当前位置:文档之家› 基于ARM9的直流电机控制系统的设计

基于ARM9的直流电机控制系统的设计

基于ARM9的直流电机控制系统的设计
基于ARM9的直流电机控制系统的设计

基于ARM9的直流电机控制系统的设计

沈阳航空航天大学

2010年6月

摘要

随着我国经济的高速发展,微电子技术、计算机技术和自动控制技术也得到了迅速发展,直流电机调速技术已经进入一个崭新的时代,其应用越来越广。而作为控制核心的各种单片机芯片也在不断的更新发展,其功能越来越强大。随着人们对其要求的提高,直流电机控制系统的调速方法也相应的产生了PWM(脉宽调制技术),其控制芯片也由原来常用的51单片机系列升华为ARM系列的控制实验板。本设计基于ARM9开发板的直流电机控制系统的调速,以显示ARM开发板的独特功能,利用脉宽调制技术,调节占空比以达到调节转速的目的,将测得的数据传给上位机后进行观测。设计大体上分为硬件设计和软件设计两部分,硬件部分包括驱动模块,控制模块,数据检测模块以及通信模块,软件部分包括程序设计,两大部分实现了对电机转速的监测和控制,更好的确保了设计的准确性。通过合理的选择和设计提高了直流电机控制系统调速的技术,学习和研究新型控制芯片,使设计达到了较为理想的控制效果是本设计的宗旨。

关键词:ARM9开发板;PWM技术;PID调节功能

Abstract

Along with the rapid development of Chinese economy, microelectronics technology, computer technology and automatic control technology is rapidly developing, dc motor control technology has entered a new era, the more and more wide application. As the core of MCU control chip are constantly updated development, its function and more powerful.As for the people, the control system of dc motor control method and the corresponding produce the pulse width modulation (PWM) and its control chip technology is used by the original sublimated 51-series microcomputer series of control board ARM series. The design is based on ARM9 development board of the control system of dc motor speed, in order to show the ARM development board, using the unique function of PWM technology, SHCH adjustment in order to achieve the goal, will adjust speed measurement data to PC and software it. General design of hardware design and software design is divided into two parts, hardware part includes driver module, control module, data communication module, and the software module includes programming module, two most of the monitoring and control motor speed, better ensure the accuracy of the design.Through the reasonable selection and design of dc motor control system to improve the speed of technology, learning and research, new control chip design to the ideal control effect is the design purpose.

Keywords: ARM9 Board; PWM;PID Adjustment Function

目录

1绪论 (1)

1.1毕业设计立题意义 (1)

1.2研究内容及目标 (3)

1.3 毕业设计内容分析 (3)

2总体方案设计 (4)

2.1直流电机控制系统的总体设计思想 (4)

2.2硬件部分设计 (5)

2.3软件部分设计 (5)

3硬件设计方案 (6)

3.1 ARM9开发板简介 (6)

3.2 驱动模块设计 (7)

3.2.1 S3C2440芯片简介 (7)

3.2.2 SPGT62C19B电机控制模组简介 (8)

3.3数据检测模块设计 (10)

3.3.1 PWM技术简介 (10)

3.3.2直流电机电枢PWM调压调速原理 (10)

3.3.3直流电机调速系统的整体结构 (11)

3.3.4 ARM的脉宽调制PWM描述 (11)

3.4控制模块设计 (13)

3.5 通信模块设计 (14)

3.5.1 RS232的串口通信接线 (14)

3.5.2 串口通信 (15)

4软件方案设计 (17)

4.1 系统软件设计步骤 (17)

4.2 编程环境设置 (19)

4.3 程序设计 (20)

4.3.1系统初始化 (20)

4.3.2中断子程序设计 (21)

4.3.3 PWM调速程序设计 (22)

4.3.4 串口通信程序设计 (23)

5直流电机控制系统综合调试与分析 (25)

5.1 硬件电路调试 (25)

5.2 利用H-JTAG调试程序 (26)

5.3系统联调结果与分析 (27)

结论 (29)

社会经济效益分析 (30)

参考文献 (31)

致谢 (32)

附录ⅠS3C2440A芯片原理图 (33)

附录Ⅱ程序清单 (34)

1绪论

随着我国经济的高速发展,微电子技术、计算机技术和自动控制技术也得到了迅速发展,直流电机调速技术已经进入一个崭新的时代。然而,电机调速的方法有很多,比如说变极对数调速法,变频调速法,串级调速法,绕线式电动机转子串电阻调速法,定子调压调速法,电磁调速法等。但是在某些条件下,直流电机调速具有其特有的优势。

为了提高生产率和保证产品质量,大量的生产机械要求直流电机以不同的速度工作。这就要求人们采用一定的方法来改变机组的转速,即对直流电机进行调速。对电机的转速不仅要能调节,而且要求调节的范围宽广,过程平滑,调节的方法要简单、经济。直流电机在上述方面都具有独到的优点,使它得到广泛的应用。本文针对直流电机具有起动转距大、体积小、重量轻、转矩和转速容易控制以及效率高等十分优良的特点, 根据自动控制原理, 采用PWM控制方式, 设计了一个直流电机控制系统,以更好地对直流电机进行精确而又迅速的控制。

1.1毕业设计立题意义

直流电机是常用的动力提供原件,在日常生活中占据着十分重要的地位,研究直流电机的速度控制,有十分重要的意义。驱动电机选用直流电机,这是因为直流电机具有优越的速度调节控制性能,具有较大的转矩,用以克服装置的摩擦阻力和负载转矩,调速范围宽而且速度平稳,具有快速响应能力,可以适应复杂的速度变化,直流电机的负载特性硬,有较大的过载能力,可以确保运行速度不受负载冲击的影响。

ARM是近年来发展非常迅速的处理器,有很好的应用前景。ARM,既可以认为是一个公司的名字,也可以认为是对一类微处理器的通称,还可以认为是一种技术的名字。ARM处理器是现代非常流行及重要的一款芯片,其拥有良好的发展性,有广泛的应用领域。ARM公司自1990年正式成立以来, 在32位RISC (Reduced Instruction Set Computer CPU开发领域不断取得突破,其结构已经从V3发展到V6。由于ARM公司自成立以来,一直以IP(Intelligence Property)提

供者的身份向各大半导体制造商出售知识产权,而自己从不介入芯片的生产销售,加上其设计的芯核具有功耗低、成本低等显著优点,因此获得众多的半导体厂家和整机厂商的大力支持,在32位嵌入式应用领域获得了巨大的成功,目前已经占有75%以上的32位RISC嵌入式产品市场。在低功耗、低成本的嵌入式应用领域确立了市场领导地位。现在设计、生产ARM芯片的国际大公司已经超过50多家,国内中兴通讯和华为通讯等公司也已经购买ARM公司的芯核用于通讯专用芯片的设计。

将其应用在直流电机的调速控制中,有极大的实用价值。以脉宽调制技术为代表的电机数字驱动技术也在迅猛发展,将计算机应用于这一领域正好可以发挥其在数字方面控制的优势。微电子技术和计算机技术的发展,为计算机控制技术的发展和应用奠定了坚实的基础。可以这样说,没有微处理器的仪器不能称为仪器,没有微型机的控制系统,更谈不上现代工业控制系统。随着微型计算机,超大规模集成电路,新型电力电子开关器件和传感器的出现,以及自动控制理论和电力电子技术以及计算机控制技术的深入发展,直流传动系统也在不断发展。

直流电机是常用的动力提供元件,在日常生活中占据着重要的地位。直流电机是最常见的一种电机,在各领域中得到广泛应用。研究直流电机的速度控制,有着非常重要的意义。研究直流电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。本方案以ARM9为控制核心,实现普通直流电机的转速测量和转速调节功能,为进一步研究和优化直流电机控制方法提供基础。

直流电机控制系统的转速控制方法可分为两类,即励磁控制法和电枢电压控制法。通常的方法是改变输入端电压对电枢电压的控制,继而实现对转速的改变,本次毕业设计实验将使用ARM9来实现对输入端电压的控制,从而对ARM的直流电机控制系统的设计与调速作深入研究,并对其监检测方面进行研究。

PWM(Pulcsi Wdht Mdoluatino)脉宽调制技术是直流电机调速中最为有效的方法,即给直流电机输入高速的开关脉冲信号,通过改变脉冲信号开关的比例,达到速度控制的效果。简单的解释是,由于在ON的时间内施加电压,OFF的时间内切断电压,电机的转动将是断续的。不过在脉冲波段的OFF区段,电机线圈内部储存的能量能够产生续流二极管流动的电流,因此得以继续维持转动。PWM调速的基本思想是:以通过电机的平均电压和电流作比较,40%的时间接通电源的电机比20%

的时间接通电源的电机要大。当电机没有接通电源时,它完全不消耗能量,这一点正是其高效率的原因。PWM 技术是降低直流电机功耗的一种好方法,它使驱动芯片和电机的发热减少,从而电机也可以用得更久。在工业控制中,按偏差的比例P、积分I和微分D进行控制的PID调节器现在得到广泛的应用。在小型微型计算机用于生产过程以前,连续过程系统中采用的气动、液动和电动的PID调节器几乎占垄断地位。由最优控制理论可以证明,它能适应不少工业控制对象的要求。单片机控制技术不断发展,特别是软件PID算法控制器的使用,代替了原来很多的硬件PID 调节器,在工业控制系统和嵌入式系统中得到广泛的应用。

1.2研究内容及目标

利用ARM9实验板及直流电机实验板实现直流电机转速测量和调节。使系统实现下列功能:

(1)可通过ARM实验板上的按键设定电机的转动方向、转速;

(2)可对电机进行转速调节,实时测量电机的实际转速,并通过RS232总线把转速传给上位机;

本次毕设要达到的指标是电机驱动电路采用集成电路SPGT62C19B电机模组,可以驱动电压46V,电流2A以下的电机;电机转速调节范围30—60转/秒,转速误差值不大于1转/秒。

1.3 毕业设计内容分析

本设计的主要目的是对直流电机控制系统的转速测量和监控做一个系统的设计,由上位机,也就是电脑,和下位机进行通讯,控制整个系统的运行。其次下位机包括ARM9开发板,它作为控制核心发布指令,由驱动模组带动直流电机旋转,再由串口将所得数据传输给上位机。大体需要以下几个准备步骤:

首先,了解整个设计所涉及到的知识点,搜集资料加以学习。

其次,根据设计的要求和需要选择硬件,包括直流电机和电阻等。

再次,设计SPGT直流电机驱动模块和速度检测模块电路,并完成硬件搭建。

最后,制定上下位机通信协议,将采用RS-232C来实现串口通信。

2总体方案设计

直流电机控制系统的设计,重点在于上位机和下位机功能的串联,硬件和软件的相互联调。本设计的主要目的是测量监控电机的转速,那么选用何种方法调节转速就是关键问题。与此同时,测得的数据或多或少存在误差,在此设计的基础上,如何有的加进一些措施来调节误差,误差控制在一定范围也是值得讨论的。

2.1直流电机控制系统的总体设计思想

本设计的思想将分为两大部分进行,一是由上位机组成的软件部分的设计,这一部分包括程序的编写。二是由ARM9开发板和驱动电路板等组成的下位机,称之为硬件部分,包括驱动模块,控制模块,数据检测模块以及通信模块。本设计的主要工作是基于ARM9的直流电机调速系统的设计,从内容上也分为软件和硬件的两大部分来设计。最后还要在硬件软件相应完成的基础上进行调试,所以本次课题设计内容安排可分为三个步骤。第一步骤是硬件设计,包括方案主要模块的电路设计、元器件的选择等。具体的硬件电路是SPGT驱动模块和速度检测模块两大电路。先对每一个模块的各个芯片测试成功后,再焊接其对应的整个模块电路,且每一部分都要进行单独调试,各个部分调试成功后,联接调试整个硬件电路,对在途中出现的错误进行分析和改正,最后得出结论。第二步骤是软件设计,软件采用C语言编写,软件设计的思想主要是自顶向下,模块化设计,逐一设计各个子模块,分别进行调试,最后的连调整个程序,判断是否达到预期的要求,做出结论。第三步骤硬件模块调试都成功的前提下,进行硬、软件连调。

2.2硬件部分设计

这一部分是由驱动模块,控制模块,数据检测模块以及通信模块组成的。用到的硬件有ARM9开发板,直流电机,SPGT62C19B 电机模组以及一些检测设备。以ARM9开发板为控制核心SPGT62C19B 模组驱动电机,由光电开关接收的信号通断频率来测算电机转速将直流电机的转动信息,反馈给 ARM9实验板。系统的结构框图如图2.1所示。

图2.1控制系统结构框图 ARM9作为主控芯片,通过I/O 端口来控制SPGT 电机模组,实现对直流电机的控制。速度检测设备将直流电机的转速信息反馈给ARM9开发板,ARM9针对实际测得的转速来调节SPGT 模组的状态,让其达到预设值大小。同时,上位机在对其进行调节。

2.3软件部分设计

软件部分涉及到编程。本系统使ARM9平台,运用ARM9编程语言,在CodeWarrior for ARM Developer Suite 软件平台进行开发。编写程序的主导思想是自顶向下,模块化设计,主要分为测速程序,PWM 调解程序,中断程序,PID 算法程序,其中,定义端口也尤为主要。 上位机 (PC) ARM9 (S3c2440) SPGT62C 19B 直流 电机 串 口 通 信 GPB1/PWM5 GPG5 GPG6

转向控制 转速控制

3硬件设计方案

3.1 ARM9开发板简介

根据本课题设计的任务要求,须采用ARM9作为开发平台,因此本课题设计的控制电路由以ARM9开发板及其外围电路构成,其布局结构如图3.1所示。

图3.1 ARM9开发板实物图

ARM9开发板硬件资源特性介绍如下:

(1)CPU处理器:Samsung S3C2440A,主频400MHz,最高533Mhz;

(2)SDRAM内存:64M SDRAM,32bit数据总线,SDRAM时钟频率

高达100MHz;

(3)FLASH存储:64M Nand Flash,2M Nor Flash,已安装BIOS;

(4)LCD显示:标配NEC 256K色240x320/3.5英寸TFT真彩液晶触摸

屏;

(5)接口和资源:3个串行口,1个USB Host,1个2.0mm间距10针

JTAG接口,4 USER Leds,电源接口(5V),带电源开关和指示灯等等;

(6)系统时钟源:12M无源晶振;

(7)实时时钟:内部实时时钟(带后备锂电池);

(8)扩展接口:1个34 pin 2.0mmGPIO接口,1个40 pin 2.0mm 系统总

线接口。

ARM9开发版是具有很高性价比一款16/32位单片机,支持标准C语言,可以实现C语言与汇编语言的互相调用,ARM9开发板是以Samsung公司32位处理器为核心的开发板,开发板除了具备最小系统电路外,还包括电源电路、音频电路(含MIC输入部分和DAC音频输出部分)、复位电路等,在掌握软件设计的同时,熟悉其硬件的设计制作,锻炼动手能力。而且它的体积小,采用外部电源供电,方便携带。开发板上有CMOS摄像头、USB、双声道音频输、LCD、音频输入等接口,此开发板还可以通过RJ45网络座实现网络远程控制,配合Code Warrior for ARM Developer Suite、AXD Debugger、H-Flasher和H-JTAG软件可方便地在板上实现程序的下载及调试等工作。

3.2 驱动模块设计

3.2.1 S3C2440芯片简介

S3C2440是一款低价实用的ARM9开发板,是目前国内性价比最高的一款学习板;它采用SamsungS3C2440为微处理器,并采用专业稳定的CPU内和电源芯片和复位芯片来保证系统运行时的稳定性。S3C2440的PCB采用沉浸工艺的四层板设计,专业等长布线,保证关键信号线的信号完整性,生产采用机器贴片,批量生产;出厂时都经过严格的质量控制。本设计主要是了解嵌入式设计芯片S3C2440,这款芯片有着强大的功能,了解这款芯片的引脚功能是最关键也是最重要的一个环节。这款芯片集成了51系列单片机所有的功能,且具备了普通51单片机所没有的功能,是普通单片机所不能比拟,具体引脚功能如图3.2:

图3.2 S3C2440芯片内部结构图

3.2.2 SPGT62C19B电机控制模组简介

SPGT62C18B电机控制模组是为学生以及单片机爱好者学习步进电机和直流电机控制而设计的学习套件。模组采用凌阳SPGT62C19B电机驱动芯片,配置两相步进电机和直流电机各一台,并提供4位LED数码管用来显示电机转速等信息。模组针对SPCE061A单片机设计,可以方便的用排线与SPCE061A精简开发板(即“61板”)连接,可作为单片机教学,产品开发前期验证等辅助工具使用。模组的平面如图3.3。

图3.3电机控制模组结构图

上述结构图中各部分说明如下:

电机控制接口:模组与单片机的接口,为10PIN排针,可以直接与“61板”连接,实现电机控制。

数码管控制接口:模组与单片机的接口,为两组10PIN排针,可以直接与“61板”连接,实现对4位LED数码管的控制。

SPGT62C19B:电机驱动芯片,可驱动一台双极性两相步进电机,或者两台直流电机。

外接电源指示灯:SPGT62C19B电机驱动芯片的逻辑控制电源与电机驱动电源是各自独立供电的,可以外接5V~12V的电机驱动电源。当接通了电机驱动电源时,外接电源指示灯会亮。

外接电源插座:为SPGT62C19B提供电机驱动电源的插座。共有两组电源插座,分别为2PIN针座(可接61板电池盒或其他直流电源)和DC稳压电源插座(可接直流稳压电源)。使用时可选择其中一组插座作为电机驱动电源输入端。

3.3数据检测模块设计

数据检测主要是测速,将测得的速度传给上位机。光电开关通过接收的信号通断频率来测算电机转速将直流电机的转动信息,反馈给 ARM9实验板。

3.3.1 PWM 技术简介

PWM(Pulcsi Widht Mdoluatino)脉冲宽度调制技术就是通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)的技术。

根据 PWM 控制技术的特点,到目前为止主要有八类方法:相电压控制PWM 、线电压控制PWM 、电流控制PWM 、空间电压矢量控制PWM 、矢量控制PWM 、直接转矩控制PWM 、非线性控制PWM 、谐振软开关PWM 。

3.3.2直流电机电枢PWM 调压调速原理

随着计算机进入控制领域,以及新型的电力电子功率元器件的不断出现,采用全控型的开关功率元件进行脉宽调制的PWM 控制方式已成为主流。这种控制方式很容易在单片机控制中实现,从而为直流电动机控制数字化提供了契机。

直流电机转速n 的表达式为:

φK IR U n -= (3.1)

式(3.1)中U 为电枢端电压,I 为电枢电流,R 为电枢电路总电阻,φ为每极磁通量,K 为电动机结构参数。

电动机的电枢绕组两端的电压平均值Uo 为:

s s s O U U T

t t t U t U α==++=12110 (3.2) 其中,α称为占空比,T t 1=

α。 占空比α表示了在一个周期T 里开关管导通的时间与周期的比值。α的变化范围为10≤≤α。由式(3.2)可知,当电源电压Us 不变的情况下,电枢的端电压的平均值U 0取决于占空比α的大小,改变α值就可以改变端电压的平均值,从而达到调速的目的,这就是PWM 调速原理。

在PWM调速中,占空比α是一个重要参数。在直流电机控制中,改变α来实现调速主要方法是定频调宽法:使周期T(或频率)保持不变,而同时改变t1和t2。

PWM控制信号的产生方法:新一代的单片机增加了许多功能,其中包PWM功能。单片机通过初始化设置,使其能自动地发出PWM脉冲波,只有在改变占空比时CPU才进行干预。这种方法是目前获得PWM信号的主流方法,本控制系统采用此方法产生PWM信号。

3.3.3直流电机调速系统的整体结构

整个直流电机调速系统采用一种上位机、下位机二级分布式结构。上位机负责整个系统管理和计算等,下位机ARM输出PWM信号控制电机转速。下位机采用Samsung公司的S3C2440A芯片,通过串口与上位机通信,ARM接收上位机的控制指令以实现所要求的功能。上位机控制电机运行,ARM不能自主控制电机转速,上位机和ARM之间通过串口进行实时通信。上位机接收用户输入,并转换为PWM 占空比和转向信息,并按照通信协议发送给下位机。下位机ARM接收到上位机正确的数据指令后,根据指令决定PWM5占空比输出和引脚(PO.16和PO.17)的输出,并向上位机返回应答信息。下位机子系统为整个系统的核心子系统,下位机系统决定整个系统的性能。ARM 上运行实时嵌入式系统以保证系统的实时性和高效性。

3.3.4 ARM的脉宽调制PWM描述

ARM处理器有7个PWM匹配寄存器,可实现6个单边沿控制或3个双边沿控制PWM输出,或者这两种类型的混合输出:

(1) 连续操作,可选择在匹配时产生中断;

(2) 匹配时停止定时器,可选择产生中断;

(3) 匹配时复位定时器,可选择产生中断。

单边沿控制PWM输出在每个周期开始时总是高电平,除非输出保持恒定低电平。双边沿控制PWM输出可在一个周期内的任何位置产生边沿,这样可同时产生正脉冲和负脉冲。

脉冲周期和宽度可以是任何的定时器计数值,这样可实现灵活的分辨率和重复速率的设定。所有PWM输出都以相同的重复速率发生。

PWM脉冲频率由TCNTBn(timern计数缓冲器)决定。PWM脉冲宽度值TCMPBn(timern比较缓存寄存器)的值来决定。要得到一个较低的PWM脉宽输出值,就可以减少TCMPBn的值,反之亦然。如果输出反转器使能,增加和减少的结果也将是反转的。基于双缓冲器的特性,下一个PWM周期的TCMPBn的值可以通过ISR或其它手段,在当前PWM周期中的任何一点写入。即在程序中可以通过中断重新设定TCMPBn的值来改变电机的转速。缓冲区TCMPBn,TCNTBn的值不一定等于这个周期的TCMPn,TCNTn的值,但一定是TCMPn,TCNTn的下一个周期的值。

在S3C2440中,每个定时器具有一个倒计时器,通过定时器时钟源驱动16位倒计时寄存器TCNTn。定时器启动前,要向TCNTBn(定时计数缓冲区寄存器)写入一个初始值,这个值在定时器启动时载入到TCNTn(倒计时器)中。在定时器的TCMPBn(比较缓冲器寄存器)中同样也要写入一初始值,运行时用来载入到TCMPn(比较寄存器)中与TCNTn(倒计时器)的值相比较。系统启动时,需要通过置手动刷新位的方式,将TCMPBn和TCNTBn这两个缓冲区的值载入到TCMPn和TCNTn中。TCMPBn和TCNTBn这两个缓冲区的应用(即双缓冲器)使定时器能够在频率和占空比同时变化时,仍然产生一个稳定的输出。

一般启动定时器的步骤如下:

1)将初始值写入到TCNTBn和TCMPBn中;

2)设置对应定时器的自动重载位;

3)设置对应定时器的手动更新位,反向器置为off状态;

3)设置对应定时器的启动位来启动定时器,同时清除手动更新位。

系统使用PWM5输出控制一个电机的转速,改变对应的PWM输出,就可以实现电机速度的控制。

3.4控制模块设计

控制模块的作用主要是控制直流电机的转向和转速。变换电机的转向是靠在上位机的编程语言里设定中断功能,而控制电机转速,接近于设定值是靠PID 调节来控制的。直流电机的转速框图如下:

控制器 - 检测装置

直流电机 n *

n

n *:设定转速

n :检测速度 n

驱动器

图3.4 直流电机控制系统闭环结构框图

此系统属于单闭环调速系统,测得的速度与上位机设定的速度存在误差ΔN,需要控制器进行调节,其中控制器采用的控制方式是PID 控制,消除稳定偏差,PID 控制器由比例单元(P )、积分单元(I )和微分单元(D )组成。其输入e (t)与输出u (t)的关系为:

u(t)=kp(e((t)+1/TI∫e(t)dt+TD*de(t)/dt) 式中积分的上下限分别是0和t ,因此它的传递函数为:G(s)=U(s)/E(s)=kp(1+1/(TI*s)+TD*s),其中kp 为比例系数; TI 为积分时间常数; TD 为微分时间常数。

在直流电机调速系统中,数字PID 是一种比较成熟的算法。数字PID 算法的大致原理是,将设定速度与实际速度之间的偏差记为e ,利用e 的比例、积分和微分通过线性组合构成的控制量U 去控制对象。数字PID 算法的表达式如下:

001])([U e e T T e T T e K U K j k k d j K k P K +-++=∑=- (3.3)

其中k e 为第k 个采样时刻的速度偏差值,可演化为增量式数字PID 算法表达式:

1211)2()(----++-++-=k k k k d k i k k p K U e e e C e C e e C U

(3.4)

式中,p C 、i C 、d C 分别为比例、积分、微分系数。 这样,只需确定p C 、i C 和d C 的值即可实现对K U 的控制。在本系统中,K U 作为控制电机转速的PWM 信号的占空比。

简单来说,PID 控制器各校正环节的作用如下:

(1) 比例环节:成比例地反映控制系统的偏差信号)(t error ,偏差一旦产生,控制器立即产生控制作用,以减少偏差。

(2) 积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分时间常数I T ,I T 越大,积分作用越弱,反之则越强。

(3) 微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号变化得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。

PID 控制因其所具有的算法简单、易于实现等特点,至今仍然是工业控制领域应用最广泛的控制方法之一。

3.5 通信模块设计

系统上位机与下位机之间的距离只有数米,干扰相对较少,数据传输的可靠性并不构成问题,每次要求传输的数据量也不大,所以系统采用串口进行通信。

上位机与AEM9之间的串口通信,包括上位机的串口操作和自定义通信协议的实现。上位机部分检验用户输入,并转换用户输入为PWM 占空比和电机转向信息,根据通信协议要求的格式打包发送,并检验收到的应答包,提示通信是否成功。

3.5.1 RS232的串口通信接线

在上位机(PC 机)进行串口通信时,使用了十几条线进行信号传输。要开发串口通信程序,至少要了解其中五条线的名称及其作用:

DTR 线:用于传输上位机发往串口设备的信号,该信号表示上位机是否已经准备好;

RTS 线:用于传输上位机发往串口设备的信号,该信号表示上位机是否允许设备发数据;

DSR 线:用于传输上位机发往串口设备的信号,该信号表示设备是否已经做好操作准备;

CTS 线:用于传输上位机发往串口设备的信号,该信号表示设备是否允许发送数据;

CD线:用于传输上位机发往串口设备的信号,该信号表示设备已经和远方的设备建立了联系。

3.5.2 串口通信

串口是计算机上一种非常通用设备通信的协议。大多数计算机包含两个基于RS232的串口。串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS-232口。同时,串口通信协议也可以用于获取远程采集设备的数据。RS-232(ANSI/EIA-232标准)是IBM-PC及其兼容机上的串行连接标准。可用于许多用途,比如连接鼠标、打印机或者Modem,同时也可以接工业仪器仪表。用于驱动和连线的改进,实际应用中RS-232的传输长度或者速度常常超过标准的值。RS-232只限于PC串口和设备间点对点的通信。RS-232串口通信最远距离是50英尺。

系统采用串口通信接口来实现上位机与ARM9开发板相连,串行口是计算机的一种标准接口。现在的上位机一般至少有两个串行口COM1和COM2。串口通信接口标准是在RS232标准的基础上经过改进而形成的。上位机中的每一个COM口都是由UART(通用异步接收发送器)控制的异步串行端口。上位机为每一个串口都保留一系列的端口资源,大多数都有一个指定中断的请求(IRQ)或者中断请求级别。

CPU对串口的控制方式是中断处理方式。串行接口包括4个主要的寄存器,即控制寄存器,状态寄存器,数据输入寄存器及数据输出寄存器。控制寄存器是用来接受CPU送给此接口的各种控制信息,而控制信息决定接口的工作方式。状态寄存器的各位为状态位,每一个状态位都可以用来指示传输过程中的某一个错误或者当前传输状态。数据输入存储器总是和串行输入并行输出移位寄存器配对使用。在输入过程中,数据一位一位从外部设备进入接口的移位寄存器,当接收完1个字符以后,数据就从移位寄存器送到数据输入寄存器,在等待CPU来取走。输出的情况和输入过程类似,在输出过程中,数据输出1个数据后,数据便传输到移位寄存器,然后一位一位地通过输出线送到外设。

直流电机转速控制

直流电机转速控制公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

直流电机转速控制 课程设计 姓名: 学号: 班级:

目录 1.直流电机转速控制方案设计 (2) 设计要求 (2) 设计框图 (2) 2.直流电机转速控制硬件设计 (3) 主要器件功能 (3) 硬件原理图 (6) 3.直流电机转速控制软件设计 (7) 4.调试 (8) 硬件测试 (8) 软件调试……………………………………………………………(11

1.直流电机转速控制方案设计 设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。 1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 设计框图 本课题中测量控制电路组成框图如下所示:

图1 2.直流电机转速控制硬件设计 主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电源正端为VCC,电源地为GND。 2、ZLG7290的核心是一块ZLG7290B芯片,它采用I2C接口,能直接驱动8位共阴式数码管,同时可扫描管理多达64只按键,实现人机对话的功能资源十分丰富。除具有自动消除抖动功能外,它还具有段闪烁、段点亮、段熄灭、功

PWM控制直流电机的系统的设计

电力电子与电机拖动综合课程设计 题目: PWM控制直流电机的系统 专业: 05自动化 学号: 200510320219 姓名:张建华 完成日期: 指导教师:李晓高

电力电子与电机拖动综合课程设计任务书 班级:自动化05 姓名:张建华指导老师:2008年6月10日 年月日

目录

1 引言 直流电机由于具有速度控制容易,启、制动性能良好,且在宽范围内平滑调速等特点而在冶金、机械制造、轻工等工业部门中得到广泛应用。直流电动机转速的控制方法可分为两类,即励磁控制法与电枢电压控制法。励磁控制法控制磁通,其控制功率虽然小,但低速时受到磁饱和的限制,高速时受到换向火花和换向器结构强度的限制;而且由于励磁线圈电感较大,动态响应较差。所以常用的控制方法是改变电枢端电压调速的电枢电压控制法。调节电阻R即可改变端电压,达到调速目的。但这种传统的调压调速方法效率低。随着电力电子技术的进步,发展了许多新的电枢电压控制方法,其中PWM(脉宽调制)是常用的一种调速方法。其基本原理是用改变电机电枢(定子)电压的接通和断开的时间比(占空比)来控制马达的速度,在脉宽调速系统中,当电机通电时,其速度增加;电机断电时,其速度减低。只要按照一定的规律改变通、断电的时间,即可使电机的速度达到并保持一稳定值。最近几年来,随着微电子技术和计算机技术的发展及单片机的广泛应用,使调速装置向集成化、小型化和智能化方向发展。 本电机调速系统采用脉宽调制方式, 与晶闸管调速相比技术先进, 可减少对电源的污染。为使整个系统能正常安全地运行, 设计了过流、过载、过压、欠压保护电路, 另外还有过压吸收电路。确保了系统可靠运行。 2 系统概述 2.1 系统构成 本系统主要有信号发生电路、PWM速度控制电路、电机驱动电路等几部分组成。整个系统上采用了转速、电流双闭环控制结构,如图1所示。在系统中设置两个调节器,分别调节转速和电流,二者之间实行串级连接,即以转速调节器

一种无刷直流电动机控制系统设计

一种无刷直流电动机控制系统设计

————————————————————————————————作者:————————————————————————————————日期:

一种无刷直流电动机控制系统设计 摘要:介绍了MOTORALA公司专门用于无刷直流电机控制的芯片MC33035和 MC33039的特点及其工作原理,系统设计分为控制电路与功率驱动电路两大部分,控制电路以MC33035/33039为核心,接收反馈的位置信号,与速度给定量合成,判断通电绕组并给出开关信号。在驱动电路设计中,采用三相Y联结全控电路,使用六支高速MOSFET 开关管组成。通过实验,电机运行稳定。 关键词:无刷直流电机;MC33035/33039;控制电路;驱动电路 Design of control system for Brushless DC Motors SUN GuanQun;SHI Ming;TONG LinYi;XU YiPing Abstract:It introduces the MOTORALA company used for the characteristics o f the chip MC33035 and MC33039 which control the brushless direct curren t motor exclusively and its work principle. The system design divides into tw o major parts: the control circuit and the power driver circuit, the control circ uit take MC33035/33039 as the core, receive feedback position signal, with th e speed to the quota synthesis, the judgment circular telegram winding and p roduces the switching signal. In the actuation circuit design, uses the three-p hase Y joint all to control the electric circuit, uses six high speed MOSFET swit ching valve to compose. Through the experiment, the electric motor moveme nt stable is reliable. Keywords:Brushless DC motor;MC33035/33039;control circuit;drive circuit 1.引言 永磁直流无刷电机是近年来迅速成熟起来的一种新型机电一体化电机。该电机由定子、 转子和转子位置检测元件霍尔传感器等组成,由于没有励磁装置,效率高、结构简单、工作特 性优良,而且具有体积更小、可靠性更高、控制更容易、应用范围更广泛、制造维护更方便 等优点,使无刷电机的研究具有重大意义。 本系统设计是利用调压调速,根据调整供电PWM电源的占空比进而调整电压的方式实 现。本设计采用无刷直流电机专用控制芯片MC33035,它能够对霍尔传感器检测出的位置 信号进行译码,它本身更具备过流、过热、欠压、正反转选择等辅助功能, 组成的系统所需 外围电路简单,设计者不必因为采用分立元件组成庞大的模拟电路,使得系统的设计、调试 相当复杂,而且要占用很大面积的电路板。 MC33035和MC33039这两种集成芯片也可以方便地完成无刷直流电动机的正反转、 运转起动以及动态制动、过流保护、三相驱动信号的产生、电动机转速的简易闭环控制等。

直流电机PWM调速与控制设计报告

综合设计报告 单位:自动化学院 学生姓名: 专业:测控技术与仪器 班级:0820801 学号: 指导老师: 成绩: 设计时间:2011 年12 月 重庆邮电大学自动化学院制

一、题目 直流电机调速与控制系统设计。 二、技术要求 设计直流电机调速与控制系统,要求如下: 1、学习直流电机调速与控制的基本原理; 2、了解直流电机速度脉冲检测原理; 3、利用51单片机和合适的电机驱动芯片设计控制器及速度检测电路; 4、使用C语言编写控制程序,通过实时串口能够完成和上位机的通信; 5、选择合适控制平台,绘制系统的组建结构图,给出完整的设计流程图。 6、要求电机能实现正反转控制; 7、系统具有实时显示电机速度功能; 8、电机的设定速度由电位器输入; 9、电机的速度调节误差应在允许的误差范围内。 三、给定条件 1、《直流电机驱动原理》,《单片机原理及接口技术》等参考资料; 2、电阻、电容等各种分离元件、IC、直流电机、电源等; 3、STC12C5A60S2单片机、LM298以及PC机; 四、设计 1. 确定总体方案; 2. 画出系统结构图; 3. 选择以电机控制芯片和单片机及速度检测电路,设计硬件电路; 4. 设计串口及通信程序,完成和上位机的通信; 5. 画出程序流程图并编写调试代码,完成报告;

直流电机调速与控制 摘要:当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 本电机控制系统基于51内核的单片机设计,采用LM298直流电机驱动器,利用PWM 脉宽调制控制电机,并通过光耦管测速,经单片机I/O口定时采样,最后通过闭环反馈控制系统实现电机转速的精确控制,其中电机的设定速度由电位器经A/D通过输入,系统的状显示与控制由上位机实现。经过设计和调试,本控制系统能实现电机转速较小误差的控制,系统具有上位机显示转速和控制电机开启、停止和正反转等功能。具有一定的实际应用意义。关键字:直流电机、反馈控制、51内核、PWM脉宽调制、LM298 一、系统原理及功能概述 1、系统设计原理 本电机控制系统采用基于51内核的单片机设计,主要用于电机的测速与转速控制,硬件方面设计有可调电源模块,串口电路模块、电机测速模块、速度脉冲信号调理电路模块、直流电机驱动模块等电路;软件方面采用基于C语言的编程语言,能实现系统与上位机的通信,并实时显示电机的转速和控制电机的运行状态,如开启、停止、正反转等。 单片机选用了51升级系列的STC12c5a60s2作为主控制器,该芯片完全兼容之前较低版本的所有51指令,同时它还自带2路PWM控制器、2个定时器、2个串行口支持独立的波特率发生器、3路可编程时钟输出、8路10位AD转换器、一个SPI接口等,

直流电机驱动电路设计

直流电机驱动电路设计 一、直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电 器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。 如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 2. 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 二、三极管-电阻作栅极驱动

1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。 2.栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约 1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。上面的三极管导通,场效应管截止,输出为高电平。当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效

PWM控制直流电机调速

毕业设计论文PWM控制直流电机调速 绪论 脉宽调制(PWM)控制技术,是利用半导体开关器件的导通和关断,把直流电压变成电压脉冲序列,并控制电压脉冲的宽度和脉冲序列的周期以达到变压变频目的的一种控制技术。PWM控制技术广泛地应用于开关稳压电源,不间断电源(UPS),以及交直流电动机传动等领。本文阐述了PWM变频调速系统的基本原理和特点,并在此基础上给出了一种基于Mitel SA866DE三相PWM波形发生器和绝缘栅双极功率晶体管(IGBT)的变频调速设计方案。直流电动机具有优良的调速特性,调速平滑、方便,调速范围广;过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;能满足生产过程自动化系统各种不同的特殊运行要求,在许多需要调速或快速正反向的电力拖动系统领域中得到了广泛的应用。 直流电动机的转速调节主要有三种方法:调节电枢供电的电压、减弱励磁磁通和改变电枢回路电阻。针对三种调速方法,都有各自的特点,也存在一定的缺陷。例如改变电枢回路电阻调速只能实现有级调速,减弱磁通虽然能够平滑调速,但这种方法的调速范围不大,一般都是配合变压调速使用。所以,在直流调速系统中,都是以变压调速为主。其中,在变压调速系统中,大体上又可分为可控整流式调速系统和直流PWM调速系统两种。直流PWM调速系统与可控整流式调速系统相比有下列优点:由于PWM调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得平稳的直流电流,低速特性好,稳速精度高,调速范围宽,可达1:10000左右;同样,由于开关频率高,快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,主电路损耗小,装置效率高;直流电源采用不控整流时,电网功率因数比相控整流器高。 正因为直流PWM调速系统有以上的优点,并且随着电力电子器件开关性能的不断提高,直流脉宽调制( PWM) 技术得到了飞速的发展。传统的模拟和数字电路PWM已被大规模集成电路所取代,这就使得数字调制技术成为可能。目前,在该领域中大部分应用的是数字脉宽调制器与微处理器集为一体的专用控制芯片, 如TI公司生产的TMS320C24X系列芯片。电动机调速系统采用微机实现数字化控制,是电气传动发展的主要方向之一。采用微机控制后,整个调速系统实现全数字化,结构简单,可靠性高,操作维护方便,电动机稳态运转时转速精度可达到较高水平,静动态各项指标均能较好地满足工业生产中高性能电气传动的要求。

直流电机控制系统设计

直流电机控制系统设计

XX大学 课程设计 (论文) 题目直流电机控制系统设计 班级 学号 学生姓名 指导教师

沈阳航空航天大学 课程设计任务书 课程名称专业基础课程设计 院(系)自动化学院专业测控技术与仪器 班级学号姓名 课程设计题目直流电机控制系统设计 课程设计时间: 2012年7 月9 日至2012年7 月20 日 课程设计的内容及要求: 1.内容 利用51单片机开发板设计并制作一个直流电机控制系统。系统能够实时控制电机的正转、反转、启动、停止、加速、减速等。 2.要求 (1)掌握直流电机的工作原理及编程方法。 (2)掌握直流电机驱动电路的设计方法。 (3)制定设计方案,绘制系统工作框图,给出系统电路原理图。 (4)用汇编或C语言进行程序设计与调试。 (5)完成系统硬件电路的设计。 (6)撰写一篇7000字左右的课程设计报告。 指导教师年月日 负责教师年月日

学生签字年月日 目录 0 前言 (1) 1 总体方案设计 (2) 1.1 系统方案 (2) 1.2 系统构成 (2) 1.3 电路工作原理 (2) 1.4 方案选择 (3) 2 硬件电路设计 (3) 2.1 系统分析与硬件设计 (3) 2.2 单片机AT89C52 (3) 2.3 复位电路和时钟电路 (4) 2.4 直流电机驱动电路设计 (4) 2.5 键盘电路设计 (4) 3软件设计 (5) 3.1 应用软件的编制和调试 (5) 3.2 程序总体设计 (5) 3.3 仿真图形 (7) 4 调试分析 (9) 5 结论及进一步设想 (9) 参考文献 (10) 课设体会 (11) 附录1 电路原理图 (12) 附录2 程序清单 (13)

基于无刷直流电机控制系统设计与实现

基于无刷直流电机控制系统设计与实现 发表时间:2017-10-20T11:19:09.350Z 来源:《防护工程》2017年第15期作者:樊圣至[导读] 为了摆脱此系统对进口技术的依赖性,应深入研究其控制系统,提升设计水平,从而实现煤矿开采的自动化。交通运输部东海第一救助飞行队摘要:无刷直流电机具备体积小、效率高以及控制精度高等优势,且在多个领域得到了广泛使用。但在部分控制系统中,外加干扰以及参数摄动等因素干扰了系统的动静态性,基于此,本文在分析无刷直流电机结构与运行原理的基础上,指出了其软硬件方面的优化控制措施,以期为此后无刷直流电机控制系统的设计工作提供更多的参考依据。 关键词:无刷直流电机;控制系统;设计与实现 1 无刷直流电机结构 电机本体、位置测算结构、电子换相逻辑等均属于无刷直流电机的组成结构,且其与永磁同步电机较为相似。相较直流电机,无刷直流电机旋转的转子为磁极,而直流电机为绕组。且定子主要由电枢绕组、定子铁芯以及其他固定部件组成,电枢绕组一般采用三相Y型绕法,而转子磁极则采用稀土永磁钢片组成,安装在转子表面。 2 无刷直流电机软硬件设计2.1系统硬件部分 2.1.1系统硬件结构 系统硬件主要包括整流电路、开关电源电路、控制芯片、信号隔离电路、调试电路、逆变功率电路以及电流电压检测与保护电路等,其具体结构如下图1所示。 图1 无刷直流电机控制系统硬件结构组成图其中键盘控制系统信息,比如完成启动、停机、速度给定以及系统参数的在线修改等工作。系统交流电源通过整流桥获得直流电源,并供给全桥逆变以及开关电源电路。而开关电源电路则为系统提供24V以及5V的直流电源,电压检测电路通过模数转换获得电压时值,通过母线电压的监控实行过压保护动作,而主控芯片则通过判断输入信息进行控制命令。 2.1.2电源部分分路 整个系统能量的主要来源便是电源,且其呈现出交流、直流以及交流的变化过程,整个电路被分为强电与弱电两个组成部分,且单相220伏的交流电在整合后会形成310伏的直流电,为逆变电路以及开关电路提供能量。首先是整流电路,包括单相全桥不可控整流电路以及电容充电电流限制电路两个组成部分,当电机功率为1.5kW时,控制器的输出能力设定为2.2kW,且上电瞬间直流电源对电容充电,断开继电器,且电流在经过电阻的过程中得到缓冲。其次是电源电路,主要由变压器、IC1以及MC7085等部分组成,其中IC1为电源的专门控制面板。且开关电源处于电压工作模式,IC1通过电压反馈调整PWM的输出功率,从而维持电源电压的稳定运行。最后是芯片电源电路,主要采用主控芯片为3.3伏的工作电平。 2.1.3主控芯片以及周边电路研究中采用适合电机控制领域的32位Cortex -M3核的单片机,可以达到较高的运算效率,且其时钟频率为72赫兹,具备丰富的外设资源。在设计管脚分配以及附属电路时应在参考专业手册的基础上进行,第一,对于引脚60的外接电路,芯片应处于下载设置状态,且系统完成后还应焊接0欧姆的电阻,以保持引脚的低电平状态。第二,对于晶振电路应采用8M外部晶体的振荡器,且电源与大地之间连接电容,以排除电源的耦合干扰。第三,PWM信号输出控制电路,应采用安全性较强的芯片,且在芯片输出后以及光电隔离之前设置74ACT244以有效控制信号的总输出。第四,键盘系统属于独立通信模块,设计时应按照协议要求编写通讯软件即可使用。 2.1.4功率器元件以及驱动电路GTO、MOSFET、GTR、IGBT以及IPM等均属于常用的功率开关元件,且设计期间,应根据元件管件的耐压程度、最大开关频率等因素进行选择。本次研究中,电机控制要求较高的开关频率;较小的导通阻抗以及较小的驱动功率,因此可以选择MOSFET、IPM以及IGBT。比较发现,IGBT具备大电流以及低导通阻抗的特点,可以保持开关频率;而IPM则在内部集成了过高电压、过大电流以及高温的检测系统,且可以在引脚处输出故障信号,降低了系统的损害率。但考虑到此次研究的试验性质,因此应选择IGBT的分立元件组建全桥逆变电路,并确定1200伏的耐压与25安的额定电流,上升时间为50毫秒。 2.1.5模拟量采集与故障电路

直流电机调速控制系统设计

成绩 电气控制与PLC 课程设计说明书 直流电机调速控制系统设计 . Translate DC motor speed Control system design 学生姓名王杰 学号20130503213 信电工程学院13自动 学院班级 化 专业名称电气工程及其自动化 指导教师肖理庆

201 6年 6 月 14 日

目录 1 直流电机调速控制系统模型 0 1.1 直流调速系统的主导调速方法 0 因此,降压调速是直流电机调速系统的主导调速方法。 0 1.2 直流电机调速控制的传递函数 0 1.2.1 电流与电压的传递函数 (1) 1.2.2 电动势与电流的传递函数 (1) 由已学可知,单轴系统的运用方程为: (1) 1.3 直流调速系统的控制方法选择 (3) 1.3.1 开环直流调速系统 (3) 1.3.2 单闭环直流调速系统 (3) 由前述分析可知,开环系统不能满足较高的调速指标要求,因此必须采取闭环控制系统。图1-4所示的是,转速反馈单闭环调速系统,其是一种结构相对复杂的反馈控制系统。转速控制是动态性能的控制,相比开环系统,速度闭环控制的控制精度及控制稳定性要好得多,但缺乏对于静态电流I的有效控制,故这类系统被称之为“有静差”调速系统。 (4) 1.3.3 双闭环直流调速系统 (4) 图1-4 双闭环控制直流调速控制系统 (4) 1.3.3.1 转速调节器(ASR) (4) 1.3.3.1 电流调节器(ACR) (4) 1.4 直流电机的可逆运行 (5) 1.2 ×××××× (7) 1.2.1 电流与电压的传递函数 (7) (8) 3 PLC在直流调速系统中的应用 (8) 2 ××××× (9) 2.1 ×××××× (9) 2.1.1 ×××× (9) 3 ××××× (11) 3.1 ×××××× (11) 3.1.1 ×××× (11) 参考文献 (12) 附录 (13) 附录1 (13)

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

直流无刷电机的控制系统设计方案

直流无刷电机的控制系统设计方案1 引言 1.1 题目综述 直流无刷电机是在有刷直流电机的基础上发展起来的,它不仅保留了有刷直流电机良好的调试性能,而且还克服了有刷直流电机机械换相带来的火花、噪声、无线电干扰、寿命短及制造成本高和维修困难等等的缺点。与其它种类的电机相比它具有鲜明的特征:低噪声、体积小、散热性能好、调试性能好、控制灵活、高效率、长寿命等一系列优点。基于这么多的优点无刷直流电机有了广泛的应用。比如电动汽车的核心驱动部件、电动车门、汽车空调、雨刮刷、安全气囊;家用电器中的DVD、VCD、空调和冰箱的压缩机、洗衣机;办公领域的传真机、复印机、碎纸机等;工业领域的纺织机械、医疗、印刷机和数控机床等行业;水下机器人等等诸多应用[1]。 1.2 国内外研究状况 目前,国内无刷直流电机的控制技术已经比较成熟,我国已经制定了GJB1863无刷直流电机通用规范。外国的一些技术和中国的一些技术大体相当,美国和日本的相对比较先进。当新型功率半导体器件:GTR、MOSFET、IGBT等的出现,以及钕铁硼、钐鈷等高性能永磁材料的出现,都为直流电机的应用奠定了坚实的基础。近些年来,计算机和控制技术快速发展。单片机、DSP、FPGA、CPLD等控制器被应用到了直流电机控制系统中,一些先进控制技术也同时被应用了到无刷直流电机控制系统中,这些发展都为直流电机的发展奠定了坚实的基础。 经过这么多年的发展,我国对无刷电机的控制已经有了很大的提高,但是与国外的技术相比还是相差很远,需要继续努力。所以对无刷直流电机控制系统的研究学习仍是国内的重要研究内容[2]。 1.3 课题设计的主要内容 本文以永磁方波无刷直流电机为控制对象,主要学习了电机的位置检测技术、电机的启动方法、调速控制策略等。选定合适的方案,设计硬件电路并编写程序调试,最终设计了一套无位置传感器的无刷直流电机调速系统。本课题涉及的技术概括如下:

直流电机控制电路集锦

直流电机控制电路集锦 直流电机的类型 按:直流电机在家用电器、电子仪器设备、电子玩具、录相机及各种自动控制中都有广泛的应用。但对它的使用和控制,很多读者还不熟悉,而且其技术资料亦难于查找。直流电机控制电路集锦,将使读者“得来全不费功夫”! 在现代电子产品中,自动控制系统,电子仪器设备、家用电器、电子玩具等等方面,直流电机都得到了广泛的应用。大家熟悉的录音机、电唱机、录相机、电子计算机等,都不能缺少直流电机。所以直流电机的控制是一门很实用的技术。本文将详细介绍各种直流电机的控制技术。 站长的几句说明:本文内容比较详实完整,但遗憾的是原稿的印刷质量和绘图的确很差,尽管采取了很多措施,有些图仍可能看不太清楚。 直流电机,大体上可分为四类: 第一类为有几相绕组的步进电机。这些步进电机,外加适当的序列脉冲,可使主轴转动一个精密的角度(通常在1.8°--7.5°之间)。只要施加合适的脉冲序列,电机可以按照人们的预定的速度或方向进行连续的转动。 步进电机用微处理器或专用步进电机驱动集成电路,很容易实现控制。例如常用的SAAl027或SAAl024专用步进电机控制电路。 步进电机广泛用于需要角度转动精确计量的地方。例如:机器人手臂的运动,高级字轮的字符选择,计算机驱动器的磁头控制,打印机的字头控制等,都要用到步进电机。 第二类为永磁式换流器直流电机,它的设计很简单,但使用极为广泛。当外加额定直流电压时,转速几乎相等。这类电机用于录音机、录相机、唱机或激光唱机等固定转速的机器或设备中。也用于变速范围很宽的驱动装置,例如:小型电钻、模型火车、电子玩具等。在这些应用中,它借助于电子控制电路的作用,使电机功能大大加强。 第三类是所谓的伺服电机,伺服电机是自动装置中的执行元件,它的最大特点是可控。在有控制信号时,伺服电机就转动,且转速大小正比于控制电压的大小,除去控制信号电压后,伺服电机就立即停止转动。伺服电机应用甚广,几乎所有的自动控制系统中都需要用到。例如测速电机,它的输出正比于电机的速度;或者齿轮盒驱动电位器机构,它的输出正比于电位器移动的位置.当这类电机与适当的功率控制反馈环配合时,它的速度可以与外部振荡器频率精确锁定,或与外部位移控制旋钮进行锁定。 唱机或激光唱机的转盘常用伺服电机。天线转动系统,遥控模型飞机和舰船也都要用到伺服电机。 最后一类为两相低电压交流电机。这类电机通常是直流电源供给一个低频振荡器,然后再用低频低压的交流去驱动电机。这类电机偶尔也用在转盘驱动机构中。 步进电机的基本工作原理

直流电机转速控制

. 直流电机转速控制 课程设计

姓名: 学号: 班级: 目录 1.直流电机转速控制方案设计 (2) 1.1设计要求 (2) 1.2设计框图 (2) 2.直流电机转速控制硬件设计 (3) 2.1主要器件功能 (3) 2.2硬件原理图 (6)

3.直流电机转速控制软件设计 (7) 4.调试 (8) 4.1硬件测试 (8) 4.2软件调试……………………………………………………………(11 1.直流电机转速控制方案设计 1.1设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。

1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 1.2设计框图 本课题中测量控制电路组成框图如下所示: 图1

2.直流电机转速控制硬件设计 2.1主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电

直流电机控制系统设计范本

直流电机控制系统 设计

XX大学 课程设计 (论文)题目直流电机控制系统设计 班级 学号 学生姓名 指导教师

沈阳航空航天大学 课程设计任务书 课程名称专业基础课程设计 院(系)自动化学院专业测控技术与仪器 班级学号姓名 课程设计题目直流电机控制系统设计 课程设计时间: 7 月 9 日至 7 月 20 日 课程设计的内容及要求: 1.内容 利用51单片机开发板设计并制作一个直流电机控制系统。系统能够实时控制电机的正转、反转、启动、停止、加速、减速等。 2.要求 (1)掌握直流电机的工作原理及编程方法。 (2)掌握直流电机驱动电路的设计方法。 (3)制定设计方案,绘制系统工作框图,给出系统电路原理图。 (4)用汇编或C语言进行程序设计与调试。 (5)完成系统硬件电路的设计。 (6)撰写一篇7000字左右的课程设计报告。

指导教师年月日 负责教师年月日 学生签字年月日 目录 0 前言...................................................................................... 错误!未定义书签。 1 总体方案设计 ...................................................................... 错误!未定义书签。 1.1 系统方案 ...................................................................... 错误!未定义书签。 1.2 系统构成 ...................................................................... 错误!未定义书签。 1.3 电路工作原理............................................................... 错误!未定义书签。 1.4 方案选择 ...................................................................... 错误!未定义书签。 2 硬件电路设计 ...................................................................... 错误!未定义书签。 2.1 系统分析与硬件设计................................................... 错误!未定义书签。 2.2 单片机AT89C52............................................................ 错误!未定义书签。 2.3 复位电路和时钟电路................................................... 错误!未定义书签。 2.4 直流电机驱动电路设计 ............................................... 错误!未定义书签。 2.5 键盘电路设计............................................................... 错误!未定义书签。 3 软件设计 ............................................................................ 错误!未定义书签。 3.1 应用软件的编制和调试 ............................................... 错误!未定义书签。 3.2 程序总体设计............................................................... 错误!未定义书签。 3.3 仿真图形 ...................................................................... 错误!未定义书签。 4 调试分析 .............................................................................. 错误!未定义书签。

无刷直流电机控制系统的Proteus仿真

无刷直流电机控制系统的Proteus仿真-机械制造论文 无刷直流电机控制系统的Proteus仿真 王家豪潘玉民 (华北科技学院电子信息工程学院,河北三河101601) 【摘要】基于Proteus软件仿真平台,提出了一种对无刷直流电机(BLDCM)控制系统实现了转速闭环控制的方案。该系统以AT89S52单片机为核心,采用IR2101芯片驱动及AD1674实现速度,并利用数码动态显示转速,通过增量式PID调节对无刷直流电机实现转速闭环稳定控制。仿真结果表明该系统具有可控调速、显示直观等特点。 关键词无刷直流电机(BLDCM);Proteus;增量式PID;闭环控制 0引言 无刷直流电机(BLDCM)既有直流有刷电机的特性,又有交流电机无刷的优点,在快速性、可控性、可靠性、输出转矩、结构、耐受环境和经济性等方面具有明显的优势,近年来得到迅速推广[1]。BLDCM是一种用电子换向取代机械换向的新一代电动机,与传统的直流电动机相比,它具有过载能力强,低电压特性好,启动电流小等优点。近年来在工业运用方面大有取代传统直流电动机的趋势,所以研究无刷直流电机的驱动控制技术具有重要的实际应用价值。 本设计采用增量式PID控制策略控制无刷电动机,并在Proteus平台上进行转速闭环系统仿真。搭建了无刷直流电动机转速控制系统的仿真模型,基于80C51控制核心,采用keil C51软件编写C程序。 1系统硬件组成 控制系统的硬件组成如图1所示。采用Atmel公司的AT89S52单片机为系统

控制核心、IR2101驱动的MOSFET三相桥式逆变器、无刷直流电机、A/D转换转速检测、闭环PID控制、按键检测、档位和转速显示等部分组成。 2控制系统核心及外围电路 系统核心AT89S52单片机最小系统及按键电路如图2所示。 AT89S52芯片是8位单片机,具有廉价、实用及运算快等优点,它有两个定时器,两个外部中断接口,24个I/O口,一个串行口。 单片机首先进行初始化,将显示部分(转速显示、档位显示)送显“0”然后通过中断对按键进行检测当检测到启动键按下时,系统启动,控制核心输出初始控制码,与此同时通过AD转换器读取当前的实时转速,一方面用于显示,另一方面将当前转速与设定转速送入PID控制环节然后输出下一时刻的控制码。 在本次设计中使用80C51的外部中断接口0(INT0)作按键检测(见图3),通过四个与门,当有任何一个按键按下去时tap端都会出现低电平引发中断。

直流电动机控制电路的设计

课程设计(论文) 题目名称直流电动机控制电路的设计 课程名称电力拖动基础课程设计 学生姓名周孝雄 学号0941202031 系、专业电气工程系、09自动化 指导教师邱雄迩 2011年12 月18 日

邵阳学院课程设计(论文)任务书 注: 1.此表由指导教师填写,经系、教研室审批,指导教师、学生签字后生效; 2.此表1式3份,学生、指导教师、教研室各1份。

指导教师(签字):学生(签字):

邵阳学院课程设计(论文)评阅表 学生姓名周孝雄学号0941202031 系电气工程系专业班级09自动化班 题目名称直流电动机控制电路的设计课程名称电力拖动基础一、学生自我总结 二、指导教师评定 注:1、本表是学生课程设计(论文)成绩评定的依据,装订在设计说明书(或论文)的“任务书”页后面;

当今,自动化控制系统在各行各业得到了广泛的应用和发展,而直流驱动控制作为电气传动的主流在现代化生产中起着主要作用。直流电动机应用如此之广,主要在于其采用了PWM脉宽调制电路来控制直流电动机的调速。在这里介绍了PWM脉宽产生的电路。该电路运用模拟电子电路基础知识完成,利用产生的方波信号带动负载转动。本设计原理简单,易于理解,电路实现简单。我们先概括介绍了电路中锁需要的电路模块,然后给出了整体的电路图,并做了测试及得出测试结果。 关键词:直流电动机,PWM,三极管

1绪论 (7) 1.1概述 (7) 1.2 直流电动机的基本理论 (7) 1.3直流脉宽调速系统 (10) 2 元器件介绍 (13) 2.1 SG2731 (13) 2.2 三极管C4466 和 A1693 (16) 3 系统设计方案 (17) 3.1直流电动机控制电路 (17) 4直流电动机控制电路的测试 (19) 4.1 测试步骤 (19) 4.2 测试结果 (19) 5实验总结 (21) 参考文献 (22)

直流电机控制系统设计(1)

湖南工程学院课程设计《DSP原理及应用》 题目:直流电机控制系统设计 专业: 班级: 姓名: 学号: 指导教师: 2015年5 月19 日

摘要 直流电动机具有优良的调速特性,调速平滑,方便,调速范围广,过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;能满足生产过程中自动化系统各种不同的特殊运行要求。电动机调速系统采用微机实现自动控制,是电气传动发展的主要方向之一。采用微机控制后,整个调速系统体积小,结构简单、可靠性高、操作维护方便,电动机稳态运转时转速精度可达到较高水平,静动态各项指标均能较好地满足工业生产中高性能电气传动的要求。 本篇论文介绍了基于单片机的直流电机PWN调速的基本办法,直流电机调速的相关知识以及PWM调速的基本原理和实现方法。重点介绍了基于TMS320LF2407单片机的用软件产生PWM信号以及信号占空比调节的方法。对于直流电机速度控制系统的实现提供了一种有效的途径。 关键词:单片机最小系统;PWM ;直流电机调速,TMS320LF2407;

前言 电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。然而近年来,随着技术的发展和进步,以及市场对产品功能和性能的要求不断提高,直流电动机的应用更加广泛,尤其是在智能机器人中的应用。直流电动机的起动和调速性能、过载能力强等特点显得十分重要,为了能够适应发展的要求,单闭环直流电动机的调速控制系统得到了很大的发展。而作为单片嵌入式系统的核心—单片机,正朝着多功能、多选择、高速度、低功耗、低价格、大存储容量和强I/O功能等方向发展。随着计算机档次的不断提高,功能的不断完善,单片机已越来越广泛地应用在各种领域的控制、自动化、智能化等方面,特别是在直流电动机的调速控制系统中。这是因为单片机具有很多优点:体积小,功能全,抗干扰能力强,可靠性高,结构合理,指令丰富,控制功能强,造价低等。所以选用单片机作为控制系统的核心以

相关主题
文本预览
相关文档 最新文档