当前位置:文档之家› 人教备战中考数学培优(含解析)之相似含详细答案

人教备战中考数学培优(含解析)之相似含详细答案

人教备战中考数学培优(含解析)之相似含详细答案
人教备战中考数学培优(含解析)之相似含详细答案

一、相似真题与模拟题分类汇编(难题易错题)

1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.

(1)求抛物线解析式及对称轴;

(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;

(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.

【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得

解得

∴抛物线解析式为:y= x2?x?1

∴抛物线对称轴为直线x=- =1

(2)解:存在

使四边形ACPO的周长最小,只需PC+PO最小

∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.

设过点C′、O直线解析式为:y=kx

∴k=-

∴y=- x

则P点坐标为(1,- )

(3)解:当△AOC∽△MNC时,

如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E

∵∠ACO=∠NCD,∠AOC=∠CND=90°

∴∠CDN=∠CAO

由相似,∠CAO=∠CMN

∴∠CDN=∠CMN

∵MN⊥AC

∴M、D关于AN对称,则N为DM中点

设点N坐标为(a,- a-1)

由△EDN∽△OAC

∴ED=2a

∴点D坐标为(0,- a?1)

∵N为DM中点

∴点M坐标为(2a,a?1)

把M代入y= x2?x?1,解得

a=4

则N点坐标为(4,-3)

当△AOC∽△CNM时,∠CAO=∠NCM

∴CM∥AB则点C关于直线x=1的对称点C′即为点N

由(2)N(2,-1)

∴N点坐标为(4,-3)或(2,-1)

【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。

(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。

(3)分情况讨论:当△AOC∽△MNC时,延长MN交y轴于点D,过点N作NE⊥y轴于点E,由∠ACO=∠NCD,∠AOC=∠CND=90°得出∠CDN=∠CAO,再证明∠CDN=∠CMN,根

据MN⊥AC,可得出M、D关于AN对称,则N为DM中点,设点N坐标为(a,- a-1),根据△EDN∽△OAC,得出点D、M的坐标,然后将点M的坐标代入抛物线的解析式求出a的值,即可得出点N的坐标;当△AOC∽△CNM时,∠CAO=∠NCM,得出CM∥AB 则点C关于直线x=1的对称点C′即为点N,就可求出点N的坐标。

2.如图,在等腰Rt△ABC中,O为斜边AC的中点,连接BO,以AB为斜边向三角内部作Rt△ABE,且∠AEB=90°,连接EO.求证:

(1)∠OAE=∠OBE;

(2)AE=BE+ OE.

【答案】(1)证明:在等腰Rt△ABC中,O为斜边AC的中点,

∴OB⊥AC,

∴∠AOB=90°,

∵∠AEB=90°,

∴A,B,E,O四点共圆,

∴∠OAE=∠OBE

(2)证明:在AE上截取EF=BE,

则△EFB是等腰直角三角形,

∴,∠FBE=45°,

∵在等腰Rt△ABC中,O为斜边AC的中点,

∴∠ABO=45°,

∴∠ABF=∠OBE,

∵,

∴,

∴△ABF∽△BOE,

∴ = ,

∴AF= OE,

∵AE=AF+EF,

∴AE=BE+ OE.

【解析】【分析】(1)利用等腰直角三角形的性质,可证得∠AOB=∠AEB=90°,可得出A,B,E,O四点共圆,再利用同弧所对的圆周角相等,可证得结论。

(2)在AE上截取EF=BE,易证△EFB是等腰直角三角形,可得出BF与BE的比值为,再证明∠ABF=∠OBE,AB与BO的比值为,就可证得AB、BO、BF、BE四条线段成比例,然后利用两组对应边成比例且夹角相等的两三角形相似,可证得△ABF∽△BOE,可证得AF= OE,由AE=AF+EF,可证得结论。

3.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:

(1)求证:△BEF∽△DCB;

(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;

(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;

(4)当t为何值时,△PQF为等腰三角形?试说明理由.

【答案】(1)解:证明:∵四边形是矩形,

在中,

分别是的中点,

(2)解:如图1,过点作于,

(舍)或秒

(3)解:四边形为矩形时,如图所示:

解得:

(4)解:当点在上时,如图2,

当点在上时,如图3,

时,如图4,

时,如图5,

综上所述,或或或秒时,是等腰三角形.

【解析】【分析】(1)根据矩形的性质可证得AD∥BC,∠A=∠C,根据中位线定理可证得EF∥AD,就可得出EF∥BC,可证得∠BEF=∠C,∠BFE=∠DBC,从而可证得结论。(2)过点Q作QM⊥EF,易证QM∥BE,可证得△QMF∽△BEF,得出对应边成比例,可求出QM的值,再根据△PQF的面积为0.6cm2,建立关于t的方程,求解即可。

(3)分情况讨论:当点 Q 在 DF 上时,如图2, PF=QF;当点 Q 在 BF 上时, PF=QF,如图3;PQ=FQ 时,如图4;PQ=PF 时,如图5,分别列方程即可解决问题。

4.如图,在⊙O中,直径AB经过弦CD的中点E,点M在OD上,AM的延长线交⊙O于点G,交过D的直线于F,且∠BDF=∠CDB,BD与CG交于点N.

(1)求证:DF是⊙O的切线;

(2)连结MN,猜想MN与AB的位置有关系,并给出证明.【答案】(1)证明:∵直径AB经过弦CD的中点E,

, = ,

是的切线

(2)解:猜想:MN∥AB.

证明:连结CB.

∵直径AB经过弦CD的中点E,

∴ = , = ,

∴MN∥AB.

【解析】【分析】(1)要证DF是⊙O的切线,由切线的判定知,只须证∠ODF=即可。由垂径定理可得AB⊥CD,则∠BOD+∠ODE=,而∠ODF=∠CDF+∠ODE,由已知易得∠BOD=∠CDF,则结论可得证;

(2)猜想:MN∥AB.理由:连结CB,由已知易证△CBN∽△AOM,可得比例式

,于是由已知条件可转化为,∠ODB是公共角,所以可得△MDN∽△ODB,则∠DMN=∠DOB,根据平行线的判定可得MN∥AB。

5.如图,抛物线y=﹣x2+bx+c与x轴分别交于点A、B,与y轴交于点C,且OA=1,OB=3,顶点为D,对称轴交x轴于点Q.

(1)求抛物线对应的二次函数的表达式;

(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;

(3)在抛物线的对称轴上是否存在一点M,使得△DCM∽△BQC?如果存在,求出点M 的坐标;如果不存在,请说明理由.

【答案】(1)解:

代入,得

解得

∴抛物线对应二次函数的表达式为:

(2)解:如图,

设直线CD切⊙P于点E.连结PE、PA,作点.

由得对称轴为直线x=1,∴

∴为等腰直角三角形.

∴为等腰三角形.

在中,

整理,得

解得,

∴点P的坐标为或

(3)解:存在点M,使得∽.

如图,连结

∴为等腰直角三角形,

由(2)可知,

∴分两种情况.

当时,

∴,解得.

当时,

∴,解得

综上,点M的坐标为或

【解析】【分析】(1)用待定系数法即可求解;

(2)由(1)中的解析式易求得抛物线的对称轴为直线x=1,顶点D(1,4),点C(0,3),由题意可设点P(1,m),计算易得△DCF为等腰直角三角形,△DEP为等腰三角形,在直角三角形PED和APQ中,用勾股定理可将PE、PA用含m的代数式表示出来,根据PA=PE可列方程求解;

(3)由△DCM∽△BQC所得比例式分两种情况:或,根据所得比例式即可求解。

6.如图,点A、B、C、D是直径为AB的⊙O上的四个点,CD=BC,AC与BD交于点E。

(1)求证:DC2=CE·AC;

(2)若AE=2EC,求之值;

(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,若S△ACH=,求EC之长.

【答案】(1)证明:∵CD=BC,∴∠DAC=∠CDB,又∵∠ACD=∠DCE,∴△ACD∽△DCE,

∴,∴DC2=CE·AC;

(2)解:设EC=k,则AE=2k,∴AC=3k,由(1)DC2=CE·AC=3k2,

DC= k,连接OC,OD,

∵CD=BC,∴OC平分∠DOB,∴BC=DC= k,

∵AB是⊙O的直径,∴在Rt△ACB中,,

∴OB=OC=OD= k,∴∠BOD=120°,∴∠DOA=60°,∴AD=AO,∴

(3)解:∵CH是⊙O的切线,连接CO,∴OC⊥CH.∵∠COH=60°,∠H=30°,

过C作CG⊥AB于G,

设EC=k,∵∠CAB=30°,∴,

又∵∠H=∠CAB=30°,∴AC=CH=3k,∴AH=,

∵S△ACH=,∴,∴k2=4,k=2,即EC=2.【解析】【分析】(1)要证DC2=CE·AC,只需证△ACD∽△DCE即可求解;

(2)连接OC,OD,根据已知条件AE=2EC可用含k的代数式表示线段AE、CE、AC,由(1)可将CD用含K的代数式表示,在Rt△ACB中,由勾股定理可将AB用含K的代数式表示,结合已知条件和圆的性质可求解;

(3)过C作CG⊥AB于G,设EC=k,由30度角所对的直角边等于斜边的一半可将CG用

含K的代数式表示,根据三角形ACH的面积=AH CG=9即可求解。

7.已知:如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,点P从点B出发,沿BC 向点C匀速运动,速度为lcm/s;同时,点Q从点A出发,沿AB向点B匀速运动,速度为2cm/s;当一个点停止运动时,另一个点也停止运动连接PQ,设运动时间为t(s)(0<t <2.5),解答下列问题:

(1)①BQ=________,BP=________;(用含t的代数式表示)

②设△PBQ的面积为y(cm2),试确定y与t的函数关系式________;

(2)在运动过程中,是否存在某一时刻t,使△PBQ的面积为△ABC面积的二分之一?如果存在,求出t的值;不存在,请说明理由;

(3)在运动过程中,是否存在某一时刻t,使△BPQ为等腰三角形?如果存在,求出t的值;不存在,请说明理由.

【答案】(1)5﹣2t;t;y=﹣ t2+ t

(2)解:不存在,

理由:∵AC=3,BC=4,

∴S△ABC= ×3×4=6,

由(1)知,S△PBQ=﹣ t2+ t,

∵△PBQ的面积为△ABC面积的二分之一,

∴﹣ t2+ t=3,

∴2t2﹣5t+10=0,

∵△=25﹣4×2×10<0,

∴此方程无解,

即:不存在某一时刻t,使△PBQ的面积为△ABC面积的二分之一

(3)解:由(1)知,AQ=2t,BQ=5﹣2t,BP=t,

∵△BPQ是等腰三角形,

∴①当BP=BQ时,

∴t=5﹣2t,

∴t=,

②当BP=PQ时,如图2过点P作PE⊥AB于E,

∴BE= BQ=(5﹣2t),

∵∠BEP=90°=∠C,∠B=∠B,

∴△BEP∽△BCA,

∴,

∴,

∴t=

③当BQ=PQ时,如图3,过点Q作QF⊥BC于F,

∴BF= BP= t,

∵∠BFQ=90°=∠C,∠B=∠B,

∴△BFQ∽△BCA,

∴,

∴,

∴t=,

即:t为秒或秒或秒时,△BPQ为等腰三角形.

【解析】【解答】(1)①在Rt△ABC中,AC=3cm,BC=4cm,根据勾股定理得,AB=5cm,

由运动知,BP=t,AQ=2t,

∴BQ=AB﹣AQ=5﹣2t,

故答案为:5﹣2t,t;

②如图1,过点Q作QD⊥BC于D,

∴∠BDQ=∠C=90°,

∵∠B=∠B,

∴△BDQ∽△BCA,

∴,

∴,

∴DQ=(5﹣2t)

∴y=S△PBQ=BP?DQ= ×t× (5﹣2t)=﹣ t2+ t;

【分析】(1)①先利用勾股定理求出AB,即可得出结论;②过点Q作QD⊥BC于D,进而得出△BDQ∽△BCA,用t表示出DQ,最后用三角形的面积公式即可得出结论;(2)先求出△ABC的面积,再利用△PBQ的面积为△ABC面积的二分之一,建立关于t的方程,进而判断出此方程无解,即可得出结论;(3)分三种情况,利用等腰三角形的性质和相似三角形的性质,得出比例式建立关于t的方程求解,即可得出结论.

8.如图,抛物线y= x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D且它的坐标为(3,﹣1).

(1)求抛物线的函数关系式;

(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,并延长DA交y轴于点F,求证:△OAE∽△CFD;

(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出Q的坐标.【答案】(1)解:∵顶点D的坐标为(3,﹣1).

∴, =﹣1,

解得b=﹣3,c= ,

∴抛物线的函数关系式:y= x2﹣3x+ ;

(2)解:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3,

令x=0,得y= ,

∴C(0,),

∴CG=OC+OG= +1= ,

∴tan∠DCG= ,

设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)= ,由OE⊥CD,易知∠EOM=∠DCG,

∴tan∠EOM=tan∠DCG= ,

解得EM=2,

∴DE=EM+DM=3,

在Rt△AEM中,AM= ,EM=2,由勾股定理得:AE= ;

在Rt△ADM中,AM= ,DM=1,由勾股定理得:AD= .

∵AE2+AD2=6+3=9=DE2,

∴△ADE为直角三角形,∠EAD=90°,

设AE交CD于点P,

∵∠AEO+∠EPH=90°,∠ADC+APD=90°,∠EPH=∠APD(对顶角相等),∴∠AEO=∠ADC,

∴△OAE∽△CFD

(3)解:依题意画出图形,如答图2所示:

由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,

要使切线长PQ最小,只需EP长最小,即EP2最小.

设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2,

∵y= (x﹣3)2﹣1,

∴(x﹣3)2=2y+2,

∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5,

当y=1时,EP2有最小值,最小值为5.

将y=1代入y= (x﹣3)2﹣1,得(x﹣3)2﹣1=1,

解得:x1=1,x2=5,

又∵点P在对称轴右侧的抛物线上,

∴x1=1舍去,

∴P(5,1),

∴Q1(3,1);

∵△EQ2P为直角三角形,

∴过点Q2作x轴的平行线,再分别过点E,P向其作垂线,垂足分别为M点和N点,

设点Q2的坐标为(m,n),

则在Rt△MQ2E和Rt△Q2NP中建立勾股方程,即(m﹣3)2+(n﹣2)2=1①,(5﹣m)2+(n﹣1)2=4②,

①﹣②得n=2m﹣5③,

将③代入到①得到,

m1=3(舍),m2= ,

再将m= 代入③得n= ,

∴Q2(,),

此时点Q坐标为(3,1)或(,)

【解析】【分析】(1)根据抛物线的顶点坐标及顶点坐标公式建立出关于b,c的二元一次方程组,求解得出b,c的值,从而得出抛物线的解析式;

(2)如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3,根据抛物线与坐标轴交点的坐标特点求出C点的坐标,A点坐标,进而得出CG的长,根据正切函数的定义

求出tan∠DCG=,设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)= ,根据同角的余角相等易知∠EOM=∠DCG,根据等角的同名三角函数值相等得出

tan∠EOM=tan∠DCG==故解得EM=2,DE=EM+DM=3,在Rt△AEM中,由勾股定理得AE 的长,在Rt△ADM中,由勾股定理得AD的长,根据勾股定理的逆定理判断出△ADE为直角三角形,∠EAD=90°,设AE交CD于点P,根据等角的余角相等得出∠AEO=∠ADC,从而判断出△OAE∽△CFD ;

(3)依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2,根据抛物线的解析式,整体替换得出EP2=2y+2+(y﹣2)2=(y﹣1)2+5,当y=1时,EP2有最小值,最小值为5.然后根据抛物线上点的坐标特点将y=1代入抛物线的解析式,求出对应的自变量x的值,再检验得出P 点的坐标,进而得出Q1的坐标,由切割线定理得到Q2P=Q1P=2,EQ2=1,设点Q2的坐标为(m,n),则在Rt△MQ2E和Rt△Q2NP中建立勾股方程,即(m﹣3)2+(n﹣2)2=1①,(5﹣m)2+(n﹣1)2=4②,

由切割线定理得到Q2P=Q1P=2,EQ2=1,将③代入到①得到,求解并检验得出m,n的值,从而得出Q2的坐标,综上所述即可得出答案。

相关主题
文本预览
相关文档 最新文档