当前位置:文档之家› 多线程技术在数据通信中的应用

多线程技术在数据通信中的应用

多线程技术在数据通信中的应用

多线程技术在数据通信中的应用

发表时间:2016-12-14T09:50:36.467Z 来源:《基层建设》2016年22期作者:黄华[导读] 摘要:随着信息科学技术的突飞猛进,人们社会已经进入“信息化时代”,大量先进的信息科学技术被人们广泛地应用到各行各业中,并转化为先进的生产力。

身份证号:45032519860724**** 广西南宁 530000

摘要:随着信息科学技术的突飞猛进,人们社会已经进入“信息化时代”,大量先进的信息科学技术被人们广泛地应用到各行各业中,并转化为先进的生产力。尤其,数据通信中多线程技术的应用既能进一步提升数据通信的应用效果,又能很好的满足人类对数据通信的需求。文章介绍了多线程技术相关知识,探讨了多线程技术在数据通信中的实际应用,希望对数据通信有所帮助。

关键词:多线程技术;数据通信;应用

一、绪论

一般情况下,相关技术人员在设计数据通信软件系统的过程当中,它的硬件设施绝大部分均需要与远程设备进行通信处理,而这种通信处理重点通过通信信道自一端往另外一端发出指令进而实现数据信息的有效传输。值得注意的是,这些数据信息在传输的过程当中需要一定时间的延迟。所以,技术人员在设计数据通信软件系统的过程当中,需在整个通信软件系统内部设计出一个循环系统,尽可能地克服延时现象,进而确保整个通信软件系统的正常、高效运转。多线程技术在数据通信中的应用正好能有效的解决这些难题,能够有效的提升数据通信的安全性与高效性。

二、多线程技术及适用场合

多线程技术的实质为在整个通信系统程序当中具有三个或三个以上的线程来共同负责用户信息的输入。多线程技术在数据通信的实际应用当中非常重要,尤其需要特别注意多线程技术的适用场合,不可盲目,为此,需要在设计多线程技术模型的过程当中,重点考虑下边三个问题:一是必需有一个能够等候用户输入信息的主循环程序;二是必需有一个能够为整个通信系统提供用户输入信息处理的模块;三是必需有一条规范的保证数据通信运行正常的机制,以确保用户在数据信息的输入过程当中,通过数据通信系统内部的主循环程序确保工作的正常使用与高效运转。

为此,在数据通信系统正常运转的过程当中,倘若处理的数据信息程序较为繁杂,则可应用多线程技术来实现繁杂数据通信的高效处理,尤其能够同时处理用户输入的大量数据信息,极大的提高了处理的效率,也大大的缩短了用户输入数据信息的延迟时间。此外,多线程技术应用在数据通信过程当中,如果一个用户在输入信息的过程中自身并没有一个相应的模块,那么该系统也会通过整个系统的自动检索为用户提供其他用户相似的处理方式,通过数据通信系统最为关键的主程序循环系统进行全面的调度,帮助用户实现数据信息处理的优先性。

三、数据通信与多线程技术系统

通常情况下,在“OSI开放系统互连”栈式结构中具有一组协议,该组协议中物理层处于最低层,其主要承担数据的传输。而该组协议中的应用层为顶层,其功能主要是负责与用户的对接工作。例如,在一台电子计算机中,低层的物理层承担着将一端的数据信息传送到另外一端的链条上,从而确保数据信息能够从一端传输到另外一端的对等上。当数据信息传送完成以后,低层的物理层则处在待命状态,等待其他对等面的数据信息的传输。需要注意的是,低层的物理层并不会由于正在运行指令而而拒绝另外一个指令。为此,低层物理层的运转正是与多线程技术相吻合的。

四、多线程技术在数据通信中的应用

(一)多线程技术应用于数据通信的编程要素。

在数据通信系统当中应用多线程技术进行编程设计,必须熟练、准确掌握多线程技术有关技术要素:一是主循环。主循环也被称为主事件循环,其主要负责传送与接收事件,与此同时,主循环还承担着调度功能。二是向主循环通知事件,也就是为主循环产生事件模块。三是主事件循环通知它所发生的事件,也就是接收通知模块,接收通知模块也被人们叫做数据处理器。四是使主事件循环能够知道所有它需要监控的事件的机制。为此,每一个Eventhandler则能够及时通知主事件循环其需哪些事件。

(二)多线程技术应用于数据通信的编程设计

多线程技术在数据通信中的有效运用主要是通过编程设计去实现,具体的设计主要包括以下两个方面:

1.设计框。设计框包括主循环的编程设计、事件处理程序的编程设计以及事件处理程序子类的编程设计等方面。

2.主要操作。多线程技术应用于数据通信的主要操作程序如下表所示:

以上操作程序根据国际有关标准执行,不仅提升数据通信系统的准确性,而且保证了数据通信的安全性,与此同时,还大大的降低了数据通信系统维护的难度,操作性非常强,极大的提高了工作效率。

五、小结

在管理数据通信系统过程当中,为了进一步提高网络管理成效,保证其正常、高效的运转,尽量克服延时现象,人们可以应用多线程技术进而有效的确保数据通信的正常、高效运行。尤其,在数据通信中应用多线程技术,需要了解多线程技术及适用场合,并且熟练掌握多线程技术应用于数据通信的编程要素、编程设计等,从而有效的解决编程设计在数据通信实际应用过程中存在的有关问题。参考文献

[1]费翔林.多线程技术的研究与应用[J].计算机研究与发展.2000(04)

[2]周兴铭.多线程技术的现状与前景展望[J].计算机工程与科学.2009(08)

[3]刘爽.基于TCP/IP协议和多线程的通信软件的设计与实现[J].计算机工程与设计.2010(04)

[4]伍光胜.多线程技术及其应用的研究[J].计算机应用研究.2010(01)

多线程编程的详细说明完整版

VB .NET多线程编程的详细说明 作者:陶刚整理:https://www.doczj.com/doc/0e10879734.html, 更新时间:2011-4-1 介绍 传统的Visual Basic开发人员已经建立了同步应用程序,在这些程序中事务按顺序执行。尽管由于多个事务多多少少地同时运行使多线程应用程序效率更高,但是使用先前版本的Visual Basic很难建立这类程序。 多线程程序是可行的,因为操作系统是多任务的,它有模拟同一时刻运行多个应用程序的能力。尽管多数个人计算机只有一个处理器,但是现在的操作系统还是通过在多个执行代码片断之间划分处理器时间提供了多任务。线程可能是整个应用程序,但通常是应用程序可以单独运行的一个部分。操作系统根据线程的优先级和离最近运行的时间长短给每一个线程分配处理时间。多线程对于时间密集型事务(例如文件输入输出)应用程序的性能有很大的提高。 但是也有必须细心的地方。尽管多线程能提高性能,但是每个线程还是需要用附加的内存来建立和处理器时间来运行,建立太多的线程可能降低应用程序的性能。当设计多线程应用程序时,应该比较性能与开销。 多任务成为操作系统的一部分已经很久了。但是直到最近Visual Basic程序员才能使用无文档记录特性(undocumented)或者间接使用COM组件或者操作系统的异步部分执行多线程事务。.NET框架组件为开发多线程应用程序,在System.Threading名字空间中提供了全面的支持。 本文讨论多线程的好处以及怎样使用Visual Basic .NET开发多线程应用程序。尽管Visual Basic .NET和.NET框架组件使开发多线程应用程序更容易,但是本文作了调整使其适合高级读者和希望从早期Visual Basic转移到Visual Basic .NET的开发人员。 多线程处理的优点 尽管同步应用程序易于开发,但是它们的性能通常比多线程应用程序低,因为一个新的事务必须等待前面的事务完成后才能开始。如果完成某个同步事务的时间比预想的要长,应用程序可能没有响应。多线程处理可以同时运行多个过程。例如,字处理程序能够在继续操作文档的同时执行拼写检查事务。因为多线程应用程序把程序分解为独立的事务,它们能通过下面的途径充分提高性能: l 多线程技术可以使程序更容易响应,因为在其它工作继续时用户界面可以保持激活。 l 当前不忙的事务可以把处理器时间让给其它事务。 l 花费大量处理时间的事务可以周期性的把时间让给其它的事务。 l 事务可以在任何时候停止。 l 可以通过把单独事务的优先级调高或调低来优化性能。 明确地建立多线程应用程序的决定依赖于几个因素。多线程最适合下面的情况:

第二章《数据通信基础》单元测验

数据通信单元测验 (1)关于信道,以下哪一项描述是错误的()。 A.信道可以由单段线路构成 B.信道可以包含信号再生设备 C.信道可以由多段不同类型的线路构成 D.构成同一信道的多段线路可以有不同的传输速率√ 解析: 同一信道的多段线路只能传输相同速率的比特流。 (2)以下哪一项是数字通信的优势()。 A.物理链路带宽要求低 B.无中继传输距离远 C.信号容易再生√ D.信号衰减小 解析: 信号再生是保障数字信号高质量远距离传播的原因。 (3)关于模拟信号,以下哪一项是错误的()。 A.信号幅度是连续值 B.传输模拟信号的信道比传输数字信号的信道有着更高的带宽要求。√ C.周期性模拟信号由一组不同频率的谐波合成 D.经过信道传播的模拟信号存在失真的现象 解析: 模拟信号的带宽不一定大于数字信号的带宽 (4)对于编码,以下哪一项是错误的()。 A.多级幅度使一个码元可以表示多位二进制位 B.编码是用数字信号表示二进制位流的过程 C.波特率取决于信道带宽 D.编码是实现高传输速率的前提√ 解析: 对于相同带宽的信道,数字通信不一定比模拟通信有更高的传输速率。 (5)对于调制,以下哪一项是错误的()。 A.一个码元可以表示多位二进制位 B.调制是用模拟信号表示二进制位流的过程 C.调制后的信号是单一频率的载波信号√ D.可以通过同时改变载波信号的幅度和相位使调制后的信号有多种不同状态

解析: 调制后的模拟信号是以载波信号频率为中心频率的带通信号,带通信号是指一定频率范围内的信号。 (6)如果数据传输速率为4800bps,采用16种不同相位的移相键控调制技术,则波特率为()。 A.4800 B.3600 C.2400 D.1200 √ 解析: 波特率=数据传输速率/码元表示的二进制数=4800/log2 16=1200 (7)如果某个无噪声信道的带宽是4000Hz,采用16种不同相位的移相键控调制技术,则最大码元传输速率为()。 A.8k √ B.16k C.32k D.48k 解析: 最大码元传输速率(调制速率)=2×W,W是带宽,与信号状态数无关。 (8)检错和重传适合的传输环境是()。 A.小概率、随机传输错误√ B.小概率、单位传输错误 C.大概率、单位传输错误 D.大概率、随机传输错误 解析: 单位传输错误适合纠错,大概率传输错误是检错重传解决不了的。 (9)序号的主要作用是()。 A.标识发送顺序 B.避免接收端重复接收分组√ C.分组的唯一标识符 D.避免发送端重复发送分组 解析: 序号的主要作用是避免接收端重复接收分组。 (10)以下哪一项是实现全双工通信必须的()。

多核与多线程技术的区别到底在哪里

多核与多线程技术的区别到底在哪里? 【导读】:毫无疑问的,“多核”、“多线程”此二词已快成为当今处理器架构设计中的两大显学,如同历史战国时代以“儒”、“墨”两大派的显学,只不过当年两大治世思想学派是争得你死我亡,而多核、多线程则是相互兼容并蓄,今日几乎任何处理器都朝同时具有多核多线程的路线发展迈进。毫无疑问的,“多核”、“多线程”此二词已快成为当今处理器架构设计中的两大显学,如同历史战国时代以“儒”、“墨”两大派的显学,只不过当年两大治世思想学派是争得你死我亡,而多核、多线程则是相互兼容并蓄,今日几乎任何处理器都朝同时具有多核多线程的路线发展迈进。 虽然两词到处可见,但可有人知此二者的实际差异?在执行设计时又是以何者为重?到底是该多核优先还是多线程提前?关于此似乎大家都想进一步了解,本文以下试图对此进行个中差异的解说,并尽可能在不涉及实际复杂细节的情形下,让各位对两者的机制观念与差别性有所理解。 行程早于线程 若依据信息技术的发展历程,在软件程序执行时的再细分、再切割的小型化单位上,先是有行程(Process),之后才有线程(Thread),线程的单位比行程更小,一个行程内可以有多个线程,在一个行程下的各线程,都是共享同一个行程所建立的内存寻址资源及内存管理机制,包括执行权阶、内存空间、堆栈位置等,除此之外各个线程自身仅拥有少许因为执行之需的变量自属性,其余都依据与遵行行程所设立的规定。 相对的,程序与程序之间所用的就是不同的内存设定,包括分页、分段等起始地址的不同,执行权阶的不同,堆栈深度的不同等,一颗处理器若执行了A行程后要改去执行B行程,对此必须进行内存管理组态的搬迁、变更,而这个搬迁若是在处理器内还好,若是在高速缓存甚至是系统主存储器时,此种切换、转移程序对执行效能的损伤就非常大,因为完成搬迁、切换程序的相同时间,处理器早就可以执行数十到上千个指令。 两种路线的加速思维 所以,想避免此种切换的效率损耗,可以从两种角度去思考,第一种思考就是扩大到整体运算系统的层面来解决,在一部计算机内设计、配置更多颗的处理器,然后由同一个操作系统同时掌控及管理多颗处理器,并将要执行的程序的各个程序,一个程序喂(也称:发派)给一颗处理器去执行,如此多颗同时执行,每颗处理器执行一个程序,如此就可以加快整体的执行效率。 当然!这种加速方式必须有一个先决条件,即是操作系统在编译时就必须能管控、发挥及运用多行程技术,倘若以单行程的系统组态来编译,那么操作系统就无法管控服务器内一颗以上的处理器,如此就不用去谈论由操作系统负责让应用程序的程序进行同时的多颗同时性的执行派送。 即便操作系统支持多程序,而应用程序若依旧只支持单程序,那情形一样是白搭,操作

多线程技术在Android手机开发中的运用

龙源期刊网 https://www.doczj.com/doc/0e10879734.html, 多线程技术在Android手机开发中的运用 作者:谢光刘志惠 来源:《电子技术与软件工程》2017年第24期 摘要 在Android手机开发过程中,一般情况下程序是通过一个线程进行工作的,因此当一个任务耗费过长时间,就会造成主程序无响应并对程序运行的顺畅程度造成影响的问题。基于此,本文通过对多线程组成进行介绍,在Android中多线程技术模块与具体实现方式两方面对多线程技术在安卓手机开发中的运用进行探讨,以为关注此问题的人们提供参考。 【关键词】多线程技术 Android手机进程线程 安卓系统自2007年由谷歌公司开发后,得到了巨大的发展。截至2017年3月,其市场占有率已经达到86.4%,如三星、索尼爱立信、小米、OPPO等手机生产厂商都在使用安卓系统。该系统开源免费、执行效率高,其多线程技术开发应用的研究,对提高手机硬件的利用效率,给用户带来良好试用体验,提高手机厂商的企业竞争力有重要作用。 1 多线程介绍 1.1 进程和线程介绍 一般来说,在一定时间内实现多个程序任务执行的程序都会用到“进程”这一概念。进程,即:一个拥有自身独立的内存空间、系统资源的执行程序,其特征为实现内部状态和内部数据的相互独立。线程与进程相似,线程也是一段有一定功能代码组成的流控制。线程的特征为:同类的多个线程可以对内存空间与系统资源进行共享。因此在对资源的占用方面,可以相互切换的线程比进程小很多。一个进程中可以包含诸多线程,此外,主线程对子线程有控制作用,可对子线程启动、停止等动作进行管理。而本文要重点介绍的多线程,指的是单个程序中一起运行的不同线程,不同线程可以执行不一样的任务。其特征是一个程序的多行语句可在某时间同时执行。 1.2 多线程程序消息处理原理 当人们启动一个程序时,系统将建立main线程,主要管理如:activity等应用组件,并对UI相关的事件进行处理,比如用户想要按键或使用屏幕进行绘图,线程会对以上事件进行处理,这是UI线程。安卓的线程模型,所有组件均在main线程中,因此用户在程序中下达下载文件、使用数据库等具有高耗时特征的操作时,就会造成UI线程的运行不畅,并出现程序无法响应的问题。这就要求程序员使用多线程技术,在进行安卓多线程编写时,技术人员应注意以下两点:

最新第二章-数据通信基础-习题与答案

第二章数据通信基础习题与答案 一、判断题 1.(√)计算机中的信息都是用数字形式来表示的。 2.(√)信道容量是指信道传输信息的最大能力,通常用信息速率来表示,单位时间内传送的比特数越多,表示信道容量越大。 3.(×)波特率是指信息传输的错误率,是数据通信系统在正常工作情况下,衡量传输可靠性的指标。 4.(×)在单信道总线型网络中,带宽=信道容量×传输效率。 5.(√)在共享信道型的局域网中,信号的传播延迟或时延的大小与采用哪种网络技术有很大关系。 6.(√)DTE是指用于处理用户数据的设备,是数据通信系统的信源和住宿。 7.(√)DCE是数据通信设备,是介于数据终端设备与传输介质之间的设备。 8.(×)Modem属于DTE。 9.(√)在单工通信的两个节点中,其中一端只能作为发送端发送数据不能接收数据,另一端只能接收数据不能发送数据。 10.(√)在半双工通信的双方可以交替地发送和接收信息,不能同时发送和接收,只需要一条传输线路即可。 11.(×)在全双工通信的双方可以同时进行信息的发送与接收,只需要一条传输线路即可。 12.(√)在局域网中,主要采用的是基带数据传输方式。 13.(√)信道带宽的单位是赫兹。 14.(×)数据通信系统主要技术指标中的信道容量=吞吐量×传输效率。 15.(×)比特率和波特率是两个相同的概念。 16.(√)基带传输与宽带传输的主要区别在于数据传输速率不同。 17.(√)分组交换是以长度受到限制的报文分组为单位进行传输交换的。 18.(√)电路交换有建立连接、传输数据和拆除连接三个通信过程。 19.(√)分组交换比电路交换线路利用率高,但实时性差。 20.(√)ATM(即异步传输模式)是一种广域网主干线常采用的技术。 21.(√)数据传输率是指单位时间内信道内传输的信息量,即比特率。 22.(×)使用调制解调器进行网络数据传输称为基带传输。 23.(√)信元交换适宜于对带宽要求高和对服务质量要求高的应用。 24.(×)波特率是一种数字信号的传输速率。 25.(×)分组交换属于“存储一转发”交换方式,它是以报文为单位进行传输转换的。 26.(×)奇偶检验是一种复杂的检错方法,有很强的检错能力。 二、填空题 1.数据一般分(模拟)数据和(数字)数据两种类型。 2.在数字传输中,(码元)是构成信息编码的最小单位。 3.(吞吐量)是单位时间内整个网络能够处理的信息总量,单位是字节/秒或位/秒。 4.数据通信系统是由(DTE )、(DCE )和通信线路等组成。 5.根据数据信息在传输线上的传送方向,数据通信方式有(单工通信)、(半双工通信)和(全双工通信)三种。 6.数据传输方式有(基带传输)、(频带传输)和(宽带传输)三种。 7.数据交换技术有(电路交换)、(报文交换)、(分组交换)和(信元交换)四种。 8.一个完整的信元长度为(53 )B,其中(5 )B是信元头,(48 )B为信元数据。

第5章-多线程-补充案例

第五章补充案例 案例5-1继承Thread类创建多线程 一、案例描述 1、考核知识点 编号:00105002 名称:继承Thread类创建多线程 2、练习目标 ?掌握如何通过继承Thread类实现多线程的创建。 ?掌握Thread类中run()方法和start()方法的使用。 3、需求分析 在程序开发中,会遇到一个功能需要多个线程同时执行才能完成的情况。这时,可以通过继承线程类Thread,并重写Thread类中的run()方法来实现。为了让初学者熟悉如何创建多线程,在案例中将通过继承Thread类方式创建线程,并实现多线程分别打印0~99的数字的功能。 4、设计思路(实现原理) 1)自定义一个类Demo,使其继承Thread类。 2)在Demo类中重写run()方法,在run()方法内编写一个for循环,循环体内打印:“Demo:” +当前循环次数。 3)编写测试类Example01,在Example01类的main()方法中,创建一个Demo对象,并执 行其start()方法,接着编写一个for循环,循环体内打印:“main:”+当前循环次数。

二、案例实现 class Demo extends Thread { public void run() { for (int x = 0; x < 100; x++) { System.out.println("Demo:"+x); } } } public class Example01{ public static void main(String[] args) { Demo d = new Demo(); d.start(); for(int x=0; x<100; x++){ System.out.println("main:"+x); } } } 运行结果如图5-1所示。 图5-1运行结果 三、案例总结 1、通过继承Thread类,并重写Thread类中的run()方法可以实现多线程。 2、Thread类中,提供的start()方法用于启动新线程,线程启动后,系统会自动调用run()方法。 3、main()方法中有一条主线程在运行。

多线程编程的原则及要点

2.4多线程编程的原则及要点: 随着多核CPU的出世,多核编程方面的问题将摆上了程序员的日程,有许多老的程序员以为早就有多CPU的机器,业界在多CPU机器上的编程已经积累了很多经验,多核CPU上的编程应该差不多,只要借鉴以前的多任务编程、并行编程和并行算法方面的经验就足够了。 但是,多核机器和以前的多CPU机器有很大的不同,以前的多CPU机器都是用在特定领域,比如服务器,或者一些可以进行大型并行计算的领域,这些领域很容易发挥出多CPU的优势,而现在多核机器则是应用到普通用户的各个层面,特别是客户端机器要使用多核CPU,而很多客户端软件要想发挥出多核的并行优势恐怕没有服务器和可以进行大型并行计算的特定领域简单。 多核CPU中,要很好地发挥出多个CPU的性能的话,必须保证分配到各个CPU上的任务有一个很好的负载平衡。否则一些CPU在运行,另外一些CPU处于空闲,无法发挥出多核CPU 的优势来。 要实现一个好的负载平衡通常有两种方案,一种是静态负载平衡,另外一种是动态负载平衡。 1、静态负载平衡 静态负载平衡中,需要人工将程序分割成多个可并行执行的部分,并且要保证分割成的各个部分能够均衡地分布到各个CPU上运行,也就是说工作量要在多个任务间进行均匀的分配,使得达到高的加速系数。 2、动态负载平衡 动态负载平衡是在程序的运行过程中来进行任务的分配达到负载平衡的目的。实际情况中存在许多不能由静态负载平衡解决的问题,比如一个大的循环中,循环的次数是由外部输入的,事先并不知道循环的次数,此时采用静态负载平衡划分策略就很难实现负载平衡。 动态负载平衡中对任务的调度一般是由系统来实现的,程序员通常只能选择动态平衡的调度策略,不能修改调度策略,由于实际任务中存在很多的不确定因素,调度算法无法做得很优,因此动态负载平衡有时可能达不到既定的负载平衡要求。 3、负载平衡的难题在那里? 负载平衡的难题并不在于负载平衡的程度要达到多少,因为即使在各个CPU上分配的任务执行时间存在一些差距,但是随着CPU核数的增多总能让总的执行时间下降,从而使加速系数随CPU核数的增加而增加。 负载平衡的困难之处在于程序中的可并行执行块很多要靠程序员来划分,当然CPU核数较少时,比如双核或4核,这种划分并不是很困难。但随着核数的增加,划分的粒度将变得越来越细,到了16核以上时,估计程序员要为如何划分任务而抓狂。比如一段顺序执行的代码,放到128核的CPU上运行,要手工划分成128 个任务,其划分的难度可想而知。

实验五 多线程程序设计(汽院含答案)

实验五多线程程序设计 实验目的 1.掌握Java语言中多线程编程的基本方法 2.掌握Runnable接口实现多线程的方法 3.掌握Thread类实现多线程的用法 实验导读 1.进程和线程的概念 进程是程序一次动态执行的过程,对应从代码加载、执行到执行结束这样一个完整的过程,也是进程自身从产生、发展到消亡的过程。 线程是比进程更小的执行单元,一个进程在执行过程中,可以产生多个线程。每个线程都有自身的产生、执行和消亡的过程。 2.线程的状态与生命周期 ●新建:当一个Thread类或其子类的对象被声明并创建时,新生的线程对象处于新建状态。此时它 已经有了相应的内存空间和其他资源。 ●运行:线程创建之后就具备了运行的条件,一旦轮到它来享用CPU资源时,即JVM将CPU使用权 切换给该线程时,此线程的就可以脱离创建它的主线程独立开始自己的生命周期了(即run方法执行的过程)。 ●中断:有4种原因的中断,CPU资源从当前线程切换给其他线程、执行了sleep(int millsecond)方法、 执行了wait()方法、进入阻塞状态。 ●死亡:run方法结束。 3.线程的创建 在Java语言中,与线程支持密切相关的是https://www.doczj.com/doc/0e10879734.html,ng.Thread类和https://www.doczj.com/doc/0e10879734.html,ng.Runnable接口。Runnable接口定义很简单,只有一个run方法。任何一个类如果希望自己的实例能够以线程的形式执行,都可以来实现Runnable接口。 继承Thread类和实现Runnable接口,都可以用来创建Thread对象,效果上并没有什么不同。继承Thread 类的方法很明显的缺点就是这个类不能再继承其他的类了,而实现Runnable接口不会有这个麻烦。 另外,在继承Thread类的代码中,this其实就是指当前正在运行的线程对象,如果使用实现Runnable 接口的方式,要得到当前正在执行的线程,需要使用Thread.currentThread()方法。 线程创建后仅仅是占有了内存资源,在JVM管理的线程中还没有这个线程,此线程必须调用start()方法(从父类继承的方法)通知JVM,这样JVM就会知道又有一个新一个线程排队等候切换了。 注意:多次启动一个线程,或者启动一个已经运行的线程对象是非法的,会抛出IllegalThreadStateException异常对象。 4.线程的优先级 同一时刻在等待队列中的线程会有很多个,它们各自任务的重要性有所不同。为了加以区分,使工作安排和资源分配时间更为合理,每个线程可以被赋予不同的优先级,让任务比较急的线程拥有更高的优先级,从而更快地进入执行状态。 Java中提供了10个等级的线程优先级,最低为Thread.MIN_PRIORITY=1,最高为

第2章数据通信基础

第2xx 数据通信基础练习 1.计算机网络中的通信网络是一个数据通信系统,计算机网络的工作原理和数据通信是紧密相关的。 2.数据是信息的表示形式是信息的物理表现。所有信息都要用某种形式的数据表尔和传播。 信息是数据表示的含义,是数据的逻辑抽象,它不会因数据的表示形式不同而改变。 3.数据通信主要研究二进制编码信息的通信过程。无论信息采用什么数据形式表示,在数据通信系统中都必须转化成二进制编码。 4.信号是在特定通信方式中数据的物理表现,它有具体的物理描述。 5.模拟信号是一个连续变化的物理量,数字信号是离散取值的物理量,例如表示二进制数据的1、0 信号。 6.数字信号的再生是指在信号传递过程中受到外界干扰而产生变形后,通过信号判决再恢复成原来的信号。 7.信道是通信系统中传输信号的通道,它包括通信线路和传输设备。根据信道使用的传输介质可以分成有线信道和无线信道。根据适合传输的信号类型可以分为模拟信道和数字信道。模拟信道用于传输模拟信号,如电话用户线路,数字信道用于直接传输数字信号,例如光纤线路。 8.信号带宽是信号中包含的频率范围。对于模拟信号,带宽计算方法为:信号带宽=信号最高频率- 信号最低频率 9.信道带宽是信道上允许传输电磁波的有效频率范围。模拟信道的带宽等于信道可以传输的信号频率上限和下限之差,单位是Hz信道的带宽不一定等 于传输介质允许的带宽。 10.数字信道的带宽一般用信道容量表示,它是信道的最大数据传输速 率,单位是比特/秒(b/.s)。例如,当前主流局域网中使用的5类双绞线,其信道带宽为100Mb/S,即最大数据传输速率为100Mb/ S。信道容量对信道传输介质的带宽有一定的依赖关系。

C++多线程编程入门及范例详解

多线程编程之一——问题提出 一、问题的提出 编写一个耗时的单线程程序: 新建一个基于对话框的应用程序SingleThread,在主对话框IDD_SINGLETHREAD_DIALOG 添加一个按钮,ID为IDC_SLEEP_SIX_SECOND,标题为“延时6秒”,添加按钮的响应函数,代码如下: 1.void CSingleThreadDlg::OnSleepSixSecond() 2.{ 3.Sleep(6000);//延时6秒 4.} 编译并运行应用程序,单击“延时6秒”按钮,你就会发现在这6秒期间程序就象“死机”一样,不在响应其它消息。为了更好地处理这种耗时的操作,我们有必要学习——多线程编程。 二、多线程概述 进程和线程都是操作系统的概念。进程是应用程序的执行实例,每个进程是由私有的虚拟地址空间、代码、数据和其它各种系统资源组成,进程在运行过程中创建的资源随着进程的终止而被销毁,所使用的系统资源在进程终止时被释放或关闭。 线程是进程内部的一个执行单元。系统创建好进程后,实际上就启动执行了该进程的主执行线程,主执行线程以函数地址形式,比如说main或WinMain函数,将程序的启动点提供给Windows 系统。主执行线程终止了,进程也就随之终止。 每一个进程至少有一个主执行线程,它无需由用户去主动创建,是由系统自动创建的。用户根据需要在应用程序中创建其它线程,多个线程并发地运行于同一个进程中。一个进程中的所有线程都在该进程的虚拟地址空间中,共同使用这些虚拟地址空间、全局变量和系统资源,所以线程间的通讯非常方便,多线程技术的应用也较为广泛。 多线程可以实现并行处理,避免了某项任务长时间占用CPU时间。要说明的一点是,目前大多数的计算机都是单处理器(CPU)的,为了运行所有这些线程,操作系统为每个独立线程安排一些CPU时间,操作系统以轮换方式向线程提供时间片,这就给人一种假象,好象这些线程都在同时运行。由此可见,如果两个非常活跃的线程为了抢夺对CPU的控制权,在线程切换时会消耗很多的CPU资源,反而会降低系统的性能。这一点在多线程编程时应该注意。 Win32SDK函数支持进行多线程的程序设计,并提供了操作系统原理中的各种同步、互斥和临界区等操作。Visual C++6.0中,使用MFC类库也实现了多线程的程序设计,使得多线程编程更加方便。 三、Win32API对多线程编程的支持 Win32提供了一系列的API函数来完成线程的创建、挂起、恢复、终结以及通信等工作。下面将选取其中的一些重要函数进行说明。

操作系统对多核处理器的支持方法

随着多核处理器的发展,对软件开发有非常大的影响,而且核心的瓶颈在软件上。软件开发在多核环境下的核心是多线程开发。这个多线程不仅代表了软件实现上多线程,要求在硬件上也采用多线程技术。可以说多核提供了可以大幅提升性能的机制,多核软件就是可以真正利用这一特点的策略。只有与多核硬件相适应的软件,才能真正地发挥多核的性能。多核对软件的要求包括对多核操作系统的要求和对应用软件的要求。 多核操作系统的关注点在于进程的分配和调度。进程的分配将进程分配到合理的物理核上,因为不同的核在共享性和历史运行情况都是不同的。有的物理核能够共享二级cache,而有的却是独立的。如果将有数据共享的进程分配给有共享二级cache的核上,将大大提升性能;反之,就有可能影响性能。进程调度会涉及到比较广泛的问题,比如负载均衡、实时性等。 面向多核体系结构的操作系统调度目前多核软件的一个热点,其中研究的热点主要有下面几方面:程序的并行研究;多进程的时间相关性研究;任务的分配与调度;缓存的错误共享;一致性访问研究;进程间通信;多处理器核内部资源竞争等等。这些探讨相互独立又相互依赖。考虑一个系统的性能时必须将其中的几点同时加以考虑,有时候对一些点的优化会造成另一些点的性能下降,需要用程序进行性能优化评测,所以合适的多核系统软件方案正在形成过程中。 任务的分配是多核时代提出的新概念。在单核时代,没有核的任务分配的问题,一共只有一个核的资源可被使用。而在多核体系下,有多个核可以被使用。如果系统中有几个进程需要分配,是将他们均匀地分配到各个处理器核,还是一起分配到一个处理器核,或是按照一定的算法进行分配。并且这个分配还受底层系统结构的影响,系统是SMP构架还是CMP构架,在CMP构架中会共享二级缓存的核的数量,这是影响分配算法的因子。任务分配结束后,需要考虑任务调度。对于不同的核,每个处理器核可以有自己独立的调度算法来执行不同的任务(实时任务或者交互性任务),也可以使用一致的调度算法。此外,还可以考虑一个进程上一个时间运行在一个核上,下一个时间片是选择继续运行在这个核上,还是进行线程迁移;怎样直接调度实时任务和普通任务;系统的核资源是否要进行负载均衡等等。任务调度是目前研究的热点之一。 在单核处理器中,常见的调度策略有先到先服务(FCFS),最短作业调度(SJF),优先级调度(Priority-scheduling algorithm),轮转法调度(round-robin RR),多级队列调度(multilevel queue-schedule algorithm)等。例如在Linux操作系统中对实时任务采取FCFS和RR两种调度,普通任务调度采取优先级调度。 对于多核处理器系统的调度,目前还没有明确的标准与规范。由于系统有多个处理器核可用,必须进行负载分配,有可能为每个处理器核提供单独的队列。在这种情况下,一个具有空队列的处理器就会空闲,而另一个处理器会很忙。所以如何处理好负载均衡问题是这种调度策略的关键问题所在。为了解决这种情况,可以考虑共同就绪队列,所有处理器公用一个就绪队列。但是这无疑对进程上下文切换、锁的转换增加了执行时间,降低了性能。另外一种想法就是选择一个处理器来为其他处理器调度,因而创建了主从结构。有的系统将主从结构作进一步扩

第二章数据通信基础-参考答案

第二章数据通信基础 一、填空题 1.单位时间内传输的二进制信息位数是指__数据传输___速率。 2.我们平时用的GSM手机采用的是___无线___通信。 3.在通信领域中,数据分为模拟数据与数字数据,电脑里的硬盘存储的数据属 于___数字数据。 4.数据包分为三部分:__地址信息______,数据和___校验码____。 5.发送方计算机将数据切分成协议能够处理的较小的部分,称为__分组__. 6.__光纤____更适于高速,高容量的数据传输,因为它衰减程度低,信号纯度高. 7.接收方计算机将数据包中的数据复制到____缓存_____中,以便进行重新组 装. 8.数据可分为_模拟数据_和_数字数据_两大类。 9.调制解调器在信源端是把_数字_信号转换成_模拟_信号,在另一端是把_模拟 _信号反转换成__数字_信号。 10.数字信号实现模拟传输时,数字信号变换成音频信号的过程称为__调制____; 音频信号变换成数字信号的过程称为__解调_____。 11.单位时间内传输的二进制信息位数是指__数据传输____速率,而单位时间内 传输的码元个数是指__调制___速率。 12.串行通信可以有_单工__、半双工和_全双工__三种方向性结构。 13.数字调制的三种基本形式为_幅移键控ask_、频移键控法fsk和_相移键控psk. 14.为了能利用廉价的电话公共交换网实现计算机之间的远程通信,必须将发送 端的__数字_信号变换成能在电话公共交换网上传输的_模拟_信号。 15._基带传输_是指在线路中直接传送数字信号的电脉冲的简单传输方式。 16.在数字信号脉冲编码方案中,全宽码又称为不归零码,包括_单极性全宽码_和_ 双极性全宽码_两种。 17.在算机通信与网络中,广泛采用的信号同步方式有_异步传输方式_和_同步传 输方式_两种。

多线程编程实例

编写Linux下的多线程程序,需要使用头文件pthread.h,连接时需要使用库libpthread.a。 函数pthread_create用来创建一个线程,它的原型为:extern int pthread_create __P ((pthread_t *__thread, __const pthread_attr_t *__attr, void *(*__start_routine) (void *), void *__arg)); 第一个参数为指向线程标识符的指针,第二个参数用来设置线程属性,第三个参数是线程运行函数的起始地址,最后一个参数是运行函数的参数。当创建线程成功时,函数返回0,若不为0则说明创建线程失败。 函数pthread_join用来等待一个线程的结束。函数原型为:extern int pthread_join __P ((pthread_t __th, void **__thread_return)); 第一个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。这个函数是一个线程阻塞的函数,调用它的函数将一直等待到被等待的线程结束为止,当函数返回时,被等待线程的资源被收回。 一个线程的结束有两种途径,一种是象我们上面的例子一样,函数结束了,调用它的线程也就结束了;另一种方式是通过函数pthread_exit来实现。它的函数原型为: extern void pthread_exit __P ((void *__retval)) __attribute__ ((__noreturn__));

最简单的线程程序: /* example.c*/ #include #include void thread(void) { int i; for(i=0;i<3;i++) printf("This is a pthread.\n"); } int main(void) { pthread_t id; int i,ret; ret=pthread_create(&id,NULL,(void *) thread,NULL); if(ret!=0){ printf ("Create pthread error!\n"); exit (1); } for(i=0;i<3;i++) printf("This is the main process.\n"); pthread_join(id,NULL); return (0); } 输出是什么样子?

基于多线程的端口扫描程序课程设计报告

滁州学院 课程设计报告 课程名称: 设计题目:基于多线程的端口扫描程序 院部:计算机与信息工程学院 专业:网络工程 组别:第六组 起止日期: 2012 年12月31日~2013 年1月6日指导教师: 计算机与信息工程学院二○一二年制

课程设计任务书 目录 1 需求分析. 0 1..1 网络安全 0 1.2 课程背景 0 1.3 扫描器 0 1.4 多线程扫描器介绍 (1) 错误! 未定义书签。

错误! 未定义书签。 错误! 未定义书签。 错误! 未定义书签。 1.5 端口扫描 (2) 2 概要设计. (3) 2.1 整体框架设计 (3) 2.2 流程图描述 (3) 3 详细设计. (3) 3.1 端口扫描线程启动 (3) 3.2 GUI 图形界面 (5) 3.3 按钮监听及异常处理 (6) 4 调试与操作说明. (8) 4.1 运行界面 (8) 4.2 扫描结果 (8) 4.3 错误提示 (8) 5 课程设计总结与体会. (8) 6 参考文献. (9) 7 致谢. (9) 8 附录. 0 1 需求分析 1..1 网络安全二十一世纪是信息化、网络化的世纪,信息是社会发展的重要资源。信息安全保障能力是一个国家综合国力、经济竞争实力和生存能力的重要组成部分,是世界各国在奋力攀登的制高点。网络安全是指网络系统的硬件、软件及其系统中的数据受到保护,不因偶然的或者恶意的原因而遭到破坏、更改、泄露,系统连续可靠正常地运行。网络安全包括技术领域和非技术领域两大部分: 非技术领域包括一些制度、政策、管理、安全意识、实体安全

等方面的内容; 技术领域包括隐患扫描、防火墙、入侵检测、访问控制、虚拟专用网、CA 认证、操作系统等方面的内容。这些技术的目标是保证信息的可控性、可用性、保密性、完整性、和不可抵赖性。端口扫描属于安全探测技术范畴,对应于网络攻击技术中的网络信息收集技术。 1.2 课程背景 随着Internet 的不断发展,信息技术已成为促进经济发展、社会进步的巨大推动力。端口扫描技术是网络安全扫描技术一个重要的网络安全技术。与防火墙、入侵检测系统互相配合,能够有效提高网络的安全性。安全扫描是安全技术领域中重要的一类。通过扫描能自动检测远端或本地主机系统信息,包括主机的基本信息(如计算机名、域名、组名、操作系统 型等)、服务信息、用户信息以及漏洞信息,它的重要性在于能够对网络进行安全评估,及时发现安全隐患,防患于未然。 网络的安全状况取决于网络中最薄弱的环节,任何疏忽都有可能引入不安全的因素,最有效的方法是定期对网络系统进行安全分析,及时发现并修正存在的脆弱,保证系统安全。 国外安全扫描技术的历史可以追溯到20 世纪90 年代,当时因特网刚刚起步,但是在过去的十年内,扫描技术飞速发展,迄今为止,其扫描技术已经非常完善,但是在全面性,隐蔽性和智能性上还有待提高。安全扫描从最初专门为UNIX 系统而编写的一些只有简单功能的小程序发展到现在,已经出现了可以运行多个操作系统平台上的,具有复杂功能的系统程序。 国内的扫描技术是在国外的扫描器基础上发展起来的。其中有一些专门从事安全技术的公司。这些公司的扫描器以硬件为主,其特点是执行速度快,不像软件一样受到安装主机系统的限制。 然而对于更多的基于主机的端口扫描而言,简单,实用,可靠才是它们的长处。 1.3 扫描器扫描器是一种自动检测远程或本地主机安全性弱点的程序,通过使用扫描器你可以不留痕迹的发现远程服务器的各种TCP端口的分配。这就能让我们间接的或直观的了解到远程主机所存在的安全问题。为了保证网络中计算机的安全性,必须采取主动策略, 快速、及时、准确、安全的检测出网络中计算机及防火墙开放的和未开放的端口。计算机端口扫描技术就是这种主动防御策略实现的重要技术手段。 扫描器采用模拟攻击的形式对目标可能存在的已知安全漏洞进行逐项检查。目标可以是工作站、服务器、交换机、数据库应用等各种对象。然后根据扫描结果向系统管理员提供周 密可靠的安全性分析报告,为提高网络安全整体水平产生重要依据。在网络安全体系的建设中,安全扫描工具花费低、效果好、见效快、与网络的运行相对对立、安装运行简单,可以大规模减少安全管理员的手工劳动,有利于保持全网安全政策的统一和稳定。 1.4 多线程扫描器介绍 在java 中,组件放置在窗体上的方式是完全基于代码的。组件放置在窗体上的方式通常不是通过绝对坐标控制,而是由“布局管理器”根据组件加入的顺序决定其位置。每个容器都有一个属于的自己布局管理器。使用不同的布局管理器,组件大小,位置和形状将大不相同。表格型布局管理器将容器划分成为一个多行多列的表格,表格的大小全部相同,是由其中最大的组件所决定。通过add 方法可以将组件一一放在每个表格

经典多线程的练习题

java中有几种方法可以实现一个线程(jdk5.0之前)?用什么关键字修饰同步方法? stop()和suspend()方法为何不推荐使用? 答:有两种实现方法,分别是继承Thread类与实现Runnable接口。 用synchronized关键字修饰同步方法,反对使用stop(),是因为它不安全。它会解除由线程获取的所有锁定,而且如果对象处于一种不连贯状态,那么其他线程能在那种状态下检查和修改它们。结果很难检查出真正的问题所在。 suspend()方法容易发生死锁。调用suspend()的时候,目标线程会停下来,但却仍然持有在这之前获得的锁定。此时,其他任何线程都不能访问锁定的资源,除非被"挂起"的线程恢复运行。对任何线程来说,如果它们想恢复目标线程,同时又试图使用任何一个锁定的资源,就会造成死锁。所以不应该使用suspend(),而应在自己的Thread类中置入一个标志, 指出线程应该活动还是挂起。若标志指出线程应该挂起,便用wait()命其进入等待状态。若标志指出线程应当恢复,则用一个notify()重新启动线程。 sl eep() 和wait() 有什么区别? 答:sleep是线程类(Thread)的方法,导致此线程暂停执行指定时间,给执行机会给其他线程,但是监控状态依然保持,到时后会自动恢复。调用sleep不会释放对象锁。 wait是Object类的方法,对此对象调用wait方法导致本线程放弃对象锁,进入等待此对象的等待锁定池,只有针对此对象发出notify方法(或notifyAll)后本线程才进入对象锁定池准备获得对象锁进入运行状态。 同步和异步有何异同,在什么情况下分别使用他们?举例说明。 答:如果数据将在线程间共享。例如正在写的数据以后可能被另一个线程读到,或者正在读的数据可能已经被另一个线程写过了,那么这些数据就是共享数据,必须进行同步存取。 当应用程序在对象上调用了一个需要花费很长时间来执行的方法,并且不希望让程序等待方法的返回时,就应该使用异步编程,在很多情况下采用异步途径往往更有效率。

第二章数据通信基础测试

第二章数据通信基础 一、选择题(每题2分,共60分) 1.在传输数据时,以原封不动的形式把来自终端的信息送人线路称为( )。 A.调制 B.解调 C.基带传输 D.频带传输 2.下面哪种网络技术适合多媒体通信需求( )。 A.X.25 B. ISDN C.帧中继 D. ATM 3.当数字信号在模拟传输系统中传送时,在发送端和接收端分别需要( )。 A.调制器和解调器 B.解调器和调制器 C.编码器和解码器 D.解码器和编码器 4.在同一个信道上的同一时刻,能够进行双向数据传送的通信方式是( )。 A.单工

B.半双工古 C.全双工 D.上述三种均不是 5.通信系统必须具备的三个基本要素是( )。 A.终端、电缆、计算机 B.信号发生器、通信线路、信号接收设备 C.信源、通信媒体、信宿 D.终端通信设施接收设备 6.计算机网络通信系统是( )。 A.电信号传输系统 B.文字通信系统 C.信号通信系统 D.数据通信系统 7.下列数据通信中常用的交换技术不包括( )。 A.报文交换 B.数据交换 C.电路交换 D.分组交换 8. X.25和FR分别表示( )。 A.企业内部网和帧中继网 B.综合业务数字网和数字数据网 C.帧中继网和企业内部网

D.公用分组交换网和帧中继网 9.调制解调技术主要用于( )的通信方式中。 一-5-- A.模拟信道传输数字数据 B.模拟信道传输模拟数据 C.数字信道传输数字数据 D.数字信道传输模拟数据 10.关于调制解调器的描述正确的是()。 A.在接收端将数字信号转换为模拟信号,在发送端将模拟信号转换为数字信号 B.“调制”是指将数字信号转换为模拟信号的过程 C.调制解调器必须配合网卡才能接人Internet D.调制解调器的调制技术只有频移键控和相移键控两种 11.帧中继技术本质上是( )交换技术。 A.报文 B.线路 C.信元 D.分组 12.下列交换方法中,( )的传输延迟最小。 A.报文交换 B.线路交换 C.分组交换

基于ARM的多线程应用程序设计

开放性实验报告 题目: 基于ARM的多线程应用程序设计院系名称:电气工程学院 专业班级:自动1302 学生姓名:张鹏涛 学号:201323020219 指导教师:张晓东

目录 1 系统概述与设计要求 (2) 1.1 系统概述 (2) 1.2 设计要求 (2) 2 方案论证 (2) 2.1 实现方法 (2) 2.2 线程优势 (2) 3 硬件设计 (3) 3.1 树莓派接口驱动LED电路设计 (3) 4 软件设计 (4) 4.1 驱动三色LED灯 (4) 4.1.1 驱动实现方法 (4) 4.1.2 wiringPi库安装和软件编程 (5) 4.2 服务器和客户端 (5) 4.2.1 服务器设计方法 (5) 4.2.2 客户端设计方法 (6) 5 系统调试 (6) 设计心得 (8) 参考文献 (9) 附录1(LED驱动程序) (10) 附录2(服务器程序) (10) 附录3(客户端程序代码) (14)

1 系统概述与设计要求 1.1 系统概述 本系统设计是基于树莓派开发板上实现的,树莓派由注册于英国的慈善组织“Raspberry Pi 基金会”开发,Eben·Upton/埃·厄普顿为项目带头人。2012年3月,英国剑桥大学埃本·阿普顿(Eben Epton)正式发售世界上最小的台式机,又称卡片式电脑,外形只有信用卡大小,却具有电脑的所有基本功能,这就是Raspberry Pi电脑板,中文译名"树莓派"。它是一款基于ARM的微型电脑主板,以SD/MicroSD 卡为内存硬盘,卡片主板周围有1/2/4个USB接口和一个10/100 以太网接口(A型没有网口),可连接键盘、鼠标和网线,同时拥有视频模拟信号的电视输出接口和HDMI高清视频输出接口,以上部件全部整合在一张仅比信用卡稍大的主板上,具备所有PC的基本功能。而树莓派2具有900MHz内核频率,4核ARM Cortex-A7,1GB 内存,带Micro SD 卡插槽(支持通过它启动Linux 操作系统,如Fedora),40PIN接口(可以增加驱动外设)。本系统设计正式在树莓派2环境下开发实现多线程设计,设计的主要功能就是两个客户端通过服务器互相收发信息。 1.2 设计要求 要求多个客户端能够同时连接服务器,而服务器需要创建线程来管理这多个客户端,并且能够把一个客户端发来的数据进行解析,发给另一个客户端,实现两个甚至多个客户端互相收发信息。能够通过驱动三色灯来发现系统运行的状态,红色说明有错误发生,绿色说明正在正常运行,蓝色说明有用户连接,绿色说明有客户端互相收发信息。 2 方案论证 2.1 实现方法 要实现服务器同时管理两个甚至多个客户端,就必须引入进程或线程。 2.2 线程优势 一是和进程相比,它是一种非常"节俭"的多任务操作方式。

相关主题
文本预览
相关文档 最新文档