当前位置:文档之家› 高一第六章万有引力定律课后习题

高一第六章万有引力定律课后习题

高一第六章万有引力定律课后习题
高一第六章万有引力定律课后习题

高一第六章万有引力定律课后习题

§6.1

1.关于日心讲被人们所同意的缘故是 〔 〕

A .以地球为中心来研究天体的运动有专门多无法解决的咨询题

B .以太阳为中心,许多咨询题都能够解决,行星的运动的描述也变得简单了

C .地球是围绕太阳转的

D .太阳总是从东面升起从西面落下

2. 哪位科学家第一次对天体做圆周运动产生了怀疑?〔 〕

A.布鲁诺

B.伽利略

C.开普勒

D.第谷

3. 两颗人造卫星A 、B 绕地球做圆周运动,周期之比为T A : T B = 1: 8,那么轨道半径之比是多少?

4. 设月球绕地球运动的周期为27天,那么地球的同步卫星到地球中心的距离r 与月球中心到地球中心

的距离R 之比r/R 为 ( )

A. 1/3

B. 1/9

C. 1/27

D. 1/18

§6.2

1.关于公式R 3 / T 2=k,以下讲法中正确的选项是〔 〕

A.公式只适用于围绕太阳运行的行星

B.不同星球的行星或卫星,k 值均相等

C.围绕同一星球运行的行星或卫星,k 值不相等

D.以上讲法均错

2. 关于万有引力和万有引力定律的明白得错误的选项是......〔 〕 A.不能看作质点的两物体间不存在相互作用的引力

B.只有能看作质点的两物体间的引力才能用221r m Gm F =

运算 C.由2

21r m Gm F = 知,两物体间距离r 减小时,它们之间的引力增大 D.万有引力常量的大小第一是由牛顿测出来的,且等于6.67×10-11N ·m 2/kg 2

3. 设地球是半径为R 的平均球体,质量为M,设质量为m 的物体放在地球中心,那么物体受到地球的

万有引力为〔 〕

A.零

B.GMm/R 2

C.无穷大

D.无法确定

4. 如下图,两球的半径分不是r 1和r 2,均小于r ,而球质量分布平均。大

小分不为m 1、m 2,那么两球间的万有引力大小为〔 〕 A.221r m m G B.2121r m m G C. 22121)(r r m m G + D.

5. 某物体在地面上受到地球对它的万有引力为F ,为使此物体受到的引力减小到4F ,应把此物体置

于距地面的高度为〔R 指地球半径〕 ( )

A. 1R

B. 2R

C. 4R

D. 8R

6. 两个物体之间的万有引力大小为F 1,假设两物之间的距离减小x ,两物体仍可视为质点,现在两个物体之间的万有引力为F 2,依照上述条件能够运算〔 〕

A.两物体的质量

B.万有引力常量

C.两物体之间的距离

D.条件不足,无法运算上述中的任一个物理量

7. 关于万有引力定律的表述式221r

m m G F =,下面讲法中正确的选项是〔 〕 A.公式中G 为引力常量,它是由实验测得的,而不是人为规定的

B.当r 趋近于零时,万有引力趋于无穷大

C. m 1与m 2受到的引力大小总是相等的,方向相反,是一对平稳力

D. m 1与m 2受到的引力总是大小相等的,而与m 1、m 2是否相等无关

8. 两个质量均为M 的星体,其连线的垂直平分线为AB 。O 为两星体连线的中点,如图,一个质量为M 的物体从O 沿OA 方向运动,那么它受到的万有引力大小变化情形是〔 〕

A.一直增大

B.一直减小

C.先减小,后增大

D.先增大,后减小

9. 地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为〔 〕

A. 1:27

B. 1:9

C. 1:3

D. 9:1

10. 两个质量相等的球体,球心相距r 时,它们之间的引力为10- 8N,假设它们的质量都加倍,球心间距也加倍,那么它们之间的引力为_________

§6.3

1. 引力恒量G 的单位是〔 〕

A. N

B. 22kg m N ?

C. 2

3

s kg m ? D. 没有单位 2. 某个行星的质量是地球质量的一半,半径也是地球半径的一半,那么一个物体在此行星表面上的重

力是地球表面上重力的〔 〕

A. 1/4倍

B. 1/2倍

C. 4倍

D. 2倍

3. 地面的重力加速度为g,距地面高为地球半径处的重力加速度是〔 〕

A. g/2

B.2g/2

C. g/4

D. 2g

4. 月球中心到地球中心的距离大约是地球半径的60倍,那么月球绕地球运行的向心加速度与地球表面的重力加速度的之比为〔 〕

A. 1:60

B. 1:60

C. 1:3600

D. 60:1

§6.4

1.下面的哪组数据,能够运算出地球的质量M 地〔引力常量G 〕〔 〕

A.地球表面的重力加速g 和地球的半径R

B.月球绕地球运动的周期T 1及月球到地球中心的距离R 1

C.地球绕太阳运动的周期T 2及地球到太阳中心的距离R 2

D.地球〝同步卫星〞离地面的高度h

2.质量为m 的某行星绕质量为M 的恒星做圆周运动,那么它的周期 ( )

A.与行星的质量无关 B .与行星轨道半径的3/2次方成正比

C.与行星的运动速率成正比 D .与恒星质量M 的平方根成反比

3.假设某行星绕太阳公转的轨道半径为r,公转周期为T,引力常量为G ,那么由此可求出 〔 〕

A.行星的质量

B.太阳的质量

C.行星的密度

D.太阳的密度

4.一宇宙飞船在一个星球表面邻近做匀速圆周运动,宇航员要估测星球的密度,只需要测定飞船的〔 〕 A .围绕半径 B.围绕速度 C.围绕周期 D.围绕角速度

5、离地面高度h 处的重力加速度是地球表面重力加速度的2

1,那么高度是地球半径的〔 〕 A.2倍 B. 21倍 C. 2倍 D.〔2-1〕倍

6、一物体在某星球表面邻近自由落体,在连续两个1秒内下落的高度依次为12m ,20m ,那么该星球表面的重力加速度的值为〔 〕

A.12m/s 2

B. 10m/s 2

C. 8m/s 2

D. 16m/s 2

7.地球赤道的半径为R ,地球自转的周期为T ,地球表面的重力加速度为g ,那么赤道上的物体由于地球自转而产生的加速度为_____________。

8、月亮绕地球转动的周期为T 、轨道半径为r ,那么由此可得地球质量的表达式为_________。

9、假如某恒星有一颗卫星,此卫星沿专门靠近此恒星的表面做匀速圆周运动的周期为T ,那么可估算此恒星的平均密度为 。(万有引力恒量为G)

10、地球的半径为R ,地面的重力加速度为g ,万有引力恒量为G ,假如不考虑地球自转的阻碍,那么地球的平均密度的表达式为 。

11.地球绕太阳公转的角速度为ω1,轨道半径为R1,月球绕地球公转的角速度为ω2,轨道半径为R 2,那么太阳的质量是地球质量的多少倍?

§6.5

1、假如一人造地球卫星做圆周运动的轨道半径增大到原先的2倍,仍做圆周运动。那么〔 〕

A.依照公式V = r ω可知卫星的线速度将增大到原先的2倍

B.依照公式F = mv 2/r ,可知卫星所受的向心力将变为原先的1/2倍

C.依照公式F = GMm/r 2 ,可知地球提供的向心力将减少到原先的1/4倍

D.依照上述B 和C 给出的公式,可知卫星运动的线速度将减少到原先的2

2倍 2、人造卫星绕地球做匀速圆周运动,其速率是以下〔 〕

A.一定等于7.9km/s B .等于或小于7.9km/s

C.一定大于7.9km/s

D.介于7.9km/s ~11.2km/s

3、如下图,a 、b 、c 是围绕地球圆形轨道上运行的3颗人造卫星,它们的质量关系是m a =m b

B.b 、c 的周期相等,且小于a 的周期

C.b 、c 的向心加速度大小相等,且大于a 的向心加速度

D.b 所需向心力最小

4、关于地球同步卫星,以下讲法错误的选项是 ( )

A. 它一定在赤道上空运行 B .它的高度和运动速率各是一个确定值

C .它的线速度大于第一宇宙速度

D .它的向心加速度小于9.8m /s

2 5、地球的同步卫星质量为m ,离地面的高度为h .假设地球的半径为R ,地球表

面处的重力加速度为g ,地球自转的角速度为ω,那么同步卫星所受地球对它的万有引力的大小为 ( ) A .0 B.mR 2g/(R+h)2 C .m(R 2g ω4 )1/3 D .以上结果都不正确

6、人造地球卫星做匀速圆周运动,它们沿圆轨道稳固运行时的线速度能够为( )

A.3.1km/s

B.7.9km/s

C.11.2km /s

D.16.7km/s

7、同步卫星离地心距离为r ,运行速率为v 1,加速度为a l ,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球半径为R ,以下关系中正确的有( )。 A.a 1=a 2 B.a 1/a 2=R 2/r 2 C.v 1/v 2=R 2/r 2 D.v 1/v 2=〔R/r 〕

0。5 8、甲、乙两颗人造地球卫星,质量相同,它们的轨道差不多上圆。假设甲的运行周期比乙小,那么( )。

A.甲距地面的高度一定比乙小

B.甲的线速度一定比乙小

C.甲的角速度一定比乙大

D.甲的加速度一定比乙小

9、两颗行星A 和B 各有一颗卫星a 和b,卫星轨道各自接近行星表面,假如两行星质量之比为M A /M B =p,两行星半径之比为R A /R B =q ,那么两卫星周期之比T a /T b 为〔 〕

A.pq

B.q p

C.p q p /

D.q p q /

10、人造卫星在太空运行中,天线偶然折断,天线将 〔 〕

A.连续和卫星一起沿轨道运行

B.做平抛运动,落向地球

C.由于惯性,沿轨道切线方向做匀速直线运动,远离地球

D.做自由落体运动,落向地球

11、人造卫星在受到地球外层空间大气阻力的作用后,卫星绕地球运行的半径、角速度和速率将 〔 〕A.半径变大,角速度变小,速率不变 B.半径变大,角速度变大,速率变大

C.半径变小,角速度变大,速率变大

D.半径变小,角速度变大,速率不变

13、人造地球卫星A 和B,它们的质量之比为m A :m B =1:2,它们的轨道半径之比

为2:1,那么下面的结论中正确的选项是〔 〕.

A.它们受到地球的引力之比为F A:F B=1:1

B.它们的运行速度大小之比为v A:v B=1:2

C.它们的运行周期之比为T A:T B=22:1

D.它们的运行角速度之比为ωA:ωB=32:1

14、同步卫星是指相对地面不动的人造地球卫星。

A、它能够在地面上任一点的正上方,且离地心的距离可按需要选择不同值;

B、它能够在地面上任一点的正上方,但离地心的距离是一定的;

C、它只能在赤道的正上方,但离地心的距离可按需要选择不同值;

D、它只能在赤道的正上方,且离地心的距离是一定的。

E、所有地球同步卫星线速度大小,角速度大小,周期大小,轨道半径大小都相等

15、假设取地球的第一宇宙速度为8km/s,某行星的质量是地球质量的6倍,半径是地球的1.5倍,那么此行星的第一宇宙速度约为:

A、16 km/s

B、32 km/s

C、4km/s

D、2km/s

16、人造地球卫星A、B绕地球做圆周运动,它们距地面的高度分不为h A和h B,地球半径为R,那么它们速度之比为V A : V B =;周期之比为T A : T B =。

17、在圆形轨道上运动的质量为m的人造卫星,它到地面的距离等于地球半径R,地球的重力加速度为g,那么卫星运动的周期为_____________。

18、人造地球卫星由于受到大气阻力作用,轨道半径逐步减小,那么它的线速度的变化将,围绕地球的周期将,所受的向心力的大小将

19、宇宙飞船正在离地面高度h=R地的轨道上绕地球做匀速圆周运动,宇宙飞船的向心加速度a向=g地,在飞船舱内用弹簧秤悬挂一个质量为m的物体,那么弹簧秤的示数为

20、某星球的质量约为地球质量的9倍,半径约为地球半径的一半.假设在地球上以v0竖直上抛一个小球,上升高度为h;那么,在此星球上以同样的初速度竖直上抛一个小球的上升高度为

21、第一宇宙速度约为7.9km/s,地球表面邻近的重力加速度约为9.8m/s2,由这两个量估算地面邻近的人造地球卫星的围绕周期T约为 s.

22、宇航员在月球表面以速率v竖直上抛一个小球,经t秒落回原地,月球半径为R,假如在月球上发射一颗绕月球表面运行的卫星,那么卫星的线速度为_______

23、假设某行星半径是R,平均密度是ρ,引力常量是G,那么在该行星表面邻近运行的人造卫星的角速度大小是_________

26、有质量分不为M1、M2的A、B两颗人造卫星,M1=M2,假如A和B在同一轨道上运动,那么它们的线速度大小之比为。假如A的轨道半径是B的轨道半径的2倍,那么它们的线速度大小之比为。

27、火星的半径为地球半径的一半,火星的质量为地球质量的1/9,一物体在地球上的重量比在火星上的重量大49N,求那个物体的质量是多少。

29.经观测,一卫星围绕某行星做圆形轨道运动的半径为r,周期为T,假设卫星质量为m.求:

(1)行星的质量;

(2)卫星向心加速度的大小;

(3)作用于卫星上的引力大小.

30.一颗人造卫星的质量为m,离地面的高度为h,卫星做匀速圆周运动,地球半径为R,重力加速度为g,求:〔1〕卫星受到的向心力的大小;

〔2〕卫星的速率;

31、从太阳发出的光射到地面需要约8分20秒,试估算太阳质量。

32、在天体运动中,把两颗相距较近的恒星称为双星,A、B两恒星质量分不为M1

和M2,两恒星相距为L,两恒星分不绕共同的圆心做圆周运动,如图,求两恒星的轨

道半径和角速度大小。

高一第六章万有引力定律课后习题

高一第六章万有引力定律课后习题 §6.1 1.关于日心讲被人们所同意的缘故是 〔 〕 A .以地球为中心来研究天体的运动有专门多无法解决的咨询题 B .以太阳为中心,许多咨询题都能够解决,行星的运动的描述也变得简单了 C .地球是围绕太阳转的 D .太阳总是从东面升起从西面落下 2. 哪位科学家第一次对天体做圆周运动产生了怀疑?〔 〕 A.布鲁诺 B.伽利略 C.开普勒 D.第谷 3. 两颗人造卫星A 、B 绕地球做圆周运动,周期之比为T A : T B = 1: 8,那么轨道半径之比是多少? 4. 设月球绕地球运动的周期为27天,那么地球的同步卫星到地球中心的距离r 与月球中心到地球中心 的距离R 之比r/R 为 ( ) A. 1/3 B. 1/9 C. 1/27 D. 1/18 §6.2 1.关于公式R 3 / T 2=k,以下讲法中正确的选项是〔 〕 A.公式只适用于围绕太阳运行的行星 B.不同星球的行星或卫星,k 值均相等 C.围绕同一星球运行的行星或卫星,k 值不相等 D.以上讲法均错 2. 关于万有引力和万有引力定律的明白得错误的选项是......〔 〕 A.不能看作质点的两物体间不存在相互作用的引力 B.只有能看作质点的两物体间的引力才能用221r m Gm F = 运算 C.由2 21r m Gm F = 知,两物体间距离r 减小时,它们之间的引力增大 D.万有引力常量的大小第一是由牛顿测出来的,且等于6.67×10-11N ·m 2/kg 2 3. 设地球是半径为R 的平均球体,质量为M,设质量为m 的物体放在地球中心,那么物体受到地球的 万有引力为〔 〕 A.零 B.GMm/R 2 C.无穷大 D.无法确定 4. 如下图,两球的半径分不是r 1和r 2,均小于r ,而球质量分布平均。大 小分不为m 1、m 2,那么两球间的万有引力大小为〔 〕 A.221r m m G B.2121r m m G C. 22121)(r r m m G + D. 5. 某物体在地面上受到地球对它的万有引力为F ,为使此物体受到的引力减小到4F ,应把此物体置 于距地面的高度为〔R 指地球半径〕 ( ) A. 1R B. 2R C. 4R D. 8R 6. 两个物体之间的万有引力大小为F 1,假设两物之间的距离减小x ,两物体仍可视为质点,现在两个物体之间的万有引力为F 2,依照上述条件能够运算〔 〕 A.两物体的质量 B.万有引力常量 C.两物体之间的距离 D.条件不足,无法运算上述中的任一个物理量 7. 关于万有引力定律的表述式221r m m G F =,下面讲法中正确的选项是〔 〕 A.公式中G 为引力常量,它是由实验测得的,而不是人为规定的 B.当r 趋近于零时,万有引力趋于无穷大

万有引力定律应用的12种典型案例

3232 万有引力定律应用的12种典型案例 万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。 特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。 下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例: 【案例1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律: r T 4m r Mm G 22 2π=……①得: 2 32G T r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力 由2R Mm G mg =得:G g R M 2=可见B 正确

3333 【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。 【案例2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少 解析:本题主要考察普通卫星的运动特点及其规律 由开普勒第三定律T 2 ∝r 3 知:“风云二号”卫星的轨道半径较大 又根据牛顿万有引力定律r v m ma r Mm G 22==得: 2r M G a =,可见“风云一号”卫星的向心加速度大, r GM v = ,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。 【探讨评价】由万有引力定律得:2M a G r = ,v = ω= 2T = ⑴所有运动学量量都是r 的函数。我们应该建立函数的思想。 ⑵运动学量v 、a 、ω、f 随着r 的增加而减小,只有T 随着r 的增加而增加。 ⑶任何卫星的环绕速度不大于7.9km/s ,运动周期不小于85min 。 ⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。 【案例3】同步卫星的运动 下列关于地球同步卫星的说法中正确的是: A 、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上 B 、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24h C 、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上

第六章万有引力定律单元测试含答案

第六章单元测试 (时间:90分钟 满分:100分) 一、选择题(本题共10小题,每小题5分,共50分.有的小题只有一个选项正确,有的小题有多个选项正确,把正确选项前的字母填在题后的括号内) 1.万有引力定律首次揭示了自然界中物体间一种相互作用的基本规律,以下说法正确的是( ) A .物体的重力不是地球对物体的万有引力引起的 B .人造地球卫星离地球越远,受到地球的万有引力越大 C .人造地球卫星绕地球运动的向心力由地球对它的万有引力提供 D .宇宙飞船内的宇航员处于失重状态是由于没有受到万有引力的作用 解析:选C.由重力的定义由于地球的吸引(万有引力)而使物体受到的力,可知选项A 错 误;根据F 万=GMm r2可知卫星离地球越远,受到的万有引力越小,则选项B 错误;卫星绕地球做圆周运动.其所需的向心力由万有引力提供,选项C 正确;宇宙飞船内的宇航员处于失重状态是由于万有引力用来提供他自身做圆周运动所需要的向心力,选项D 错误. 2.地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星,相对自己静止不动,则这两位观察者的位置以及两颗人造卫星到地球中心的距离可能是( ) A .一人在南极,一人在北极,两卫星到地球中心的距离一定相等 B .一人在南极,一人在北极,两卫星到地球中心的距离可以相等也可不等 C .两人都在赤道上,两卫星到地球中心的距离一定相等 D .两人都在赤道上,两卫星到地球中心的距离可能相等也可能不等 解析:选C.两卫星是同步卫星. 3.如图所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M 、半径为R .下列说法正确的是( ) A .地球对一颗卫星的引力大小为错误! B .一颗卫星对地球的引力大小为GMm r2 C .两颗卫星之间的引力大小为Gm23r2 D .三颗卫星对地球引力的合力大小为3GMm r2

物理必修2《万有引力》典型例题

【1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律:r T 4m r Mm G 2 22π=……①得:23 2G T r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 球表面的物体,其重力近似等于地球对物体的引力 由2 R Mm G mg =得:G g R M 2= 可见B 正确 【2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。问:哪颗卫星的向心加速度大?哪颗卫星的线速度大?若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少? 解析:由开普勒第三定律T 2∝r 3知:“风云二号”卫星的轨道半径较大 又根据牛顿万有引力定律r v m ma r Mm G 2 2==得: 2r M G a =,可见“风云一号”卫星的向心加速度大, r GM v =,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。 【探讨评价】由万有引力定律得:2 M a G r =,v = ω= 2T π = 【3】同步卫星的运动 下列关于地球同步卫星的说法中正确的是: A 、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上 B 、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24h C 、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上 D 、不同通讯卫星运行的线速度大小是相同的,加速度的大小也是相同的。

万有引力定律公式总结

万有引力公式 线速度 角速度 向心加速度 向心力 两个基本思路 1.万有引力提供向心力:r m r n m ma r T m r m r v m r M G ωππω======22222 2244m 2.忽略地球自转的影响: mg R GM =2 m (2 g R GM =,黄金代换式) 一、测量中心天体的质量和密度 测质量: 1.已知表面重力加速度g ,和地球半径R 。(mg R GM =2m ,则G gR M 2= ) 2.已知环绕天体周期T 和轨道半径r 。(r T m r Mm G 2224π= ,则2 3 24GT r M π=) 3.已知环绕天体的线速度v 和轨道半径r 。(r v m r Mm G 22=,则G r v M 2=) 4.已知环绕天体的角速度ω和轨道半径r 。(r m r Mm G 2 2ω=,则G r M 32ω=) 5.已知环绕天体的线速度v 和周期T 。(T r v π2=,r v m r M G 22m =,联立得G T M π2v 3=) 测密度: 已知环绕天体的质量m 、周期T 、轨道半径r 。中心天体的半径R ,求中心天体的密度ρ 解:由万有引力充当向心力

r T m r Mm G 2224π= 则2 324GT r M π= ——① 又3 3 4R V M πρρ? == ——② 联立两式得:3 23 3R GT r πρ= 当R=r 时,有2 3GT π ρ= 二、星球表面重力加速度、轨道重力加速度问题 1.在星球表面: 2 R GM mg =(g 为表面重力加速度,R 为星球半径) 2.离地面高h: 2 ) (h R GM g m += '(g '为h 高处的重力加速度) 联立得g'与g 的关系: 2 2 )('h R gR g += 三、卫星绕行的向心加速度、速度、角速度、周期与半径的关系 1.ma r M G =2m ,则2 a r M G =(卫星离地心越远,向心加速度越小) 2.r v m r Mm G 2 2=,则r GM v = (卫星离地心越远,它运行的速度越小) 3.r m r Mm G 22ω=,则3r GM =ω(卫星离的心越远,它运行的角速度越小) 4.r T m r Mm G 22 24π=,则GM T 3 2r 4π= (卫星离的心越远,它运行的周期越大)

万有引力定律典型例题解析

万有引力定律·典型例题解析 【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下: (1)g (2)(3)r 60R 地面上物体的重力加速度= ;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值; GM R GM r g 22αα (4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ; (5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果, 求 的值.α g 解析: (1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4 点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力 G Mm r mg G Mm r m 2 2α 的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目 的条件可以用、ω或来表示.v r r T 2224r 2 π 【例】月球质量是地球质量的 ,月球半径是地球半径的,在21811 38. 距月球表面14m 高处,有一质量m =60kg 的物体自由下落. (1)它落到月球表面需用多少时间? (2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力

加速度g 地=9.8m/s 2)? 解析:(1)4s (2)588N 点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设 mg G M m R mg G M m R 22月月月 地地地 =.同理,物体在地球上的“重力”等于地球对物体的 万有引力,设=. 以上两式相除得=,根据=可得物体落到月球表 面需用时间为==×=. 月月g 1.75m /s S gt t 4s 2 2 12 2214 175S g . (2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N . 跟踪反馈 1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量分布均匀,大小分别为m 1、m 2,则两球间的万有引力大小为: [ ] A .Gm 1m 2/r 2 B .Gm 1m 2/r 12 C .Gm 1m 2/(r 1+r 2)2 D .Gm 1m 2/(r 1+r 2+r)2

人教版必修二第六章第三节万有引力定律同步训练(包含答案)

6.3 万有引力定律同步训练 一.选择题 1.要使两物体间的万有引力减小到原来的1/4,不能采用的方法是( ) A. 使两物体的质量各减小一半,距离保持不变 B. 使两物体间的距离增至原来的 2 倍,质量不变 C. 使其中一个物体的质量减为原来的一半,距离不变 D. 使两物体的质量及它们之间的距离都减为原来的1/4 2.下列说法中正确的是( ) A. 牛顿发现了万有引力定律,开普勒发现了行星的运动规律 B. 人们依据天王星偏离万有引力计算的轨道,发现了冥王星 C. 海王星的发现和哈雷彗星的“按时回归”确定了万有引力定律的地位 D. 牛顿根据万有引力定律进行相关的计算发现了海王星和冥王星 3.人造卫星在运行中因受高空稀薄空气的阻力作用,绕地球运转的轨道半径会慢慢减小, 在半径缓慢变化过程中,卫星的运动还可近似当作匀速圆周运动。当它在较大的轨道半 径 r 1 上时运行线速度为 v 1,周期为 T 1,后来在较小的轨道半径 r 2 上时运行线速度为 v 2, 周期为 T 2,则它们的关系是 A .v 1﹤v 2,T 1﹤T 2 C .v 1﹤v 2,T 1﹥T 2 B .v 1﹥v 2,T 1﹥T 2 D .v 1﹥v 2,T 1﹤T 2 4.下列关于地球同步卫星的说法正确的是 ( ) A .它的周期与地球自转同步,但高度和速度可以选择,高度增大,速度减小 B .它的周期、高度、速度都是一定的 C .我们国家发射的同步通讯卫星定点在北京上空 D .我国发射的同步通讯卫星也定点在赤道上空 5.人造卫星在太空绕地球运行中,若天线偶然折断,天线将 A .继续和卫星一起沿轨道运行 B .做平抛运动,落向地球 C .由于惯性,沿轨道切线方向做匀速直线运动,远离地球 ( )

高考物理万有引力定律的应用技巧和方法完整版及练习题含解析

高考物理万有引力定律的应用技巧和方法完整版及练习题含解析 一、高中物理精讲专题测试万有引力定律的应用 1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求: (1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F R m -(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】 (1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l 在最高点:2 22mv F mg l += ① 在最低点:2 11mv F mg l -= ② 由机械能守恒定律,得 221211222 mv mg l mv =?+ ③ 由①②③,解得1 2 6F F g m -= (2) 2 GMm mg R = 2GMm R =2 mv R 两式联立得:12()6F F R m -

(3)在星球表面:2 GMm mg R = ④ 星球密度:M V ρ= ⑤ 由④⑤,解得12 8F F GmR ρπ-= 点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度. 2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1 )2 ,16(2)速度之比为2 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2 Mm G mg R = a 卫星 2 224a GMm m R R T π= 解得2a T =b 卫星2 2 24·4(4)b GMm m R R T π= 解得16b T = (2)卫星做匀速圆周运动,F F =引向, a 卫星2 2a mv GMm R R =

第六章 第三节 万有引力定律

第六章万有引力与航天 第3节万有引力定律 本节是在学习了太阳与行星间的引力之后,探究地球与月球、地球与地面上的物体之间的作用力是否与太阳与行星间的作用力是同一性质的力,从而得出了万有引力定律.根据万有引力定律而得到的一系列科学发现,不仅验证了万有引力定律的正确性,而且表明了自然界和自然规律是可以被认识的.万有引力定律是所有有质量的物体之间普遍遵循的规律,引力常量的测定不仅验证了万有引力定律的正确性,而且使得万有引力定律能进行定量计算,显示出真正的实用价值. 教学过程中的关键是对万有引力定律公式的理解,知道公式的适用条件.教师可灵活采用教学方法以便加深对知识的理解,比如讲授法、讨论法. 教学重点 万有引力定律的理解及应用. 教学难点 万有引力定律的推导过程. 课时安排 1课时 三维目标 知识与技能 1.了解万有引力定律得出的思路和过程. 2.理解万有引力定律的含义并掌握用万有引力定律计算引力的方法. 3.记住引力常量G并理解其内涵. 过程与方法 1.了解并体会科学研究方法对人们认识自然的重要作用. 2.认识卡文迪许实验的重要性,了解将直接测量转化为间接测量这一科学研究中普遍采用的重要方法. 情感态度与价值观 通过牛顿在前人的基础上发现万有引力的思想过程,说明科学研究的长期性、连续性及艰巨性. 教学过程 导入新课 故事导入 1666年夏末一个温暖的傍晚,在英格兰林肯郡乌尔斯索普,一个腋下夹着一本书的年轻人走进他母亲家的花园里,坐在一颗树下,开始埋头读他的书.当他翻动书页时,他头顶的树枝中有样东西晃动起来,一只历史上最著名的苹果落了下来,打在23岁的伊萨克·牛顿的头上.恰巧在那天,牛顿正苦苦思索着一个问题:是什么力量使月球保持在环绕地球运行的轨道上,以及使行星保持在其环绕太阳运行的轨道上?为什么这只打中他脑袋的苹果会坠落到地上?(如下图所示)正是从思考这一问题开始,他找到了这些问题的答案——万有引力定律.

高一物理 万有引力定律 典型例题解析

万有引力定律 典型例题解析 【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下: (1)g (2)(3)r 60R 地面上物体的重力加速度= ;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值;GM R GM r g 2 2αα (4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ; (5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果, 求的值.αg 解析: (1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4 点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力G Mm r mg G Mm r m 22α 的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目 的条件可以用、ω或来表示.v r r T 2224r 2π

【例】月球质量是地球质量的,月球半径是地球半径的,在2181138. 距月球表面14m 高处,有一质量m =60kg 的物体自由下落. (1)它落到月球表面需用多少时间? (2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力加速度g 地=9.8m/s 2)? 解析:(1)4s (2)588N 点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设 mg G M m R mg G M m R 22月月月地地地=.同理,物体在地球上的“重力”等于地球对物体的 万有引力,设=. 以上两式相除得=,根据=可得物体落到月球表面需用时间为==×=.月月g 1.75m /s S gt t 4s 2212 2214175S g . (2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N . 跟踪反馈 1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量

高中物理公式大全全集万有引力

五、万有引力 1、开普勒三定律: ⑴开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上 ⑵开普勒第二定律(面积定律):太阳和行星的连线在相等的时间内扫过相等的面积 ⑶开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等 对T 1、T 2表示两个行星的公转周期,R 1、R 2表示两行星椭圆轨道的半长轴,则周期定律可表示为32 312221R R T T = 或k T R =3 3,比值k 是与行星无关而只与太阳有关的恒量 【注意】:⑴开普勒定律不仅适用于行星,也适用于卫星,只不过此时k T R =33 ‘ ,比值k ’ 是 由行星的质量所决定的另一恒量。 ⑵行星的轨道都跟圆近似,因此计算时可以认为行星是做匀速圆周运动 ⑶开普勒定律是总结行星运动的观察结果而总结归纳出来的规律,它们每一条都 是经验定律,都是从观察行星运动所取得的资料中总结出来的。 例题:飞船沿半径为R 的圆周绕地球运动,其周期为T ,如果飞船要返回地面,可在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运动,椭圆和地球表面在B 点相切,如图所示,如果地球半径为R 0,求飞船由A 点到B 点所需要的时间。 解析:依开普勒第三定律知,飞船绕地球做圆周(半长轴和半短轴相等的特殊椭圆)运动时,其轨道半径的三次方跟周期的平方的比值,等于飞船绕地球沿椭圆轨道运动时,其半长轴的三次方跟周期平方和比值,飞船椭圆轨道的半长轴为 2 R R +,设飞船沿椭圆轨道运动的周期一、知识网络 二、 画龙点睛 概念

最新万有引力定律 经典例题

1.天体运动的分析方法 2.中心天体质量和密度的估算 (1)已知天体表面的重力加速度g和天体半径R G Mm R2=mg? ? ? ?天体质量:M=gR2G 天体密度:ρ= 3g 4πGR (2)已知卫星绕天体做圆周运动的周期T和轨道半径r ?? ? ??①G Mm r2=m 4π2 T2r?M= 4π2r3 GT2 ②ρ= M 4 3 πR3 = 3πr3 GT2R3 ③卫星在天体表面附近飞行时,r=R,则ρ= 3π GT2 1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知() A.太阳位于木星运行轨道的中心 B.火星和木星绕太阳运行速度的大小始终相等 C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A 错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D错误. 答案:C 2.(2016·郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器.探测器升空

后,先在近地轨道上以线速度v 环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度v ′在火星表面附近环绕飞行.若认为地球和火星都是质量分布均匀的球体,已知火星与地球的半径之比为1∶2,密度之比为5∶7,设火星与地球表面重力加速度分别为g ′和g ,下列结论正确的是( ) A .g ′∶g =4∶1 B .g ′∶g =10∶7 C .v ′∶v = 528 D .v ′∶v = 514 解析:在天体表面附近,重力与万有引力近似相等,由G Mm R 2=mg ,M =ρ43 πR 3 ,解两式得g =4 3G πρR ,所以g ′∶g =5∶14,A 、B 项错;探测器在天体表面飞行时,万有引力 充当向心力,由G Mm R 2=m v 2R ,M =ρ4 3πR 3,解两式得v =2R G πρ 3 ,所以v ′∶v =528 ,C 项正确,D 项错. 答案:C 3.嫦娥三号”探月卫星于2013年12月2日1点30分在西昌卫星发射中心发射,将实现“落月”的新阶段.若已知引力常量G ,月球绕地球做圆周运动的半径r 1、周期T 1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径r 2、周期T 2,不计其他天体的影响,则根据题目条件可以( ) A .求出“嫦娥三号”探月卫星的质量 B .求出地球与月球之间的万有引力 C .求出地球的密度 D.r 13T 12=r 23T 2 2 解析:绕地球转动的月球受力为GMM ′r 12=M ′r 14π2 T 1 2得T 1= 4π2r 13 GM =4π2r 13 Gρ43πr 3.由于不知道地球半径r ,无法求出地球密度,C 错误;对“嫦娥三号”而言,GM ′m r 22 =mr 24π2 T 2 2,T 2=4π2r 23 GM ′ ,已知“嫦娥三号”的周期和半径,可求出月球质量M ′,但是所

万有引力定律公开课教案

第二节万有引力定律 【教材分析】 本节课内容主要讲述了万有引力发现的过程及牛顿在前人工作的基础上,凭借他超凡的数学能力推证了万有引力的一般规律的思路与方法. 这节课的主要思路是:由圆周运动和开普勒运动定律的知识,得出行星和太阳之间的引力跟行星的质量成正比,跟行星到太阳的距离的平方成反比,并由引力的相互性得出引力也应与太阳的质量成正比.这个定律的发现把地面上的运动与天体运动统一起来,对人类文明的发展具有重要意义。本节内容包括:发现万有引力的思路及过程、万有引力定律的推导. 【三维目标】 一、知识与技能 1.了解万有引力定律得出的思路和过程. 2.理解万有引力定律的含义并会推导万有引力定律,记住引力常量G并理解其内涵. 3.知道任何物体间都存在着万有引力,且遵循相同的规律. 二、过程与方法 1.培养学生在处理问题时,要抓住主要矛盾,简化问题,建立模型的能力与方法. 2.培养学生的科学推理能力. 三、情感态度与价值观 通过牛顿在前人的基础上发现万有引力的思想过程,说明科学研究的长期性、连续性及艰巨性. 【教学重点】 1.万有引力定律的推导. 2.万有引力定律的内容及表达公式. 【教学难点】 1.对万有引力定律的理解. 2.使学生能把地面上的物体所受的重力与其他星球与地球之间存在的引力是同性质的力联系起来. 【教学方法】 1.对万有引力定律的推理——采用分析推理、归纳总结的方法. 2.对疑难问题的处理——采用讲授法、例证法. 【教学用具】 多媒体课件 【课时安排】 1课时 【教学设计】 导入 本节课主要以启发式教学为主。首先通过前面知识 的回顾和提出问题使学生产生对引力是否同一性质的探 究兴趣。 问题设置:师提问:太阳对行星的引力使得行星围绕太阳运动,月球围绕地球运动,是否能说明地球对月球有引力作用?抛出的物体总要落回地面,是否说明地球对物体有引力作用? 【新课教学】 课件展示:画面1:八大行星围绕太阳运动 画面2:月球围绕地球运动 演示3:地面上的人向上抛出物体,物体总落回地面

万有引力定律典型例题分析

“万有引力定律”的典型例题 例5 【例1】假如一个作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则 [ ] A.根据公式v=ωr,可知卫星运动的线速度将增大到原来的2倍 D.根据上述选答B和C中给出的公式,可知卫星运动的线速度将 【分析】人造地球卫星绕地球作匀速圆周运动时,由地球对它的引力作向心力,即 卫星运动的线速度

当卫星的轨道半径增大为原来的2倍时,由于角速度会发生变化, 错,D正确. 同理,当卫星的轨道半径增大为原来的2倍时,由于线速度的变化,卫星所需的向心力不是减为原来的1/2,而是减小到原来的1/4.B错,C正确. 【答】C、D. 【说明】物体作匀速圆周运动时,线速度、角速度、向心加速度、向心力和轨道半径间有一定的牵制关系.例如,只有当ω不变时,线速度才与半径成正比;同样,当线速度不变时,同一物体的向心力才与半径成反比.使用中不能脱离条件. 研究卫星的运动时,最根本的是抓住引力等于向心力这一关系. 【例2】估算天体的质量 【解】把卫星(或行星)绕中心天体的运动看成是匀速圆周运动,由中心天体对卫星(或行星)的引力作为它绕中心天体的向心力.根据 得 因此,只需测出卫星(或行星)的运动半径r和周期T,即可算出中心天体的质量M.

【例3】登月飞行器关闭发动机后在离月球表面112km的空中沿圆形轨道绕月球飞行,周期是120.5min.已知月球半径是1740km,根据这些数据计算月球的平均密度.(G=6.67×10-11Nm2/kg2) 【分析】要计算月球的平均密度,首先应求出质量M.飞行器绕月球做匀速圆周运动的向心力是由月球对它的万有引力提供的. 【解】根据牛顿第二定律有 从上式中消去飞行器质量m后可解得 根据密度公式有 【例4】如图1所示,在一个半径为R、质量为M的均匀球体中, 连线上、与球心相距d的质点m的引力是多大? 【分析】把整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力之和,即可得解.

人教版高中物理(必修2)课时作业:第六章 第3节 万有引力定律(附答案)

第三节万有引力定律 1.假定维持月球绕地球运动的力与使得苹果下落的力真的是同一种力,同样遵从 “____________”的规律,由于月球轨道半径约为地球半径(苹果到地心的距离)的60倍,所以月球轨道上一个物体受到的引力是地球上的________倍.根据牛顿第二定律,物体在月球轨道上运动时的加速度(月球______________加速度)是它在地面附近下落时的加 速度(____________加速度)的________.根据牛顿时代测出的月球公转周期和轨道半径, 检验的结果是____________________. 2.自然界中任何两个物体都____________,引力的方向在它们的连线上,引力的大小与 ________________________成正比、与__________________________成反比,用公式表示即________________.其中G叫____________,数值为________________,它是英国 物理学家______________在实验室利用扭秤实验测得的. 3.万有引力定律适用于________的相互作用.近似地,用于两个物体间的距离远远大于 物体本身的大小时;特殊地,用于两个均匀球体,r是________间的距离. 4.关于万有引力和万有引力定律的理解正确的是() A.不能看做质点的两物体间不存在相互作用的引力 B.只有能看做质点的两物体间的引力才能用F=Gm1m2 r2计算 C.由F=Gm1m2 r2知,两物体间距离r减小时,它们之间的引力增大 D.万有引力常量的大小首先是由牛顿测出来的,且等于6.67×10-11N·m2/kg2 5.对于公式F=G m1m2 r2理解正确的是() A.m1与m2之间的相互作用力,总是大小相等、方向相反,是一对平衡力 B.m1与m2之间的相互作用力,总是大小相等、方向相反,是一对作用力与反作用力C.当r趋近于零时,F趋向无穷大 D.当r趋近于零时,公式不适用

万有引力定律公式总结

万有引力定律知识点 班级: 姓名: 一、三种模型 1、匀速圆周运动模型:无论自然天体还是人造天体都可以看成质点,围绕中心天体做匀速圆周运动。 2、双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自转动的向心力。 3、“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。 二、两种学说 1、地心说:代表人物是古希腊科学托勒密 2、日心说:代表人物是波兰天文学家哥白尼 三、两个定律 第一定律(椭圆定律):所有行星绕太阳的运动轨道都是椭圆,太阳位于椭圆的每一个焦点上。 第二定律(面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。 第三定律(周期定律):所有行星绕太阳运动的椭圆轨道半长轴R 的三次方跟公转周期T 的二次方的比值都相等。 (表达式 ) 四、基础公式 线速度:v ==== 角速度:== == 向心力:F=m =m(2r=m(2 )2r= m(2)2r=m =m 向心加速度:a= = (2r= (2)2r= (2 )2r== 五、两个基本思路 1.万有引力提供向心力:ma r T m r m r v m r M G ====22 2224m πω 2.忽略地球自转的影响: mg R GM =2m (2g R GM =,黄金代换式) 六、测量中心天体的质量和密度 测质量: 1.已知表面重力加速度g ,和地球半径R 。(mg R GM =2m ,则G gR M 2=)一般用于地球 2.已知环绕天体周期T 和轨道半径r 。(r T m r Mm G 2224π= ,则2 3 24GT r M π=) 3.已知环绕天体的线速度v 和轨道半径r 。(r v m r Mm G 22=,则G r v M 2=) 4.已知环绕天体的角速度ω和轨道半径r (r m r Mm G 22ω=,则G r M 32ω=) 5.已知环绕天体的线速度v 和周期T (T r v π2=,r v m r M G 22m =,联立得G T M π2v 3=) 测密度:

万有引力与航天重点知识归纳及经典例题练习

第五讲 万有引力定律重点归纳讲练 知识梳理 考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: k T a =23 。其中k 值与太阳有关,与行星无关。 (4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星旋转时,k T a =2 3 ,但k 值不同,k 与行星有关,与卫星无关。 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k T R =2 3 ,R ——轨道半径。 2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2 成反比。 (2) 公式:2 21r m m G F =,G 叫万有引力常量,2211 /10 67.6kg m N G ??=-。 (3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。 (4) 两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。 ①在赤道上,F=F 向+mg ,即R m R Mm G mg 22 ω-=; ②在两极F=mg ,即mg R Mm G =2 ;故纬度越大,重力加速度越大。 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上,2 2 R GM g mg R Mm G =?=;在地球表面高度为h 处: 22)()(h R GM g mg h R Mm G h h +=?=+,所以g h R R g h 2 2 ) (+=,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法:2 3 2224)2(GT r M T mr r Mm G ππ=?=,再根据3 23 33,34R GT r V M R V πρρπ=?== ,当r=R 时,2 3GT πρ= 2.g 、R 法:G g R M mg R Mm G 22 = ?=,再根据GR g V M R V πρρπ43,3 43=?== 3.v 、r 法:G rv M r v m r Mm G 2 22 =?=

第六章万有引力定律习题

第六章万有引力定律习题 6.1.1设某行星绕中心天体以公转周期T沿圆轨道运行.试用开普勒第三定律证明:一个物体由此轨道自静止而自由 下落至中心天体所需的时间为. 解: 6.2.1 土星质量为,太阳质量为,二者的平均距离是.(1)太阳对土星的引力有多大?(2)设土星沿圆轨道运行,求它的轨道速度. 解: ( 1) ( 2) 6.2.2 某流星距地面一个地球半径,求其加速度. 解:

6.2.3 (1)一个球形物体以角速度旋转.如果仅有引力阻碍球的离心分解,此物体的最小密度是多少?由此估算巨蟹座中转速为每秒30转的脉冲星的最小密度.这脉冲星是我国在1054年就观察到的超新星爆的结果. (2)如果脉冲星的质量与太阳的质量相当(~ 或~ ,为地球质量),此脉冲星的最大可能半径是多少?(3)若脉冲星的密度与核物质的相当,它的半径是多少?核密度约为 . 解: ( 1)以最外层任一质元计算: (2) ( 3)可求。 6.2.4 距银河系中心约25000光年的太阳约以170 000 000年的周期在一圆周上运动.地球距太阳8光分.设太阳受到的引力近似为银河系质量集中在其中心对太阳的引力.试求以太阳质量为单位银河系质量.

解: 6.2.5 某彗星围绕太阳运动,远日点的速度为10km/s,近日点的速度为80km/s若地球在半径为 的圆周轨道绕日运动,速度为30km/s.求此彗星的远日点距离. 解: 又 6.2.6 一匀质细杆长L质量为M.求距其一端为d处单位质量质点受到的引力(亦称引力场强度). 解:

单位质量受力: 6.2.7 半径为R的细半圆环线密度为.求位于圆心处单位质量质点受到的引力. 解: 引力场强度: 6.3.1 考虑一转动的球形行星,赤道上各点的速度为V,赤道上的加速度是极点上的一半.求此行星极点处的粒子的逃逸速度.

万有引力定律的推导及完美之处

万有引力定律的推导及完美之处 现在由开普勒第一定律来求行星所受的力的量值。既然轨道为椭圆,我们就可把轨道方程写为 1cos P r e θ=+ 或1cos e P P μθ=+ 把这关系式1cos e P P μθ=+代入比耐公式 2222()d F h d m μμμθ+=- ,就得到 222222 22()d mh h m F mh d P P r μμμμθ=-+=-=- 这表明行星所受力是引力,且与距离平方成反比。 乍一看来,似乎不需要开普勒第三定律就已经能推出胡克的万有引力公式。其实不然,我们并不能把 22h m F P r =-化成22k m F r =-,因为式22h m F P r =-中的h 和P 对每一个行星来讲都具有不同的数值(2r h θ=,1r μ=,P 为椭圆曲线正焦弦长度的一半),而式中的2k 是一个与行星无关的常数。 开普勒第一定律:行星绕太阳作椭圆运行,太阳位于椭圆的一个焦点上。 开普勒第二定律:行星和太阳之间的连线,在相等的时间内所扫过的面积相等。 开普勒第三定律:行星公转的周期的平方和轨道半长轴的立方成正比。 为了能把22h m F P r =-化为 22k m F r =-,就得利用开普勒第三定律,由行星公转的周期得 22324T P a h π= 虽然h 和P 都是和行星有关的常数,但根据开普勒第三定律中2 3T a 是与行星无关的常数,可以得到2P h (或2 h P )是一个与行星无关的常数(即跟行星质量无关,而是由太阳决定了行 星轨道的性质)。因而可以令22h k P =,我们就可以把22h m F P r =-化为 22k m F r =-, 即 2222h m k m F P r r =-=-

相关主题
文本预览
相关文档 最新文档