当前位置:文档之家› 流式细胞术原理及功能介绍

流式细胞术原理及功能介绍

流式细胞术原理及功能介绍
流式细胞术原理及功能介绍

流式细胞术详解

一. 流式细胞术概述

流式细胞术(Flow Cytometry, FCM)是七十年代发展起来的高科学技术 ,它集计算机技术、激光技术、流体力学、细胞化学、细胞免疫学于一体, 同时具有分析和分选细胞功能。它不仅可测量细胞大小、内部颗粒的性状,还可检测细胞表面和细胞浆抗原、细胞内DNA、RNA含量等,可对群体细胞在单细胞水平上进行分析, 在短时间内检测分析大量细胞,并收集、储存和处理数据,进行多参数定量分析; 能够分类收集(分选)某一亚群细胞,分选纯度>95%。在血液学、免疫学、肿瘤学、药物学、分子生物学等学科广泛应用。

国内使用的流式细胞仪主要由美国的两个厂家生产:BECKMAN- COULTER公司和Becton-Dickinson公司(简称B-D公司)。流式细胞仪主要有两型:临床型(又称小型机、台式机)和综合型(又称大型机、分析型)。BECKMAN-COULTER公司最新产品为EPICS ALTRA和EPICS XL/XL-MCL, B-

D公司最新产品为FACS Vantage和FACS Calibur。EPICS XL/XL-MCL和FACS Calibur是临床型;EPICS ALTRA和 FACS Vantage是综合型,除具备检测分析功能外,还具有细胞分选功能 ,多用于科学研究。

二.流式细胞仪主要技术指标

1.流式细胞仪的分析速度:

一般流式细胞仪每秒检测1000~ 5000个细胞,大型机可达每秒上万个细胞。

2.流式细胞仪的荧光检测灵敏度:一般能测出单个细胞上<600个荧光分子,两个细胞间的荧光差>5%即可区分。

3.前向角散射(FSC)光检测灵敏度:前向角散射(FSC)反映被测细胞的大小,一般流式细胞仪能够测量到0.2μm~0.5μm。

4.流式细胞仪的分辨率:通常用变异系数CV值来表示,,一般流式细胞仪能够达到<2.0%,这也是测量标本前用荧光微球调整仪器时要求必须达到的。

5.流式细胞仪的分选速度:一般流式细胞仪分选速度>1000个/秒,分选细胞纯度可达99%以上。

三.流式细胞仪主要构造和工作原理

流动室及液流驱动系统

流式细胞仪主要由以下五部分构成:①流动室及液流驱动系统②激光光源及光束形成系统③光学系统④信

号检测与存储、显示、分析系统⑤细胞分选系统。

流动室(Flow Cell或Flow Chamber)是流式细胞仪的核心部件,流动室由石英玻璃制成,单细胞悬液在细胞流动室里被鞘流液包绕通过流动室内的一定孔径的孔,检测区在该孔的中心,细胞在此与激光垂直相交,在鞘流液约束下细胞成单行排列依次通过激光检测区。流动室里的鞘液流是一种稳定流动,控制鞘液流的装置是在流体力学理论的指导下由一系列压力系统、压力感受器组成,只要调整好鞘液压力和标本管压力, 鞘液流包绕样品流并使样品流保持在液流的轴线方向,能够保证每个细胞通过激光照射区的时间相等,从而使激光激发的荧光信息准确无误。见图12.1流动室示意图。流动室孔径有60μm、100μm、150μm 、250μm等多种,供研究者选择。小型仪器一般固定装置了一定孔径的流动室。

图12.1流动室示意图(采自Coulter Training Guide)

四. 流式细胞仪主要构造和工作原理

激光光源及光束形成系统

流式细胞仪可配备一根或多根激光管,常用的激光管是氩离子气体激光管,它的发射光波长488ηm,此外可配备氦氖离子气体激光管(波长633ηm)和/或紫外激光管。

流式细胞仪的主要测定信号荧光是由激发光激发的,荧光信号的强弱与激发光的强度和照射时间相关,激光是一种相干光源,它能提供单波长、高强度、高稳定性的光照,正是能达到这一要求的理想的激发光光源。

在激光光源和流动室之间有两个圆柱形透镜,将激光光源发出的横截面为圆形的激光光束聚焦成横截面较小的椭圆形激光光束(22μm×66μm),在这种椭圆形激光光斑内激光能量成正态分布,使通过激光检测区的细胞受照强度一致。

五. 流式细胞仪主要构造和工作原理

光学系统

流式细胞仪的光学系统由若干组透镜、小孔、滤光片组成,大致可分为流动室前和流动室后两组。流动室前的光学系统由透镜和小孔组成,透镜和小孔(一般为2片透镜、1个小孔)的主要作用是将激光光源发出的横截面为圆形的激光光束聚焦成横截面较小的椭圆形激光光束,使激光能量成正态分布,使通过激光检测区的细胞受照强度一致,最大限度的减少杂散光的干扰;流动室后的光学系统主要由多组滤光片组成,滤光片的主要作用是将不同波长的荧光信号送到不同的光电倍增管。滤光片主要有三类:长通滤片(LP)--只允许特定波长以上的光线通过,短通滤片(SP)-- 只允许特定波长以下的光线通过,带通滤片(BP)-- 只允许特定波长的光线通过,不同组合的滤片可以将不同波长的荧光信号送到不同的光电倍增管(PMT),如接收绿色荧光(FITC)的PMT前面配置的滤光片是LP550和BP525, 接收色橙红色荧光(PE)的PMT前面配置的滤光片是LP600和BP575, 接收红色荧光(CY5)的PMT前面配置的滤光片是LP650和BP675。见图12.2光学系统和信号检测系统示意图。

六. 流式细胞仪主要构造和工作原理

信号检测系统

当测定标本在鞘流液约束下细胞成单行排列依次通过激光检测区时产生散射光和荧光信号,散射光分为前

向角散射(Forward Scatter, FS)和侧向角散射或900散射(Side Scatter, SS),散射光是细胞的物理参数与细胞样本的制备(如染色)无关;荧光信号也有两种,一种是细胞自发荧光它一般很微弱,一种是细胞样本经标有特异荧光素的单克隆抗体染色后经激光激发发出的荧光,它是我们要测定的荧光,荧光信号较强,这两种荧光信号的同时存在是我们测定时需要设定阴性对照的理由,以便从测出的荧光信号中减去细胞自

发荧光和抗体非特异结合产生的荧光。

前向角散射(FS)反映被测细胞的大小,它由正对着流动室的光电二极管装置接收并转变为电信号;侧向角散射或900散射(SS)反映被测细胞的细胞膜、细胞质、核膜的折射率和细胞内颗粒的性状, 它由一个光电倍增管(PMT) 接收并转变为电信号,这些电信号存储在流式细胞仪的计算机硬盘或软盘内。

流式细胞仪测定常用的荧光染料有多种,他们分子结构不同,激发光谱和发射光谱也各异,选择荧光染料时必须依据流式细胞仪所配备的激光光源的发射光波长(如氩离子气体激光管,它的发射光波488ηm,氦氖离子气体激光管发射光波长633ηm)。488ηm激光光源常用的荧光染料有FITC(异硫氰酸荧光素)、PE(藻红蛋白)、PI(碘化丙啶)、CY5(化青素)、preCP(叶绿素蛋白)、ECD(藻红蛋白-得克萨斯红)等。他们的激发光和发射光波长分别是:

激发光波长(ηm)

发射光峰值(ηm)

FITC 488 525(绿)

PE 488 575(橙红)

PI 488 630(橙红)

ECD 488 610(红)

CY5 488 675(深红)

PreCP 488 675(深红)

各种荧光信号由各自的光电倍增管(PMT) 接收并转变为电信号后存储在流式细胞仪的计算机硬盘或软盘内.见图12.2光学系统和信号检测系统示意图。

七. 流式细胞仪主要构造和工作原理

信号存储、显示、分析系统

(一) 信号存储

存储在流式细胞仪的计算机硬盘或软盘内的数据一般是以List mode(列表排队)方式存入的,采用List mode 方式有两大优点:①节约内存和磁盘空间②易于加工处理分析。

(二)信号显示和分析

由于List mode方式数据缺乏直观性,数据的显示和分析一般采用一维直

方图(图12.3)、二维点阵图(图12.4,12.5)、等高线图(图12.8)和密度图(图12.7)。

1.单参数数据显示和分析

细胞的每一个单参数测量数据用直方图来显

示,图中横坐标表示散射光或荧光信号相对强度值,其单位是道数,可以是线性的,也可以是对数的;纵坐标表示细胞数。见图12.3一维直方图,图中横坐标是FITC荧光信号相对强度值(对数),纵坐标表示细胞数;图中已根据阴性对照设定适当的“门”(直线门),仪器的计算机就会给出测定值(包括阳性细胞%和平均荧光强度)。

2.双参数数据显示和分析

细胞的双参数测量数据和细胞数量的关系用一维直方图、二维点阵图、等高线图和密度图显示和分析。如图12.4二维点阵图,是正常人外周血白细胞的前向散射光(FS)和侧向散射光(SS)组成的点阵图,横坐标和纵坐标均是线性的,图中淋巴细胞、单核细胞、粒细胞很明显地分为3群,可以很容易地圈“门”( Bitmap,无定型门),分析各亚群细胞的数据;图12.6假三维地形图(X轴: SSC ,Y轴:FSC Z轴:细胞数)更清楚地表明这一点。图12.5二维点阵图是细胞的两种荧光(FITC和RD1)双参数数据显示,横坐标和纵坐标均是对数的,横坐标代表FITC,纵坐标代表PE,图中已设定适当的“门”(十字门),十字门的D1、D2、D3、D4门分别代表PE单阳性细胞、PE和FITC双阳性细胞

、阴性细胞、FITC单阳性细胞。仪器的计算机就会给出两种荧光测定值(包括阴性细胞%、两种荧光各自的阳性细胞%、两种荧光的双阳性细胞%、各群细胞的平均荧光强度)。

图12.7和图12.8分别是测定细胞的两种荧光双参数数据的密度图和等高线图,横坐标和纵坐标分别代表一种荧光参数,同理只要设定十字门就可得到两种荧光的各种测定值,密度图和等高线图较点阵图更直观。 3.三参数数据显示和分析

细胞的三参数测量数据和细胞数量的关系每两个数据组成一对(三参数测量数据和细胞数量每两个数据可组成6对数据)用一维直方图、二维点阵图、等高线图和密度图显示和分析。三个荧光数据关系用分光图(prism)表示,分光图可直接给出8个数据(如用ABC代表3种荧光,可有A+B+C+、A+B+C- 、A+B-C-、A-B+C+、 A-B+C-、 A-B-C+、 A+B-C+ 、A-B-C-)。见图12.9 prism,图12.9为人外周血淋巴细胞亚群测定结果的分光图,图中给出CD3、CD4、CD8组合的各种结果,如T辅助细胞(CD3+CD4+CD8-)

为42.0%,如T抑制细胞(CD3+CD4+CD8-)为17.4%。

图12.5两种荧光的二维点阵图(采自Coulter Operaters Guide)

图12.7. 双参数数据的密度图(采自Coulter Operaters Guide)

图12.6假三维地形图和二维点阵图(采自Coulter Operaters Guide)

图12.8双参数数据的等高线图(采自Coulter Operaters Guide)

图12.9 分光图(prism)

八. 流式细胞仪主要构造和工作原理

细胞分选系统

如在细胞流动室上装有超声压电晶体,通电后超声压电晶体发生高频震动,可带动细胞流动室高频震动 ,使细胞流动室喷咀流出的液流束断成一连串均匀的液滴, 每秒钟形成液滴上万个。每个液滴中包含着一个样品细胞 ,液滴中的细胞在形成液滴前已被测量,如符合预定要求则可被充电,在通过偏转板的高压静电场时向左或向右偏转被收集在指定容器中 ,不含细胞液滴或细胞不符合预定要求液滴不被充电亦不发生偏转进入中间废液收集器中,从而实现了分选。 分选的详细原理和操作请有兴趣者参考有关文献。

九. 流式细胞术在血液学中的应用 DNA倍体分析及细胞周期分析

在细胞周期内,DNA含量随细胞内时相发生周期性变化,正常情况下,大多数细胞处于休止期(Go), G1期

DNA含细胞虽有DNA合成,但DNA含量仍为2N,为二倍体细胞,;处于活跃的DNA合成期(S期)的细胞

量为2N-4N;正经历细胞分裂(G2/M期)的细胞含有最大量的DNA(4N)。细胞经固定后用

PI(Propidium Iodine 碘化丙啶)等荧光染料染色即可上机测定。但标本需先经RNA酶处理以排除RNA 干扰。FCM可在测量大量细胞(数分钟可测定105个细胞)后给出DNA分布直方图,见图12.10.正常人外周血DNA示意图,图中第一个峰(G1)是DNA含量为2N 的细胞峰 ,第二个峰是DNA含量为4N 的细胞峰,两峰之间是

DNA含量为2N-4N的处于活跃的DNA合成期(S期)的细胞。用厂家提供的Multicycle软件,计算机可自动计算出G1%、S+G2M%;如用DNA/RNA双参数分析 ,可得到G0:G1%,G0/G1期DNA指数, 如标本中有凋亡细胞,在G1峰前会出现一个亚G1期峰,软件可自动计算出凋亡细胞的%。

图12.10.正常人外周血DNA示意图(采自Coulter Training Guide)

DNA倍体分析的临床有价值的指标是DNA非整倍体和/或超二倍体%和四倍体%增高。这些改变是肿瘤细胞的特异性改变,和实体瘤相比 ,急性白血病非整倍体发生率较低,约30~40%。

十. 流式细胞术在血液学中的应用

淋巴细胞亚群测定

淋巴细胞担负着免疫的主要功能。淋巴细胞亚群的测定有助于了解机体免疫状况及一些疾病的监测。临床经常测定的淋巴细胞亚群包括T淋巴细胞 (CD3+), T 辅助细胞 (CD3+CD4+), T 抑制细胞(CD3+CD8+), B 淋巴细胞(CD19+或CD20+),NK 细胞 (CD3-CD56+)等。

常用来测定淋巴细胞亚群的单克隆抗体(Monoclonal Antibody McAb)都是小鼠抗人Ig,有精制抗体,有直标荧光抗体,现在一些国外公司有双色和三色McAb出售,如CD4-FITC/CD8-RD1、

CD3-CY5/CD4-FITC/CD8-PE等 ,此时应根据这些双色或三色McAb的Ig性质选择相应的阴性对照,如MsIgG1-RD1/MsIgG2-FITC等。上机测定时应先测定阴性对照管,阴性对照的阳性细胞应<2.0%。

三色测定可给出更为准确的各亚群的情况:如真正的T 辅助细胞应是 CD3+CD4+CD8-, 真正的T 抑制细

胞应是 CD3+CD4-CD8+,单标CD8+细胞中不仅有T 抑制细胞,还含有30%左右的NK细胞;而

CD3+CD4-CD8-细胞群是γδT细胞,此类细胞与感染有关, CD3+CD4+CD8-细胞+CD3+CD4-CD8+细胞

+CD3+CD4-CD8-细胞+CD3+CD4+CD8+细胞=CD3+细胞。如单标记CD56不能准确测定NK 细胞,NK 细胞应是 (CD3-CD56+),因为CD56+细胞中包含着非HLA束缚细胞毒T 细胞(CD3+CD56+)。双色组合还能测定B 淋巴细胞(CD3-CD19+或CD20+)、激活的T 细胞(CD3+CD69+或CD3+25+)等。

应用适当的双色组合如CD4与CD29,CD4与CD45RA,可以测定T辅助细胞的的亚群。如

CD4+2H4(CD45RA)+细胞是Ts的诱导细胞;CD4+4B4(CD29)+细胞Th的诱导细胞。 同理 ,利用

CD8+CD45RA和CD8+CD29+S6F1可测定T抑制细胞的亚群。

T辅助细胞还可分成Th1、Th2两个亚群,同时标记细胞内细胞因子IFN-γ和IL-4,可区分Th1细胞(CD4+/ IFN-γ+)和Th2细胞(CD4+/ IL-4+)。

利用CD25、CD69等McAb和其他淋巴细胞标记双色或三色标记还可测定淋巴细胞亚群的功能状态,如活化T8、活化B细胞等。

b 以下给出常用细胞亚群的正常范围供参考,请注意同一CD中有多种克隆的McAb, 同一CD中不同McA 所测出的数值不同,每个实验室应测定自己实验室的正常数值。

CD3+ 70.0±12.0% +4B4+ 23.0±7.0%

CD3+CD4+CD8- 40.0±9.0% CD4+2H4+ 19.0±6.0%

CD3+CD4-CD8+ 30.0±8.0%

CD3-CD56+(NK) 12.0±8.0%

十一. 流式细胞术在血液学中的应用

白血病免疫分型原理

(McAb)检测白血病细胞的细胞膜和细胞浆抗原,分析其表现型,白血病免疫学分型是利用单克隆抗体

以了解被测白血病细胞所属细胞系列及其分化程度。对白血病细胞抗原的分析研究有助于对白血病分型,为诊断和治疗提供依据。白血病免疫分型是形态学分型的重要补充和进一步深化,国际MIC分型协作组认为每一例急性白血病的免疫分型都是必不可少的。白血病免疫分型对鉴别急淋和急非淋有决定作用,对鉴别急非淋的某些亚型如M7、M3也有决定作用,对于一些用形态学、细胞组织化学不能诊断的急性白血病,急性未分化白血病,混杂性白血病等有重要意义。自从单克隆抗体问世以来,最成功的应用就是研究造血系统各类细胞表面抗原与细胞增殖、分化及恶变的关系。研究发现细胞表面抗原有重要功能,一些抗原分子作为细胞生长因子的受体而影响细胞的增殖分化;一些抗原分子作为细胞间相互识别的物质基础而参与细胞

间相互作用;一些抗原分子则是细胞特异功能的物质基础。

从多能造血干细胞(PHSC)分化成熟为功能细胞过程中, 细胞表面和细胞浆内抗原随着分化成熟过程不断

发生改变, 这些抗原称为造血细胞分化抗原。 造血细胞分化抗原是造血细胞分化过程中由细胞核内染色体上的基因编码的镶嵌蛋白, 其出现、增多、 减少或消失与造血细胞分化密切相而表现出与细胞系列及分化程度相关的特异性。 这些抗原可作为鉴别和分类造血细胞的标记。如髓系细胞的MPO、CD33、CD13、CD14、CD15等抗原 ;巨核系的CD41、CD41、CD61抗原; T淋巴细胞的CD2、CD3、CD4、CD5、CD7、CD8等抗原;B淋巴细胞的CD19、CD20、CD22等抗原。至今尚未发现白血病细胞特异性抗原,而白血病细胞是造血细胞在某一分化阶段的大量积累,表达与之相应的造血细胞分化抗原,因此可用造血细胞分化抗原类标记检测白血病细胞; 但白血病细胞毕竟不是正常造血细胞,其抗原表达与正常造血细胞并不完全相同。常有丢失某一分化发育阶段正常应有的抗原,或表达某一分化发育阶段正常不应有的抗原,或表达其他系列抗原,部分丧失了系列专一性和分化的严格性。

用FCM检测白血病免疫分型具有快速、简便、重复性好等优点。由于FCM可根据FSCνSSC直方图区分细胞并可圈定检测细胞范围(Bitmap,无定型门),或用SSC(线性或对数)和CD45直方图圈定检测细胞范围(Bitmap,无定型门),排除其他细胞干扰,因此较光学显微镜免疫荧光法或免疫组化法结果更准确。

十二. 流式细胞术在血液学中的应用

白血病免疫分型其临床意义

目前公认的系列特异性指标是:T淋巴细胞系--胞浆CD3(cCD3),B淋巴细胞系-- cCD22或cCD79,髓系---MPO 或cCD13,一般可先用他们区分细胞系列后再进一步分析某一系列亚型和分化阶段。

1. ALL的免疫学分型

1986年前分为普通型ALL(cALL)、未分化细胞ALL (Null-ALL)、T细胞ALL( T-ALL)

、前B细胞ALL (PreB-ALL)、B细胞ALL (B-ALL)五型;1986-1994年分为两大类九型(非T-ALL六型,T-ALL三型),九十年代后期有人按临床实用性一般分为B祖细胞ALL、前B细胞ALL、B细胞ALL、T 细胞ALL四型。表12.1-表12.4列出ALL的五型、九型(B细胞系列六型、T细胞系列三型)、四型分类法。

B-祖细胞 ALL :B-祖细胞ALL 占儿童ALL的65%-70%,青少年ALL的55%-60%,成人ALL的50%,儿童ALL >90%病例 CD10+,而婴儿CD10+病例<50%。FAB分类为L1、L2,白血病细胞的FS和SS都很低;一般TdT、HLA-DR、CD19阳性,大多数病例CD24、CD34阳性,本型细胞膜免疫球蛋白(Ig)阴性。此型有CD10+、CD10-两个亚型,CD10+型预后较CD10-型好。

前B 细胞ALL :前B 细胞ALL在发育阶段上较B祖细胞 ALL晚,占儿童ALL的25%,在成人ALL占的比例还不清楚。一般CD24、HLA-DR、CD19、 CD10、cCD22阳性,CD34阴性,鉴别特点时有胞浆重链μ。此型预后较B祖细胞ALL差,可能与t(1;19)有关,t(1;19)占前B 细胞ALL的25%,此型CD34-,而B系列ALL中CD34-是独立的预后不良标记。

B细胞ALL :B细胞ALL 占所有ALL 的2%-5%;B细胞ALL更为成熟,白血病细胞的FS和SS较B-祖细胞 ALL明显增加,在FSνSS直方图或SS(线性或对数)νCD45直方图中处于淋巴细胞和单核细胞区域。典型标记是细胞膜免疫球蛋白(sIg)阳性,表型一般为CD19、CD20、CD22、CD24阳性,多数病例CD10+,但sIg和成熟抗原出现可区别于更早的B系ALL。此型FAB分类一般为 L3,罕见病例有B细胞ALL标记而FAB分类一般为 L1,这些病人多有t(1;19)和t(14;18)。

T细胞ALL :T细胞ALL占儿童ALL的15%,成人ALL的25%。多数表型为胸腺细胞型,最常见的是晚期胸腺皮质细胞亚型,CD1+、CD2+、CD5+、CD7+,CD4+CD8+,CD3表达较少,TdT常阳性;另一常见亚型是早期胸腺皮质细胞亚型,CD2+、CD5+、CD7+、TdT+。髓质期亚型较少见,CD2+、CD5+、CD7+,CD3+CD4+或CD3+CD8+,TdT表达较少。前T细胞亚型,仅有CD7和cCD3而无其他T系抗原表达,预后较差。T系肿瘤性疾病多有特异性正常抗原表达的下调或表达该分化阶段正常不应出现的抗原。成人T 细胞ALL预后较好,而儿童T细胞ALL较儿童B-祖细胞 ALL和前B细胞 ALL预后差,虽然各亚类预后仍不甚明确,但CD10阴性者预后不良。

ALL 的免疫学分型经过1986年前分为五型,1986-1994年分为两大类九型,九十年代后期(1997)分为四型的过程。1986年前的五型,是当时单克隆抗体和检测手段的反映;随着新的单克隆抗体(主要是T、B淋巴细胞亚群的McAb)的发现和临床大量病例的检测,不仅弄清了T、B淋巴细胞的来源、分化发育过程,而且使免疫分型更加细致,因而出现了1986-1994年分为两大类九型;但按照细胞的分化发育阶段分型的两大类九型分型法对临床略显繁琐,指导治疗、判断预后临床实用性也不够强,因此又出现了以上简单的四型分类法。经过对比不难看出,四型分类法的B-祖细胞ALL型实际上包含了两大类九型分类法的非T-ALL的Ⅱ、Ⅲ、Ⅳ 3个亚型,而Ⅴ型即是前B 细胞ALL型,Ⅵ型是B 细胞ALL型;而T细胞ALL型是两大类九型中T-ALL的三型合并为一型。两大类九型分类法的非T-ALL的Ⅰ型分类为急性未分化白血病(见后)。

ALL也可按DNA含量分类,用流式细胞仪很容易测定DNA含量,DNA含量分为两个亚类:超二倍体和亚二倍体,前者预后好,后者预后差。

2.急性髓细胞白血病(AML)攪

目前所有粒、单核系的单克隆抗体基本无分化发育阶段特异性,因此AML的免疫学分型FAB- M0、M1、M2界限不十分明显;但M3多不表达HLA-DR和CD34,常表达CD13、CD33、CD9、CD38;GPA在鉴别红白血病(M6)时可提供帮助;巨核细胞白血病(M7)则有CD41、CD42、CD61为系列特异标记,为确诊的重要指标。 由于白血病的异质性,同一FAB分类的白血病抗原表达并不完全相同。AML的免疫表型见表12.5。

M0:M0白血病细胞的FS和SS都很低,在SSνCD45直方图中处于原始淋巴细胞区域。M0的白血病细胞至少表达一个髓系特异性标记如MPO、CD13、CD116,MPO较CD13、CD116更敏感;一般淋巴系标记是阴性的,但可能表达CD7或CD4;一般CD34、HLA-DR阳性。有研究显示AML复合表达CD7

和CD34预后不良。

M1:M1的白血病细胞抗原表达类似于M0并与M0不好区分,M1一般表达CD13,CD33和HLA-DR,CD34表达较M0少,部分可能表达CD15,较少病人可能表达CD4。

M2:M2与M1的主要区别是分化成熟增加,原始细胞减少;CD34表达较M1少,CD15表达较M1增加,大部分病例HLA-DR阳性,CD13表达强于CD33;部分M2表达CD19和CD56伴有t(8;21),罕见的伴有t(8;21)的M2不表达CD13,CD33和CD14但MPO阳性。

M3:M3白血病细胞由于它的高颗粒性而SS增大;M3的白血病细胞一般表达CD13,CD33,部分病人可能表达CD2,但HLA-DR阴性,CD34一般为阴性,复发病人阳性;部分病人可能表达CD56,表达CD56者应作基因检查(APL/RARα)以排外髓/NK细胞急性白血病(详见后)。

M4、M5:M4、M5的免疫表型相似,重要表型特点是表达CD13、CD33、CD14、CD15和HLA-DR,部分病人表达CD4、CD7,部分病人可能表达CD56,表达CD2多为M4E0,常伴有16号染色体异常,预后好。

M6:M6较少见,一般表达HLA-DR、CD34、CD13、CD33,GPA对确定红系有用。

M7:M7占成人ANLL的1%、儿童的4%。成人M7多见于二次性白血病,即CML.BC或MDS-RAEB或MF白血病变。而儿童M7多为原发。M7免疫学表型一般

为:CD41+,CD42+,CD61+,CD33+/-,CD13+/-,CD34+,DR+/-,CD10-。特异性标记CD41、CD42、CD61阳性可确诊M7,但要注意排外血小板粘附于细胞上的假阳性结果。

3.急性未分化白血病

用流式细胞仪分析仅有大约1%的急性白血病不能分类,典型急性未分化白血病仅有HLA-DR和CD34表达而无系列特异性抗原表达。

4.杂合型白血病

真正的双系列表型白血病是伴有t(9;22)或有11q23 MLL(myeloid/lymphoid or mixed lineage leukemia髓/淋系或混合性白血病)基因重排的病人,以往报道的许多杂合型白血病多是由于方法学问题不能排除非白血病细胞的干扰,或将非特异弱表达当作特异表达,如前所述白血病细胞毕竟不是正常造血细胞,其抗原表达与正常造血细胞并不完全相同,部分丧失了系列专一性和分化的严格性,因此不要轻易定型杂合型白血病,国际上杂合型白血病尚无统一诊断标准。

5.慢性粒细胞白血病急性变(CML BC) 慢性粒细胞白血病(慢粒 CML)是一种多能造血干细胞疾病,其转归多为急性变。慢粒急变(CML BC)涉及所有造血细胞系列,往往不易从形态学上确定急变类型, 50%-60%为AML变,30%左右为ALL变。AML变可表达AML的所有表型,大多数ALL变为B细胞来源,其中

cALL

及前B-ALL多见,罕见T-ALL变。

6.B 淋巴系细胞增殖性疾病 B 淋巴系细胞增殖性疾病的免疫学分型见表12.6。采自C.D Jennings and K A.Foon略加改变. MCL: mantle cell 淋巴瘤; FCCL:Follicular center cell lymphoma---泸泡中心细胞淋巴瘤; MZL: Marginal zone lymphoma—边缘区淋巴瘤; SLL:small cell lymphocyte lymphoma--小细胞淋巴细胞淋巴瘤

B 淋巴系细胞增殖性疾病中包括B慢性淋巴细胞白血病(B-CLL)、B幼淋细胞白血病(B-PLL)、毛细

胞白血病(HCL)和多发性骨髓瘤(MM)/浆细胞白血病和部分淋巴瘤,淋巴瘤免疫分型将在不同章节中描述。

B-CLL:B-CLL的白血病细胞一般表达CD19、CD20、CD43和CD79a,CD5与以上抗原复合表达,sIgM、sIgD、CD11c和CD25也常表达但表达较弱,CD10、CD22阴性。伴染色体异常者预后较差。

B-PLL :流式细胞仪在区分B-PLL和B-CLL中十分有用, B-PLL通常sIg表达强, CD5阴性而CD22阳性,困难的是原发B-PLL和由B-CLL转化为B-PLL的区分, 由B-CLL转化来的B-PLL CD5阳性而CD22表达弱,类似于B-CLL。

HCL:HCL 一般表达成熟B细胞标记:CD20、CD22、CD19、CD79、sIg,CD11c、CD22高表达,CD25中等度以上表达,一般CD21-,典型病例CD5-、CD10-、CD23-,但有少数病例可阳性。CD103是HCL 最可信的标记,可用来与其它B细胞白血病鉴别。

浆细胞瘤:由于大多数多发性骨髓瘤病人骨髓标本中含骨髓瘤细胞少及瘤细胞丧失了大多数B细胞系特异性标记,用流式细胞仪分析多发性骨髓瘤(MM)/浆细胞白血病较为困难,典型的浆细胞CD38强表达而CD45弱表达。一般浆细胞sIg弱表达,cIg阳性。

7.T淋巴系细胞增殖性疾病 T淋巴系细胞增殖性疾病的免疫学分型见表12.7。

T淋巴系细胞增殖性疾病中包括T幼淋细胞白血病(T -PLL)、NK细胞白血病(T-LGL、NK-LGL)和成人T淋巴细胞白血病(ATL)、T慢性淋巴细胞白血病(T-CLL)。

T-PLL :T-PLL的白血病细胞一般表达CD2、CD3、CD5和CD7,大多数病人CD4+ CD8-,但偶有CD4+ CD8+,单独表达CD8者少见, 本病常伴有14q11和14q32改变, 有CD4+ CD8-表型者预后较好,本病较

B-PLL恶性度高。

NK 细胞白血病

:NK系列白血病最早描述的是大颗粒淋巴细胞白血病(LGL), LGL有两种类型:T-LGL和NK-LGL,T-LGL 表达CD3、CD8、CD2、CD16、CD11b、CD57、而CD56、CD5、CD7、CD4和CD25多阴性,有TCR 基因重排。NK-LGL表达CD2、CD16和CD56,而CD3、CD4多阴性,CD8、和CD57弱表达或阴性,无TCRα-β基因重排。最近NK系列白血病又有新的亚型发现,如急性前髓系/NK 细胞白血病、急性髓系/NK 细胞白血病、原始NK 细胞白血病、NK样T细胞白血病。急性前髓系/NK 细胞白血病是一种最近认识的不同类型的白血病, 其特点是有明显髓外涉及,不成熟的原始淋巴细胞样形态,伴MPO--、CD7+、

CD33+/CD13+、sCD3-、cCD3-、CD56+,预后不良。急性髓系/NK 细胞白血病,形态学和免疫表型类似于M3,但无RARα基因重排,一般HLA-DR-、CD33+、CD13+、CD56+,多见于老年病人,对维甲酸无反应。原始NK 细胞白血病,无髓系和淋巴系抗原,CD56+、cCD3+/-、CD2+/-、CD4+/-、CD7+/-,少数有TCRβ基因重排,而无TCRγ-δ基因重排。NK细胞系列白血病的新亚型是近10年才较多注意到的白血病,其临床特点,免疫表型,染色体及基因改变需进一步积累病例研究才能彻底明了。大约10%-20%左右的急性白血病表达CD56,除了原始NK 细胞白血病、NK样T细胞白血病、急性髓系/NK 细胞白血病、急性前髓系/NK 细胞白血病外,大部分表达CD56的急性白血病是FAB分类的M2、M3、M4、M5型,这类病人究竟是急性髓系/NK 细胞白血病还是急性髓系细胞白血病伴NK抗原表达有待进一步研究,鉴于急性白血病部分丧失了系列专一性和分化的严格性,可能称为急性髓系细胞白血病伴NK细胞抗原表达较为合适。

成人T淋巴细胞白血病(ATL):大多数ATL细胞表达激活T细胞表型:CD3、CD4、CD5、CD25、HLA-DR、TCR,一般CD7-和CD8-,常有粘附分子L-选择素的异常表达;

伴有p53异常者预后不良。

T-CLL:T-CLL少于CLL总数的1%,细胞形态学类似与一般CLL,但临床发展较快,但多数病人表达CD2、CD3、CD5、CD7、CD4、少数病人表达CD8。

十三.流式细胞术在血液学中的应用

淋巴瘤免疫分型

目前淋巴瘤的分类方法已从LSG的形态学分类逐渐转变为REAL分类法, REAL分类法是以肿瘤发生源为基础的分类方法,在原来的形态学基础上加上免疫学分型后再加以分类,这种分类方法不仅能够推断肿瘤的发生源,对治疗也有指导意义。因此淋巴瘤的免疫分型越来越重要。如同白血病免疫分型一样,淋巴瘤的免疫分型也是利用单克隆抗体检测淋巴瘤细胞的细胞膜和细胞浆抗原,分析其表现型,以了解被测淋巴瘤细胞所属细胞系列及其分化程度。流式细胞仪能对多数的淋巴瘤细胞的细胞膜和细胞浆抗原迅速客观地做出检测,在淋巴瘤的免疫分型中起着不可替代的作用。

临床淋巴瘤的免疫分型的检测标本一般是淋巴结、脾脏、胸水、腹水等。在临床淋巴瘤的免疫分型工作中常可遇到以下四种情况:①B细胞系淋巴瘤②T/NK细胞系淋巴瘤③淋巴细胞系以外的造血细胞肿瘤④造血细胞以外的肿瘤。

REAL分类淋巴瘤的免疫表型见表12.8。*:弱表达或阴性。

BLBL :前B原始淋巴细胞淋巴瘤/白血病; BSLL: B-小淋巴细胞淋巴瘤; LPL:淋巴浆细胞样淋巴瘤; MCL: 斗篷细胞淋巴瘤; FCL:滤泡中心淋巴瘤; MZL: 边缘带B细胞淋巴瘤; SMZL :脾MZL ;HCL:毛细胞白血病; PC:浆细胞瘤;DLBL: B-弥漫性大细胞淋巴瘤; BL: Burkitts淋巴瘤; HBLB:高度B细胞淋巴瘤, Burkitts样; TLB L: 前T原始淋巴细胞淋巴瘤/白血病; TPLL: T幼淋细胞白血病; LGLT:大颗粒淋巴细胞白血病, T细胞型; LGLNK: 大颗粒淋巴细胞白血病, NK细胞型; MF:覃样真菌病; PTL:外周T细胞淋巴瘤,非特异;AILD:血管免疫T细胞淋巴瘤;ACL:血管中心性淋巴瘤; ITCL:肠T细胞淋巴瘤; ATL:成人T细胞淋巴瘤/白血病; LCL:大细胞淋巴瘤; LCLH: 大细胞淋巴瘤,何杰金氏样;

1.B细胞系淋巴瘤

大多数情况下, B细胞系淋巴瘤CD19、CD20阳性,分化早期CD20阴性,CD10、CD34阳性;分化晚期CD5、CD23阳性,成熟为浆细胞后以上标记均阴性。利用单克隆抗体κ、λ(正常时κ:λ=2:1)可检测免疫球蛋白轻链的偏移,推断是否克隆性增殖免疫球蛋白。表12.6. 列出了外周B 淋巴系淋巴瘤的4种类型的免疫分型。

SLL(small cell lymphocyte lymphoma)--小细胞淋巴细胞淋巴瘤: 小细胞淋巴细胞淋巴瘤细胞一般表达

CD19、CD20、CD43和CD79,CD5与以上抗原复合表达,sIgM、sIgD、CD11c和CD25也常表达但表达较弱,CD10、CD22阴性。伴染色体异常者预后较差。

MCL(mantle cell lymphoma)--斗篷细胞淋巴瘤:MCL包括以前分类为中等淋巴细胞淋巴瘤(ILL)、中度分化淋巴细胞淋巴瘤(IDL)、中心细胞淋巴瘤和套区细胞淋巴瘤(MZL),占淋巴瘤的2%-8%,λ型较κ

型常见, sIgM中度表达,IgD弱或阴性,表达CD19、CD20、CD22、CD43,但多数病例CD5阳性CD23阴性,CD10一般阴性,CD5阳性CD23阴性和Ig类型可帮助鉴别MCL和FCL。

FCL(Follicular center cell lymphoma)---泸泡中心细胞淋巴瘤:FCL占淋巴瘤的45%,表达CD19、CD20、CD22, sIg强表达,但多数病例CD10和CD23阳性,典型FCCL CD5、CD43和CD11c阴性。CD10阳性、CD11c阴性和sIg强表达利于与MZL鉴别。

MZL(Marginal zone lymphoma)--边缘带淋巴瘤和相关B 细胞淋巴瘤:典型免疫表型: CD19、CD20、CD22、HLA-DR阳性,sIg中度表达,CD5、CD10、CD23、CD25阴性,CD21、CD24多数情况下阴性,多数表达CD11c。CD5、CD10、CD23、CD25阴性,CD21、CD24多数情况下阴性,利于与CLL/SLL、FCCL、MZL鉴别。

2. T/NK细胞系淋巴瘤

早期T细胞一般CD2、CD5、CD7、cCD3阳性。T/NK细胞系淋巴瘤的详细分类及表型参见表12.8。细胞膜CD3阳性可确认为外周T细胞肿瘤, 外周T细胞肿瘤的特征是CD3与CD4或CD8复合表达,并常有克隆性T细胞受体,或α-β型或γ-δ型;

MF(mycosis fungoides)--蕈样真菌病和sezary综合症:占皮肤淋巴瘤的绝大多数,CD4阳性,同时表达CD2、CD3、CD5,有时CD7阴性,CD8阳性病例极少见但已有报道,有无TCRβ基因重排对鉴别淋巴瘤和炎性反应有帮助。

LCL(large cell lymphoma)--大细胞淋巴瘤: 大细胞淋巴瘤(LCL)占成人淋巴瘤的40%,儿童的1/3,成人80%是B细胞型的,儿童B细胞型和T细胞型各占一半。

3.

淋巴细胞系以外的造血细胞肿瘤

急性髓系细胞白血病(特别是M4、M5)淋巴结转移时有发生,如T、B淋巴细胞标记低表达应怀疑并按白血病免疫分型处理。

4.

造血细胞以外的肿瘤

检测淋巴结、胸腹水标本时如遇CD45阴性情况应考虑非造血系统肿瘤淋巴结、胸膜、腹膜转移。

十四. 流式细胞术在血液学中的应用

红细胞疾病诊断

(一)网织红细胞测定

计数外周血中网织红细胞数量 ,对于评价骨髓红系造血及网织红细胞从骨髓到外周血的转送速率有重要意义。有核红细胞在成熟过程中,脱去细胞核后仍有少量RNA残留在细胞浆内,再经过约一天时间残留RNA 完全消失,成为成熟红细胞。这种细胞浆内有残留RNA的红细胞称作网织红细胞。正常情况下有一定量的网织红细胞出现在外周血中,正常值为1.0~1.5%,上限3.0%,但当红细胞数异常时会出现错误结果。因此用网织红细胞绝对值表示,正常值5~15×1010/L。由于常规方法测定须先在体外经活体染色(最常用亚甲兰),然后在显微镜下计数,计数细胞数有限。用流式细胞仪测定网织红细胞具有以下优点:①可避免由于细胞核的碎片或铁幼粒细胞的颗粒的存在而出现假性网织红细胞升高②可避免人为误差③因为可在短时间内测量上万个细胞,结果较常规方法准确、可靠 ,④同时可给出网织红细胞年龄结构。

流式细胞仪测定网织红细胞方法简单 ,只须将红细胞洗净后用荧光染料染色后即可上机检测。常用的荧光染料有焦宁Y(Pyronin Y) 丫啶橙

(Acridine OrangeAO) 碘化丙啶 (崐Propidium Iodine PI) 花青( Cyanine dye)等。

(二)PNH诊断

阵发性睡眠性血红蛋白尿症(PNH)因血细胞膜上锚固蛋白-糖磷酸肌醇(GPI)减少或缺乏而导致与GPI 有关的补体激活抑制因子如CD55、CD59减少或缺乏,因而红细胞对补体异常敏感发生溶血。流式细胞仪检查CD55、CD59十分敏感,正常人CD55、CD59双阳性细胞>95%,PNH病人CD55、CD59明显减少,这种减少不仅表现在红细胞上,粒细胞、淋巴细胞也有减少。已发现CD55c可能对GPI减少或缺乏较CD59更敏感。

十五. 流式细胞术在血液学中应用

血小板功能分析和血小板病诊断

(一)

血小板功能分析

血小板膜上有丰富的糖蛋白受体,是血小板发挥其功能的物质基础,静止期和活化期血小板的膜糖蛋白受体的种类、含量、结构和功能显著不同,用不同的抗血小板单克隆抗体可测定和分析血小板功能状态。血小板质膜糖蛋白单克隆抗体CD41(GPIIb/IIIa)、CD61(GPIIb/IIIa)、CD42b (GPIb)、CD41b (GPIIb)、血小板颗粒膜糖蛋白CD62p、CD63的测定可供分析血小板功能状态,如CD62p、CD63正常血小板不表达,当血小板活化时表达明显增加,可用来测定活化血小板。

(二)血小板病诊断攪

1.血小板相关抗体测定

血小板相关抗体可因不同机制产生。抗血小板自身抗体(包括原发性、药物诱导产生、合并其它自身免疫性疾病如系统性红斑狼疮)能引起严重的血小板减少。大多数原发性(免疫性)血小板减少性紫癜病人血小板上和/或血清中有抗自身血小板的血小板相关抗体PAIgG、PAIgA、PAIgM。血小板相关抗体的抗原仍不十分清楚,可能有多种,如GPⅠb、GPⅡb 、GPⅢa、Pa、或 HLA抗原。 抗血小板自身抗体也可能发生于多次输血后或怀孕期间 ,这些自身抗体多为针对HLA-Ⅰ类抗原决定簇的抗体,一般是IgG,它们可迅速破坏和清除随机供血者的血小板。 因此能迅速测定这些抗体存在与否的方法是必需的。许多不同的利用放免、荧光、酶、 SPA等的测定血小板抗体的方法已建立,但这些方法都很复杂、费时;同时给出的结果只能以一定量的血小板(105)中有多少抗血小板抗体来表示。近年来发展起来的用FCM测定血小板抗体的方法具有快速、简便的优点,同时可测定血小板上和血清中的抗体;测定中

FCM分析每一个血小板表面有无抗体,能给出血小板群体中有多少血小板表面有抗体(以%表示

);同时能给出血小板相关抗体量与血小板数的直方图 ,使我们了解血小板相关抗体在血小板群体中的分布情况。

FCM测定血小板抗体原理:分别用标有荧光的抗人IgG、IgA、IgM或用抗血小板GPⅠb、Ⅱb、Ⅱb/Ⅲa的抗体与分离洗净的病人的血小板和在病人血清中孵育过的正常

O型血小板作用后用FCM测定,前者测定的是病人血小板上的抗体后者测定的是病人血清中的抗体。

2.血小板无力症

血小板无力症时血小板膜GPIIb/IIIa明显减少,用血小板质膜糖蛋白单克隆抗体CD41、CD61和流式细胞仪测定不仅可测出GPIIb/IIIa减少,CD42a、CD42b基本正常或偏高,还可测出GPIIb/IIIa减少程度,分类血小板无力症。

3.巨大血小板综合征(BSS):血小板巨大, CD42a减少,CD42b减少,CD61 增加。

十六. 流式细胞术在血液学中的应用微小残留白血病检测微小残留白血病(Minimal Residual Leukemia MRL)是指白血病经治疗后获得完全缓解(Complete Remisson CR)后体内残留少量白血病细胞的状态。微小残留白血病与明显白血病(Overt leukemia)无明确

界限 ,仅是白血病细胞负荷数量不同,一般成人明显白血病时白血病细胞可达1012,经治疗获CR后

1010,因此MRL状态白血病细胞数可能是100-10攪。MRL是白血病复发的根源,因此检测MRL有十分重要的意义: ①指导临床治疗②预测白血病复发③评价自体骨髓移植的净化效果。应用

FCM检测MRL的优点在于可在短时间内分析大量标本,具有快速的特点。

由于白血病细胞缺乏特异性标记,FCM检测MRL的效果尚不理想,敏感性尚不够高,一般仅有1/103-104。目前主要有两类检测方法: ①用 FCM分析CR期骨髓细胞核酸量或染色体,可用于部分AL病人MRL分析,但敏感性仅1-5%。②免疫表型分析,由于尚无白血病特异的标记,只能通过与正常细胞比较某些抗原量的差别及分布部位的不同作为检测依据;如利用TdT和CD10双标记检测MRL,但敏感性亦不高,约0.1-1%。

假阴性结果可能由于: ①标本中的白血病细胞<10-4攪或<10-5;②所取标本不能代表全身骨髓情况; ③病人白血病细胞表型转换。

十七. 流式细胞术在血液学中的应用白细胞吞噬功能测定

粒、单核-巨噬细胞是机体免疫反应和免疫调节细胞中的重要成员。它们不仅具有吞噬功能,吞噬外来的微生物、肿瘤细胞等,同时又分泌多种生物因子参于免疫反应,此外单核-巨噬细胞对抗原物质的摄取、修饰、递呈等作用,是淋巴细胞的免疫功能必不可少的。因此检测白细胞吞噬功能对了解机体免疫状况有重要意义。以下简要介绍

FCM测定白细胞吞噬功能的概况。

应用光学显微镜、荧光显微镜测定白细胞吞噬功能时须分离粒、单核细胞, 并尽可能地保持细胞活性。用FCM检测时不须分离细胞,应用全血即可, 因此可在自然状态下测定 ,结果准确可靠。

目标粒子一般以酵母、细菌等能激发自然吞噬作用或予先以抗体调理化的人造粒子为好;并标以荧光,常用者为FITC(异硫氰酸荧光素)或RA(罗达明).

以肝素或拘橼酸抗凝取外周血(避免用EDTA),200μl全血与目标粒子200μl(目标粒子浓度4×107/ml)置37°C温育,温育结束后立即置冰水中, 以同样标本不在

37°C温育而置于冰水中者作为对照。目标粒子不同温育时间不一,FITC标记的金黄色葡萄球菌25分钟 ,FITC标记的粒子15分钟即可达到吞噬饱和;此外,粒子与白细胞的比例也很重要,一般为10:1。温育结束后以溶血剂溶去红细胞即可上机检测。

应用FCM全血法测定白细胞吞噬功能,对白细胞的丢失、损伤最小 ;此外用本法可测定血清中的调理素(Opsonine)水平及血清中有无吞噬作用抑制因子。如果用FITC标记的 单克隆抗体 CD13、CD14、CD15标记粒、单核细胞,用红荧光标记目标粒子,即可测定吞噬功能与细胞表面标记的关系,对白细胞吞噬功能作进一步的研究。

十八. 流式细胞术在血液学中的应用NK和LAK细胞活性测定

NK细胞存在于外周血大颗粒淋巴细胞中,它对靶细胞的细胞毒活性不依赖于抗体,无MHC限制性,它们的数量及细胞毒活性是机体免疫系统的重要指标。人NK细胞一般表达CD56、CD16、CD57部分表达CD2、CD8、CD11而不表达CD3。

LAK(Lymphokine Activated Killer cells)细胞主要存在于LGL的高密度群体中 ,LAK前体细胞表达NK 细胞标志CD16而不表达T细胞标志如CD3、CD4、CD5等 ;它们不需要抗原刺激就能杀伤NK细胞不能杀伤的肿瘤细胞,并且无MHC限制性;从表型上看大多数LAK细胞来自NK细胞,但严格讲LAK细胞对K562细胞的杀伤活性不能称作LAK活性,测定

LAK活性的靶细胞应为NK抵抗的实体瘤细胞,如HL-60细胞、HeLa细胞等。

[3H]TdR参入法或释放法、LDH释放法、常用的测定NK和LAK细胞活性的方法较多,如攩51Cr释放法、

ATP发光法等;应用放射性同位素对人体和环境不利,利用FCM测定NK和LAK细胞活性从1986年就开始摸索,方法已趋于成熟,以下介绍其中一种:

肝素抗凝取外周血后分离PBMC后洗净,调整细胞浓度为106/ml,为效应细胞 ;靶细胞分别为K562和HL-60或HeLa细胞,在对数生长期受集细胞,调整浓度为106。用3mMDiO(3,3-Diacradecyloxacarbocyanine Perchlorate)标记靶细胞,效应细胞:靶细胞(E:T)为40:1、20:1、10:1和5:1,孵育后加入PI(10μg/ml)染死细胞,洗净后即可上机检测。DiO发绿荧光,PI发红荧光,利用双参数(FL1vFL2)直方图可清楚地了解靶细胞中的死亡细胞 ,计算出靶细胞%溶解率。

十九.流式细胞术在血液学中的

应用造血干/祖细胞测定

造血干/祖细胞移植已广泛应用于血液肿瘤、实体瘤、某些遗传性疾病、免疫缺陷病等,因此检测造血干/祖细胞已成为临床必不可少的手段。应用流式细胞仪多色技术测定外周血造血干/祖细胞,具有快速、准确的优点,不仅能确定造血细胞数量,而且能对造血干祖细胞的质量进行评价,为临床干细胞移植治疗提供重要数据。目前多色组合一般包括CD34、CD38、HLA-DR等McAb。

CD34抗原是一种分子量约11万的糖蛋白,选择性地表达于早期造血干/祖细胞、小血管内皮细胞和胚胎纤维母细胞表面。该抗原在原始造血细胞上表达,以后随细胞分化、成熟逐渐减少直至消失,因此一直作为造血干/祖细胞表面的一种特征性标志而广泛应用于造血干细胞基础研究和临床。CD34+细胞是一群不均一的群体,依其是否表达CD38、HLA-DR、CD33、c-kit等分出的亚群表现出了不同的造血性能。最近随着造血理论的深入研究关于造血干细胞究竟是否都是CD34+细胞出现一些争论,实验研究证明, CD34-造

血干细胞较CD34+造血干细胞更具造血潜能,有人经实验研究提出CD34的表达与造血干细胞的细胞动力学相关,细胞激活时CD34+,细胞处于稳定状态时CD34-;也有人提出CD34-造血干细胞较CD34+造血干细胞发育阶段更早。我们认为:成人体内可能仍保留着一小部分原始间充质细胞,他们仍保留着多向分化能力,也能向造血干细胞分化,因此体内有CD34-造血干细胞和CD34+造血干细胞是正常的,CD34-造血干细胞较CD34+造血干细胞发育阶段更早、更具造血潜能;但目前的用CD34+细胞代表造血干细胞的检查方法已足以满足临床需要,因为临床实践已证明这一点。理论研究往往能推动学术发展,开发新技术,我们期待着造血理论的不断发展给临床带来新技术,不断提高临床疗效。

我们用CD34、CD38、HLA-DR三色组合测定了151份外周血经动员后标本,CD34+细胞占单个核细胞(MNC)的(0.954±0.466)%,含量为(3.55±2.41)×109/L;其中CD34+CD38-亚群含量为(0.253±0.24)×109/L,占CD34+细胞的7.13%;CD34+HLA-DR-亚群含量为(0.273±0.310)×109/L,占CD34+细胞的7.61%;随着采集次数的增加,CD34+细胞及其亚群数量逐渐减少(P<0.05);随着供者年龄增加,其外周血CD34+细胞数逐渐减少,在≥40岁供者CD34+细胞百分比和含量比<20岁供者分别降低了47%和50%;动员后外周血CD34+细胞数存在性别差异,男性供者外周血CD34+细胞数较女性高23%。

应用流式细胞仪测定造血干细胞虽具有快速、准确的特点,目前被广泛采用。但应用中要特别重视质量控制,要建立一套完整质控方法以确保检测的准确性。

二十. 流式细胞术在血液学中的应用

细胞凋亡研究

细胞凋亡是细胞在基因控制下的有序死亡,在疾病发生、发展中有重要作用,因而研究细胞凋亡有重要意义。细胞凋亡检测方法很多,应用流式细胞仪技术可根据细胞在凋亡过程中发生一系列形态、生化变化从多个角度对细胞凋亡进行定性和定量的测定。

1. 细胞形态变化:通过流式细胞仪测定细胞光散射的变化来观察细胞凋亡。在细胞凋亡早期,细胞前向角光散射的能力显著降低,90°角光散射的能力增加;在细胞凋亡晚期,前向角和90°角光散射的信号均降低。此方法特异性不强,目前使用较少。

2 细胞膜功能改变:

(1)

磷脂酰丝氨酸(phosphatidylserine PS)异位:正常情况下,PS位于细胞膜内层,细胞发生凋亡时PS从细胞膜内翻转并暴露在细胞膜外层,是细胞发生凋亡的早期事件。PS与Annexin Ⅴ(一种具有强力抗凝作用的血管蛋白)具有高度亲和力。应用流式细胞仪采用FITC- Annexin Ⅴ/PI双染法进行细胞凋亡检测,可同时描述三群不同状态细胞:FITC- Annexin Ⅴ-/PI-细胞,即正常活力细胞;FITC- Annexin Ⅴ+/PI-细胞,即凋亡细胞;FITC- Annexin Ⅴ+/PI+细胞,即已死亡细胞。此种方法操作过程简单,指标敏感,应用者越来越多。

(2) PI/Hoechst33342双染法:Hoechst33342(HO)是一种DNA的特异性荧光染料,可通过完整细胞膜,应用PI/Hoechst33342可将细胞分为三群:正常活细胞(HO强/ PI-),凋亡细胞(HO弱/ PI-),(由于凋亡细胞发生DNA降解和丢失,导致HO荧光减弱),死亡细胞(HO弱/ PI+)。此种方法再结合凋亡细胞前向角光散射能力降低的特点,能更好地鉴定凋亡细胞,但HO须紫外光激发,由于很多流式细胞仪不配有紫外激光,故此法应用受限。

(3)

吖啶橙(AO)/溴化乙啶(EB)双染法: AO是一种异染性荧光染料,可通过完整的质膜,它与核酸的结合主要是嵌入DNA双链的碱基之间,其发射峰为530nm,呈绿色荧光。EB的理化特性与PI相似,不能通过完整质膜。应用AO/EB双染法也可以将细胞分成三群:正常活细胞(AO强/ EB -),凋亡细胞(AO弱/ EB -),

死亡细胞(AO弱/ EB +),原理与PI/Hoechst33342双染法相似,不同的是AO/EB双染法所的激发光是被广泛使用的氩激光(488nm),而不须紫外光,其缺点是染色过程较复杂,且AO易污染设备管道,因此使用此法者较少。

(4)

放线菌素D(7-AAD)染色法:7-AAD是一种核酸染料,它不能通过正常质膜,随着细胞凋亡、细胞死亡过程,质膜对7-AAD的通透性逐渐增加,结合细胞凋亡中DNA的有控降解,最后通过7-AAD标记DNA的强弱,将细胞分为三群:7-AAD强为死亡细胞,7-AAD弱是凋亡细胞,7-AAD-为正常活力细胞。此法具有染色快速、简便、价格便宜等优点。另外,由于此法不破坏细胞膜,故还可联合使用FITC、PE标记的膜蛋白,对特殊细胞群及亚群进行多色荧光分析(虽然AO/EB双染法也不破坏被检细胞膜,但由于AO及EB 的发射光波谱分别与FITC和PE的发射光波谱相似,故AO/EB法不能与FITC和或PE联合使用)。此法是应用核酸染料测定细胞凋亡的流式细胞仪法中十分实用的方法。

3. 细胞器改变:

线粒体膜APO2.7蛋白表达:早期凋亡细胞的线粒体膜出现APO2.7蛋白表达,利用荧光标记的单克隆抗体,运用流式细胞术可以检测早期凋亡细胞。

4 .DNA含量变化:

主要是PI染色法,由于凋亡细胞DNA发生有序降解,被降解的低分子量DNA片段从变性细胞膜(经乙醇及透膜剂处理)漏出细胞外,使得凋亡细胞内的DNA含量减低,在流式细胞仪测定细胞DNA含量直方图中G1峰前可出现亚二倍体峰,即所谓凋亡峰。通过测定凋亡峰百分含量,便可知凋亡细胞比例。此法简便、快速,是目前常用的、经典的测量凋亡细胞的方法。此法存在问题:少量的正常的低DNA含量细胞、由于机械损伤产生DNA含量减低的坏死细胞、染色体丢失的分裂相细胞以及细胞碎片和微核等都可能出现在亚二倍体峰内。因此,此法的特异性较低。

5. DNA断裂点标记:细胞凋亡时发生DNA断裂,利用末端转移酶(TdT)可以将dUTP标记到断裂点上,称作原位缺口末端标记(TUNEL)技术。此法有直接标记和间接标记两种,前者的标记物是FITC-dUTP,后者的标记物是生物素(biotin)标记的dUTP,需要再用FITC标记的亲和素(avidin)与生物素标记的dUTP结合,使标记反应倍增,故间接标记法灵敏度高,但操作较复杂。TUNEL还可以配合其它单抗同时进行细胞表型分析,或与DNA含量同时分析。TUNEL法因其灵敏度高而被广泛采用。

6 细胞凋亡相关基因产物检测:细胞凋亡是一个多种基因参与的复杂过程,目前已知与bcl-2基因、c-myc 基因、P53基因等有关,这些基因都有相关产物,目前针对这些相关产物已有单克隆抗体生产,应用这些单抗,通过流式细胞仪可检测造血细胞凋亡相关基因蛋白表达水平,相互关系。

流式细胞仪测定细胞凋亡方法、层次众多,且具有快速、准确特点,应用十分广泛。在实际应用中应注意采用多种方法结合使用,使结果更加可靠准确。

二十一. 流式细胞术在血液学中的应用

细胞分选

流式细胞仪能够分选某一亚群细胞,分选纯度>95%。目前细胞分选主要用于研究,临床应用较少。血液学应用最多的是造血干细胞的研究,最近随着造血理论的深入研究关于造血干细胞究竟是否都是CD34+细胞出现一些争论,实验研究证明, CD34-造血干细胞较CD34+造血干细胞更具造血潜能,这些实验研究所用的CD34- 和CD34+细胞就是通过细胞分选获得的。小鼠造血干细胞分选一般按lin-c-Kit+CD34+/

lin-c-Kit+CD34-分选,人造血干细胞分选一般按lin-CD34+/ lin-CD34-分选。

为避免某些遗传性血液病如海洋性贫血、异常血红蛋白病的纯合子出生,产前诊断非常重要,这些疾病的主要靶细胞是红细胞,而孕妇血循环中存在着胎儿有核红细胞,只是数量非常少,利用流式细胞仪可从孕妇血液中分选出胎儿有核红细胞(分选条件:CD45-GPA+)进行基因分析,作出产前诊断。

利用流式细胞仪分选免疫担当细胞进行细胞免疫学研究也是目前的热门课题。总之,流式细胞仪能够分选出你想得到的任何一亚群细胞,只要你想得到的某一亚群细胞有合适的单克隆抗体标记,流式细胞仪的分选功能将得到越来越多的科学研究和临床应用。

二十二. 流式细胞术在血液学中的应用

其他

流式细胞仪可能在两方面对骨髓增生异常综合症(MDS)有用,一是测定CD34阳性细胞数,以监测病情,二是测定核蛋白增殖因子(PCNA),有报告PCNA再在生障碍性贫血、骨髓增生异常综合症、白血病三种疾病中表达有明显差异,可辅助鉴别诊断。

此外流式细胞仪也可检耐药蛋白,如肺耐药相关蛋白(LRP)、多药耐药蛋白(MRP)、 P170等。

流式细胞仪也可检测细胞因子,细胞内细胞因子如白介素系列(IL-1—IL-14),肿瘤坏死因子(TNF),干扰素(IFN)等,只要用适当的打孔剂即可用抗上述细胞因子单克隆抗体标记后用流式细胞仪测定。

参考文献

1.Coulter Education Center: Training Guide (Epics Elite Flow Cytometer),1994,USA.

2.Coulter Corporation: Operater,s Guide (Epics Elite Flow Cytometer),1993,USA.

3.Gray.J.W.Cell cycle analysis using flow cytometry. Int.J.Radiat.Biol.1986;49(2):237.

4.Catovsky.D.et al. A Classification of acute leukemia for 1990s. Ann Hematol1991;62:16.

5.Bemard.A.The limitations in utilizing phenotypic markers to detect minimalresidual diseases i n acute

leukemia(AL).Pathol.Biol 1988;36:17.

6.Rosenfeld.C.S. Flow cytometric measurement of anti-platelet

anibodies. AM.JClin.Pathol.1987;87(4):518.

7.Rothe.G.&Valet.G.Phagocytosis、

intracellular PH and cell volume in the multifuctional analysis of granulocytes by flow cytometry. Cytometry 1988; 9:316.

8.Chang L et al.Rapid flow cytometric assay for assess

ment of natural killer activity. Immun Methods 1993;166:45.

9.Foon.K.A.& Todd.R.F.Immunoligic classification of leukemia and lymphoma. Blood.1986;68(1):1~31.

10.陈璋等.200例急性淋巴细胞白血病免疫学表型特点.中华血液学杂志.1991;12(7):356.

11.C.Darreli Jennings and Kenneth A.Foon:Recent Advance in Flow Cytometry: Application to the Diagnosis of Hematologic Malignancy Blood 1997;90(8):2863-2892.

12.Yoshiaki SONDA,Takafumi KIMURA. Quantitative and qualitative of peripheral blood stem cells. Journal of Clinical and Experimental Medicine, 1996,176:561-565.

13..Chin-Yee I, Anderson L, Keeney M, et al .Quality Assurance of Stem Cell Enumeration by Flow Cytomeyry. Cytometry, 1997,30:296-303.

14.Thomas P.Loughran Jr:CD56+ hematologic malignancies. Leukemia Res. 1999;23(7):675.

15. Takashi Sato,Makio Ogawa:CD34 expression reflects kinetic action of murine hematopooietic stem cells. International J Hematol 1999;69(suppl 1):48。

流式细胞术原理及功能介绍

流式细胞术详解 一. 流式细胞术概述 流式细胞术(Flow Cytometry, FCM)是七十年代发展起来的高科学技术 ,它集计算机技术、激光技术、流体力学、细胞化学、细胞免疫学于一体, 同时具有分析和分选细胞功能。它不仅可测量细胞大小、内部颗粒的性状,还可检测细胞表面和细胞浆抗原、细胞内DNA、RNA含量等,可对群体细胞在单细胞水平上进行分析, 在短时间内检测分析大量细胞,并收集、储存和处理数据,进行多参数定量分析; 能够分类收集(分选)某一亚群细胞,分选纯度>95%。在血液学、免疫学、肿瘤学、药物学、分子生物学等学科广泛应用。 国内使用的流式细胞仪主要由美国的两个厂家生产:BECKMAN- COULTER公司和Becton-Dickinson公司(简称B-D公司)。流式细胞仪主要有两型:临床型(又称小型机、台式机)和综合型(又称大型机、分析型)。BECKMAN-COULTER公司最新产品为EPICS ALTRA和EPICS XL/XL-MCL, B- D公司最新产品为FACS Vantage和FACS Calibur。EPICS XL/XL-MCL和FACS Calibur是临床型;EPICS ALTRA和 FACS Vantage是综合型,除具备检测分析功能外,还具有细胞分选功能 ,多用于科学研究。 二.流式细胞仪主要技术指标 1.流式细胞仪的分析速度: 一般流式细胞仪每秒检测1000~ 5000个细胞,大型机可达每秒上万个细胞。 2.流式细胞仪的荧光检测灵敏度:一般能测出单个细胞上<600个荧光分子,两个细胞间的荧光差>5%即可区分。 3.前向角散射(FSC)光检测灵敏度:前向角散射(FSC)反映被测细胞的大小,一般流式细胞仪能够测量到0.2μm~0.5μm。 4.流式细胞仪的分辨率:通常用变异系数CV值来表示,,一般流式细胞仪能够达到<2.0%,这也是测量标本前用荧光微球调整仪器时要求必须达到的。 5.流式细胞仪的分选速度:一般流式细胞仪分选速度>1000个/秒,分选细胞纯度可达99%以上。 三.流式细胞仪主要构造和工作原理 流动室及液流驱动系统 流式细胞仪主要由以下五部分构成:①流动室及液流驱动系统②激光光源及光束形成系统③光学系统④信 号检测与存储、显示、分析系统⑤细胞分选系统。 流动室(Flow Cell或Flow Chamber)是流式细胞仪的核心部件,流动室由石英玻璃制成,单细胞悬液在细胞流动室里被鞘流液包绕通过流动室内的一定孔径的孔,检测区在该孔的中心,细胞在此与激光垂直相交,在鞘流液约束下细胞成单行排列依次通过激光检测区。流动室里的鞘液流是一种稳定流动,控制鞘液流的装置是在流体力学理论的指导下由一系列压力系统、压力感受器组成,只要调整好鞘液压力和标本管压力, 鞘液流包绕样品流并使样品流保持在液流的轴线方向,能够保证每个细胞通过激光照射区的时间相等,从而使激光激发的荧光信息准确无误。见图12.1流动室示意图。流动室孔径有60μm、100μm、150μm 、250μm等多种,供研究者选择。小型仪器一般固定装置了一定孔径的流动室。 图12.1流动室示意图(采自Coulter Training Guide) 四. 流式细胞仪主要构造和工作原理 激光光源及光束形成系统

流式细胞仪的原理和用途

流式细胞仪(FlowCytometry) 1 流式细胞仪得概念及其发展历史 1。1 流式细胞仪得基本概念流式细胞仪(flow cytonletry,FCM)就是对高速直线流动得细胞或生物微粒进行快速定量测定与分析得仪器,主要包括样品得液流技术、细胞得计数与分选技术,计算机对数据得采集与分析技术等。流式细胞仪以流式细胞术为理论基础,就是流体力学、激光技术、电子工程学、分子免疫学、细胞荧光化学与计算机等学科知识综合运用得结晶。流式细胞术就是一种自动分析与分选细胞或亚细胞得技术。其特点就是:测量速度快、被测群体大、可进行多参数测量,即对同一个细胞做有关物理、生物化学特性得多参数测量,且在统计学上有效。 1。2 流式细胞仪得发展简史最早得流式细胞仪雏形诞生于1934年,Moldavan提出使悬浮得单个血红细胞流过玻璃毛细管,在亮视野下用显微镜进行计数,并用光电记录装置测量得设想。1953年Crosland-Taylor根据牛顿流体在圆形管中流动规律设计了流动室。其后又经过Coulter、Parker & Horst、Kamentsky、Gohde、Fulwyler、Herzenberg等人得不断改进,设计了光电检测设备与细胞分选装置、完成了计算机与流式细胞仪得物理连接及多参数数据得记录与分析、开创了细胞得免疫荧光染色及检测技术、推广流式细胞仪在临床上得应用。近20年来,随着流式细胞仪及其检测技术得日臻完善,人们越来越致力于样品制备、细胞标记、软件开发等方面得工作,以扩大FCM得应用领域与使用效果。 宋平根得《流式细胞术得原理与应用》就是迄今为止对流式细胞仪及其技术阐述得最为详尽与透彻得中文著作.这本书非常详细地介绍了流式细胞术得历史、结构、原理、技术指标等,例举了其在医学与生物工程中得应用,非常适合从事此方面专业研究得人。由于这本书就是13年前出版得,所以基本上没有涉及植物流式细胞仪检测技术。此外对于只需要对流式细胞仪有些基本认识得人士来说,这本书太复杂太深奥。谢小梅主要介绍了流式细胞仪在生物工程中得应用。杨蕊概括了流式细胞仪得工作原理,简单提及了流式细胞仪得应用。本文在分析这三篇论著或文章得优缺点后,用比较通俗得语言介绍了掌握流式细胞仪检测技术必须了解得一些原理,并对目前市场上得主流型号进行了客观得性能概括。 2 流式细胞仪得工作原理与技术指标 2。1 流式细胞仪工作原理除电源外,流式细胞仪主要由四部分组成:流动室与液流系统:激光源与光学系统;光电管与检测系统;计算机与分析系统,其中流动室就是仪器得核心部件。这四大部件共同完成了信号得产生、转换与传输得任务. 流动室与液流系统

流式细胞仪的原理及应用

山西大学研究生学位课程论文(2013 ---- 2014 学年第一学期) 学院(中心、所):生物技术研究所 专业名称:微生物学 课程名称: 论文题目:流式细胞仪的原理及其应用 授课教师(职称):崔晓东 研究生姓名:常姣 年级:研一 学号:201323001003 成绩: 评阅日期: 山西大学研究生学院 年月日

流式细胞仪的原理及其应用 姓名常姣专业微生物学 摘要本文简要论述了流式细胞仪( flowcyt ometry, FCM) 的工作原理, 并对其某些科学领域研究中的应用进行阐述, 包括在生物学、免疫学、临床学中的研究应用。 关键词 FMC;生物学;免疫学;临床学 流式细胞仪( fl o w c y to me tr y, F CM) 研制、发展、革新和应用领域的扩展,都是由生物学、生物技术、计算机科学、电子工程学、流体力学、激光技术、分子生物学、有机化学和物理学等多个学科综合发展和应用而实现的。近代流式细胞仪,由于单克隆抗体技术、定量细胞化学和定量荧光细胞化学的应用,使其在生物学、临床医学等众多研究领域的应用愈来愈广泛和重要,尤其在生物学中对细胞周期的动力学分析、细胞因子、细胞凋亡、信号传导、R N A / D N A 的分析、细胞表面受体及特异性抗原的分析等领域发挥着独特作用,具有操作简单、分析精确、重复性好、费用低廉、分析速度快等优点。 1流式细胞仪的构成及工作原理 流式细胞仪主要由液流系统、光学系统、电子系统、分析系统和细胞分选系统五个部分组成。将待测细胞制成单细胞悬液, 经荧光染料染色后加入样品管, 在一定气体压力下待测样品被压入流动室。待测细胞在鞘液的包裹下单行排列, 依次通过检测区, 被荧光染料染色的细胞受到强烈的激光照射后, 产生散射光和荧光信号。这两种信号同时被前向光电二极管和90°方向的光电倍增管(PMT) 接收。散射光分为前向角散射(forwardscatter, FSC) 和侧向角散射(sidescatter, SSC) 。前者主要反映被测细胞的大小, 后者主要反映被测细胞的胞质、胞膜、核膜的折射等, 以及细胞内颗粒的性状。光信号通过波长选择通透性滤片后, 经光电倍增管接收后转为电信号, 再经数/模转换器转换为可被计算机识别的数学信号, 以一维直方图或二维点阵图及数据表或三维图形显示出来[1,2]。 流式细胞仪还可以对分析中的目的细胞进行分选, 它是通过分离含有单细胞的液滴而实现的。流动室的喷嘴上安装有超高频的压电晶体, 可以产生高频振荡, 使液流断裂为均匀的液滴, 待测细胞就包含在液滴之中。将这些液滴充上正或负电荷, 当带电液滴通过电场, 便会在电场的作用下发生偏转, 然后落入相应的收集器中, 从而实现细胞分选[2]。 2流式细胞仪的应用 流式细胞术的应用,简单用一句话概括就是,凡能被荧光分子标记的细胞或微粒均能用流式细胞仪检测。其中细胞生物学领域是流式细胞术在基础研究中应用范围最广泛的领域,因为最初这个技术就是为此目的而设计的。 2.1流式细胞仪在生物学中的应用 流式细胞仪在生物学中的应用越来越广泛,如在细胞生物学、细胞遗传学、分子生物学、神经生物学、微生物学、分子免役学、植物学等等许多生物学基础学科的应用和在细胞凋亡、细胞周期调控、细胞因子及细胞分型等研究中的应用[3]。 2.1.1 对凋亡细胞的分析 细胞凋亡是生物体生长发育过程中出现的正常现象, 在生物体形态构成、正常细胞更替以及维持

自己总结:流式细胞仪的原理和用途

流式细胞仪(Flow Cytometry) 1 流式细胞仪的概念及其发展历史 1.1 流式细胞仪的基本概念流式细胞仪(flow cytonletry,FCM)是对高速直线流动的细胞或生物微粒进行快速定量测定和分析的仪器,主要包括样品的液流技术、细胞的计数和分选技术,计算机对数据的采集和分析技术等。流式细胞仪以流式细胞术为理论基础,是流体力学、激光技术、电子工程学、分子免疫学、细胞荧光化学和计算机等学科知识综合运用的结晶。流式细胞术是一种自动分析和分选细胞或亚细胞的技术。其特点是:测量速度快、被测群体大、可进行多参数测量,即对同一个细胞做有关物理、生物化学特性的多参数测量,且在统计学上有效。 1.2 流式细胞仪的发展简史最早的流式细胞仪雏形诞生于1934年,Moldavan提出使悬浮的单个血红细胞流过玻璃毛细管,在亮视野下用显微镜进行计数,并用光电记录装置测量的设想。1953年Crosland-Taylor根据牛顿流体在圆形管中流动规律设计了流动室。其后又经过Coulter、Parker & Horst、Kamentsky、Gohde、Fulwyler、Herzenberg等人的不断改进,设计了光电检测设备和细胞分选装置、完成了计算机与流式细胞仪的物理连接及多参数数据的记录和分析、开创了细胞的免疫荧光染色及检测技术、推广流式细胞仪在临床上的应用。近20年来,随着流式细胞仪及其检测技术的日臻完善,人们越来越致力于样品制备、细胞标记、软件开发等方面的工作,以扩大FCM的应用领域和使用效果。 宋平根的《流式细胞术的原理和应用》是迄今为止对流式细胞仪及其技术阐述的最为详尽和透彻的中文著作。这本书非常详细地介绍了流式细胞术的历史、结构、原理、技术指标等,例举了其在医学和生物工程中的应用,非常适合从事此方面专业研究的人。由于这本书是13年前出版的,所以基本上没有涉及植物流式细胞仪检测技术。此外对于只需要对流式细胞仪有些基本认识的人士来说,这本书太复杂太深奥。谢小梅主要介绍了流式细胞仪在生物工程中的应用。杨蕊概括了流式细胞仪的工作原理,简单提及了流式细胞仪的应用。本文在分析这三篇论著或文章的优缺点后,用比较通俗的语言介绍了掌握流式细胞仪检测技术必须了解的一些原理,并对目前市场上的主流型号进行了客观的性能概括。 2 流式细胞仪的工作原理和技术指标 2.1 流式细胞仪工作原理除电源外,流式细胞仪主要由四部分组成:流动室和液流系统:激光源和光学系统;光电管和检测系统;计算机和分析系统,其中流动室是仪器的核心部件。这四大部件共同完成了信号的产生、转换和传输的任务。 流动室和液流系统

流式细胞术简介

流式细胞术简介 一、流式细胞术发展简史 流式细胞术(Flow Cytometry, FCM)是一种可以对细胞或亚细胞结构进行快速测量的新型分析技术和分选技术。其特点是:①测量速度快,最快可在1秒钟内计测数万个细胞; ②可进行多参数测量,可以对同一个细胞做有关物理、化学特性的多参数测量,并具有明显的统计学意义;③是一门综合性的高科技方法,它综合了激光技术、计算机技术、流体力学、细胞化学、图像技术等从多领域的知识和成果;④既是细胞分析技术,又是精确的分选技术。 概要说来,流式细胞术主要包括了样品的液流技术、细胞的分选和计数技术,以及数据的采集和分析技术等。FCM目前发展的水平凝聚了半个世纪以来人们在这方面的心血和成果。 1934年,Moldavan1首次提出了使悬浮的单个血红细胞等流过玻璃毛细管,在亮视野下用显微镜进行计数,并用光电记录装置计测的设想,在此之前,人们还习惯于测量静止的细胞,因为要使单个细胞顺次流过狭窄管道容易造成较大的细胞和细胞团块的淤阻。1953年Crosland -Taylor根据雷诺对牛顿流体在圆形管中流动规律的研究认识到:管中轴线流过的鞘液流速越快,载物通过的能力越强,并具有较强的流体动力聚集作用。于是设计了一个流动室,使待分析的细胞悬浮液都集聚在圆管轴线附近流过,外层包围着鞘液;细胞悬浮液和鞘液都在作层液。这就奠定了现代流式细胞术中的液流技术基础。 1956年,Coulter在多年研究的基础上利用Coulter效应生产了Coulter 计数器。其基本原理是:使细胞通过一个小孔,只在细胞与悬浮的介质之间存在着导电性上的差异,便会影响小孔道的电阻特性,从而形成电脉冲信号,测量电脉冲的强度和个数则可获得有关细胞大小和数目方面的信息。1967年Holm等设计了通过汞弧光灯激发荧光染色的细胞,再由光电检测设备计数的装置。1973年Steinkamp设计了一种利用激光激发双色荧光色素标记的细胞,既能分析计数,又能进行细胞分选的装置。这样就基本完成了现代FCM计数技术的主要历程。 现代的FCM数据采集和分析技术是从组织化学发源的,其开拓者是Kamentsky。1965年,Kamentsky在组织化学的基础上提出了两个新设想:(1)细胞的组分是可以用光光度学来定量测定的,即分光光度术可以定量地获得有关细胞组织化学的重要信息。(2)细胞的不同组分可以同时进行多参数测量,从而可以对细胞进行分类。换句话说,对同一细胞可以同时获得有关不同组分的多方面信息,用作鉴别细胞的依据。Kamentsky不仅思路敏捷,而且能身体力行。他是第一个把计算机接口接到仪器上并记录分析了多参数数据的人,也是第一个采用了二维直方图来显示和分析多参数的人。 流式细胞术在细胞化学中的应用的先驱者是Van Dilla和美国的Los Alamos小组。他们在1967年研制出流液束、照明光轴、检测系统光轴三者相互正交的流式细胞计的基础上,首次用荧光Feulgen反应对DNA染色显示出DNA的活性与荧光之间存在着线性关系,并在DNA的直方图上清楚地显示出细胞周期的各个时相。Gohde 和Dittrich接着把这项技术推向实用,他们用流式细胞术测定细胞周期借以研究细胞药代动力学问题。FCM用于免疫组织化学中的关键是对细胞进行免疫荧光染色,其它和在细胞化学的应用并没有多大差异。 近20年来,国内外在FCM上都做了不少的研究和应用工作,也取得了不少成果。特别是随着仪器和方法和日臻完善,人们越来越致力于样品制备、细胞标记、软件开发等方面的工作以扩大FCM的应用领域和使用效果。 二、流式细胞计的基本结构和工作原理 流式细胞计是对细胞进行自动分析和分选的装置。它可以快速测量、存贮、显示悬浮在

BD流式细胞仪工作原理

BD流式细胞仪工作原理 流式细胞仪的工作原理是:将待测细胞经特异性荧光染料染色后放入样品管中,在气体的压力下进入充满鞘液的流动室。在鞘液的约束下细胞排成单列由流动室的喷嘴喷出,形成细胞柱。 流式细胞仪通常以激光作为发光源。经过聚焦整形后的光束,垂直照射在样品流上,被荧光染色的细胞在激光束的照射下,产生散射光和激发荧光。 这两种信号同时被前向光电二极管和90°方向的光电倍增管接收。光散射信号在前向小角度进行检测,这种信号基本上反映了细胞体积的大小;荧光信号的接受方向与激光束垂直,经过一系列双色性反射镜和带通滤光片的分离,形成多个不同波长的荧光信号。 这些荧光信号的强度代表了所测细胞膜表面抗原的强度或其核内物质的浓度,经光电倍增管接收后可转换为电信号,再通过模/数转换器,将连续的电信号转换为可被计算机识别的数字信号。 计算机把所测量到的各种信号进行计算机处理,将分析结果显示在计算机屏幕上,也可以打印出来,还可以数据文件的形式存储在硬盘上以备日后的查询或进一步分析。 检测数据的显示视测量参数的不同由多种形式可供选择。单参数数据以直方图的形式表达,其X轴为测量强度,Y轴为细胞数目。 一般来说,流式细胞仪坐标轴的分辨率有512或1024通道数,这视其模数转换器的分辨率而定。对于双参数或多参数数据,既可以单独显示每个参数的直方图,也可以选择二维的三点图、等高线图、灰度图或三维立体视图。 细胞的分选是通过分离含有单细胞的液滴而实现的。在流动室的喷口上配有一个超高频电晶体,充电后振动,使喷出的液流断裂为均匀的液滴,待测定细胞就分散在这些液滴之中。 将这些液滴充以正负不同的电荷,当液滴流经带有几千伏特的偏转板时,在高压电场的作用下偏转,落入各自的收集容器中,不予充电的液滴落入中间的废液容器,从而实现细胞的分离。对分选出的细胞可以进行培养或其它处理,做更深的研究。 美国BD C6型流式细胞仪 首先C6流式细胞仪能避免操作新手的一个容易犯的错误;--;调整电压,同步化

流式细胞仪理论

流式细胞仪入门 ----- 秦华 译

目录 前言 第1章综述 第2章液流系统 第3章散射光信号及荧光信号 3.1 散射光信号 3.2 荧光信号 第4章光电系统 4.1 光平台 4.2 光学滤片 4.3 信号探测器 4.4 阀值 第5章数据分析 5.1 数据采集及显示 5.2 设门 5.3 细胞亚群的数据分析 5.4 流式细胞仪其它应用的数据分析第6章分选 6.1 分选 第7章激光器及光路校正 7.1 激光器的工作原理 7.2 光路校正 第8章习题答案

第一章综述 流式细胞术是一项快速检测分析单个粒子多物理特性的高技术,通常指细胞通过激光束时在液流中的特性,即粒子的大小,密度或是内部结构,以及相对的荧光强度。通过光电系统记录细胞的散射光信号和荧光信号可得知细胞特性。 流式细胞仪主要由三部分组成:流动室和液流系统;光路系统以及电系统。其作用如下: z液流系统:依次传送待测样本中的细胞到激光照射区。 z光路系统:细胞由激光激发,通过光学滤片产生光信号,并传送到相应的探测器。 z电系统:把光信号转换为电信号。对于有分选装置的仪器,电系统可初始化分选条件。 在流式细胞仪中,细胞被传送到液流中的激光照射区。任何存在于悬液中的直径为0.2-150微米的粒子或细胞都适用于流式分析。在实际工作中,用实体组织进行流式细胞分析往往是不可能的,分析之前必须对其进行分解。被液滴包绕的粒子称为细胞液柱,当粒子经过激光照射区时,通过激光激发产生散射光。含有荧光的粒子就会表现出其荧光特性。散射光和荧光由光路系统(相应的透镜,滤片和探测器)收集。分光器和滤光片引导散射光和荧光至相应的探测器,把光信号转换为电信号。 单个粒子通过其表现出的光散射和荧光属性,通过列表模式(List mode)完成数据采集,并对样本中的细胞亚群进行分析。

流式细胞仪原理及操作步骤

流式细胞仪原理及操作步骤 流式细胞仪(FCM)是八十年代集单克隆抗体、荧光化学、激光、计算机等高技术发展起来的一种先进仪器,已广泛应用于免疫学、生物化学、生物学、肿瘤学以及血液学等方面的研究和临床常规工作。其中检测人白细胞表面标志可对白血病、淋巴瘤作用迅速正确的诊断,对淋巴细胞群和亚群进行精确分类,还能分离纯化某一群或亚群细胞。活细胞免疫荧光技术是用于FCM检测的标本准备,染色后也能在荧光显微镜下进行观察,在某些实验条件下,活细胞免疫荧光染色后的特异性和敏感性要优于滴片固定的常规间接免疫荧光的 结果。 (一)原理 活细胞表面保留有较完整的抗原或受体,先用特异性鼠源性单克隆抗体与细胞表面相应抗原结合,再用荧光标记的第二抗体结合,根据所测定的荧光强度和阳性百分率即可知相应抗原的密度和分布。 (二)操作步骤 制备活性高的细胞悬液(培养细胞系、外周血单个核细胞、 胸腺细胞、脾细胞等均可用于本法) ↓ 用10%FCS RPMI1640调整细胞浓度为 5×106~1×107/ml ↓ 取40μl细胞悬液加入预先有特异性McAb(5~50μl) 的小玻璃管或塑料离心管,再加50μl 1∶20(用DPBS 稀释)灭活正常兔血清 ↓4℃30min 用洗涤液洗涤2次,每次加洗涤液2ml左右 1000rpm×5min ↓ 弃上清,加入50μl工作浓度的羊抗鼠 (或兔抗鼠)荧光标记物,充分振摇 ↓4℃30min 用洗涤液洗涤2次,每次加液2ml左右 1000rpm×5min ↓ 加适量固定液(如为FCM制备标本,一般加入 1ml固定液,如制片后在荧光显微镜下观察, 视细胞浓度加入100~500μl固定液) ↓ FCM检测或制片后荧光显微镜下观察 (标本在试管中可保存5~7天) (三)试剂和器材 1.各种特异性单克隆抗体。 2.荧光标记的羊抗鼠或兔抗鼠第二抗体,灭活正常兔血清。 3.10%FCS RPMI1640, DPBS、洗涤液、固定液(见附录)。 4.玻璃管、塑料管、离心机、荧光显微镜等。

相关主题
文本预览
相关文档 最新文档