当前位置:文档之家› 大学物理(第二版)第一章习题答案

大学物理(第二版)第一章习题答案

大学物理(第二版)第一章习题答案
大学物理(第二版)第一章习题答案

第一章习题

1.1 一人自愿点出发,25s 内向东走了30m ,又10s 内向南走了10m ,再15s 内向正西北

走了18m 。求:

⑴ 位移和平均速度 ⑵ 路程和平均速率 解:

由图所示,人的移动曲线是从O 点出发,到A 点,再到B 点,C 点。 ⑴ 位移:OC

30OA m = ,10AB m =

,18BC m =

由于是正西北方向,所以45ABD ADB ∠=∠=?

BD =

((

)((

)2222

2

2cos 4518301021830102

OC CD OD OD CD =+-?

=-+--?-?-?

1324305.92=-≈ 17.5OC m ≈

平均速度的大小为:()17.50.35m 50

r v t ?===? ⑵ 路程应为:

58m s OA AB BC =++=

平均速率为1.16m s 1.2

有一质点沿着x 轴作直线运动,t 时刻的坐标为2

3

4.52x t t =-,试求:

⑴ 第2秒内的平均速度 ⑵ 第2秒末的瞬时速度 ⑶ 第2秒内的路程。 解:⑴ 当1t s =时,1 2.5x m = 当2t s =时,218162x m =-=

平均速度为 ()212 2.50.5m s v x x =-=-=- ⑵ 第2秒末的瞬时速度为 ()22966m t dx

v t t dt

==

=-=-

⑶ 第2秒内的路程:(在此问题中必须注意有往回走的现象) 当 1.5t s =时,速度0v =,2 3.375x m = 当1t s =时,1 2.5x m = 当2t s =时,32x m =

所以路程为:3.375 2.5 3.3752 2.25m -+-= 1.3

质点作直线运动,其运动方程为2

126x t t =-,采用国际单位制,求:

⑴ 4t s =时,质点的位置,速度和加速度

⑵ 质点通过原点时的速度 ⑶ 质点速度为零时的位置

⑷ 作位移,速度以及加速度随着时间变化的曲线图。

解:⑴ 由运动方程2

126x t t =-,可得速度,加速度的表达式分别为

1212dx v t dt =

=- 12dv a dt

==- 所以当4t s =时,质点的位置,速度和加速度分别为

48m x =-;36m s v =-;2

12m a =-

⑵ 质点经过原点的时刻12s t =,20s t =此时的速度分别为 ()112m v =- ()212m s v =

⑶ 质点速度为零对应的1s t =,位置为6m x = 1.4

质点沿直线运动,速度()32

22m v t t =++,如果当2s t =时,4m x =,求3s

t =时质点的位置,速度和加速度。

解: 速度()3

2

22m v t t =++,位置,加速度的表达式分别为

()43

3

2

222243

t t x t t dx t C =++=+

++? 当2s t =时,4m x =,即164443x C =+

++=,可得28

3

C =- 43228

2433

t t x t =+

+-,234a t t =+

当3s t =时,质点的位置,速度和加速度分别为

81542824311262434.9m 43312

x -=

++-=+≈ ()22718247m s v =++= ()2271239m s a =+=

1.5

质点的运动方程为35x t =+,2234y t t =+-,采用国际单位制,试求:

⑴ 1s t =和2s t =时刻的位置矢量及12t s = 内质点的位移

⑵ t 时刻的速度和加速度

⑶ 4s t =时质点运动速度和加速度的大小和方向

解:⑴ 当1s t =时,18m x =,11m y =,所以1??8r i j =+ 当2s t =时,111m x =,110m y =,所以2??1110r i j =+

质点的位移为21??39r r r i j =-=+

⑵ t 时刻的速度v 和加速度a

分别为 ()3m s x dx v dt =

= ()43m s y dy

v t dt

==+ 0x

x dv a dt == ()24m y y dv a dt == ()?

?343v i t j =++ ()

2?

4m s a j = ⑶ 4s t =时质点运动速度和加速度分别为

()????343319v i t j i j =++=+ 19.24m ≈

2?4jm s a =

大小为24m 1.6 解:由加速度与时间的曲线图a t -可得到质点的运动情况为 10t t ≤≤ 为匀加速直线运动 12t t t ≤≤ 为匀速直线运动 2t t > 为匀加速直线运动

根据上述分析可以得出速度和位移与时间有关的表达式,从而画出曲线。 1.7 解:质点的加速度()2

2

4m s a t =-,初始条件为0

9m t x

==,0

2m t v

==

速度v 的表达式为

()3

2

00004243

t

t

t v v adt v t dt t =+=+-=+-??

质点的运动方程x 为:

32400001

24922312t

t

t x x vdt x t dt t t t ??=+=++-=++- ??

???

1.8 证明:

由题可知:

2dv dx

kv kv dt dt

=-=- 所以有: d v k v d x =- 变换为:

dv

kdx v

=- 两边同时积分就可得到:00v x v dv kdx v =-?? 0

ln v

v v kx =- 即 0

ln

v

kx v =- 所以有0k x v v e -= 1.9 解:

炮弹的运动轨迹如上图的虚线所示,如图建立坐标轴,x y 。

将初速度0v

沿坐标轴分解可得0000cos sin x y v v v v θθ=??=? ⑴

加速度g 沿坐标轴分解可得 sin cos x y

a g a g α

α=-??=-? ⑵

在任意时刻t 的速度为 0000cos sin sin cos x x x y

y y v v a t v gt v v a t v gt θα

θα=+=-??

=+=-? ⑶

任意时刻t 的位移为 22002200

11cos sin 22

11sin cos 22

x x y y x v t a t v t gt y v t a t v t gt θαθα?=+=-????=+=-?? ⑷

⑴ 炮弹射程为0y =时,所对应的x 。 0y =对应的时刻02sin cos v t g θ

α

=

,代入可得

()()2200222sin cos cos sin sin 2sin cos cos cos v v x g g θθαθαθθααα

-+==

y g

⑵ 将02sin cos v t g θ

α

=

代入方程组⑶可得

00000002sin cos sin cos 2sin tan cos 2sin sin cos sin cos x

y v v v g v v g v v v g v g θθαθθααθθαθ

α?

=-=-??

??=-=-??

速度的大小为

v =

=

=

= 方向可以由 t a n 2t a n c o t y x

v v βαθ

=

=- ()arctan 2tan cot βαθ=-

1.10 解:

由于在忽略空气阻力的情况下,小球只受到重力的作用,做斜抛运动。设球抛出时

的初速度为0v

,分量分别为0x v ,0y v 。根据题意有:

0 3.98m x x v v == x 轴做匀速直线运动

在14.7m h =的高度,速度为()

??3.989.8m s v i

j =+

,由任意时刻速度与位移的公式可得:

02012

y y y v v gt

y v gt =-??

?=-?? 代入数据可得0209.89.814.7 4.9y y v t v t =-??=-? ⑴

x

g

通过解方程组⑴可得019.6m s y v =,1s t =

⑴ 球能上升的总高度为max h :

20m a x 2y v g h -=- 代入数据可得:max 19.6m h = ⑵ 根据运动情况列出任意时刻的位移方程为

02012

x y x v t y v t gt =?

?

?=-??代入数据可得2

3.9819.6

4.9x t y t t =??=-? 当0y =时,14s t =,20s t =(舍去,因为对应的是抛出点) 所以得到射程 3.9841

5.92m x =?=

⑶ 当小球落地时,在x 轴方向速度不变,y 轴方向的速度就变为19.6m s -,用矢量

表示为()

??3.9819.6m v i

j =-

,大小为20m s ,方向可用方向余弦表示。 1.11 解:

选坐标如图所示。

当螺帽自顶板松落时,底板坐标为0y 。顶板与螺帽坐标为0y h +,经过时间t ,底板 与螺帽的坐标分别为1y ,2y ,由匀加速直线运动公式可得

()21002

20012

12

y y v t at y y h v t gt ?

-=+????-+=-??

当螺帽落到地板上时,1y =2y ,则由上边两式可得: 220011

22

v t at v t gt h +

=-+

()21

2

h a g t =

+

0.705s t =

=≈ 22010011

0.72m 22

d y h y gt v t h v t at =+-=-=--≈ 1.12 解:

以l 表示从船到定滑轮的绳长,则0d l

v d t

=-

,且s 于是得到船的速度为:

(

)'

12220ds v l h dt ??==-==????,

负号表示船在水平方向向岸靠近。

加速度为:

()'

'

22

22220000233

dv a dt d l d t l v s v v s s h v h s s s s

??==??=--+===- 1.13 解:角加速度2rad s d dt

?

βπ=

= 初始条件为: 当0t =时,0?= ⑴ d dt ?β=, 000

t

t

dt dt t ??β?ππ=+

=+=?

?

第一秒末的角速度为 r a d s 3.14r a d s

?π==

⑵ 第一秒末的法向加速度2

2

2

1098.6m s n a r ?π==?= 第一秒末的切向加速度2

1031.4m a r τβπ===

⑶ 加速度的大小为2103.5m s a =

方向:与τ轴的夹角为'arctan

arctan 3.147220n

a a τ

α=== 1.14 解:3

24rad t θ=+,角速度为212rad s d t dt

θ

?=

= 角加速度为224rad s t β= ⑴ 当2s t =时,248rad β= 2220.148230.4m s

n a r ?==?=

20.148 4.8m s a r τβ==?=

⑵ 在t 时刻,法向加速度与切向加速度分别为 ()2

2

242

0.112

14.4m s

n a r t t ?

==?= ()20.124 2.4m s a r t t τβ==?=

总加速度与半径夹角为45

时,n a a τ= 可得 3

1

0.1676

t =≈,即 2.167rad θ=

《大学物理》课后习题答案

《大学物理》课后习题 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

习题4-12图 H L H h H 4-12 一个器壁竖直的开口水槽,如图所示,水的深度为H =10m ,在水面下h =3m 处的侧壁开一个小孔。试求:(1)从小孔射出的水流在槽底的水平射程L 是多少(2)h 为何值时射程最远最远射程是多少 解:(1)设水槽表面压强为p 1,流速为v 1,高度为h 1, 小孔处压强为p 2,流速为v 2,高度为h 2,由伯努利方程得: 22 2212112 121gh v p gh v p ρρρρ++=++ 根据题中的条件可知: 211021,0,h h h v p p p -==== 由上式解得:gh v 22= 由运动学方程:221gt h H = -,解得: g h H t ) (2-= 水平射程为:)(m 17.9)310(34)(42=-??=-==h H h t v L (2)根据极值条件,令0=dh dL ,L出现最大值, 即 022 =--h hH h H ,解得:h=5m 此时L的最大值为10m 。 4-14 水在粗细不均匀的水平管中作稳定流动,已知在截面S1处的压强为110Pa ,流速为0.2m/s ,在截面S2处的压强为5Pa ,求S2处的流速(把水看作理想流体)。 解:由伯努利方程得:2 222112 121v p v p ρ+=ρ+ 2323100.12 1 52.0100.121110v ???+=???+ )(5.012-?=s m v 4-16在水管的某一端水的流速为1.0m/s ,压强为5100.3?Pa ,水管的另一端比第一端降低了20.0m ,第二端处水管的横截面积是第一端处的1/2。求第二 端处的压强。设管中的水为理想流体,且作稳定流动。 解: 由连续性方程 2 21 1v S v S = 得:)(211 2 12212 -?=?== s m v S S v 由伯努利方程22 2212112 121gh v p gh v p ρρρρ++=++ 得:)()(2 121222112h h g v v p p -+-+ =ρρ

大学物理下答案习题14

习题14 14.1 选择题 (1)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹[ ] (A) 对应的衍射角变小. (B) 对应的衍射角变大. (C) 对应的衍射角也不变. (D) 光强也不变. [答案:B] (2)波长nm (1nm=10-9m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距是[ ] (A)2m. (B)1m. (C)0.5m. (D)0.2m. (E)0.1m [答案:B] (3)波长为的单色光垂直入射于光栅常数为d、缝宽为a、总缝数为N的光栅上.取k=0,±1,±2....,则决定出现主极大的衍射角的公式可写成[ ] (A) N a sin=k. (B) a sin=k. (C) N d sin=k. (D) d sin=k. [答案:D] (4)设光栅平面、透镜均与屏幕平行。则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k [ ] (A)变小。 (B)变大。 (C)不变。 (D)的改变无法确定。 [答案:B] (5)在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为[ ] (A) a=0.5b (B) a=b (C) a=2b (D)a=3b [答案:B] 14.2 填空题 (1)将波长为的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为,则缝的宽度等于________________. λθ] [答案:/sin (2)波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30°,单缝处的波面可划分为______________个半波带。 [答案:4] (3)在夫琅禾费单缝衍射实验中,当缝宽变窄,则衍射条纹变;当入射波长变长时,则衍射条纹变。(填疏或密) [答案:变疏,变疏]

大学物理练习题

一、选择题 1. 半径为R 的均匀带电球面,若其电荷面密度为σ,取无穷远处为零电势点,则在距离球面r (R r <) 处的电势为( ) A 、0 B 、R 0 εσ C 、r R 02 εσ D 、r R 024εσ 2. 下列说法正确的是:( ) A. 电场场强为零的点,电势也一定为零 B. 电场场强不为零的点,电势也一定不为零 C. 电势为零的点,电场强度也一定为零 D. 电势在某一区域内为常量,则电场强度在该区域内必定为零 3. 如图示,边长是a 的正方形平面的中垂线上,距中心O 点 处, 有一电量为q 的正点电荷,则 通过该平面的电通量是( )。 A. B. C. D. 4. 两根长度相同的细导线分别密绕在半径为R 和r 的两个直圆筒上形成两个螺线管,两个螺线管的长 度相同,R=2r ,螺线管通过的电流相同为I ,螺线管中的磁感应强度大小为B R ,B r ,则应该满足:( ) A. B R =2B r B. B R =B r C. 2B R =B r D. B R =4B r 5. 两个同心均匀带电球面,半径分别为a R 和b R (b a R R <), 所带电荷分别为a q 和b q .设某点与球 心相距r ,当b a R r R <<时,取无限远处为零电势,该点的电势为( ) A 、 r q q b a +?π041ε B 、 r q q b a -?π041ε

C 、???? ? ?+?b b a R q r q 0 41επ D 、 ???? ??+?b b a a R q R q 0 41 επ 6. 面积为S 和S 2的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用21Φ表示,线圈2的电流所产生的通过线圈1的磁通用12Φ表示,则21Φ和12Φ的大小关系为( ) 1 2 S 2 S I I A 、12212ΦΦ= B 、1221ΦΦ> C 、1221ΦΦ= D 、12212 1 ΦΦ= 7. 如图所示,两个“无限长”的、半径分别为1R 和2R 的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为1λ和2λ,则在两圆柱面之间、距离轴线为r 处的P 点的电场强度大小E 为( ) A 、 r 02 12ελλπ+ B 、 2 02 10122R R ελελπ+ π C 、 r 01 2ελπ D 、0 8. 如图,长度为l 的直导线ab 在均匀磁场B ? 中以速度v ? 移动,直导线ab 中的电动势为( )

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理课后习题答案(赵近芳)下册

习题八 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系 ? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 2 220)3 3(π4130cos π412a q q a q '=?εε 解得 q q 3 3- =' (2)与三角形边长无关. 题8-1图 题8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2 图所示.设小球的半径和线的质量都可 解: 如题8-2图示 ?? ? ?? ===220)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε= ,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解 ?

解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电 荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 024d q πε,又有人 说,因为f =qE ,S q E 0ε=,所以f =S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少 ? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε= ,另一板受它的作用 力S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为 r E = 302cos r p πεθ, θ E =3 04sin r p πεθ 证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量 θsin p . ∵ l r >>

大学物理之习题答案

单元一 简谐振动 一、 选择、填空题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? 【 C 】 (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π3 4 ,则t=0时,质点的位置在: 【 D 】 (A) 过A 21x = 处,向负方向运动; (B) 过A 21 x =处,向正方向运动; (C) 过A 21x -=处,向负方向运动;(D) 过A 2 1 x -=处,向正方向运动。 3. 将单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止释放任其振动,从放手开始计时,若用余弦函数表示运动方程,则该单摆的初相为: 【 B 】 (A) θ; (B) 0; (C)π/2; (D) -θ 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: 【 B 】 (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: 【 C 】 (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; ) 4(填空选择) 5(填空选择

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理教程 上 课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 或1= (2)将1t s =和2t s =代入,有 11r i =u r r , 241r i j =+u r r r 位移的大小 r ==r V (3) 2x dx v t dt = = 2x x dv a dt = =, 2y y dv a dt == 当2t s =时,速度和加速度分别为 22a i j =+r r r m/s 2 1-4 设质点的运动方程为 cos sin ()r R ti R t j SI ωω=+r r r ,式中的R 、ω均为常量。求(1)质点的速度;(2)速率的变化率。 解 (1)质点的速度为 (2)质点的速率为 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t dt θ ω= = 质点在t 时刻的法向加速度n a 的大小为 角加速度β的大小为 24/d rad s dt ω β== 77 页2-15, 2-30, 2-34,

2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作 用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的 阻力(空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 即 dv k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等 于地球半径的2倍(即2R ),试以,m R 和引力恒量G 及地球的质量M 表示出: (1) 卫星的动能; (2) 卫星在地球引力场中的引力势能. 解 (1) 人造卫星绕地球做圆周运动,地球引力作为向心力,有 卫星的动能为 212 6k GMm E mv R == (2)卫星的引力势能为 2-37 一木块质量为1M kg =,置于水平面上,一质量为2m g =的子弹以 500/m s 的速度水平击穿木块,速度减为100/m s ,木块在水平方向滑行了20cm 后 停止。求: (1) 木块与水平面之间的摩擦系数; (2) 子弹的动能减少了多少。

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

大学物理例题

例1 路灯离地面高度为H,一个身高为h 的人,在灯下水平路面上以匀速度步行。如图3-4所示。求当人与灯的水平距离为时,他的头顶在地面上的影子移动的速度的大小。 解:建立如右下图所示的坐标,时刻头顶影子的坐标为 ,设头顶影子的坐标为,则 由图中看出有 则有 所以有 ; 例2如右图所示,跨过滑轮C的绳子,一端挂有重物B,另一端A 被人拉着沿水平方向匀速运动,其速率。A离地高度保 持为h,h =1.5m。运动开始时,重物放在地面B0处,此时绳C在铅 直位置绷紧,滑轮离地高度H = 10m,滑轮半径忽略不计,求: (1) 重物B上升的运动方程;

(2) 重物B在时刻的速率和加速度; (3) 重物B到达C处所需的时间。 解:(1)物体在B0处时,滑轮左边绳长为l0 = H-h,当重物的位移为y时,右边绳长为 因绳长为 由上式可得重物的运动方程为 (SI) (2)重物B的速度和加速度为 (3)由知 当时,。

此题解题思路是先求运动方程,即位移与时间的函数关系,再通过微分求质点运动的速度和加速度。 例3一质点在xy平面上运动,运动函数为x = 2t, y = 4t2-8(SI)。 (1) 求质点运动的轨道方程并画出轨道曲线; (2) 求t1=1s和t2=2s时,质点的位置、速度和加速度。 解:(1) 在运动方程中消去t,可得轨道方程为 , 轨道曲线为一抛物线如右图所示。 (2) 由 可得: 在t1=1s 时, 在t2=2s 时, 例4质点由静止开始作直线运动,初始加速度为a0,以后加速度均匀增加,每经过τ秒增加a0,求经过t秒后质点的速度和位移。 解:本题可以通过积分法由质点运动加速度和初始条件,求解质点的速度和位移。

《大学物理习题集》上)习题解答

) 2(选择题(5) 选择题单 元一 质点运动学(一) 一、选择题 1. 下列两句话是否正确: (1) 质点作直线运动,位置矢量的方向一定不变; 【 ? 】 (2) 质点作园周运动位置矢量大小一定不变。 【 ? 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。 3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】 (A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向; (C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度: 【 D 】 (A) 等于零 (B) 等于-2m/s (C) 等于2m/s (D) 不能确定。 5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】 (A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。 6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,

大学物理例题

1。质点的运动方程为 求: (1)质点的轨迹方程; (2)质点在第1s和第2秒的运动速度; (3)质点在第1s和第2秒的加速度。 2.在离水面高为h 的岸边,有人用绳子拉小船靠岸,人以不变的速率u收绳。求:当船在离岸距离为x时的速度和加速度。 例3:一质点作直线运动,已知其加速度a= 2- 2t (SI),初始条件为x0=0,v0=0,求 (1)质点在第1s末的速度; (2)质点的运动方程; (3)质点在前3s内经历的路程。

4。 5。

6。已知l 长的绳端拴一质量m 的小球(另 一端固定在o 点),自水平位置由静止释 放。求球摆至任一位置时,球的速度及绳 中的张力。 7. 一个滑轮系统,如图,A 滑轮的加速度为a ,两边分别悬挂质量为m 1和m 2的两个物体, 求两个物体的加速度。 7。一个以加速度大小a=1/3g 上升的升降机里,有一装置如图所示,物体A 、B 的质量相同,均为m ,A 与桌面之间的摩擦忽略不计,滑轮的重量忽略不计。从地面看,B 做自由落体运动。试求,若从升降机上看,B 的加速度大小是多少?

8. 9.重量为P 的摆锤系于绳的下端,绳长为l ,上端固定,如图所示,一水平变力大小为F 从零逐渐增大,缓慢地作用在摆锤上,使摆锤虽然移动,但在所有时间内均无限接近力平衡,一直到绳子与竖直线成 Θ0 角的位置,试计算此变力所做的功. P F

10.一束子弹射入木块,并在木块中走了S ',然后停止;而子弹和木块整个系统水平向右走了S ,求子弹和木块所受的一对摩擦力f s 和f s '所做的净功。 11. 如图所示,倔强系数为k 的弹簧悬挂着质量为m 1,m 2两个物体,开始时处于静止,突然把两物体间的连线剪断,求m 1的最大速度为多少? 12. 墙壁上固定一水平放置的轻弹簧,弹簧的另一端连一质量为m 的物体,弹簧的弹性系数为k ,物体m 与水平面间的摩擦系数为μ,开始时,弹簧没有伸长,现以恒力F 将物体自平衡位置开始向右拉动,试求此系统所具有的最大势能。 k 1m 2 m

大学物理课后习题答案

大学物理课后习题答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

第十一章 磁场与介质的相互作用 1、试用相对磁导率r 表征三种磁介质各自的特性。 解:顺磁质r >1,抗磁质r <1,铁磁质r >>1 2、用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为r 的均匀磁介质。若线圈中载有稳恒电流I ,求管中任意一点的磁场强度大小。 解:磁场强度大小为H = NI / l . 3、置于磁场中的磁介质,介质表面形成面磁化电流,试问该面磁化电流能否产生楞次─焦耳热为什么 答:不能.因为它并不是真正在磁介质表面流动的传导电流,而是由分子电流叠加而成,只是在产生磁场这一点上与传导电流相似。 4、螺绕环上均匀密绕线圈,线圈中通有电流,管内充满相对磁导率为r =4200的磁介质.设线圈中的电流在磁介质中产生的磁感强度的大小为B 0,磁化电流 在磁介质中产生的磁感强度的大小为B',求B 0与B' 之比. 解:对于螺绕环有:nI B r μμ0=,nI B 00μ= 5、把长为1m 的细铁棒弯成一个有间隙的圆环,空气间隙宽为mm 5.0,在环上绕有800匝线圈,线圈中的电流为1A ,铁棒处于初始磁化曲线上的某个状态,并测得间隙的磁感应强度为T 5.0。忽略在空气隙中的磁通量的分散,求铁环内的磁场强度及铁环的相对磁导率。 解:⑴沿圆环取安培环路,根据∑?=?i L I l d H ,得 NI d B HL =+00 μ (此处d L >>,忽略空气隙中的B φ分散)

于是 m A L d B NI H /60100 ≈-=μ ⑵ H B r μμ0= ,而0B B ≈,37.6620== ∴H B r μμ 6、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为 A 时,测得铁环内的磁感应强度的大小B 为 T ,求铁环的相对磁导率r (真空磁导率0 =4×10-7 T ·m ·A -1)。 解:因为:I l N nI B r μμμ0== 所以: 7、一根很长的同轴电缆,由一导体圆柱 (半径为a )和同轴的导体圆管(内、外半 径分别为b 、c )构成。使用时,电流I 从一导体流出,从另一导体流回,设电流都是均匀地分布在导体的横截面上,求导体圆柱内(a r <)和两导体之间 (b r a <<)的磁场强度H 的大小。 解:由于电流分布具有对称性,因而由此产生的磁场分布也必然具有相应的轴对称性,所以在垂直于电缆轴的平面内,以轴为中心作一圆环为安培环路。应用磁介质中的安培环路,计算安培环路的磁场强度矢量的线积分。 据 ∑?=?i L I l d H ,当a r <时,22a Ir H π= 当b r a <<时,r I H π2= 8、在无限长载流空心螺线管内同轴地插入一块圆柱形顺磁介质,若1、2点为圆柱介质中分面上靠近柱面而分居柱面两边的两个点。在1、2点处的磁感应强度分别为1B 、2B ,磁场强度分别为21H 、H ,则它们之间的关系是怎样的

大学物理教程课后习题答案

物理部分课后习题答案(标有红色记号的为老师让看的题) 27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位, 求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 21)y = 或 1= (2)将1t s =和2t s =代入,有 11r i =, 241r i j =+ 213r r r i j =-=- 位移的大小 231r =+= (3) 2x dx v t dt = = 2(1)y dy v t dt ==- 22(1)v ti t j =+- 2x x dv a dt ==, 2y y dv a dt == 22a i j =+ 当2t s =时,速度和加速度分别为 42/v i j m s =+ 22a i j =+ m/s 2 1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量。求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为 sin cos d r v R ti R t j dt ωωωω= =-+ (2)质点的速率为 v R ω== 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t dt θ ω= = 质点在t 时刻的法向加速度n a 的大小为 2216n a R Rt ω== 角加速度β的大小为 24/d rad s dt ω β== 77 页2-15, 2-30, 2-34, 2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用 下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2.0 2.0 2.02 (63)(33) 18I Fdt t dt t t N s ==+=+=? ? 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力 (空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 dv f m kv dt ==- 即 dv k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球

大学物理习题集(下)答案

一、 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ] (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子 的初相为4 3 π,则t=0时,质点的位置在: [ D ] (A) 过1x A 2=处,向负方向运动; (B) 过1x A 2 =处,向正方向运动; (C) 过1x A 2=-处,向负方向运动;(D) 过1 x A 2 =-处,向正方向运动。 3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表 此简谐振动的旋转矢量图为 [ B ] 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ] (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ] (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。 6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ] (4) 题(5) 题

大学物理试题1.1

1.选择题 1.在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张 力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上 升时,绳子刚好被拉断? ( ) (A) 2a 1. (B) 2(a 1+g ). (C) 2a 1+g . (D) a 1+g . 2.如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为 ( ) (A) θcos mg . (B) θsin mg . (C) θcos mg . (D) θsin mg . 3.竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 紧靠在圆筒 的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的 角速度ω至少应为 ( ) (A) R g μ (B)g μ (C) R g μ (D)R g 4.已知水星的半径是地球半径的 0.4倍,质量为地球的0.04倍.设在地球 上的重力加速度为g ,则水星表面上的重力加速度为: ( ) (A) 0.1 g (B) 0.25 g (C) 2.5 g (D) 4 g 5.一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则 摆锤转动的周期为 ( ) (A)g l . (B)g l θcos . (C)g l π 2. (D)g l θπcos 2 . 6.在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动, 则转台的角速度ω应满足 ( ) (A)R g s μω≤. (B)R g s 23μω≤. (C)R g s μω3≤. (D)R g s μω2≤. 7.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f ( ) (A) 恒为零. (B) 不为零,但保持不变. (C) 随F 成正比地增大. (D) 开始随F 增大,达到某一最大值后,就保持不变 a 1 m θ θ l ωO R A A O O ′ ω

大学物理下册练习及答案

大学物理下册练习及答 案 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

电磁学 磁力 A 点时,具有速率s m /10170?=。 (1) 欲使这电子沿半圆自A 至C 运动,试求所需 的磁场大小和方向; (2) 求电子自A 运动到C 所需的时间。 解:(1)电子所受洛仑兹力提供向心力 R v m B ev 20 0= 得出T eR mv B 3197 310101.105 .0106.11011011.9---?=?????== 磁场方向应该垂直纸面向里。 (2)所需的时间为s v R T t 87 0106.110 105 .0222-?=??===ππ eV 3100.2?的一个正电子,射入磁感应强度B =的匀强磁场中,其速度 B 成89角,路径成螺旋线,其轴在B 的方向。试求这螺旋线运动的周期T 、螺距h 和半径r 。 解:正电子的速率为 731 19 3106.210 11.9106.110222?=?????==--m E v k m/s 做螺旋运动的周期为 1019 31 106.31 .0106.11011.922---?=????==ππeB m T s 螺距为410070106.1106.389cos 106.289cos --?=????==T v h m 半径为319 7310105.1 0106.189sin 106.21011.989sin ---?=??????==eB mv r m d =1.0mm ,放在 知铜片里每立方厘米有2210?个自由电子,每个电子的电荷19106.1-?-=-e C ,当铜片中有I =200A 的电流流通时, (1)求铜片两侧的电势差'aa U ; (2)铜片宽度b 对'aa U 有无影响为什么 解:(1)53 1928'1023.210 0.1)106.1(104.85 .1200---?-=???-???== nqd IB U aa V ,负号表示'a 侧电势高。 v A C

大学物理课后习题答案

第十一章 磁场与介质的相互作用 1、试用相对磁导率r 表征三种磁介质各自的特性。 解:顺磁质r >1,抗磁质r <1,铁磁质r >>1 2、用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为r 的均匀磁介质。若线圈中载有稳恒电流I ,求管中任意一点的磁场强度大小。 解:磁场强度大小为H = NI / l . 3、置于磁场中的磁介质,介质表面形成面磁化电流,试问该面磁化电流能否产生楞次─焦耳热为什么 答:不能.因为它并不是真正在磁介质表面流动的传导电流,而是由分子电流叠加而成,只是在产生磁场这一点上与传导电流相似。 4、螺绕环上均匀密绕线圈,线圈中通有电流,管内充满相对磁导率为r =4200的磁介质.设线圈中的电流在磁介质中产生的磁感强度的大小为B 0,磁化电流在 磁介质中产生的磁感强度的大小为B',求B 0与B' 之比. 解:对于螺绕环有:nI B r μμ0=,nI B 00μ= 5、把长为1m 的细铁棒弯成一个有间隙的圆环,空气间隙宽为mm 5.0,在环上绕有800匝线圈,线圈中的电流为1A ,铁棒处于初始磁化曲线上的某个状态,并测得间隙的磁感应强度为T 5.0。忽略在空气隙中的磁通量的分散,求铁环内的磁场强度及铁环的相对磁导率。 解:⑴沿圆环取安培环路,根据∑?=?i L I l d H ,得 NI d B HL =+00 μ (此处d L >>,忽略空气隙中的B φ分散)

于是 m A L d B NI H /60100 ≈-=μ ⑵ H B r μμ0= ,而0B B ≈,37.6620== ∴H B r μμ 6、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为 A 时,测得铁环内的磁感应强度的大小B 为 T ,求铁环的相对磁导率r (真空磁导率0 =4×10-7 T ·m ·A -1)。 解:因为:I l N nI B r μμμ0== 所以: 7、一根很长的同轴电缆,由一导体圆柱(半 径为a )和同轴的导体圆管(内、外半径分 别为b 、c )构成。使用时,电流I 从一导体流出,从另一导体流回,设电流都是均匀地分布在导体的横截面上,求导体圆柱内(a r <)和两导体之间(b r a <<) 的磁场强度H 的大小。 解:由于电流分布具有对称性,因而由此产生的磁场分布也必然具有相应的轴对称性,所以在垂直于电缆轴的平面内,以轴为中心作一圆环为安培环路。应用磁介质中的安培环路,计算安培环路的磁场强度矢量的线积分。 据 ∑?=?i L I l d H ,当a r <时,22a Ir H π= 当b r a <<时,r I H π2= 8、在无限长载流空心螺线管内同轴地插入一块圆柱形顺磁介质,若1、2点为圆柱介质中分面上靠近柱面而分居柱面两边的两个点。在1、2点处的磁感应强度分别为1B 、2B ,磁场强度分别为21H 、H ,则它们之间的关系是怎样的

大学物理习题答案

B 班级 学号 姓名 第1章 质点运动学 1-2 已知质点的运动方程为r i 3j 6k e e t t -=++。(1)求:自t =0至t =1质点 的位移。(2)求质点的轨迹方程。 解:(1) ()k j i r 630++= ()k j i r 6e 3e 1-1++= 质点的位移为()j i r ?? ? ??-+-=3e 31e ? (2) 由运动方程有t x e =,t y -=e 3, 6=z 消t 得 轨迹方程为 1=xy 且6=z 1-3运动质点在某瞬时位于矢径()y x,r 的端点处,其速度的大小为( D ) (A)dt dr (B)dt d r (C)dt d r (D)2 2 ?? ? ??+??? ??dt dy dt dx 1-5某质点的运动方程为k j i r 251510t t ++-=,求:t =0,1时质点的速度和加速度。 解:由速度和加速度的定义得 k j r v t dt d 1015+== , k v a 10==dt d 所以 t =0,1时质点的速度和加速度为 0 15==t j v 1 1015=+=t k j v 1 010,k a ==t 1-8 一质点在平面上运动,已知质点的运动方程为j i r 2235t t +=,则该质点所作运动为[ B ] (A) 匀速直线运动 (B) 匀变速直线运动

(C) 抛体运动 (D) 一般的曲线运动 *1-6一质点沿Ox 轴运动,坐标与时间之间的关系为t t x 233-=(SI)。则质点在4s 末的瞬时速度为 142m ·s -1 ,瞬时加速度为 72m ·s -2 ;1s 末到4s 末的位移为 183m ,平均速度为 61m ·s -1 ,平均加速度为 45m ·s -2。 解题提示:瞬时速度计算dt dx v =,瞬时加速度计算22dt x d a =;位移为 ()()14x x x -=?,平均速度为()()1414--= x x v ,平均加速度为 ()()1 414--=v v a

相关主题
文本预览
相关文档 最新文档