指针反偏,应如何处理,在记录数据时应注意什么?若用直流数字毫安表进

行测量时,则会有什么显示呢?

七、实验报告

1、根据实验数据,选定实验电路中的任一节点,验证KCL的正确性。

2、根据实验数据,选定实验电路中的任一个闭合回路,验证KVL的正确性。

3、误差原因的分析。

4、心得体会及其他。

★★实验

一、实验目的

1、验证基尔霍夫电流定律(KCL)和电压定律(KVL)。

2、通过实验加强对电压、电流参考方向的掌握和运用的能力。

3、学会用短接桥测量各支路电流的方法。

二、实验原理

基尔霍夫定律是电路的基本定律分为为两个方面,即基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。

1、基尔霍夫电流定律(KCL):在集总电路中,在任何一个时刻,对电路中的任何一个节点,流出(或流入)该节点电流的代数和恒等于零,即∑I=0,KCL 反映了电流的连续性,说明了节点上各支路电流的约束关系,它与电路中元件的性质无关。

2、基尔霍夫电压定律(KVL):在任何一个时刻,按约定的参考方向,电

路中任一回路上全部元件两端电压的代数和恒等于零,即∑U =0,KVL说明了电路中各段电压的约束关系,它与电路中元件的性质无关。

基尔霍夫定律是电路的基本定律,测量某电路的各支路电流及多个元件两端的电压,应能分别满足基尔霍夫电流定律和电压定律。即对电路中的任一个节点而言的,应有∑I=0;对任何一个闭合回路而言,在验证KCL电流定律,可选一个电路节点,按标定的参考方向测定出各支路电流值,并约定流入或流出该节点的电流为正。在验证KVL电流定律通常规定:凡支路或元件电压的参考方向与回路绕行方向一致者取正号,反之取负号。

运用上述定律是必须注意电流的正方向,此方向可预先任意设定。

三、实验仪器和器材

1. 直流电压源1台0~30V可调;1组+12V固定

2. 数字万用表1块

3. 电阻5只510W×3;1KW×1;330W×1

4. 短接桥和连接导线若干

5. 实验用插件电路板1块297mm×300mm

四、实验内容

先将可调直流电压源的输出调节为6V,作为U S1,用电压源的+12V输出作为U S2,关闭电源。然后按下图所示电路搭接实验线路,并将短路桥接入各支路中。

图1-1

1、验证基尔霍夫电流定律(KCL)

打开电压源开关,用实验台提供的直流电流表依次测出电流I1、I2、I3,将实测数据记入表1中。并根据ΣI= I1+I2-I3计算。

表1 验证KCL的实验数据

I1 (mA) I2 (mA) I3(mA)ΣI

理论计算值

实测数据

2、验证基尔霍夫电压定律(KVL)

打开电压源开关,用实验台提供的直流电压表或数字万用表的电压档依次测出回路1(绕行方向:FADEF)和回路2(绕行方向:BADCB)中各支路电压值,将实测数据记入表2中。并计算ΣU。

表2 验证KVL实验数据

回路1(FADEF)U

FA(V) U AD(V) U DE(V) U EF(V) ΣU 理论计算值

实测数据

回路2(BADCB)U

BA(V) U AD(V) U DC(V) U CB(V) ΣU

五、实验注意事项

1.验证KCL、KVL时,所有需要测量的电压值,均以电压表测量的读数为准,电压源的电压也要进行测量,不要以电源表盘指示值为准。实验中给定的值仅作为参考。

2.防止电源两端碰线短路。

3.若用指针式电流表进行测量时,要识别电流插头所接电流表的“+、-”极性,注意指针的偏转情况,防止指针打弯或损坏仪表。同时必须调换电流表极性,重新测量,此时指针正偏,按读得的电流值必须冠以正确的符号。

4.测量电压、电流时,不但要读出数值来,还要判断实际方向,并与设定的参考方向进行比较,若不一致,则该数前加“-”号。

六、预习思考题

1.根据图1-1的电路参数,计算出待测的电流I1,I2和I3和各电阻上的电压值,记入表中,以便实验测量时,可正确地选择毫安表和电压表的量程。

2.实验中,若用万用表直流毫安档测各支路电流,什么情况下可能出现毫安表指针反偏,应如何处理,在记录数据时应注意什么?若用直流数字毫安表进行测量时,则会有什么显示呢?

七、思考题

1、测量电压、电流时,如何判断它们的正负号?正负号的意义是什么?

2、比较表1和表2中的理论计算值、仿真数据和实测数据,观察是否有误差,并分析误差产生的原因。

3、计算表1中的ΣI 和表2中的ΣU是否为零?为什么?

八、实验报告要求

1、根据实验数据,选定实验电路中的任何一个节点,验证KCL的正确性。

2、根据实验数据,选定实验电路中的任何一个闭合回路,验证KVL的正确性。

用proteus仿真实验

一、实验步骤如下:

(1) 打开Proteus 软件,编辑窗口内有点状的栅格,可以通过View菜单的Grid命令在打开和关闭间切换。点与点之间的间距由当前捕捉的设置决定。选中主菜单view/snap 10th/,使得绘图区域中出现均匀的网格线,并将绘图尺寸调节到最佳。

(2) 在常用工具栏中点击,然后在对象选择器窗口中点击选取对象选择按钮P,打开pick devices,在元件分类categroy中选取相应的分类,查询元件库的结果便显示在results中。从元件库中调出1 个Ground(接地点)和1个simulator primitives Vsource(直流电压源)器件,1 个Resistor(电阻)器件,1个sw-DPDT 开关,1个IN4007二极管,最后点测量器件库中调出DC Voltmeter(直流电压表)器件和DC AMMETER(直流电流表)。

(3) 将各元器件的标号、参数值亦改变成与图1-1所示一致。

(4) 将所有的元器件通过连线连接起来。注意:电压源、电压表的正负极性。

(5) 检查电路有无错误。

(6) 对该绘图文件进行保存,注意文件的类型为(design file)要保留。

(7) 按下proteus 界面左下方按纽对文件进行仿真。

(8)读取电流表的读数,将读数填到相应的表格中。

待测

I1 (mA) I2 (mA) I3(mA)ΣI

理论计

算值

仿真数

实测数

读取电压表的读数,将读数填到表相应的表格中。

回路1(FADEF)U FA(V) U AD(V) U DE(V) U EF(V) ΣU

理论计算值

仿真数据

(9)实验完成后,将保存好的绘图文件另存到教师指定的位置,并结合实验数据完成实测量电压U1 (V)U2(V)U3(V)U4(V)U5(V)U6(V)ΣU = ?(V )

二、注意事项

1、每个电路中均必须接有接地点,且与电路可靠连接(即接地点与电路的连接处有黑色的结点出现)。

2、改变电阻的阻值时,需要在Resistor(电阻)器件的元器件属性(Resistor Properties)对话框中选择Value/Resistance(R)选项,在其后的框中填写阻值,前一框为数值框,后一框为数量级框,填写时注意两个框的不同。

3、测量电压时应该把直流电压表并联在电路中进行测量,电路中电压表粗线接线端要与欲测电路的负极相连,另一个接线端则与欲测电路的正极相连,使用时应特别注意电压表的极性。

4、基于绘图美观的考虑,可将电压表通过工具栏中的“翻转”快捷键调整到与待测器件或电路平行的状态再连线。

5、电压表测量模式选择默认的直流模式,即在Voltmeter(电压表)器件的元器件属性(Voltmeter Properties)对话框中选择Value/mode/DC 选项,另在Label/Label 对话框中可为电压表命名。

6、绘制好的实验电路必须经认真检查后方可进行仿真。若仿真出错或者实验结果明显偏离实际值,请停止仿真后仔细检查电路是否连线正确、接地点连接是否有误等情况,排除误点后再进行仿真,直到仿真正确、测量得到理想的读数。

7、在读取电压表的读数时,为消除网格线对读数的影响,可取消主菜单Circuit/SchematicOptions/Grid 选项中的Show grid,设置好后将看到绘图区中的网格线已消去,此时即可读数了。

8、记录到表格中的数据即电压表上显示的直接读数,“+”、“-”亦要保留。

9、文件保存时扩展名为“.design file”。关闭文件或proteus 软件后想再次打开保存后的文件时,必须打开proteus 软件后通过主菜单load design。

三、实验拓展

1、在前述实验中通过电压表极性的摆放位置固定了U1、U

2、U

3、U

4、U

5、U6 与参考方向是否相关,同学可通过改变电压表极性的位置而改变U1、U2、U3、U4、U5、U6 与参考方向的相关性,再看看此时如何列写KVL 方程,是否符合ΣU =0。

2、改变电源的内阻,请重验证一下基尔霍夫电流定律和电压定律是否还成立?

3、试着用电压表和电流表探针来测量相关数据,看看是否方便?

四、预习要求

1、认真复习基尔霍夫电压定律的基本理论。

2、明确实验内容及步骤。

五、思考题

1、基尔霍夫电压定律的内容是什么?

2、在验证基尔霍夫电压定律时,所测得的电压结果与基尔霍夫定律有不完全一致的情况,请问产生这种情况的主要原因是什么?

3、在直流电路中如何使用直流电压表,在使用直流电压表时应该注意什么?

六、实验报告

1、写出实验名称、实验目的、实验内容及步骤。

2、画出实验电路图。

3、填写表格

4、回答思考题。

七、给分标准

1、实验名称为0.5 分。

2、实验目的为0.5 分。

3、实验内容和步骤为4.0 分。

4、图为2 分,每个字符为0.1 分。

5、表为1 分,每个填空为0.2 分。

6、思考题每道1 分,思考题目每个0.5 分。

基尔霍夫定律的验证实验报告

实验目的 1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2. 学会用电流插头、插座测量各支路电流。 3. 运用multisim 软件仿真。 实验仪器 可调直稳压电源、直流数字电压表、直流数字电流表、实验电路板 实验原理 1. 基尔霍夫定律是电路的基本定律。测量某电路的各支路电流及 每个元件两端的电压,能分别满足基尔霍夫电流定律(KCL )和电压定律(KVL )。即对电路中任一借点而言,应有∑I=0,对任一闭合电路而言,应有∑U=0. 实验内容与步骤 1.分别将两路直流稳压电源介入电路,令U 1=6V ,U 2=12V 。(先调准输出电压值,再接入实验线路)用DGJ-04挂箱的“基尔霍夫定律/叠加原理”电路板。 2.实验前任意设定三条支路电流正方向,如图1-1中的I 1,I 2,I 3的方向已设定。闭合回路的正方向可任意设定。 3.熟悉电流插头的结构,将电流插头的两端接至数字电流表的“+、-”两端。 4.将电流插头分别插入三条支路的三个电流插座中,读出并记录电流值。 5.用直流数字电压表分别测量两路电源以及电阻元件上的电压值,记录于表(1)。 6.将开关指向二极管,重新测量两路电源及电阻元件上的电压值,记录于表(2)。 7.将开关指向电阻,分别测量三种故障情况下的两路电源及电阻元件上的电压值,记录于表3、4、5. 图1 被测量 I 1(mA ) I 2(mA ) I 3(mA ) U 1(V) U 2(V) U FA (V) U AB (V) U AD (V) U CD (V) U DE (V )

数据记录 表1 图2 表2 表3 故障1:FA 开路 表4 故障2:AD 短路 计算值 1.93 5.99 7.92 6.00 12.00 0.98 -5.99 4.04 -1.98 0.98 测量值 2.00 6.00 7.98 6.13 12.11 1.02 -6.03 4.08 -1.98 1.02 相对误差 3.63% 0.17% 0.76% 2.17% 0.92% 4.08% 0.67% 0.99% 0.00% 4.08% 被测量 I 1(mA ) I 2(mA ) I 3(mA ) U 1(V) U 2(V) U FA (V) U AB (V) U AD (V) U CD (V) U DE (V) 计算值 3.92 0.00 3.92 6.00 12.00 2.00 0.00 2.00 -10.00 2.00 测量值 4.00 0.00 4.00 6.14 12.12 2.04 0.00 2.04 -10.07 2.04 相对误 差 2.04% 0.00% 2.04% 2.33% 1.00% 2.00% 0.00% 2.00% 0.70% 2.00% 被测量 I 1(mA ) I 2(mA ) I 3(mA ) U 1(V) U 2(V) U FA (V) U AB (V) U AD (V) U CD (V) U DE (V) 计算值 0.00 6.52 6.52 6.00 12.00 2.68 -6.25 3.33 -2.15 0.00 测量值 0.00 6.56 6.56 6.14 12.00 2.79 -6.59 3.35 -2.17 0.00 相对误 差 0.00% 0.64% 0.64% 2.33% 1.00% 4.10% 1.12% 0.60% 0.93% 0.00% 被测量 I 1(mA ) I 2(mA ) I 3(mA ) U 1(V) U 2(V) U FA (V) U AB (V) U AD (V) U CD (V) U DE (V) 计算值 5.88 9.02 14.90 6.00 12.00 3.00 -9.02 0.00 -2.97 3.00 测量值 5.98 9.04 14.86 6.14 12.12 3.06 -9.10 0.00 -3.00 3.06 相对误 差 1.70% 0.22% 0.27% 2.33% 1.00% 2.00% 0.89% 0.00% 1.01% 2.00% 被测量 I 1(mA ) I 2(mA ) I 3(mA ) U 1(V) U 2(V) U FA (V) U AB (V) U AD (V) U CD (V) U DE (V) 计算值 3.92 0.00 3.92 6.00 12.00 2.00 0.00 2.00 -10.00 2.00 测量值 4.00 0.00 4.00 6.14 12.12 2.04 0.00 2.04 -10.07 2.04 相对误 2.04% 0.00% 2.04% 2.33% 1.00% 2.00% 0.00% 2.00% 0.70% 2.00%

基尔霍夫定律实验报告文档

2020 基尔霍夫定律实验报告文档Contract Template

基尔霍夫定律实验报告文档 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况, 答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行 文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触 一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想 法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 基尔霍夫定律实验报告1 一、实验目的 (1)加深对基尔霍夫定律的理解。 (2)学习验证定律的方法和仪器仪表的正确使用。 二、实验原理及说明 基尔霍夫定律是集总电路的基本定律,包括电流定律(KCL)和电压定律(KVL)。 基尔霍夫定律规定了电路中各支路电流之间和各支路电压之间必须服从的约束关系,无论电路元件是线性的或是非线性的,时变的或是非时变的,只要电路是集总参数电路,都必须服从这个约束关系。 (1)基尔霍夫电流定律(KCL)。在集总电路中,任何时刻,对任一节点,所有支路电流的代数和恒等于零,即∑i=0。通常约定:流出节点的支路电流取正号,流入节点的支路电流取负号。

(2)基尔霍夫电压定律(KVL)。在集总电路中,任何时刻,沿任一回路所有支路电压的代数和恒等于零,即沿任—回路有∑u=0。在写此式时,首先需要任意指定一个回路绕行的方向。凡电压的参考方向与回路绕行方向一致者,取“+”号;电压参考方向与回路绕行方向相反者,取“一”号。 (3)KCL和KVL定律适用于任何集总参数电路,而与电路中的元件的性质和参数大小无关,不管这些元件是线性的、非线性的、含源的、无源的、时变的、非时变的等,定律均适用。 三、实验仪器仪表 四、实验内容及方法步骤 (1)验证(KCL)定律,即∑i=0。分别在自行设计的电路或参考的电路中,任选一个节点,测量流入流出该节点的各支路电流数值和方向,记入附本表1-1~表1-5中并进行验证。参考电路见图1-1、图1-2、图1-3所示。 (2)验证(KVL)定律,即∑u=0。分别在自行设计的电路或参考的电路中任选一网孔(回路),测量网孔内所有支路的元件电压值和电压方向,对应记入表格并进行验证。参考电路见图1-3。五、测试记录表格 表1-1线性对称电路 表1-2线性对称电路 表1-3线性不对称电路 表1-4线性不对称电路 表1-5线性不对称电路

实验一-基尔霍夫定律

实验一-基尔霍夫定律

实验一基尔霍夫定律验证 ★实验 一、实验目的 1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2、学会用电流插头,插座测量各支路电流的方法。 3、通过实验加强对电压、电流参考方向的掌握和运用的能力。 二、原理说明 基尔霍夫定律是电路的基本定律分为为两个方面,即基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。 1、基尔霍夫电流定律(KCL):在集总电路中,在任何一个时刻,对电路中的任何一个节点,流出(或流入)该节点电流的代数和恒等于零,即∑I=0,KCL 反映了电流的连续性,说明了节点上各支路电流的约束关系,它与电路中元件的性质无关。 2、基尔霍夫电压定律(KVL):在任何一个时刻,按约定的参考方向,电路中任一回路上全部元件两端电压的代数和恒等于零,即∑U =0,KVL说明了电路中各段电压的约束关系,它与电路中元件的性质无关。 基尔霍夫定律是电路的基本定律,测量某电路的各支路电流及多个元件两端的电压,应能分别满足基尔霍夫电流定律和电压定律。即对电路中的任一个节点而言的,应有∑I=0;对任何一个闭合回路而言,在验证KCL电流定律,可选一个电路节点,按标定的参考方向测定出各支路电流值,并约定流入或流出该节点的电流为正。在验证KVL电流定律通常规定:凡支路或元件电压的参考方向与

回路绕行方向一致者取正号,反之取负号。 运用上述定律是必须注意电流的正方向,此方向可预先任意设定。 三、实验设备 天煌教仪电子电工实验台,基尔霍夫定律验证实验板。或是: 1. 直流电压源1台0~30V可调;1组+12V固定 2. 数字万用表1块 3. 电阻5只510W×3;1KW×1;330W×1 4. 短接桥和连接导线若干 5. 实验用插件电路板1块297mm×300mm 四、实验内容和步骤 实验线路如图1-1所示 1.实验前先任意设定三支路的电流参考方向,如图中的I1,I2,I3所示,并熟悉线路结构,掌握各开关的操作使用方法。 2.分别将E1,E2两路直流稳压源(E1为+6V、+12V切换电源,E2为0~30V可调直流稳压源)接入电路,令E1=6V,E2=12V。 3.熟悉电流插头的结构,将电流插头的两端接至数字毫安表的“+、-”两端。 4.将电流插头分别插入三条支路的三个电流插座中,读出并记录电流值。 5.用直流数字电压表分别测量两电路电源及电阻元件的电压值,记入数据表中。

实验一基尔霍夫定律的验证

一.实验目的 1.验证基尔霍夫定律,加深对基尔霍夫定律的理解; 2.掌握直流电流表的使用以及学会用电流插头、插座测量各支路电流的方法;3.学习检查、分析电路简单故障的能力。 二.原理说明 1.基尔霍夫定律 基尔霍夫电流定律和电压定律是电路的基本定律,它们分别用来描述结点电流和回路电压,即对电路中的任一结点而言,在设定电流的参考方向下,应有ΣI =0,一般流出结点的电流取正号,流入结点的电流取负号;对任何一个闭合回路而言,在设定电压的参考方向下,绕行一周,应有ΣU =0,一般电压方向与绕行方向一致的电压取正号,电压方向与绕行方向相反的电压取负号。 在实验前,必须设定电路中所有电流、电压的参考方向,其中电阻上的电压方向应与电流方向一致,见图8-1所示。 2.检查、分析电路的简单故障 电路常见的简单故障一般出现在连线或元件部分。连线部分的故障通常有连线接错,接触不良而造成的断路等;元件部分的故障通常有接错元件、元件值错,电源输出数值(电压或电流)错等。 故障检查的方法是用用万用表(电压档或电阻档)或电压表在通电或断电状态下检查电路故障。 (1)通电检查法:在接通电源的情况下,用万用表的电压档或电压表,根据电路工作原理,如果电路某两点应该有电压,电压表测不出电压,或某两点不应该有电压,而电压表测出了电压,或所测电压值与电路原理不符,则故障必然出现在此两点间。 (2)断电检查法:在断开电源的情况下,用万用表的电阻档,根据电路工作原理,如果电路某两点应该导通而无电阻(或电阻极小),万用表测出开路(或电阻极大),或某两点应该开路(或电阻很大),而测得的结果为短路(或电阻极小),则故障必然出现在此两点间。 本实验用电压表按通电检查法检查、分析电路的简单故障。 三.实验设备 1.直流数字电压表、直流数字毫安表(根据型号的不同,EEL—Ⅰ型为单独的MEL -06组件,其余型号含在主控制屏上) 2.恒压源(EEL—Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ均含在主控制屏上,根据用户的要求,可能有两种配置(1)+6 V(+5V),+12V,0~30V可调或(2)双路0~30V可调。) 3.EEL-30组件(含实验电路)或EEL-53组件

2基尔霍夫定律和叠加原理的验证实验报告答案含数据处理

实验二基尔霍夫定律和叠加原理的验证 一、实验目的 1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2.验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加性和齐次性的认识和理解。 3.进一步掌握仪器仪表的使用方法。 二、实验原理 1.基尔霍夫定律 基尔霍夫定律是电路的基本定律。它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。 (1)基尔霍夫电流定律(KCL) 在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。 (2)基尔霍夫电压定律(KVL) 在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。 基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假定电流和电压的参考方向。当电流和电压的实际方向与参考方向相同时,取值为正;相反时,取值为负。 基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。 2.叠加原理 在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。某独立源单独作用时,其它独立源均需置零。(电压源用短路代替,电流源用开路代替。) 线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。 三、实验设备与器件 1.直流稳压电源 1 台 2.直流数字电压表 1 块 3.直流数字毫安表1块 4.万用表 1 块 5.实验电路板 1 块 四、实验内容 1.基尔霍夫定律实验 按图2-1接线。

基尔霍夫定理的验证实验报告(含数据处理)

基尔霍夫定律的验证实验报告 一、实验目的 1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律普遍性的 理解。 2、进一步学会使用电压表、电流表。 二、实验原理 基本霍夫定律是电路的基本定律。 1)基本霍夫电流定律 对电路中任意节点,流入、流出该节点的代数和为零。即∑I=0 2)基本霍夫电压定律 在电路中任一闭合回路,电压降的代数和为零。即∑U=0三、实验设备 四、实验内容 实验线路如图2-1所示

图2-1 1、实验前先任意设定三条支路的电流参考方向, 2、按原理的要求,分别将两路直流稳压电源接入电路。 3、将电流插头的两端接至直流数字毫安表的“+,-”两端。 4、将电流插头分别插入三条支路的三个电流插座中,记录电 流值于下表。 5、用直流数字电压表分别测量两路电源及电元件上的电压值,记录于下表。 被测量I1 (mA) I2 (mA) I3 (mA) E1 (V) E2 (V) U FA (V) U AB (V)U AD (V) U CD (V) U DE (V) 计算值 测量值 相对误差%%%0%%%%%%% 五、基尔霍夫定律的计算值: I1 + I2 = I3 …… (1)

根据基尔霍夫定律列出方程(510+510)I1 +510 I3=6 (2) (1000+330)I3+510 I3=12 (3) 解得:I1 = I2 = I3 = U= U BA= U AD= U DE= U DC= 六、相对误差的计算: E(I1)=(I1(测)- I1(计))/ I1(计)*100%=()/=% 同理可得:E(I2) =% E(I3)=% E(E1)=0% E(E1)=% E(U)=% E(U AB)=% E(U AD)=% E(U CD)=% E(U DE)=% 七、实验数据分析 根据上表可以看出I1、I2、I3、U AB、U CD的误差较大。 八、误差分析 产生误差的原因主要有: (1)电阻值不恒等电路标出值,(以510Ω电阻为例,实测电阻为515Ω)电阻误差较大。 (2)导线连接不紧密产生的接触误差。 (3)仪表的基本误差。 九、实验结论 数据中绝大部分相对误差较小,基尔霍夫定律是正确的 十、实验思考题

实验一-基尔霍夫定律

实验一基尔霍夫定律验证 ★实验 一、实验目的 1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2、学会用电流插头,插座测量各支路电流的方法。 3、通过实验加强对电压、电流参考方向的掌握和运用的能力。 二、原理说明 基尔霍夫定律是电路的基本定律分为为两个方面,即基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。 1、基尔霍夫电流定律(KCL):在集总电路中,在任何一个时刻,对电路中的任何一个节点,流出(或流入)该节点电流的代数和恒等于零,即∑I=0,KCL 反映了电流的连续性,说明了节点上各支路电流的约束关系,它与电路中元件的性质无关。 2、基尔霍夫电压定律(KVL):在任何一个时刻,按约定的参考方向,电路中任一回路上全部元件两端电压的代数和恒等于零,即∑U =0,KVL说明了电路中各段电压的约束关系,它与电路中元件的性质无关。 基尔霍夫定律是电路的基本定律,测量某电路的各支路电流及多个元件两端的电压,应能分别满足基尔霍夫电流定律和电压定律。即对电路中的任一个节点而言的,应有∑I=0;对任何一个闭合回路而言,在验证KCL电流定律,可选一个电路节点,按标定的参考方向测定出各支路电流值,并约定流入或流出该节点的电流为正。在验证KVL电流定律通常规定:凡支路或元件电压的参考方向与

回路绕行方向一致者取正号,反之取负号。 运用上述定律是必须注意电流的正方向,此方向可预先任意设定。 三、实验设备 天煌教仪电子电工实验台,基尔霍夫定律验证实验板。或是: 1. 直流电压源1台0~30V可调;1组+12V固定 2. 数字万用表1块 3. 电阻5只510W×3;1KW×1;330W×1 4. 短接桥和连接导线若干 5. 实验用插件电路板1块297mm×300mm 四、实验内容和步骤 实验线路如图1-1所示 1.实验前先任意设定三支路的电流参考方向,如图中的I1,I2,I3所示,并熟悉线路结构,掌握各开关的操作使用方法。 2.分别将E1,E2两路直流稳压源(E1为+6V、+12V切换电源,E2为0~30V可调直流稳压源)接入电路,令E1=6V,E2=12V。 3.熟悉电流插头的结构,将电流插头的两端接至数字毫安表的“+、-” 两端。 4.将电流插头分别插入三条支路的三个电流插座中,读出并记录电流值。 5.用直流数字电压表分别测量两电路电源及电阻元件的电压值,记入数据表中。

基尔霍夫定律实验报告范本(完整版)

报告编号:YT-FS-3662-30 基尔霍夫定律实验报告范 本(完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

基尔霍夫定律实验报告范本(完整 版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 一、实验目的 (1)加深对基尔霍夫定律的理解。 (2)学习验证定律的方法和仪器仪表的正确使用。 二、实验原理及说明 基尔霍夫定律是集总电路的基本定律,包括电流定律(KCL)和电压定律(KVL)。 基尔霍夫定律规定了电路中各支路电流之间和各支路电压之间必须服从的约束关系,无论电路元件是线性的或是非线性的,时变的或是非时变的,只要电路是集总参数电路,都必须服从这个约束关系。 (1)基尔霍夫电流定律(KCL)。在集总电路中,任何时刻,对任一节点,所有支路电流的代数和恒等于

零,即∑i=0。通常约定:流出节点的支路电流取正号,流入节点的支路电流取负号。 (2)基尔霍夫电压定律(KVL)。在集总电路中,任何时刻,沿任一回路所有支路电压的代数和恒等于零,即沿任—回路有∑u=0。在写此式时,首先需要任意指定一个回路绕行的方向。凡电压的参考方向与回路绕行方向一致者,取“+”号;电压参考方向与回路绕行方向相反者,取“一”号。 (3)KCL和KVL定律适用于任何集总参数电路,而与电路中的元件的性质和参数大小无关,不管这些元件是线性的、非线性的、含源的、无源的、时变的、非时变的等,定律均适用。 三、实验仪器仪表 四、实验内容及方法步骤 (1)验证(KCL)定律,即∑i=0。分别在自行设计的电路或参考的电路中,任选一个节点,测量流入流出该节点的各支路电流数值和方向,记入附本表1-1~表1-5中并进行验证。参考电路见图1-1、图1-2、图

基尔霍夫定律的验证实验的报告.doc

实验二基尔霍夫定律的验证姓名学号专业实验台号实验时间 一、实验目的 1.通过实验验证基尔霍夫电流定律和电压定律 2.加深理解“节点电流代数和”及“回路电压代数和”的概念 3.加深对参考方向概念的理解 二、原理 基尔霍夫节点电流定律 I 0 基尔霍夫回路电压定律 U 0 参考方向: 当电路中的电流(或电压)的实际方向与参考方向相同时取正值,其实际方向与参考方向相反时取负值。 三、实验仪器和器材 1. 0-30V 可调直流稳压电源 2. +15 直流稳压电源 3. 200mA可调恒流源 4.电阻 5.交直流电压电流表 6.实验电路板 7.短接桥 8.导线 四、实验内容及步骤 1.验证基尔霍夫电流定律(KCL) 可假定流入该节点的电流为正(反之也可),并将电流表负极接在节点接口上,电流表正极接到支路接口上进行测量。测量结果如2-1 所示。 表 2-1 验证基尔霍夫电流定律 计算值测量值误差 I 1 (mA) I 2 (mA) I 3(mA) 0 0 0 I

图 2-1 2. 验证基尔霍夫回路电压定律( KVL ) 用短接桥将三个电流接口短接 ,测量时可选顺时针方向为绕行方向,并注意电压表的 指针偏转方向及取值的正与负,测量结果如表 2-2 所示。 表 2-2 验证基尔霍夫电压定律 U U U U U U U U AB BE EF FA 回路 BC CD DE EB 回路 U U 计算值 -10 15 测量值 误差 图 2-2 五、思考题 1. 利用表 2-1 和表 2-2 中的测量结果验证基尔霍夫两个定律。 结点 B ,流入电流与流出电路代数和为零, KCL 成立。一定误差范围内,在一个闭合回路中,电压的代数和为 0, KVL 成立。 2. 利用电路中所给数据, 通过电路定律计算各支路电压和电流, 并计算测量值与计算值之间的误差,分析误差产生的原因。 电表精度不够,有电阻非理想电表;导线有电阻。 3. 回答下列问题 ( 1)已知某支路电流约为 3mA ,现有一电流表分别有 20mA 、200mA 和 2A 三挡量程,你 将使用电流表的哪档量程进行测量?为什么? 20mA,在不超量程的情况下应选小量程,以使读数更加精确 ( 2)改变电流或电压的参考方向,对验证基尔霍夫定律有影响吗?为什么? 没有。因为所求的和均为代数和,改变参考方向,所有数据的符号均改变,而 KCL 和 KVL 结果均为 0,所以无影响

实验2.1基尔霍夫定律与电位的实验报告

实验2.1 基尔霍夫定律与电位的测定 一、实验名称:基尔霍夫定律与电位的测定 二、实验任务及目的 1.基本实验任务 学习直流电路中电压、电流的测量方法;验证基尔霍夫电流、电压定律;测量电路中各点的电位。 2.扩展实验任务 学习判断故障原因和排除简单故障的方法。 3.实验目的 验证和理解基尔霍夫定律;学习电压、电流的的测量方法;学习电位的测量方法,用实验证明电位的相对性、电压的绝对性。 三、实验原理及电路 1.实验原理 基尔霍夫定律。基尔霍夫电流定律(KCL ):对电路中的任一节点,各支路电流的代数和等于零,即 ∑=0I 。基尔霍夫电压定律(KVL ):对任何一个闭合电路,沿闭合回路的电压降的代数和为零,即∑=0U 。 2.实验电路 四、实验仪器及器件 1.实验仪器 双路直流稳压电源1台,使用正常(双路输出电压是否正确而稳定);直流电流表1台,使用正常(读数是否正确);万用表1台,使用正常(显示是否正确而稳定)。 2.实验器件 电流插孔3个,使用正常(不接电流表时,是否电阻为零);100Ω/2W 电阻2个,200Ω/2W 电阻1个,300Ω/2W 电阻1个,470Ω/2W 电阻1个,使用正常。 五、实验方案与步骤简述 1.用万用表直流电压档监测,调节直流稳压电源两路输出分别为16V 和8V 。 2.按图2.1.1接线,根据计算值,选择电流表、万用表合适量程,测量并记录实验数据。 E D 图2.1.1 基尔霍夫定律实验电路 F

六、实验数据 1.基本实验内容 图2.1.2 基尔霍夫定律multism11仿真图 表2.1.1 验证基尔霍夫定律数据记录及计算 图2.1.3 分别以E、B为参考点电位、电压测量multism11仿真图

基尔霍夫定律实验报告2(完整版)

报告编号:YT-FS-5753-18 基尔霍夫定律实验报告 2(完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

基尔霍夫定律实验报告2(完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 一、实验目的 (1)加深对戴维南定理和诺顿定理的理解。 (2)学 习戴维南等效参数的各种测量方法。 (3)理解等效置 换的概念。 (4)学习直流稳压电源、万用表、直流电流表和电 压表的正确使用方法。 二、实验原理及说明 (1)戴维南定理是指—个含独立电源、线性电阻和 受控源的一端口,对外电路来说,可以用一个电压源 和一个电阻的串联组合来等效置换。此电压源的电压 等于该端口的开路电压UOC,而电阻等于该端口的全 部独立电源置零后的输入电阻,如图2-l所示。这个 电压源和电阻的串联组合称为戴维南等效电路。等效

电路中的电阻称为戴维南等效电阻Req。 所谓等效是指用戴维南等效电路把有源一端口网络置换后,对有源端口(1-1' )以外的电路的求解是没有任何影响的,也就是说对端口l-1'以外的电路而言,电流和电压仍然等于置换前的值。外电路可以是不同的。 (2)诺顿定理是戴维南定理的对偶形式,它指出一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电流源和电导的并联组合来等效置换,电流源的电流等于该一端口的短路电流Isc,而电导等于把该—端口的全部独立电源置零后的输入电导Geq=1/Req,见图2-l。 (3)戴维南—诺顿定理的等效电路是对外部特性而言的,也就是说不管是时变的还是定常的,只要含源网络内部除独立的电源外都是线性元件,上述等值电路都是正确的。 图2-1 一端口网络的等效置换 (4)戴维南等效电路参数的测量方法。开路电压

【实验报告】基尔霍夫定律实验报告

基尔霍夫定律实验报告 一、实验目的 (1)加深对基尔霍夫定律的理解。 (2)学习验证定律的方法和仪器仪表的正确使用。 二、实验原理及说明 基尔霍夫定律是集总电路的基本定律,包括电流定律(KCL)和电压定律(KVL)。 基尔霍夫定律规定了电路中各支路电流之间和各支路电压之间必须服从的约束关系,无论电路元件是线性的或是非线性的,时变的或是非时变的,只要电路是集总参数电路,都必须服从这个约束关系。 (1)基尔霍夫电流定律(KCL)。在集总电路中,任何时刻,对任一节点,所有支路电流的代数和恒等于零,即∑i=0。通常约定:流出节点的支路电流取正号,流入节点的支路电流取负号。 (2)基尔霍夫电压定律(KVL)。在集总电路中,任何时刻,沿任一回路所有支路电压的代数和恒等于零,即沿任回路有∑u=0。在写此式时,首先需要任意指定一个回路绕行的方向。凡电压的参考方向与回路绕行方向一致者,取“+”号;电压参考方向与回路绕行方向相反者,取“一”号。 (3)KCL和KVL定律适用于任何集总参数电路,而与电路中的元件的性质和参数大小无关,不管这些元件是线性的、非线性的、含源的、无源的、时变的、非时变的等,定律均适用。 三、实验仪器仪表

四、实验内容及方法步骤 (1)验证(KCL)定律,即∑i=0。分别在自行设计的电路或参考的电路中,任选一个节点,测量流入流出该节点的各支路电流数值和方向,记入附本表1-1~表1-5中并进行验证。参考电路见图1-1、图1-2、图1-3所示。 (2)验证(KVL)定律,即∑u=0。分别在自行设计的电路或参考的电路中任选一网孔(回路),测量网孔内所有支路的元件电压值和电压方向,对应记入表格并进行验证。参考电路见图1-3。 五、测试记录表格 表1-1 线性对称电路 表1-2 线性对称电路 表1-3 线性不对称电路 表1-4 线性不对称电路 表1-5 线性不对称电路 注:1、USA、USB电源电压根据实验时选用值填写。 2、U、I、R下标均根据自拟电路参数或选用电路参数对应填写。 指导教师签字:________________ 年月日 六、实验注意事项 (1)自行设计的电路,或选择的任一参考电路,接线后需经教师检查同意后再进行测量。

基尔霍夫定律和叠加原理的验证(实验报告答案)含数据处理

(1)实验前,可任意假定三条支路 向。图2-1中的电流 13的方 CB 和 F B CE Q 。 ① ADEFA 、 BAD U 1 6V R 4 路的绕行方B 闭合回路的绕 行方向可设为 R 5 U 2 12V 实验二 基尔霍夫定律和叠加原理的验证 一、 实验目的 1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2. 验证线性电路中叠加原理的正确 性及其适用范围, 加深对线性电路的叠加 性和齐次 性的认识和理解。 3. 进一步掌握仪器仪表的使用方法。 二、 实验原理 1. 基尔霍夫定律 基尔霍夫定律是电路的基本定律。它包括基尔霍夫电流定律 (KCL )和基尔霍 夫电压定律(KVL )。 (1) 基尔霍夫电流定律(KCL ) 在电路中,对任一结点,各支路电流的代数和恒等于零,即 习二0。 (2) 基尔霍夫电压定律(KVL ) 在电路中,对任一回路,所有支路电压的代数和恒等于零,即 二0。 基尔霍夫定律表达式中的电流和电压都是代数量, 运用时,必须预先任意假 定电流和电压的参考方向。当电流和电压的实际方向与参考方向相同时, 取值为 正;相反时,取值为负。 基尔霍夫定律与各支路元件的性质无关, 无论是线性的或非线性的电路,还 是含源的或无源的电路,它都是普遍适用的。 2. 叠加原理 在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中 每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。 某独立源单 独作用时,其它独立源均需置零。(电压源用短路代替,电流源用开路代替。) 线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加 或减小K 倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压 值)也将增加或减小K 倍。 三、实验设备与器件 1?直流稳压电源 1台 2.直流数字电压表 1块 3.直流数字毫安表 1块 4.万用表 1块 5.实验电路板 1块 四、实验内容 1. 基尔霍夫定律实验 按图2-1接线。 I 3 mA 1 / 6 510 Q 方 个闭

《精选总结范文》基尔霍夫定律实验总结

基尔霍夫定律实验总结 一、实验目的 1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律普遍性的理解。 2、进一步学会使用电压表、电流表。 二、实验原理 基本霍夫定律是电路的基本定律。 1)基本霍夫电流定律 对电路中任意节点,流入、流出该节点的代数和为零。即∑I=0 2)基本霍夫电压定律 在电路中任一闭合回路,电压降的代数和为零。即∑U=0 三、实验设备 xxxxxxxxxxx 四、实验内容 1、实验前先任意设定三条支路的电流参考方向, 2、按原理的要求,分别将两路直流稳压电源接入电路。 3、将电流插头的两端接至直流数字毫安表的“+,-”两端。

4、将电流插头分别插入三条支路的三个电流插座中,记录电流值于下表。 5、用直流数字电压表分别测量两路电源及电元件上的电压值,记录于下表。 五、基尔霍夫定律的计算值: I1+I2=I3??(1) 根据基尔霍夫定律列出方程(510+510)I1+510I3=6??(2)(1000+330) I3+510I3=12??(3)解得: I1=0.00193AI2=0.0059AI3=0.00792AUFA=0.98VUBA=5.99VUAD=4.04VUDE=0.98VUD C=1.98V六、相对误差的计算:E(I1)=(I1(测)-I1(计))/I1(计)*100%=(2.08-1.93)/1.93=7.77% 同理可得: E(I2)=6.51%E(I3)=6.43%E(E1)=0%E(E1)=-0.08%E(UFA)=-5.10%E(UAB)=4.17%E(U AD)=-0.50%E(UCD)=-5.58%E(UDE)=-1.02% 七、实验数据分析 根据上表可以看出I1、I2、I3、UAB、UCD的误差较大。 八、误差分析 产生误差的原因主要有: (1)电阻值不恒等电路标出值,(以510Ω电阻为例,实测电阻为515Ω)电阻误差较大。

实验一基尔霍夫定律的验证

实验一基尔霍夫定律的验证 一、实验目的 1、掌握万用表和实验装置上直流电工仪表和设备的使用方法。 2、验证基尔霍夫原理的正确性,从而加深对线性电路的基尔霍夫原理的认识和理解。 二、实验设备 三、原理说明 基尔霍夫电流定理(KCL):对于任何集总参数电路的任一结点,在任一时刻,流出该结点全部支路电流的代数和等于零。 (流出该结点的支路电流取正号,流入该结点的支路电流取负号。)基尔霍夫电压定律(KVL):对于任何集总参数电路的任一回路,在任一时刻,沿该回路全部支路电压的代数和等于零。 (电压参考方向与回路绕行方向相同的支路电压取正号,与绕行方向相反的支路电压取负号。) 由支路组成的回路可以视为闭合结点序列的特殊情况。沿电路任一闭合路径(回路或闭合结点序列)各段电压代数和等于零。 四、实验内容 实验电路如图2-1所示 1、熟悉使用仪器,注意仪器的量程范围。 2、按图2-1电路接线,E 为+12、E2为+6V电源。 1 3、用万用表直流电压档和毫安表(接电流插头)测量各支路电流及数据记入表格中。

图 2-1 4、验证 1)基尔霍夫电流方程 (取节点B或D点, 说明什么?) 2)基尔霍夫电压方程 (采用任一回路,说明什么?) 五、实验注意事项 1、测量各支路电流时,应注意仪表的极性, 及数据表格中“+、-”号的记录。 2、注意仪表量程的及时更换。 六、思考题和心得体会 1、实验中若E 1、E 2 分别单独作用,在实验中应如何操作?可否直接将不作 用的电源(E 1或E 2 )置零(短接)? 2、实验电路中,测量的正负值使用不当,试问基尔霍夫定律还成立吗? 3、心得体会及其他。

电路实验三实验报告_基尔霍夫定律地验证

电路实验三实验报告 实验题目:基尔霍夫定律的验证 实验内容: 1. 用面包板搭接一个电路,熟悉面包板的使用; 2. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律普遍性的理解 ; 3. 进一步学会使用万用表。 实验环境: 面包板,数字万用表,色环电阻,学生实验箱(直流稳压电源) 。 实验原理: 使用面包板搭接一个含有两个以上网孔的电路, 测出各支路的电压和各节点的电流, 验 证它们是否满足基尔霍夫定律。 1. 基尔霍夫电流定律: 对电路中任意节点,流入、流出该节点的代数和为零。即 ∑I=0。 2. 基尔霍夫电压定律: 在电路中任一闭合回路,电压降的代数和为零。 即 ∑U=0。 实验记录及结果分析: 实验电路图: 1 i1 i3 R1 R2 ① i2 - U1 + - U3 + 3 i2 i 2 ABM Us_1 5V 1 + U2 R3 2 ABM Us_2 12V - 实验数据: R1 0.859K Ω U1 2.31V i1 -2.33mA R2 1.338K Ω U2 7.37V i2 1.45mA R3 1.032K Ω U3 7.53V i3 3.79mA 实验分析: 1. 对于结点 1:i1-i2+i3=- 2.33mA-1.45mA+ 3.79mA=0.01mA 说明在误差范围内,该结点符合 KCL 定律。 2. 对于回路 1:-U1+U2-Us1=-2.31V+7.37V-5V=0.06V

说明在误差范围内,该回路符合KVL定律。 3. 对于回路2:-U2-U3+Us2=-7.37V-7.53V+15V=0.1V 说明在误差范围内,该回路符合KVL定律。 实验总结: 经过这次实验,我学习到了如果利用面包板搭建电路,面包板上的孔如何实现串并联。 同时,这次实验也巩固了我对万用表的操作,使用万用表比上次更为熟练了。实验结果也验证了KCL与KVL的定律,为以后电路分析加深了印象。

实验1 基尔霍夫定律与电位的测定-实验报告

实验1 基尔霍夫定律与电位的测定 一、实验名称 基尔霍夫定律与电位的测定 二、实验任务及目的 1.基本实验任务 学习直流电路中电压、电流的测量方法;验证基尔霍夫电流、电压定律;测量电路中各点的电位。 2.扩展实验任务 学习判断故障原因和排除简单故障的方法。 3.实验目的 验证和理解基尔霍夫定律;学习电压、电流的的测量方法;学习电位的测量方法,用实验证明电位的相对性以及电压的绝对性。 三、实验原理及电路 1.实验原理 基尔霍夫定律。基尔霍夫电流定律(KCL),对电路中的任一节点,各支路电流的代数和等于零。基尔霍夫电压定律(KVL),对任何一个闭合电路,沿闭合回路的电压降的代数和为零。 2.实验电路 F E 图1.1 基尔霍夫定律实验电路 四、实验环境 1.实验仪器 双路直流稳压电源1台,直流电流表1台,万用表1台。 2.实验器件 电流插孔3个,100Ω/2W电阻2个,200Ω/2W电阻1个,300Ω/2W电阻1个,470Ω/2W电阻1个。 3.仿真软件 NI Multisim

五、实验方案与步骤简述 1.用万用表直流电压档监测,调节直流稳压电源两路输出分别为16V和8V。 2.按图1.1接线,根据理论计算值,选择电流表、万用表合适量程,测量并记录实验数据。 六、实验数据 1.基本实验内容 (1)验证基尔霍夫电流定律。 图1.2 验证基尔霍夫电流定律仿真图 表1.1 验证基尔霍夫电流定律数据 (2)验证基尔霍夫电压定律。

DC 10MOhm 图1.3 验证基尔霍夫电压定律仿真图1 表1.2 验证基尔霍夫电压定律数据1 DC 10MOhm 图1.4 验证基尔霍夫电压定律仿真图2 表1.3 验证基尔霍夫电压定律数据2

实验报告-验证基尔霍夫定理

HUNAN UNIVERSITY 实验报告 科目:电路分析基础 院系: 信息科学与工程学院 专业:物联网工程 学号:201320030111 姓名:任京萍 2014年1月10日

实验三 一、实验目的 1、加深对电路的回路和节点的电流进出和电压的理解; 2、加深对基尔霍夫定律的认识,学会运用节点分析和回路分析的方法分析电路。 二、实验器材 一个直流电压,一个独立电流源,若干现行电阻和若干万用表 三、实验内容 基尔霍夫电流、电压定理的验证。 四、设计目的: 学习使用workbench6.0软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。 五、解决方案: 自己设计一个电路,要求至少包括两个回路和两个节点,测量节点的电流代数和与回路电压代数和,验证基尔霍夫电流和电压定理并与理论计算值相比较。 六、实验原理 A)基尔霍夫定理: 1.KCL:对于任一集总电路中的任一节点,在任一时刻,流出或者流进该节点的所有 之路电流的代数和为0; 2.KVL:对于任一集总电路中的任一回路,在沿着该回路的所有支路电压降的代数和 为0; B)仿真电路图 XMM8XMM9

C)电路图电流电压表示 根据基尔霍夫定律,KCL: 1、i1=i3+i4

2、i3+i10=i2 3、i4=i5+i10 4、i1=i2+i5

KVL: 利用节点电压测得回路电压: 按逆时针方向 R4两端电压为U4=(U8-U7)=585.564V R2两端电压为U2=(U9-U8)=228.228V 节点7和9之间的电压为U79(U7-U9)=-813.792V 以上可得:U2+U4+U79=0,可验证基尔霍夫定律。

实验心得3篇

实验心得3篇 实验心得一 电路实验,作为一门实实在在的实验学科,是电路知识的基础和依据。它可以帮助我们进一步理解巩固电路学的知识,激发我们对电路的学习兴趣。在大二上学期将要结束之际,我们进行了一系列的电路实验,从简单基尔霍夫定律的验证到示波器的使用,再到一阶电路——,一共五个实验,通过这五个实验,我对电路实验有了更深刻的了解,体会到了电路的神奇与奥妙。不过说实话在做这次试验之前,我以为不会难做,就像以前做的实验一样,操作应该不会很难,做完实验之后两下子就将实验报告写完,直到做完这次电路实验时,我才知道其实并不容易做。它真的不像我想象中的那么简单,天真的以为自己把平时的理论课学好就可以很顺利的完成实验,事实证明我错了,当我走上试验台,我意识到要想以优秀的成绩完成此次所有的实验,难度很大,但我知道这个难度是与学到的知识成正比的,因此我想说,虽然我在实验的过程中遇到了不少困难,但最后的成绩还是不错的,因为我毕竟在这次实验中学到了许多在课堂上学不到的东西,终究使我在这次实验中受益匪浅。 下面我想谈谈我在所做的实验中的心得体会: 在基尔霍夫定律和叠加定理的验证实验中,进一步学习了基尔霍夫定律和叠加定理的应用,根据所画原理图,连接好实际电路,测量出实验数据,经计算实验结果均在误差范围内,说明该实验做的成功。

我认为这两个实验的实验原理还是比较简单的,但实际操作起来并不是很简单,至少我觉得那些行行色色的导线就足以把你绕花眼,所以我想说这个实验不仅仅是对你所学知识掌握情况的考察,更是对你的耐心和眼力的一种考验。 在戴维南定理的验证实验中,了解到对于任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替此电压源的电动势us等于这个有源二端网络的开路电压uoc,其等效内阻ro等于该网络中所有独立源均置零时的等效电阻。这就是戴维南定理的具体说明,我认为其实质也就是在阐述一个等效的概念,我想无论你是学习理论知识还是进行实际操作,只要抓住这个中心,我想可能你所遇到的续都问题就可以迎刃而解。不过在做这个实验,我想我们应该注意一下万用表的使用,尽管它的操作很简单,但如果你马虎大意也是完全有可能出错的,是你整个的实验前功尽弃! 在接下来的常用电子仪器使用实验中,我们选择了对示波器的使用,我们通过了解示波器的原理,初步学会了示波器的使用方法。在试验中我们观察到了在不同频率、不同振幅下的各种波形,并且通过毫伏表得出了在不同情况下毫伏表的读数。 总的来说,通过此次电路实验,我的收获真的是蛮大的,不只是学会了一些一起的使用,如毫伏表,示波器等等,更重要的是在此次实验过程中,更好的培养了我们的具体实验的能力。又因为在在实验过程中有许多实验现象,需要我们仔细的观察,并且分析现象的原因。特别有时当实验现象与我们预计的结果不相符时,就更加的需要我们

相关主题
文本预览
相关文档 最新文档