The Conflict Graph for Maintaining Case–Based Reasoning Systems
- 格式:pdf
- 大小:128.20 KB
- 文档页数:13
大数据HCIA考试模拟题及答案一、单选题(共40题,每题1分,共40分)1、关于Hive建表的基本操作,描述正确的是?A、创建外部表的时需要指定external关键字B、一旦表创建好,不可再修改列名C、一旦表创建好,不可再修改表名D、一旦表创建好,不可再增加新列正确答案:A2、Flink的数据转换操作在以下哪个环节中完成?A、sourceB、sinkC、transformationD、channel正确答案:C3、Kafka集群中,Kafka服务端部署的角色是?A、ProducerB、ConsumerC、ZooKeeperD、Broker正确答案:D4、可以通过以下哪个命令创建节点数据?A、ls/nodeB、get/nodeC、create/nodeD、set/nodedata正确答案:C5、在Zookeeper和YARN的协同工作中,当ActiveResourceManager产生故障时,StandbyResourceManager会从以下哪个项目中获取Application相关信息?A、warehouseB、metastoreC、StorageD、Statestore正确答案:D6、以下关于Kafka的描述错误的有?A、具有消息持久化,高吞吐,实时等特性B、用作活动流和运营数据处理管道的基础C、使用Scala,Java语言实现D、由ApacheHadoop开发,并于2011年开源正确答案:D7、下面关于Zookeeper特性的描述错误的是?()A、Zookeeper节点数必须为奇数个。
B、客户端所发送的更新会按照它们被发送的顺序进行应用。
C、消息更新只能成功或者失败,没有中间状态。
D、一条消息要被超过半数的Server接收,它将可以成功写入磁盘正确答案:A8、Flink中的()接口用于流数据处理,()接口用于批处理?A、BatchAPI,StreamAPIB、DataStreamAPI,DataSetAPIC、StreamAPI,BatchAPID、DataBatchAPI,DataStreamAPI正确答案:B9、Flume支持监控并传输目录下新增的文件,可实现准实时数据传输,以上描述的是哪一类source?A、syslogsourceB、spoolingdirectorysourceC、httpsourceD、execsource正确答案:B10、FusionlnsightHD中Loader实例必须与哪个实例部署在一起?A、DataNodeB、RegionServerC、ResourceManagerD、Nodemanager正确答案:D11、在Zookeeper和YARN的协同工作中,当ActiveResourceManager产生故障时,StandbyResourceManager会从以下哪个目录中获取Application相关信息()A、warchouseB、metastoreC、StatestoreD、Storage正确答案:C12、哪个不是Flume的channel类型A、MemoryChannelB、FileChannelC、JDBCChannelD、HDFSChannel正确答案:D13、FusionInsightHDHBase的管理进程是如何选择主节点的?A、随机选取B、由RegionServer进行裁决C、通过ZooKeeper进行裁决D、HMaster为双主模式,不需要进行裁决正确答案:C14、FuskmlnsightHD集群规划中,管理节点&控制节点&数据节点合一部署方案适合什么样的场景?A、30节点以下B、100节点以上C、100-200节点D、200节点以上正确答案:A15、关于Hive与传统数据仓库的对比,以下描述错误的是?()A、由于Hive的数据存储在HDFS中,所以可以保证数据的高容错、高可靠。
数据治理工程师 CDGA 认证考试习题集第四章数据架构(重点章节)1. 企业架构不包括哪项?()A 业务架构B 数据架构C 系统架构D 技术架构2. 关于架构设计生命周期描述错误的是?( )A 可以是针对当前的B 可以是面向未来的C 可以是已实施完成的D 可以是已经退役 10 年的3. 关于企业数据模型描述准确的是哪项?()A 企业模型包括继承关系模型、概念模型、主题域模型、逻辑模型B 企业模型包括概念模型、主题域模型、逻辑模型、物理模型C 企业模型包醐承关系模型、概念模型、主题域模型、逻辑模型、物理模型D 企业模型包括继承关系模型、概念模型、逻辑模型、物理模型14. 项目中的数据架构角色依赖软件开发过程,主要采用的方式不含哪项?()A 瀑布方式B 迭代方式C 敏捷方式D 螺旋方式5. 关于图标使用规范,以下哪项说法是错误的?()A 图标应该清晰标识并说明所有对象和线条及图标所代表的内容B 所有线条的流向都应该从某一侧或角开始,尽可能流向对侧或对角C 要确保行和列排放整齐,实现图标易读性更好D 对任何大小、颜色、线制且细等不同的图标均要求表示不同的内容6. 以下哪项不是数据架构的构件:()A 当前状态的描述B 数据策略的定义C 数据整合的指引D 数据管控策略中要求的数据资产管理规范7. 关于企业数据模型创建,以下做法是错误的:()A 企业数据模型不应创建为单独的构件,应由不同角度和不同层级的细节构成B 企业数据模型包括通用的和特定于应用或具体项目的数据模型及其定义、规范、映射和业务规则C 采用行业标准模型能够加快开发企业数据模型的效率D 大多数成功的企业数据模型会利用不同层级增量和迭代的方式来构建8. 以下实施企业数据架构工作内容错误的是?()A 建立企业数据架构团队和举办问题讨论会B 生成数据架构构件的最终版本C 在开发项目中,形成和建立数据架构工作方式D 提高组织对数据架构工作价值的认识9. 以下关于实施企业数据架构描述错误的是?()A 实施活动可以从部分组织中开始,或从某些数据域中开始。
华为HCNP-云运维资深工程师认证考试题库(A)1 通常说灾备是将容灾与备份结合,既本地备份结合远程数据复制实现完善的数据保护。
()A 对B 错2 ServiceCenter(SC,运营中心)支持部署在FusionSphere OpenStack虚拟化环境中的虚拟机上,支持主备部署和单节点部署。
()A 对B 错3 ServiceCenter可以通过多少个KeyStone对接非级联FusionSphere资源池?()A 1B 2C 5D 104 使用ISO镜像创建虚拟机时,规格中的启动源只能是本地磁盘,根磁盘的大小为0,临时磁盘大小等于系统盘的大小。
()A 对B 错5 虚拟机通讯如何能够绕过网络安全控制措施?()A 大多网络安全系统无法识别加密的虚机流量B 同一台服务器内部的虚拟机通信对物理安全设备不可见C 虚机镜像可能包含绕开防火墙的工具D 客户操作系统可以激活秘密模式6 TCP/IP V4版本,存在的安全隐患包括哪些?()A 缺乏数据源验证机制B 缺乏对数据包的确认机制C 缺乏对数据完整性的验证机制D 缺乏机密性保障机制7 在OC上可以监控虚拟机的告警()A 对B 错8 关于虚拟机VNC登录的描述,哪个选项是错误的?()A “TightVNC”模式整体依赖Java(TM)插件运行B “noVNC”模式不依赖Java(TM)插件,但无法对虚拟机进行重启,关闭等操作C 64位浏览器可以运行32位的Java(TM)插件D “noVNC”模式的光驱管理功能也需要依赖Java平台9 IPSec中使用AH+ESP方式建立一个IPSec隧道,会建立几个IPSec SA(安全联盟)?()A 2B 3C 4D 110 eSight(监控软件)本地高可用(一主一备)系统包括主服务器,每个服务器由一台服务器组成。
()A 对B 错11 清理ManageOne OC磁盘时,下列哪个目录文件可以清理(临时数据可以清理)?()A /opt/OperationCenter/AppBase/OC/AppBast/var/iemp/data/dump/B /opt/OperationCenter/AppBase/OC/APPBase/var/iemp/logC /opt/Operation/Center/AppBase/OC/AppBase/etc/D /opt/OperaCenter/AppBase/DB/data12 FusionCompute的分布式交换机功能类似于二层物理交换机,通过下列哪些选项连接虚拟机和物理网络?()A 端口组B VLAN池和子网C 上行链路组D 下行链路组13 关于不同模式下的IT服务组织,描述错误的是哪项?()A 传统模式下的IT服务组织是内部IT供应商B 私有云模式下的IT服务组织是共享服务单元C 私有云模式下的IT服务组织是内部IT供应商D 公有云模式下的IT服务组织是外部供应商14 假设环境中每台主机拥有4颗8核的物理CPU,总物理核数为32个,一个虚拟机设置了CPU插槽数量为4,CPU数量为8个,下列哪个选项是正确的分配方式?()A 由主机上一个物理CPU的8个核组成虚拟机的8个虚拟CPUB 一个物理CPU提供5个内核,另一个物理CPU提供3个内核C 一个物理CPU提供4个内核,另外一个CPU提供4个内核D 虚拟机的8个CPU平均由主机上的4个物理CPU提供,每个物理CPU提供2个内核15 云计算服务交付模式主要有IaaS,PaaS和SaaS()A 对B 错16 eSight为方便用户使用存储资源分配特性,特别设计了使用模板进行资源批量配置和批量回收()A 对B 错17 以下哪个选项不属于FusionCompute的存储设备?()A LUNB 本地设备C Advanced SAN存储池或FusionStorge存储池D 本地内存盘18 关于块存储和对象存储的描述错误的是哪个选项?()A 块存储Cinder是给虚拟机挂载使用,向虚拟机提供额外的磁盘空间B 对象存储Swift存放虚拟机镜像C 在FusionSphere环境中,Giance后端存储默认为Swift对象存储D 在FusionCompute环境中,块存储只包括SAN存储,本地存储19 eSight服务硬盘信息监控不包括的指标是哪个?()A 硬盘名称B 健康状态C 在位信息D 硬盘利用率20 安装ManagOne SC和OC选择的操作系统是下列哪个选项?()A CentOSB RadHat LinuxC Windows ServerD SUSE Linux21 关于eSight单机系统软件步骤,描述错误的是以下哪一项?()A 手动安装操作系统B 手动安装MySQL数据库C 手动安装防病毒软件D 执行安全加固22 入侵防御系统技术特点包括哪些?()A 在线模式B 实时阻断C 自学习自适应D 直路部署23 关于事件中的升级,我们可以把它分为哪些类型?()A 技术升级B 服务升级C 管理升级D 混合升级24 eSight单机虚拟化部署支持以下哪些虚拟资源?()A FusionSphere 5.1B FusionSphere 6.0C VMWare ESXI 5.5D Microsoft Hyper-V25 FusionSphere支持的工具不包含下列哪个选项?()A FusionCubeB Update toolC FusionCareD WEB-UI26 以下关于FusionSphere Opentack OM资源池配置的描述中,哪个选项是错误的?()A 创建主机组时,首先指定主机组所属的可用分区,并从该可用分区中选择若干主机,组成主机组B 如果对接FusionCompute,可用分区需要和接入FusionCompute存储集群中设置的“可用分区”保持一致C 外部网络是用于连接系统外网络的网络,但不能是InternetD “fc-nove-computeXXX”实际为FusionSphere OpenStack上一个接入的一组FusionCompute计算集群27 ManagOne OC的日常维护包括哪几项?()A 软件许可导入B 检查日志C 检查服务器运行状态D 检查单机和双机状态E 检查告警28 常见的数据迁移方案包括以下哪些类型?()A LVM镜像迁移方案B Rsync迁移方案C Datasync迁移方案D vMotion迁移方案29 下列哪项服务不是PaaS提供的服务?()A 中间件B 数据库C 安全D 开发工具30 OpenStack的管理数据支持备份,保障系统高可靠性,主要的备份方式有哪些?()A 共享存储备份B 管理系统无单故障,采取ZooKeeper/Paxos 3节点负荷分组方式高可靠部署,任意一个节点故障都不会影响系统功能C 服务器本地存储双分区D 自动备份管理数据并传输(FTP/S3/HTTPS)到第三方存储设备31 eSight拓扑管理功能包括以下哪项?()A 设备拓扑B 告警跳转C 设备离线展示D 网元管理器跳转32 在安装和部署FusionCompute时,我们可以配置CNA的VLAN信息,但是不能配置VRM (管理节点)的VLAN信息()A 对B 错33 外部服务提供商的业务关系管理通常是由一个单独的BRMs的专用职能或客户经理执行。
系统集成项目管理工程师教程清华大学出版社2009 年系统集成项目管理工程师教程资料版本:XTJC-XMGLGCS-JC修订版本:20121130V1.1编制Bichou.li 审核Bichou.li 批准Lixia.zhao日期2012.11.29 日期2012.11.30 日期2012.11.30Bichou.li邮箱:****************QQ:34206413声明Copyright © 2012系统集成项目管理工程师教程是 bichou.li 根据 baidu 文库相关资料整理而成,内容涉及到和国家相关法律法规冲突的,与资料整理人员无关。
本文档为免费文档,供相关人员学习之用。
未经本人许可,不得以经营性质为目的传播本文档。
由于种种原因,本手册内容会不定期进行更新。
除非另有约定,本文仅作为学习资料,本文中的所有陈述、信息和建议不构成任何明示或暗示的担保。
第II页修订记录日期修订版本描述作者2012.11.29 V1.0 根据百度文库提供的资料整理第1-6章节Bichou.li 2012.11.30 V1.1 根据百度文库提供的资料整理第7-23章节Bichou.li目录第1章信息化基础知识.......................................................................................... 1-11.1 信息化基础知识......................................................................................... 1-11.1.1 信息.................................................................................................. 1-11.1.2 信息化.............................................................................................. 1-31.1.3 国家信息化体系要素...................................................................... 1-31.1.4 国家信息化指导思想、战略方针、战略目标.............................. 1-61.1.5 我国信息化发展的战略要点.......................................................... 1-71.2 电子政务.................................................................................................. 1-121.2.1 电子政务的概念和内容............................................................... 1-121.2.2 电子政务的指导思想和指导原则............................................... 1-131.2.3 电子政务建设的目标和主要任务............................................... 1-141.3 企业信息化............................................................................................... 1-171.3.1 企业信息化概述............................................................................ 1-171.3.2 企业资源计划............................................................................... 1-231.3.3 客户关系管理............................................................................... 1-351.3.4 供应链管理................................................................................... 1-461.3.5 电子商务........................................................................................ 1-591.4 商业智能.................................................................................................. 1-65 第2章信息系统服务管理...................................................................................... 2-12.1 信息系统服务管理体系............................................................................. 2-12.1.1 信息系统服务管理的内容.............................................................. 2-12.1.2 信息系统服务管理的推进.............................................................. 2-32.2 信息系统集成资质管理............................................................................. 2-82.2.1 信息系统集成资质管理的必要性和意义...................................... 2-82.2.2 信息系统集成资质管理亦法.......................................................... 2-92.2.3 信息系统集成资质等级条件....................................................... 2-112.3 信息系统工程监理.................................................................................. 2-132.4 ITII,与IT服务管理、信息系统审计........................................................ 2-192.4.1 ITIL 与 IT 服务管理 ......................................................................... 2-192.4.2 信息系统审计............................................................................... 2-24 第3章信息系统集成专业技术知识...................................................................... 3-13.1 信息系统集成简述..................................................................................... 3-13.2 信息系统建设............................................................................................. 3-23.2.1 信息系统的生命周期...................................................................... 3-23.2.2 信息系统开发方法.......................................................................... 3-43.3 软件工程..................................................................................................... 3-63.3.1 软件需求分析与定义...................................................................... 3-63.3.2 软件设计、测试与维护.................................................................. 3-73.3.3 软件复用.......................................................................................... 3-93.3.4 轶件质量保证及质量评价........................................................... 3-103.3.5 软件配置管理............................................................................... 3-113.3.6 软件开发环境............................................................................... 3-133.3.7 软件过程管理............................................................................... 3-143.4 面向对象系统分析与设计...................................................................... 3-153.4.1 面向对象的基本概念................................................................... 3-153.4.2 可视化建模与统一建模语言........................................................ 3-203.4.3 使用面向对象技术进行软件开发的最佳实践_一 RUP .............. 3-233.4.4 面向对象系统分析........................................................................ 3-253.4.5 面向对象系统设计........................................................................ 3-263.5 软件架构................................................................................................... 3-273.5.1 软件架构定义................................................................................ 3-273.5.2 典型架构....................................................................................... 3-283.5.3 软件架椅设计方法....................................................................... 3-343.5.4 软件架构分析与评估................................................................... 3-353.5.5 软件中间件................................................................................... 3-363.6 典型应用集成技术.................................................................................. 3-39。
序号题13行5列,并操作后为几行几列2TCP协议使用21号端口3需求不明确使用哪个开发模型4保证输出序列,栈大小至少为多少5磁盘输入/输出通过6存取最快7破坏互斥条件8IPv69TCP10IP11ARP欺骗属于()攻击方式12关于视图说法错误的是13分布式事务14不属于生物认证方式15排序二叉树最小值满足16BASE理论不包括17进程里多个线程不共享18+0,-0一样19不属于非字符设备20RABC角色与用户21死锁22停电23一级封锁协议24两段封锁协议250扇区名称26树的度27树中一个结点的度为28流水线的吞吐率29BD 的闭包30无损分解为31唯一32与其他表连接33不属于入侵检测系统功能34无论n多大,运行时间总是10秒,运行的增长数量级是35关系模式要求相同结构36授权37E-R模型是()设计最常用的办法38不属于物理设计阶段39软件著作权40侵权41自动执行的存储过程42数据流输入和输出43若关系模式R(U,F),有函数依赖X->Y成立44等价45中断程序46不能增强系统匿名性47RISC48会忙等待49并发调度一定是串行化调度50行级前触发51数据仓库错误52在并行处理系统中,将程序的模块划分的越小53数据存储,数据结构,数据操作,数据约束条件54不属于DMBS基本功能55视图索引不正确的56要么都执行,要么都不执行是事务的什么性质57关系R(U,F)属于3NF58SQL错误59事务执行完修改数据库60关于事务说法错误的是61对信息进行均衡安全防护,提高整个系统最低安全性能的原则是62不允许出现重复元素63限制字符,值域64触发器65索引66关于云数据库,描述正确的是67()质量子特性属于()质量特性68()质量子特性属于()质量特性69软件能力成熟度模型(CMM),制定了软件过程和产品质量的详细量度标准70软件成本估算的说法错误的是71英语题72英语题73英语题74英语题75英语题参考答案(红色字体有异议)3行5列控制原型化3块数组假脱机128传输层网际层链路层视图可以提高查询效率局部密码左指针为空硬状态寄存器补码和移码磁盘多对多事务故障系统故障丢失更新不能防止死锁MBRn-1该节点的子树个数n/8t+(n-1)3tBDE(A,B,C,D)(D,E)主码外码过滤非法的数据包O(1)交Grant … to … with grant option概念设计关系模式50年独占性触发器加工X→Y在R的所有合法实例上都成立没有OR的都是ANDI/O设备数据聚合为了增强功能,设置种类繁多的指令TSL并发调度一定是串行化调度行级前触发数据仓库可随时更新模块间的数据相关性越大,现线程创建和通信开销越大数据存储数据可视化视图索引提高查询效率原子性可能存在插入和删除的异常面向一条记录延迟修改事务的隔离级别越高越好木桶原则Primary key约束CHECK/用户定义约束引用数据库(表)外对象位图索引一般建立在主键上,保证主键的唯一性基于云的数据库同时具备同构和异构系统的特点互操作性功能性已管理级成本估算的经验公式具有普适性Physical viewDatabase systemDatabase Administratorabstraction level(个人感觉是view level)Logical Level。
淮海工学院计算机工程学院《大型软件系统构造》大作业名称:学生成绩管理系统的设计专业班级:软件122班*名:**系(院):计算机工程学院时间: 2015.4.8~~2015.6.8目录第一章需求分析1 引言 (2)1.1 项目背景 (2)1.2 系统目标 (2)1.3 范围+Feature+上下文图 (2)1.4 用例图 (3)1.5 用例规约 (3)2 需求 (4)2.1 功能需求 (4)2.2 性能需求 (5)2.3 约束需求 (5)第二章领域建模1 类图 (5)2 状态图 (7)3 可扩展性 (8)第三章关键需求1 确定关键质量 (9)2 确定关键需求 (9)3 具体关键需求分析 (10)第四章概念架构设计1 系统架构模式 (11)2 鲁邦图 (11)第五章细化架构设计1 逻辑架构 (12)2 开发架构 (14)3 物理架构 (15)4 运行架构 (15)5 数据架构 (16)第六章架构验证1 关键组件 (17)2 交互方式 (18)3 架构验证结论 (19)第七章总结 (20)第一章需求分析1 引言1.1 项目背景每个学校都需要进行考试成绩的统计分析工作,而这些工作都必须在考试结束后尽快完成。
大量的成绩数据的统计工作如果只靠人工完成,费时费力,还容易出错。
使用计算机对学生成绩管理信息进行管理,具有手工管理所无法比拟的有点。
尤其是随着教学体制的不断改革,学分制、选课制的展开和深入,学生成绩日常管理工作及保存管理日趋繁重、复杂。
高校都迫切需要研制开发一款属于自己的功能强大,操作简单,具有人性化的学生成绩管理系统。
因此需要开发出一个满足学校进行成绩的录入、查询、修改和统计等需求的功能完善、安全可靠并且迅速便捷的成绩管理系统。
1.2 系统目标通过调查分析,开发出一个操作简便、界面友好、灵活实用、安全可靠的学生成绩管理系统是一个学校不可缺少的重要部分,它的内容对于学校的决策者和管理者来说都至关重要。
conflicting parameter definition -回复关于冲突参数定义(conlicting parameter definition)的问题。
在计算机科学和软件工程领域中,冲突参数定义是指当两个或多个参数或变量在函数或方法的定义中具有相同的名称但不同的类型或默认值时,可能导致冲突或错误的情况。
在本文中,我们将一步一步回答以下问题:什么是冲突参数定义?为什么会出现冲突参数定义?如何避免冲突参数定义?以及如何处理已经出现的冲突参数定义的情况?第一步:定义冲突参数定义冲突参数定义指当函数或方法的定义中出现两个或多个参数或变量具有相同名称但不同类型或默认值的情况。
这种情况可能导致代码冲突、编译错误或运行时错误。
第二步:冲突参数定义的原因冲突参数定义通常是由于编程错误或不当的代码重构导致的。
例如,在函数或方法的重构过程中,可能会不小心更改参数名称而忘记更新所有引用该参数的地方,导致参数名称冲突。
另外,当函数或方法的签名发生变化但未及时更新调用该函数或方法的地方时,也可能出现参数名称冲突。
第三步:避免冲突参数定义的方法为了避免冲突参数定义,可以采取以下几种方法:1. 使用有意义的参数名称:使用能够清晰表达参数用途和含义的名称,避免使用过于简单或容易与其他参数混淆的名称。
2. 使用命名约定:在代码开发过程中,可以制定一套命名约定,例如使用特定的前缀或后缀来表示参数类型或作用,以区分不同的参数。
例如,在函数或方法中,可以使用"input"、"output"或"temp"等前缀来表示不同用途的参数。
3. 及时更新参数引用:在进行函数或方法的重构时,一定要及时更新所有引用该函数或方法的地方,确保参数名称的一致性。
4. 使用重构工具:使用一些代码重构工具(如IDE)可以帮助自动更新参数名称的引用,提高代码重构的效率并减少冲突参数定义的可能性。
数据治理工程师 CDGA 认证考试习题集第五章数据建模和设计(重点章节)1. 以下选项不属于数据建模和设计治理中质量管理内容的是()A 开发数据建模和设计标准B 评审数据模型以及数据库设计质量C 管理数据模型版本与集成D 评估数据模型运行效率2. 关于实体的别名,以下对应关系不正确的是()A 在关系模型中经常用"实体”B 在维度模型中经常使用"维度"和"链接"C 在面向对象模型中经常使用"类”或“对象"D 在非关系型数据库模型中经常使用“文件“或“节点”3. 以下关于数据建模和设计治理管理内容描述正确的是 ( )A 举办设计评审会可由建模人员来记录讨论的要点B 建模人员必须通过修改以解决评审小组提出的所有问题C 如果建模人员无法自行解决评审小组提出的问题时,可挂起问题D 数据模型的每次更改,需要以事件线记录变更内容4. 以下不属于数据模型组件的是 ( )A 实体B 类C 属性D 域5. 以下选项属于逻辑数据模型建模的步骤的是()A 选择表示方法B 分析信息需求C 添加属性细节D 合并企业术语6. 以下选项不是锚建模基本概念的是 ( )A 锚B 属性C 关系D 节点7. 关于统一建模语言特点描述错误的是()A UMLC 默认值可以在富豪中有选择的显示D 访问数据通过类的公开接口进行8. 确保每个实体都有最小的主键,每个属性都依赖于完整的主键属于哪种范式?()A 第一范式B 策二范式C 策三范式D Boyce/Codd 范式)9. 数据拱顶模型有三种类型的实体,以下错误的是(A 中心表B 链接表C 卫星表D 行星表10. 以下关于代理件描述正确的是()A 代理键是按功能进行分类的B 代理键是表的唯一标识符,通常由人工生成C 代理键具有技术功能,通常对数据库的最终用户可见D 代理键允许在结构间进行更高效的导航,并促进跨应用程序的集成B 能够评估当前或者理想情况下业务规则对数据的影响情况C 数据模型可以帮助解释数据上下文的边界D 数据模型通过以电子的形式获取知识来保存系统或项目的企业信息。
The Conflict Graph for MaintainingCase–Based Reasoning SystemsIoannis IglezakisDaimlerChrysler AG,Research&Technology,FT3/AD,P.O.Box2360,89013Ulm,Germanyioannis.iglezakis@Abstract.The maintenance of case–based reasoning systems is remarkably im-portant for the continuous working ability of case–based reasoning applications.To ensure the utility of these applications case properties like correctness,consis-tency,incoherence,minimality,and uniqueness are applied to measure the qual-ity of the underlying case base.Based on the case properties,the conflict graphpresents a novel visualization of conflicts between cases and provides a techniqueon how to eliminate these conflicts and therefore maintain the quality of a casebase.An evaluation on ten real world case bases shows the applicability of theintroduced technique.1IntroductionDuring the last years,the research in the realm of case–based reasoning(CBR)systems in general and maintaining of case–based reasoning systems in particular has become a main topic for many researchers.In thefield of maintaining case–based reasoning systems various measures like coverage and reachability[14,17]and thereby case com-petence[15]are modeling the competence of a case base.The use of case properties which show the relations within cases and between cases[11]is an other way to measure the quality of a case pared to the standard case–based reasoning cycle[1],the case properties are embedded in an extended case–based reasoning cycle[12]with the two additional steps:review and restore.The review step detects conflicts within and between cases with the help of the case properties.These conflicts are then monitored and the decision is made when to maintain and therefore trigger the restore step.The re-store step suggests the necessary changes for the contents of the case base to reestablish the quality.This paper focuses on the monitor task of the review step and how it can be used to restore the quality of the case base.It introduces a new visualization for the conflicts between cases—the conflict graph—and shows how this conflict graph can be used tofind a subset of cases which must be changed in order to restore the quality of a case base.Therefore the needed case properties are revisited in section2.The concept ofa conflict graph is defined in section3,followed by results of an evaluation in section4.Section5discusses the related work.Finally,section6concludes the paper with a summary and issues of further work.2The Case Properties RevisitedAs explained above,the review step in the extended case–based reasoning cycle has among other things like monitoring the quality of the case base the duty of measuring the case base through case properties.These measures are disjunct and used for quality indication within cases or between cases.The formal definition of the case properties which are used here can be found in[11].In this section only an informal description of the case properties correctness,consistency,uniqueness,minimality,and incoherence is given to motivate them for further use in the next sections.2.1CorrectnessThere are two kinds of case properties:isolated and comparative.Correctness is the only isolated property,because the correctness of a case can be recognized without considering any other case.A case is believed to be correct if and only if the problem description of the case corresponds to the given solution.This implies that the solution solves the problem that is described by the problem description.Note that for the fol-lowing descriptions of case properties and experiment the correctness of the cases is assumed.2.2ConsistencyThefirst of the comparative case properties is consistency.A given case is called con-sistent if and only if there is no other case whose problem description is a subset or the same of the given case’s problem description and their solutions are different.Hence, consistency covers situations where the subset relation between problem description with different solutions reports that there possibly is an absence of some attributes or values to make the two cases distinctive.Table1illustrates a counter–example from the help–desk domain when two cases are not consistent.This example shows two cases with the same operating system,theTable1.Example for(in-)consistencyOperating System Printer Printing Paper Ink SolutionWinNT HP840c No Yes Yes Update DriverWinNT HP840c No——Second Levelsame printer and no printing.In addition,thefirst case has more information about the paper and ink situation than the second.Note that the value“—”for the paper and ink attribute in the second case means the these values are unknown.Thus,with regard to the above description the second case is not consistent,because the problem description of the second case is a real subset of thefirst case and the solutions are different.In general,consistency contains the occurrence of alternatives.It is assumed that for each capable problem description there exists a“best”solution.As a matter of course, the case base should only consist of cases that have“best”solutions.Thus,no alternative solutions are allowed neither as an alternative in the same case nor as a further case with the same or a more general problem description and a different solution.Note that it is possible for some domains to have equivalent solutions for the same or more general problem description.The travel domain is a good example for this kind of domain and it is up to the case base administrator to decide whether these alternatives are admitted or not.2.3UniquenessAnother comparative case property is uniqueness.A given case is called unique if and only if the problem description and corresponding solution of each other case in the case base is different.A counter–example from the help–desk domain is displayed in table2.It describes the fact when the given case property uniqueness is violated.Table2.Example for(not)uniqueOperating System Printer Printing Paper Ink SolutionWinNT HP840c No Yes Yes Update DriverWinNT HP840c No Yes Yes Update Driver For both cases in this example,the problem descriptions and solutions are exactly the same.With the above description of uniqueness follows that both cases are evidently not unique.2.4MinimalityThe third comparative case property is minimality which means the opposite of sub-sumption.A given case is called minimal if and only if there is no other case for which the problem description is a real subset of the given case and the solutions are identical. This concept is clarified by the counter–example in table3which contains an example when two cases are not minimal.In this table both cases are identical besides the value for the operating system.The first case contains a value for the operating system while the second case does not.This disobeys the definition of minimality because the problem description of the second case is a real subset of thefirst case’s problem description and the solution for both cases are equal.Table3.Example for(not)minimalOperating System Printer Printing Paper Ink SolutionWinNT HP840c No Yes Yes Update Driver—HP840c No Yes Yes Update Driver2.5IncoherenceFinally,the last comparative case property is incoherence.A given case is incoherent if and only if each other case with the same solution as the given case has the same prob-lem description with the exception of a specific(small)number(∆)of attributes whose values are different.To illustrate this case property in table4once more a counter–example is used.Table4.Example for(not)incoherent(for∆=1)Operating System Printer Printing Paper Ink SolutionWinNT HP840c No Yes Yes Update DriverWin95HP840c No Yes Yes Update Driver Both cases in table4have the same solution and differ only in the value for the oper-ating system and in contrast to the minimality example in both cases these values exist. With the assumption that∆=1and the above description it follows that these two cases have a conflict with the definition of incoherent and are therefore not incoherent.This section gave an informal description of the case properties in combination with examples from the help–desk domain.With these descriptions it is possible to build case base properties in which the case properties are assigned to a whole case base.For example,if each case in a case base is minimal,then the entire case base is by definition also minimal.To receive a better granularity of assessment,the case properties can be measured in degrees within the case base.The measurement for each case property is computed by counting the number of cases which fulfill this property divided by the total number of cases in the case base.This mapping of sets to numbers offers a more sophisticated way to measure the quality of the case base.Finally,quality measures are defined as a function over the degrees of case properties.For example,a weighted sum could respresent one usable function.More information on the subject of quality measures for case base maintenance can be found in[11].In the following section,the notion of the conflict graph is introduced.This notion can help to visualize the conflicts between cases and decide which cases should be changed in order to restore the quality of a case base.3The Conflict GraphAfter measuring the quality of the case base with the help of the case properties,the next step is to monitor these results.This section will introduce a novel method to display conflicts between cases which are indicated by case properties and how this representation can be used in order to maintain a case base.When applying the described case properties from the previous section to the case base it is usually that not all properties are satisfied and thus the degree of case prop-erties is below100%.This means that for some cases a case property is not fulfilled. The purpose of the single conflict indicators in definition1is to test two cases for a particular case property and to indicate a possible conflict.Definition1(Single Conflict Indicator).Assume a case base C with two cases c i,c j∈C and i=j.(i)cInd1:C×C→{¬consistent,∅},cInd1(c i,c j):= ¬consistent,if c i is not consistent with c j∅else(ii)cInd2:C×C→{¬incoherent,∅},cInd2(c i,c j):= ¬incoherent,if c i is not incoherent with c j∅else(iii)cInd3:C×C→{¬minimal,∅},cInd3(c i,c j):= ¬minimal,if c i is not minimal with c j∅else(iv)cInd4:C×C→{¬unique,∅},cInd4(c i,c j):= ¬unique,if c i is not unique with c j∅elseTo explain the above as well as the following definitions an exemplary case base is designed.Table5shows this case base with seven cases.Each case c i contains the solution s i and the problem description p i which encloses the attribute–value pairs v ij.Table5.Example case base with seven casesc i p i s ic1v11s1c2v12v22s1c3v11v22s1c4v12v22v33s2c5v11v23v35s1c6v11v23v34s1c7v11s1Example1(Single Conflict Indicator).Assume the cases c1and c6from the case base given in table5and the single conflict indicators cInd1and cInd3.The results are: cInd1(c1,c6)=∅and cInd3(c1,c6)=¬minimal.After defining the single conflict indicators the next step is to define the conflict indicator set which is then used to build the conflict indicator.Definition2(Conflict Indicator Set).Assume the indices of all single conflict indi-cators I={1,...,n},where n is the maximum number of single conflict indicators, and I⊆the set of all subsets of I.The conflict indicator set M is defined as M∈I⊆with M=∅and m l∈M where l denotes the l–th element of M.The purpose of the conflict indicator set is to choose which single conflict indicators are used to configure a conflict indicator.Note that for the single conflict indicators given in definition1the maximum number n of single conflict indicators is n=4 which limits the possible number of different conflict indicator sets to2n−1=15. Definition3(Conflict Indicator).Assume a case base C with two cases c i,c j∈C and i=j,and M is a conflict indicator set.cInd:I⊆×C×C→{¬consistent,¬incoherent,¬minimal,¬unique,∅}, cInd(M,c i,c j):= |M|l=1cInd m l(c i,c j)Note that for the given single conflict indicators cInd k in definition1the value of |cInd(M,c i,c j)|is0or1for all conflict indicator sets M and pairs of cases c i,c j.The conflict indicator is a composition of the single conflict indicators.The conflict indicator set M determines the configuration of which single conflict indicators are used.The results are the kind of conflicts between two cases or the empty set if all case properties are satisfied.Example2illustrates this behavior.Example2(Conflict Indicator).Assume the cases c1and c6from the case base given in table5and the conflict indicator set M={1,2}and M ={3,4}.Then results are cInd(M,c1,c6)=∅,and cInd(M ,c1,c6)=¬minimal.The conflict graph creates a graphical representation of conflicts between two cases within a case base which are indicated through the conflict indicator.This means that the conflict graph contains all the cases which have conflicts detected by the case properties and connects these cases with a labeled edge.The label depends on the kind of property violation.Definition4formalizes this in a more detailed form.Definition4(Conflict Graph).Assume a case base C={c1,...,c i},a conflict indicator set M,a set of nodes N∈C⊆where C⊆is the set of all subsets of C,and a set of edges E⊆N×N with e jk∈E and e jk defines an edge from node of case c j to node of case c k with label cInd(M,c j,c k)if and only if cInd(M,c j,c k)=∅. The conflict graph G=(N,E,M)is a directed Graph with labeled edges and∀c j∈N,∃c k∈N:cInd(M,c j,c k)=∅and∀c j∈C\N,∀c k∈C:cInd(M,c j,c k)=∅.Note that for some case bases it is possible to have more than one conflict graph which are not connected.For example,if a case base has four cases {c 1,...,c 4}and c 1has only an inconsistency conflict with case c 2,case c 3has only a minimality conflict with case c 4and no other conflicts are detected,then the result would be two conflict graphs with the cases c 1and c 2in the one and the cases c 3and c 4in the other graph.Figure 1shows the conflict graph for the example case base given in table 5.The graph displays thirteen conflicts within the case base.One consistency conflict (c 2,c 4),four incoherence conflicts (c 2,c 3),(c 3,c 2),(c 5,c 6),(c 6,c 5),six minimality conflicts (c 1,c 3),(c 1,c 5),(c 1,c 6),(c 7,c 3),(c 7,c 5),(c 7,c 6),and two uniqueness conflicts which are (c 1,c 7)and (c 7,c 1).Note that with the increasing number of cases the conflict graphFig.1.The conflict graph for table 5can confuse a human observer like the case base administrator.However it is possible to cluster groups of conflict cases and present these groups first with the ability to navigate into these groups.The advantage of the conflict graph in comparison to other representations like ad-jacent lists is the ability to display the cases which do not satisfy the defined case prop-erties in a compact manner.Thus,the case base administrator can decide which cases have to be modified to restore the quality of the case base.However this decision is very complex because the goal is to modify at least as possible cases dependable on the arising costs.The following definitions do support the case base administrator within this task by identifying the cases which should be modified.Hence,the following defi-nitions can help to automate the parts of the restore step within the extended case base reasoning cycle.Definition5(Independent Graph).A Graph G=(N,E,M)with conflict indicator set M is independent if and only if there is no pair of nodes n i,n j∈N for which G defines an Edge e ij∈E.Graph G=(N,E,M)is independent:⇐⇒E=∅An independent graph is the result after the decision is made which cases have to be modified.It is a graph in which the nodes have no edges and therefore no conflicts which each other.For example,if the cases{c1,c3,c4,c5,c6}are removed from the conflict graph infigure1then the resulting graph would be independent.However it is not appropriate to remove too many cases because of the unnecessary loss of knowledge and the costs which appear with each modification of the case base.Note that instead of removing a case other modify operators are possible.For simplicity,in this paper only the remove operator is considered.A list of more sophisticated modify operators can be found in[12].Definition6(Optimal Subset).Assume the conflict graph G=(N,E,M),the set N⊆of all subsets of N,the conflict indicator set M,the cost function cost:N⊆→[0;1],N ∈N⊆,and the graph G =(N ,E ,M)is independent.N is the optimal subset within N⊆:⇐⇒ N ∈N⊆:cost(N )>cost(N ) and the graph G =(N ,E ,M)is independent.Definition6states that the optimal subset of a conflict graph creates an independent graph and is mainly dependable of a cost function.The cost function is an arbitrary function which describes the optimization goal.Example3introduces a cost function for which the search for an optimal subset becomes equivalent to the search for a max-imum independent set.Example3(Maximum Independent Set).Assume a conflict graph G=(N,E,M), a node subset N ∈N⊆,and a cost function cost:N⊆→[0;1],cost(N ):= |N |/|N|.Then the search for an optimal subset is equivalent to the search for a maxi-mum independent set.For the conflict graph infigure1the maximum independent set is(c3,c4,c5),or(c3,c4,c6).Note that the search for a maximum independent set is N P−complete[13].The case base administrator can control the search for an optimal subset on three different ways.If there exists more than one solution for the optimal subset like in example3then thefirst way is to decide which of the possible solution is adequate for the actual situation.The second way is to mark the cases which should be put in the optimal subset.This can totally change the behavior of the algorithm which searches for the optimal subset.For example,if case c1is marked for the conflict graph infigure1, then the optimal subset with the same cost function as in example3is(c1,c2)or(c1,c4) and hence different from the optimal subset without any interaction.Finally,the third way is to mark the cases which should not be included in the optimal subset.Again, this would change the manner of how to search for the optimal subset.For example,if case c5is marked for the conflict graph infigure1,then the optimal subset with cost function like in example3is(c3,c4,c5).4EvaluationThe last section introduced the conflict graph and how it can be used to indicate a subsetof cases which should be changed to restore the quality of the case base.This sectionwill present an evaluation of these conflict graph related techniques for the maintenanceof case–based reasoning systems.4.1Experimental ProcedureTo perform the experiments,the data set of cases is divided into a training set and atest set.The training set becomes the case base and is then used for the case–basedreasoning algorithm.Then each case from the test set is tested against the case basewithin a case–based reasoning algorithm.This implements the benchmark for the otherexperiments and a certain accuracy and case base size is acquired.To achieve the re-maining experiments the training case base is optimized.Thus,the conflict indicator isconfigured with the following conflict indicator sets{{1},{2},{3},{4},{1,2,3,4}}.This means that each single case property was applied on its own as a conflict indicatorand then all properties together.For the optimization the same cost function is chosen asin example3:cost:N⊆→[0;1],cost(N ):=|N |/|N|where N denotes the Nodes in the conflict graph and N ∈N⊆.This means that the search for the optimal subset is N P−complete.Algorithm1is a heuristics to calculate a not necessarily optimal so-lution of the optimal subset for a given graph.The algorithm returns a nodes–collectionwhich is then viewed as the optimal subset and the graph which can build from thenodes–collection is guaranteed to be independent.Algorithm1(Heuristic to calculate the optimal subset for a given graph).nodes–collection:=nodes of graphwhile(nodes–collection does not build an independent graph)n:=node with the maximum number of incoming and outgoing edgesremove node n from nodes–collectionend whilereturn nodes–collectionFurthermore,the optimization’s modify operator is remove and the optimization is doneautomatically without human interaction.After optimizing the case base the test casesare applied to the case base,a level of accuracy is reached,and the case base size isregistered.4.2Experimental ResultsThe aim of the predefined benchmarks and experiments is to show that the representa-tion of the conflict graph and the following search for the optimal subset is applicablefor maintaining case–based reasoning systems.To accomplish this,data of the UCI Machine Learning Repository[6]is taken.Namely,the following case bases are used:Annealing(797cases),Audiology(200cases),Australian(690cases),Credit Screening(690cases),Housing(506cases),Let-ter Recognition(16000cases),Pima(768cases),Soybean(307cases),Voting Records (435cases),and Zoo(101cases).To achieve the results that are presented below,a five–fold cross validation with a basic optimistic nearest neighbor algorithm is used.If numerical attributes did occur they have been pre–processed by a standard equal–width discretization.Table6.Resultsbenchmark consistency incoherence minimality uniqueness all properties case base size acc.size acc.size acc.size acc.size acc.size acc. Annealing637.60.97622.80.97416.00.97532.60.97574.80.97335.60.97 Audiology160.00.70160.00.70144.20.70156.00.70145.20.69128.60.70 Australian552.00.81550.60.81509.40.80552.00.81548.60.81506.00.80 Credit S.552.00.80550.60.80508.80.79551.40.80549.00.79505.60.78 Housing404.80.31404.20.31391.20.30404.80.31401.40.30387.20.30 Letter R.16000.00.8816000.00.8814787.80.8816000.00.8815081.40.8814044.60.88 Pima614.40.65614.40.65575.60.65614.40.65612.00.65573.00.65 Soybean245.60.92244.80.92217.00.92245.00.92243.20.92213.20.92 V oting R.348.00.93344.40.92257.60.93271.60.93280.60.93191.80.93 Zoo80.80.9580.80.9553.80.9580.80.9550.40.9533.40.95 Table6shows that optimization through the case properties keeps the case base con-sistent,incoherent,minimal,and unique and reduces the case base size while preserving the prediction accuracy.For the single case properties as conflict indicators,the case base size is reduced up to34.8%from the original case base for incoherence in the annealing case base and the reduction for all properties as conflict indicator is up to58.7%while the prediction accuracy remains the same as in the benchmark.The combination of all case properties gives each time a better case reduction result than the single case properties.The results vary from0.5%between incoherence and all properties in the pima case base and33.7% between uniqueness and all properties in the zoo case base.In addition,the letter recognition case base with16000cases shows that the de-scribed technique is applicable for large case bases,too.Furthermore,in comparison with the results in[8]which uses a different kind of optimization the results for the prediction accuracy were better and thus more robust against the used case base domain.Moreover,this evaluation used combinations of the case properties while the earlier did not.Another advantage of the optimization used in this evaluation is that it is possible to have an interaction with the case base administrator.This shows that with the help of the conflict graph and the search of an optimal sub-set within this graph it is possible to maintain a case base reasoning system.Furthermore with the interactive help of a case base administrator the results should improve.5Related WorkThe formal definitions of the case properties used for the conflict graph can be found in Reinartz et al.[11].Several additional measures like case base properties,degrees of case properties,and quality measures are defined there,too.Evaluations showing that case properties are valueable for maintaining case–based reasoning systems have been done by Iglezakis et al.[7,8].The extension of the standard case–based reasoning cycle and the definitions of the modify operators werefirst proposed by Reinartz et al.[12].The use of graphs to maintain conversational case libraries(CCL)has been pre-sented by Aha[3]and Aha and Breslow[4,5].The CCL is applied to a transformation process which produces hierarchies.Then the hierarchies are pruned with the help of some design guidelines provided by case–based reasoning vendors.The resulting hier-archies are transformed back into cases of the CCL.Over the years there where different kinds of measures for the maintenance of case–based reasoning systems published.Racine and Yang[9,10]proposed the measures for inconsistency and redundancy for the maintenance of large and unstructured case bases.Furthermore,with the access and use of background knowledge it is possible to differentiate between intra–case and inter–case measures.Smyth and Keane[14] described two different measures—coverage and reachability.The coverage of a case is the set of all problems in the problem area which can be solved by this case through adaptation.The reachability of a case is the set of all cases which are used to solve this case through adaptation.These two measures lead to different strategies how to preserve the competence of the used case base,namely case deletion by Smyth and Keane,and case addition introduced by Zhu and Yang[17].In addition,Smyth and McKenna[15]presented the measures for case density and group density for modeling competent case–based reasoning systems which are case addition strategies,too.More strategies on how to decide which cases should be stored are proposed by the DROP1–DROP5and DEL Algorithms by Wilson and Martinez[16],and Aha’s CBL1–CBL4 algorithms[2].6ConclusionsWith the help of case properties it is possible to create consistent,incoherent,minimal, and unique case bases.These properties have been shown to be valuable in thefield of maintaining case–based reasoning systems.The application of these properties is the first step in a framework for maintaining case–based reasoning systems,to monitor the properties and then if necessary to restore the quality of the case base are the next steps.This paper introduced a novel method to visualize conflicts between cases which are detected by the case properties and how to use this presentation to maintain a case base. This is accomplished by formal definitions of the conflict graph and the optimal subset. The subsequent evaluations showed that the proposed concepts and methods are usefulfor maintaining case–based reasoning systems,by reducing the size of the evaluated case bases and preserve the prediction accuracy while satisfy the case properties.Further tasks appear on both sides of the review–restore chain of the extended case–based reasoning cycle.At the beginning of the chain,the case properties can be ex-tended by the use of the similarity measures.This would allow the application of the case properties moreflexibility in use.On the other side of the chain the use of other modify operators than remove(cf.Reinartz et al.[12])provides a strong technique for not only reducing the case base size but also for changing the cases which have conflicts and therefore increasing the quality of the case base.This would yield to an approach which does improve the cases rather than remove them.AcknowledgmentsThe author is grateful to Thomas Reinartz(DaimlerChrysler,Research&Technology, FT3/AD)and Thomas Roth–Berghofer(tec:inno—empolis knowledge management GmbH)for the fruitful discussions and continual support.References1.Agnar Aamodt and Enric Plaza.Case–based reasoning:Foundational issues,methodologicalvariations,and system approaches.AI Communications,7(1):39–59,1994.2.David W.Aha.Case–based learning algorithms.In Proceedings of the DARPA Case–BasedReasoning Workshop,pages147–158.Morgan Kaufmann,1991.3.David W.Aha.A proposal for refining case libraries.In Proceedings of the5th GermanWorkshop on Case–Based Reasoning(GWCBR),1997.4.David W.Aha and Leonard A.Breslow.Learning to refine case libraries:Initial results.Technical Report AIC–97–003,Navy Center for Applied Research in AI,1997.5.David W.Aha and Leonard A.Breslow.Refining conversational case libraries.In Proceed-ings of the Second International Conference on Case–Based Reasoning,pages267–278, 1997.6.Catherine L.Blake and Christopher J.Merz.UCI repository of machine learning databases,1998.7.Ioannis Iglezakis and Christina E.Anderson.Towards the use of case properties for main-taining case based reasoning systems.In Proceedings of the Pacific Knowledge Acquisition Workshop(PKAW),pages135–146,2000.8.Ioannis Iglezakis,Thomas Roth–Berghofer,and Christina E.Anderson.The applicationof case properties in maintaining case–based reasoning systems.In Professionelles Wis-sensmanagement:Erfahrungen und Visionen(includes the Proceedings of the9th German Workshop on Case–Based Reasoning(GWCBR)),pages209–219.Shaker Verlag,2001. 9.Kirsti Racine and Qiang Yang.On the consistency management of large case bases:the casefor validation.In Proceedings of the AAAI–96Workshop on Knowledge Base Validation, American Association for Artificial Intelligence(AAAI),pages84–90,1996.10.Kirsti Racine and Qiang Yang.Maintaining unstructured case bases.In Proceedingsof the2nd International Conference on Case–Based Reasoning(ICCBR),pages553–564.Springer–Verlag,1997.11.Thomas Reinartz,Ioannis Iglezakis,and Thomas Roth–Berghofer.On quality measuresfor case base maintenance.In Proceedings of the5th European Workshop on Case–Based Reasoning,pages247–259.Springer–Verlag,2000.。