当前位置:文档之家› 电机编码器拆卸方法

电机编码器拆卸方法

电机编码器拆卸方法
电机编码器拆卸方法

电机编码器拆卸指导

电机上的编码器安装在保护壳内,如下图。

但是SSB 提供的替换件只是编码器本身,客户应当与电机一起保管好保护壳。

编码器

安装壳

编码器的拆卸可能会比较困难,请参考以下步骤:

1. 工具

3.0的内六角扳手一把

2. 拆下三个螺丝

3. 然后就可以轻松的拿下编码器了。

4. 注意保存好三个螺丝及垫片(新的编码器不带螺丝),特别注意安装时不要落下垫片!!!

5. 由于发出的编码器备件不带联轴器,请客户将联轴器拆下,妥善保管。这是最困难的

一步。

首先使用内六角扳手松开下图所示螺丝:

然后按照下图方法将联轴器取下,最好在下面垫两块木板,以免损坏壳体。

注意:编码器内部有玻璃元件,切记避免外力撞击!!!

编码器知识详解

光电编码器的工作原理 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90。的两路脉冲信号。 编码器的分类 根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。 1.1 增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90。,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。 1.2 绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。显然,吗道必须N条吗道。目前国内已有16位的绝对编码器产品。 1.3 混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。 光电编码器的应用 1、角度测量 汽车驾驶模拟器,对方向盘旋转角度的测量选用光电编码器作为传感器。重力测量仪,采用光电编码器,把他的转轴与重力测量仪中补偿旋钮轴相连,扭转角度仪,利用编码器测量扭转角度变化,如扭转实验机、渔竿扭转钓性测试等。摆锤冲击实验机,利用编码器计算冲击是摆角变化。 2、长度测量 计米器,利用滚轮周长来测量物体的长度和距离。 拉线位移传感器,利用收卷轮周长计量物体长度距离。 联轴直测,与驱动直线位移的动力装置的主轴联轴,通过输出脉冲数计量。 介质检测,在直齿条、转动链条的链轮、同步带轮等来传递直线位移信息。 3、速度测量 线速度,通过跟仪表连接,测量生产线的线速度 角速度,通过编码器测量电机、转轴等的速度测量 4、位置测量 机床方面,记忆机床各个坐标点的坐标位置,如钻床等 自动化控制方面,控制在牧歌位置进行指定动作。如电梯、提升机等 5、同步控制 通过角速度或线速度,对传动环节进行同步控制,以达到张力控制 光电旋转编码器在工业控制中的应用 -------------------------------------------------------------------------------- 1.概述 在工业控制领域,编码器以其高精度、高分辨率和高可靠性而被广泛用于各种位移测量。 目前,应用最广泛的是利用光电转换原理构成的非接触式光电编码器。光电编码器是一种集光、机、电为一体的数字检测装置。作为一次光电传感检测元件的光电编码器,具有精度高、响应快、抗干

伺服电机编码器

伺服电机编码器 伺服电机编码器是安装在伺服电机上用来测量磁极位置和伺服电机转角及转速的一种传感器,从物理介质的不同来分,伺服电机编码器可以分为光电编码器和磁电编码器,另外旋转变压器也算一种特殊的伺服编码器,市场上使用的基本上是光电编码器,不过磁电编码器作为后起之秀,有可靠,便宜,抗污染等特点,有赶超光电编码器的趋势。 基本信息 ?中文名称 伺服电机编码器 ?OC输出 三极管输出 ?推挽输出 接口连接方便 ?分类 abz uvw 目录1原理 2输出信号 3分类 4正余弦 5维修更换 6注意事项 7选型注意 8订货代码 原理 伺服编码器这个基本的功能与普通编码器是一样的,比如绝对型的有A,A反,B,B反,Z,Z反等信号,除此之外,伺服编码器还有着跟普通编码器不同的地方,那就是伺服电机多数为同步电机,同步电机启动的时候需要知道转子的磁极位置,这样才能够大力矩启动伺服电机,这样需要另外配几路信号来检测转子的当前位置,比如增量型的就有UVW等信号,正因为有了这几路检测转子位置的信号,伺服编码器显得有点复杂了,以致一般人弄不懂它的道理了,加上有些厂家故意掩遮一些信号,相关的资料不齐全,就更加增添了伺服电机编码器的神秘色彩。

由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率-编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 输出信号 1、OC输出:就是平常说的三极管输出,连接需要考虑输入阻抗和电路回路问题. 2、电压输出:其实也是OC输出一种格式,不过置了有源电路. 3、推挽输出:接口连接方便,不用考虑NPN和PNP问题. 4、差动输出:抗干扰好,传输距离远,大部分伺服编码器采用这种输出. 分类 增量编码除了普通编码器的ABZ信号外,增量型伺服编码器还有UVW信号,国产和早期的进口伺服大都采用这样的形式,线比较多。 增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。 比如,打印机扫描仪的定位就是用的增量式编码器原理,每次开机,我们都能听到噼哩啪啦的一阵响,它在找参考零点,然后才工作。 这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。

交流伺服电机的工作原理

交流伺服电机的工作原理 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 4. 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降, 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。 永磁交流伺服电动机 20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。永磁交流伺服电动机同直流伺服电动机比较,主要优点有: ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。 ⑵定子绕组散热比较方便。 ⑶惯量小,易于提高系统的快速性。 ⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品。整个伺服装置市场都转向了交流系统。早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行,分别称为摪胧 只瘮或摶旌鲜綌、撊只瘮的永磁交流伺服系统。 到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。 日本安川电机制作所推出的小型交流伺服电动机和驱动器,其中D系列适用于数控机床(最高转速为1000 r/min,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m)。之后又推出M、F、S、H、C、G 六个系列。20世纪90年代先后推出了新的D系列和R系列。由旧系列矩形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩波动由24%降低到7%,并提高了可靠性。这样,只用了几年时间形成了八个系列(功率范围为0.05~6kW)较完整的体系,满足

海德汉编码器和海德汉光栅尺使用的各种参数

海德汉 海德汉编码器和海德汉光栅尺使用的各种参数 10 编程:Q参数

10.1原理和概述 你可以在一个零部件加工程序中编写同类零部件的程序,你只须输入称作Q参数的变量取代固定的数字值即可。 Q参数可以代表诸如以下的信息: □坐标值 □进给率 □RPM(重复数/分) □循环数据 Q参数也可以帮助你编写通过数学功能定义的外形轮廓。同时,你也可以使用Q参数根据逻辑状况执行机械加工步骤。与FK编程连用,可以将无法NC-兼容的外形轮廓与Q参数结合。 Q参数由字母Q和0到299之间的一个数字命名。其分组情况分为三类: 含义范围 普遍适用参数,适用于所有TNC内存 记忆的程序 Q0到Q99 为特殊TNC功能设定的参数Q100到Q199 主要用于循环的参数,适用于所有存 储在TNC内存中的程序 Q200到Q399 编程说明 在一个程序中可以混用Q参数和固定数字值。 Q参数可以被指定给-99.999,9999和+99 999.9999之间的数字值。TNC可以计算十进制小数点前57位到小数点后7位的范围(32位数据的计算范围相当于十进制数值4 294 967 296)。 一些Q参数总是被TNC指定给同样的数 据。例如,Q108总是被指定给当前刀具半 径,可参见368页的“预先指定Q 参数”。 如果你在OEM循环中使用Q60至Q99之间 的参数,须通过MP7251定义这些参数是 否仅用于OEM循环,还是全部适用。 338

调用Q参数功能 在编写零部件加工程序时,按下“Q”键(位于数字值输入 键盘,-/+键的下方)。然后,TNC会显示以下软键盘: 功能组软键盘 基础算术(指定,加减乘除,平方根) BASIC ARITHM. 三角函数功能TRIGO- NOME TRY 计算循环功能CIRCLE CALCU- LATION 如果/则条件,转移JUMP 其它功能DIVERSE FUNCTION 直接输入公式FORMULA 339

西门子伺服电机编码器的正确安装法

雒补清关于西门子伺服电机内置编码器的正确安装方法 一、工作内容 1、这项技术适用于对德国西门子伺服电机(型号为1FT603-1FT613, 1FK604-1FK610)内置编码器损坏后的安装、调试,配置的增量型编码器为德国海德汉公司的ERN1387.001/020, 绝对值编码器为海德汉公司EQN1325.001。 2、使用工具公制内六方扳手一套,自制专用工具一个,十字改锥及一 字改锥各一把,梅花改锥6件套。 3、可解决的问题对有故障的西门子伺服电机进行修理或更换损坏的 伺服电机内置编码器,做到修旧利废,节约维修费用。 二、操作方法 1、该操作方法和一般操作方法的区别 在数控机床配置的西门子数控系统中,驱动电机分主轴电机和伺服电机两种。当电机定子、转子、轴承有故障或其电机内置编码器损坏时,我们都需要对编码器拆卸进行修理或更换。对主轴电机来说,更换或安装编码器只要用专用工具将其安装到相应位置就可以试车了,不需要调整电机轴或编码器的角度及位置。但对伺服电机来说,则必须按照编码器的安装要求,严格执行安装步骤。只要安装过程中出一点差错,就会出现编码器方面的报警而不能起动机床或出现飞车事故,导致电机报废或机械部件损坏。因此正确安装非常重要。 2、该项技术的操作步骤 2.1拆卸损坏的编码器 关掉机床电源,解掉伺服电机的电源电缆及反馈电缆,把电机从机床

上拆下来放到工作台案上,用内六方扳手去掉电机端盖上的四条螺栓,打开端盖,先卸下编码器盖,拔下编码器上的插接电缆,用十字改锥卸下支持盘上的两条小螺丝,用内六方扳手卸出编码器中心孔内的螺栓,然后用自制专用工具把编码器从电机轴上顶出来。这样第一步工作即告完成。 图1自制专用工具尺寸图 2.2安装海德汉公司ERN1387.001/020或EQN1325.001编码器 2.2.1先安装支持盘 不同型号的电机,其支持盘的外形也不一样,如图2和图3,这由购买的备件提供。用4条M2.5*6的小螺丝将支持盘安装到编码器的轴端。注意事项:确保支持盘面和编码器的底面间距为 5.2mm或12mm。 1.支持盘 2.编码器 图2 1FT606-1FT613/1FK606-1FK613电机内置编码器的支持盘

德国HEIDENHAIN编码器

HEIDENHAIN 德国【HEIDENHAIN】公司主要产品:HEIDENHAIN编码器、HEIDENHAIN光栅尺、HEIDENHAIN 封闭式光栅尺、HEIDENHAIN敞开式光栅尺、HEIDENHAIN长度计、HEIDENHAIN旋转编码器、HEIDENHAIN角度编码器、HEIDENHAIN光栅、HEIDENHAIN数控系统等。 HEIDENHAIN海德汉公司是一家研发、生产和销售高质量直线光栅尺和角度编码器,旋转编码器,数显装置和数控系统的制造商。HEIDENHAIN海德汉公司产品主要用于精密机床和电子元件的生产和加工设备。HEIDENHAIN公司的丰富经验、技术开发和制造的测量设备和数字控制,为工厂和生产的自动化奠定了基础和开拓了未来。德国HEIDENHAIN产品的应用范围十分广泛,几乎覆盖各行各业。HEIDENHAIN产品在中国钢铁及汽车等行业使用非常广泛,HEIDENHAIN系列产品广泛用于各大钢铁行业,HEIDENHAIN系列产品以其卓越的铸造工艺,多年来成熟稳定的品质,HEIDENHAIN长期以来对品质的严谨求精和不断创新的精神,成为众多同类产品中的佼佼者,受到广大用户的一致认可。德国HEIDENHAIN广泛应用于钢铁,汽车、机床、生产设备、自动化机器等领域。 德国海德汉公司在2001年成立了中国的子公司。由于海德汉公司有着几十年的精湛的技术和管理经验,使得我们能为中国市场提供优质的海德汉产品以及完善的服务。一流的技术、产品和服务使得海德汉在中国市场的业务发展非常迅速,目前我们的客户已经遍及全国工业、科研和教育等许多不同的领域。海德汉中国为了更进一步贴近客户的需求,海德汉中国按照德国海德汉的生产技术、管理经验和质量标准,这确保了海德汉德国的品质要求和服务理念在中国的贯彻和实施。为客户提供最优质的服务、品质最优良的产品。成为广大客户在发展各自事业过程中最紧密的伙伴。 HEIDENHAIN封闭式光栅尺 海德汉的封闭式光栅尺能有效防尘、防切屑和防飞溅的切削液,是用于机床的理想选择。铝质外壳和密封软条可以保护光栅尺、扫描单元和轨道免受灰尘、切屑和切削液的影响。扫描单元的运动轨道摩擦力很小,轨道内置在光栅尺上。它通过一个连轴器与外部的安装架连接,这个连轴器可以补偿光栅尺和机器轨道之间不可避免的对正误差。. 封闭式光栅尺的结构有标准光栅尺外壳适用于振动频率高且最大测量长度为30米,还有紧凑光栅尺外壳适用于安装空间小,最大测量长度为2040毫米。 HEIDENHAIN敞开式直线光栅尺 敞开式直线光栅尺设计用于需要高精度测量的机床和系统 典型应用包括: 半导体工业的测量和生产设备 PCB电路板组装机 超精密机床 高精度机床 测量机和比较仪,测量显微镜和其它精密测量设备 直接驱动 HEIDENHAIN长度计 海德汉的增量式长度计能在一个长的测量范围内提供很高的精度。这些坚固耐用的长度计根据不同的应用有不同的产品类型。他们在度量行业有广泛的应用,多点测量站、测试设备检测和位置测量装置。 选择海德汉公司的长度计的理由。

增量式编码器的工作原理与使用方法

增量式编码器的工作原理与使用方法 1.工作原理 旋转编码器是一种采用光电等方法将轴的机械转角转换为数字信号输出的精密传感器,分为增量式旋转编码器和绝对式旋转编码器。 光电增量式编码器的工作原理如下:随转轴一起转动的脉冲码盘上有均匀刻制的光栅,在码盘上均匀地分布着若干个透光区段和遮光区段。 增量式编码器没有固定的起始零点,输出的是与转角的增量成正比的脉冲,需要用计数器来计脉冲数。每转过一个透光区时,就发出一个脉冲信号,计数器当前值加1,计数结果对应于转角的增量。 增量式编码器的制造工艺简单,价格便宜,有时也用来测量绝对转角。 2.增量式编码器的分类 1)单通道增量式编码器内部只有一对光电耦合器,只能产生一个脉冲序列。 2)AB相编码器内部有两对光电耦合器,输出相位差为90°的两组脉冲序列。正转和反转时两路脉冲的超前、滞后关系刚好相反。由下图可知,在B相脉冲的上升沿,正转和反转时A 相脉冲的电平高低刚好相反,因此使用AB相编码器,PLC可以很容易地识别出转轴旋转的方向。 需要增加测量的精度时,可以采用4倍频方式,即分别在A、B相波形的上升沿和下降沿计数,分辨率可以提高4倍,但是被测信号的最高频率相应降低。 3)三通道增量式编码器内部除了有双通道增量式编码器的两对光电耦合器外,在脉冲码盘的另外一个通道有1个透光段,每转1圈,输出1个脉冲,该脉冲称为Z相零位脉冲,用 做系统清零信号,或坐标的原点,以减少测量的积累误差。 2.编码器的选型 首先根据测量要求选择编码器的类型,增量式编码器每转发出的脉冲数等于它的光栅的线数。在设计时应根据转速测量或定位的度要求,和编码器的转速,来确定编码器的线数。编码器安装在电动机轴上,或安装在减速后的某个转轴上,编码器的转速有很大的区别。还应考虑它发出的脉冲的最高频率是否在PLC的高速计数器允许的范围内。 3.编码器与PLC高速计数器的配合问题 以S7-200为例,使用单通道增量式编码器时,可选高速计数器的单相加/减计数器模式(模式0~5),可细分为有/无外部方向输入信号、有/无复位输入和有/无启动输入信号。 使用AB相编码器时,高速计数器应选A/B相正交计数器模式(模式9~11),可以实现在正转时加计数,反转时减计数。 4.怎样判断AB相编码器是正转还是反转? S7-200的高速计数器用SM区中的当前计数方向状态位来指示编码器的旋转方向。如果编 码器输出脉冲的周期大于PLC的扫描循环时间的两倍,通过在B相脉冲的上升沿判断A相 脉冲信号的0、1状态,可以判断编码器旋转的方向。

光电编码器在电机控制中的应用

光电编码器在电机控制中的应用 概述: 电机的位置检测在电机控制中是十分重要的,特别是需要根据精确转子位置控制电机运动状态的应用场合,如位置伺服系统。电机控制系统中的位置检测通常有:微电机解算元件,光电元件,磁敏元件,电磁感应元件等。这些位置检测传感器或者与电机的非负载端同轴连接,或者直接安装在电机的特定的部位。其中光电元件的测量精度较高,能够准确的反应电机的转子的机械位置,从而间接的反映出与电机连接的机械负载的准确的机械位置,从而达到精确控制电机位置的目的。在本文中我将主要介绍高精度的光电编码器的内部结构、工作原理与位置检测的方法。 一、光电编码器的介绍: 光电编码器是通过读取光电编码盘上的图案或编码信息来表示与光电编码器相连的电机转子的位置信息的。根据光电编码器的工作原理可以将光电编码器分为绝对式光电编码器与增量式光电编码器,下面我就这两种光电编码器的结构与工作原理做介绍。 (一)、绝对式光电编码器 绝对式光电编码器,他是通过读取编码盘上的二进制的编码信息来表示绝对位置信息的。 编码盘是按照一定的编码形式制成的圆盘。是二进制的编码盘,空白部分是透光的,用“0”来表示;涂黑的部分是不透光的,用“1”来表示。通常将组成编码的圈称为码道,每个码道表示二进制数的一位,其中最外侧的是最低位,最里侧的是最高位。如果编码盘有4个码道,则由里向外的码道分别表示为二进制的23、22、21和20,4位二进制可形成16个二进制数,因此就将圆盘划分16个扇区,每个扇区对应一个4位二进制数,如0000、0001、 (1111) 按照码盘上形成的码道配置相应的光电传感器,包括光源、透镜、码盘、光敏二极管和驱动电子线路。当码盘转到一定的角度时,扇区中透光的码道对应的光敏二极管导通,输出低电平“0”,遮光的码道对应的光敏二极管不导通,输出高电平“1”,这样形成与编码方式一致的高、低电平输出,从而获得扇区的位置脚。 (二)、增量式光电编码器 增量式光电编码器是码盘随位置的变化输出一系列的脉冲信号,然后根据位

ES+海德汉1313编码器参数表

ON At SC.END SC 号菜单(其它参数一般不用设置)号菜单(其它参数一般不用设置)加大数值,曲线则陡。页码 标准编号 参数 名称 参数值 备注 ﹟0。**号菜单 0?03 加速斜率 0.5cm/s2 0?04 减速斜率 0.6cm/s2 ﹟1。**号菜单 1.06 为最高速度限值 一般设置为电机额定转速 ﹟2。** ﹟3。** 3.05 零速阀值 2 很重要,直接影响停车舒适感 3.08 超速限值 此值自动生成,根据1.06 3.25 编码器相位角 整定出的相位角,U V W 的位置 3. 29 变频器编码器位置 此参数很重要,自学习后断电送电检查是否改变 3.33 编码器转位 0 3.34 编码器脉从数 2048 3.36 编码器电压 5v 3.37  300 3.38 编码器的类型 3.39 编码器终端选择 1 3.40 错误检测级别 1 3.41 编码器自动配置 ﹟4。**号菜单(其它参数不用设置) 加大数值,曲线则陡。

页码 标准编号4.07 对称电流限值200% 4.11 转矩方式选择4 4.12 电流给定滤波器12ms降低电机噪音 4. 13 电流环比例增益自学习生成 4.14 电流环积分增益自学习生成 4.15 电极热时间常数89 4.23 电流给定滤波器110ms降低电机噪音, ﹟5。**号菜单(其它参数不用设置) 5.07 电机额定电流 A按铭牌设定 5.08 电机额定速度 Rmp按铭牌设定 5.09 电机额定电压 380V 5.11 电机极数 20 5.18 PWM开关频率选择 6K HZ ﹟6。**号菜单(不用设置) ﹟7。**号菜单(不用设置) 7.10=0 7.14=0 ﹟8。**号菜单(其它参数不用设置) 8.21 24端子功能选择10.02 运行使能(10.02变频器工作)8.22 25端子输入源18.38 相当于我们主板的多端速输出Y15 8.23 26端子输入源18.37 相当于我们主板的多端速输出Y14 8.24 27端子功能选择19.44 顺时针旋转(上升)8.25 28端子功能选择18.44 逆时针旋转(下降)可以通过18.45=1 改变运行方向 8.26 29端子输入源18.36 相当于我们主板的多端速输出Y13 8.31 24端子输入(出)选择ON 0:输入功能1:输出功能8.3225端子输入(出)选择OFF 0:输入功能1:输出功能﹟16**菜单(其他参数不用设置)

编码器的工作原理及作用

编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA 编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。故障现象:1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”...联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理.

编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、伺服电机专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。 编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。 按照工作原理编码器可分为增量式和绝对式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。

Heidenhain海德汉编码器

Heidenhain海德汉编码器 旋转编码器 (带内置轴承,采用定子联轴器安装) ERN 1000 (微型) ExN 400 (小型) ExN 100 (大直径轴) ExN 1100 (内置马达中) ExN 1300 (内置马达中) (带内置轴承、采用分离联轴器的旋转编码器) ROC/ROQ/ROD 400 (标准尺寸) ROD 1000 (微型) (无内置轴承) ECI/EQI 1300 (机械兼容ECN/EQN 1300) ERO 1200 (小型) ERO 1400 (微型) ECI/EQI 1100 (机械兼容ECN/EQN 1100) 角度编码器(带内置轴承) RCN (绝对式测量) RON (增量式测量) ROD (增量式测量) ECN (绝对式测量) (无内置轴承) ERP 880 ERP 4080 ERP 8080 ERO 6080 ERO 6070 ERO 6180 ERA 4280C ERA 4480C ERA 4880C ERA 4282C ERA 7480C ERA 8480C 模块式磁栅编码器 ERM 200 ERM 2200 ERM 2410 ERM 2200 ERM 2400 ERM 2900 编码器,海德汉编码器常用的都有:ERN1331-1024, ERN1331-2048, ERN1381-2048,ERN1387-2048, ROD431-1024, ROD431-2048, EQN1325-2048, ROD320-2000, ROD320-2500 海德汉编码器常用的都有:ERN1331-1024, ERN1331-2048, ERN1381-2048,ERN1387-2048, ROD431-1024, ROD431-2048, EQN1325-2048, ROD320-2000, ROD320-2500 优势供应德国heidenhain编码器 610系列632系列674系列,675系列,684系列,685系列,510系列 312系列,560系列,562系列,540系列,541系列525系列,310系列,320系列 优势供应德国heidenhain编码器 ERN1381.001-2048, ID: 313453-06, 313453-02 EQN1125.030 Heidenhain Endoder海德汉编码器 ERN1381.020-2048, ID: 385489-06 EQN1325.020-2048, ID: 538234-01 ERN1381-2048, ID:385489-56 EQN1325, ID: 312214-53 ERN1381.040-2048, ID:608290-01 EQN1325.001-2048, ID312214-16 ERN1381.062-2048, ID: 385489-08, 385489-07 EQN1325-2048, ID:538234-51 ERN1387.001-2048, ID:312215-14 EQN1325-2048 ID:515385-01 ERN1387.001-2048.ID:312215-02, 312215-66 EQN1325.048-2048, 655251-01 ERN1387-2048, ID:373787-N6 EQN425,ID:312214-16 海德汉研制生产光栅尺、角度编码器、旋转编码器、数显装置和数控系统。海德汉公司的产品被广泛应用于机床、自动化机器,尤其是半导体和电子制造业等领域。 编码器的性能对电机的重要特性具有决定性影响, 例如: 1. 定位精度 2. 速度稳定性 3. 带宽, 它决定驱动指令的响应时间和抗干扰性能 4. 功率损耗 5. 尺寸 6. 噪声 海德汉(HEIDENHAIN) 产品线丰富, 能为各种旋转电机和直线电机提供恰当的解决方

西门子伺服电机编码器的正确安装法

关于西门子伺服电机内置编码器的正确安装方法 一、工作内容 1、这项技术适用于对德国西门子伺服电机(型号为1FT603-1FT613, 1FK604-1FK610)内置编码器损坏后的安装、调试,配置的增量型编码器为德国海德汉公司的ERN1387.001/020, 绝对值编码器为海德汉公司EQN1325.001。 2、使用工具公制内六方扳手一套,自制专用工具一个,十字改锥及一 字改锥各一把,梅花改锥6件套。 3、可解决的问题对有故障的西门子伺服电机进行修理或更换损坏的 伺服电机内置编码器,做到修旧利废,节约维修费用。 二、操作方法 1、该操作方法和一般操作方法的区别 在数控机床配置的西门子数控系统中,驱动电机分主轴电机和伺服电机两种。当电机定子、转子、轴承有故障或其电机内置编码器损坏时,我们都需要对编码器拆卸进行修理或更换。对主轴电机来说,更换或安装编码器只要用专用工具将其安装到相应位置就可以试车了,不需要调整电机轴或编码器的角度及位置。但对伺服电机来说,则必须按照编码器的安装要求,严格执行安装步骤。只要安装过程中出一点差错,就会出现编码器方面的报警而不能起动机床或出现飞车事故,导致电机报废或机械部件损坏。因此正确安装非常重要。 2、该项技术的操作步骤 2.1拆卸损坏的编码器 关掉机床电源,解掉伺服电机的电源电缆及反馈电缆,把电机从机床

上拆下来放到工作台案上,用内六方扳手去掉电机端盖上的四条螺栓,打开端盖,先卸下编码器盖,拔下编码器上的插接电缆,用十字改锥卸下支持盘上的两条小螺丝,用内六方扳手卸出编码器中心孔内的螺栓,然后用自制专用工具把编码器从电机轴上顶出来。这样第一步工作即告完成。 图1自制专用工具尺寸图 2.2安装海德汉公司ERN1387.001/020或EQN1325.001编码器 2.2.1先安装支持盘 不同型号的电机,其支持盘的外形也不一样,如图2和图3,这由购买的备件提供。用4条M2.5*6的小螺丝将支持盘安装到编码器的轴端。注意事项:确保支持盘面和编码器的底面间距为 5.2mm或12mm。 1.支持盘 2.编码器 图2 1FT606-1FT613/1FK606-1FK613电机内置编码器的支持盘

海德汉-光栅与编码器介绍

位置检测装置作为数控机床的重要组成部分,其作用就是检测位移量,并发出反馈信号与数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。为了提高数控机床的加工精度,必须提高检测元件和检测系统的精度。其中以编码器,光栅尺,旋转变压器,测速发电机等比较普遍,下面主要对光栅和编码器进行说明。 光栅,现代光栅测量技术 简要介绍: 将光源、两块长光栅(动尺和定尺)、光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。光栅尺输出的是电信号,动尺移动一个栅距,输出电信号便变化一个周期,它是通过对信号变化周期的测量来测出动就与定就职相对位移。目前使用的光栅尺的输出信号一般有两种形式,一是相位角相差90度的2路方波信号,二是相位依次相差90度的4路正弦信号。这些信号的空间位置周期为W。下面针对输出方波信号的光栅尺进行了讨论,而对于输出正弦波信号的光栅尺,经过整形可变为方波信号输出。输出方波的光栅尺有A 相、B相和Z相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。Z信号可以作为较准信号以消除累积误差。 一、栅式测量系统简述 从上个世纪50年代到70年代栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。它们有各自的优势,相互补充,在竞争中都得到了发展。由于光栅测量系统的综合技术性能优于其他4种,而且制造费用又比感应同步器、磁栅、球栅低,因此光栅发展得最快,技术性能最高,市场占有率最高,产业最大。光栅在栅式测量系统中的占有率已超过80%,光栅长度测量系统的分辨力已覆盖微米级、亚微米级和纳米级,测量速度从60m/min,到480m/min。测量长度从1m、3m达到30m和100m。 二、光栅测量技术发展的回顾 计量光栅技术的基础是莫尔条纹(Moire fringes),1874年由英国物理学家 L.Rayleigh首先提出这种图案的工程价值,直到20世纪50年代人们才开始利用光栅的莫

伺服电机编码器

伺服电机编码器是安装在伺服电机上用来测量磁极位置和伺服电机转角及转速的一种传感器,从物理介质的不同来分,伺服电机编码器可以分为光电编码器和磁电编码器,另外旋转变压器也算一种特殊的伺服编码器,目前市场上使用的基本上是光电编码器,不过磁电编码器作为后起之秀,有可靠,价格便宜,抗污染等特点,有赶超的光电编码器趋势。 编辑本段二、伺服电机编码器原理 伺服编码器这个基本的功能与普通编码器是一样的,比如增量型的有A,A反,B,B反,Z,Z反等信号,除此之外,伺服编码器还有着跟普通编码器不同的地方,那就是伺服电机多数为同步电机,同步电机启动的时候需要知道转子的磁极位置,这样才能够大力矩启动伺服电机,这样需要另外配几路信号来检测转子的当前位置,比如增量型的就有UVW等信号,正因为有了这几路检测转子位置的信号,伺服编码器显得有点复杂了,以致一般人弄不懂它的道理了,加上有些厂家故意掩遮一些信号,相关的资料不齐全,就更加增添了伺服电机编码器的神秘色彩。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 编辑本段三、伺服电机编码器分类 1、增量型编码器 除了普通编码器的ABZ信号外,增量型伺服编码器还有UVW信号,目前国产和早期的进口伺服大都采用这样的形式,线比较多。 2、绝对值型伺服电机编码器 增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,

ES+海德汉1313编码器参数表

13编码器单圈精度35 编码器脉冲数编码器的波特率编码器电压ON At SC.END SC 号菜单(其它参数一般不用设置)号菜单(其它参数一般不用设置)加大数值,曲线则陡。页码 标准编号 参数 名称 参数值 备注 ﹟0。**号菜单 0?03 加速斜率 0.5cm/s2 0?04 减速斜率 0.6cm/s2 ﹟1。**号菜单 1.06 为最高速度限值 一般设置为电机额定转速 ﹟2。** ﹟3。** 3.05 零速阀值 2 很重要,直接影响停车舒适感 3.08 超速限值 此值自动生成,根据1.06 3.25 编码器相位角 整定出的相位角,U V W 的位置 3. 29 变频器编码器位置 此参数很重要,自学习后断电送电检查是否改变 3.33 编码器转位 3.34 2048 3.36 5v 3.37 300 3.38 编码器的类型 3.39 编码器终端选择 1 3.40 错误检测级别 1 3.41 编码器自动配置 ﹟4。**号菜单(其它参数不用设置) 加大数值,曲线则陡。 3.

页码 标准编号4.07 对称电流限值200% 4.11 转矩方式选择4 4.12 电流给定滤波器12ms降低电机噪音 4. 13 电流环比例增益自学习生成 4.14 电流环积分增益自学习生成 4.15 电极热时间常数89 4.23 电流给定滤波器110ms降低电机噪音, ﹟5。**号菜单(其它参数不用设置) 5.07 电机额定电流 A按铭牌设定 5.08 电机额定速度 Rmp按铭牌设定 5.09 电机额定电压 380V 5.11 电机极数 20 5.18 PWM开关频率选择 6K HZ ﹟6。**号菜单(不用设置) ﹟7。**号菜单(不用设置) 7.10=0 7.14=0 ﹟8。**号菜单(其它参数不用设置) 8.21 24端子功能选择10.02 运行使能(10.02变频器工作)8.22 25端子输入源18.38 相当于我们主板的多端速输出Y15 8.23 26端子输入源18.37 相当于我们主板的多端速输出Y14 8.24 27端子功能选择19.44 顺时针旋转(上升)8.25 28端子功能选择18.44 逆时针旋转(下降)可以通过18.45=1 改变运行方向 8.26 29端子输入源18.36 相当于我们主板的多端速输出Y13 8.31 24端子输入(出)选择ON 0:输入功能1:输出功能8.3225端子输入(出)选择OFF 0:输入功能1:输出功能﹟16**菜单(其他参数不用设置)

伺服电机编码器

编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。故障现象:1、旋转编码器坏(无输出时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG 断开”...联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。编码器pg接线与参数矢量变频器 与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理. 编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、伺服电机专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。

海德汉-空心轴不带内置轴承的角度编码器

空心轴不带内置轴承的角度编码器 作者:Dr.Ing.Rainer Hagl 王桂芳翻译https://www.doczj.com/doc/0d9746079.html,/art_9598.html 数控或电子同步轴越来越普遍地使用无框架电机或密封式空心轴电机,尤其在机床行业,印刷机械和纺织机械。这对消除如同步齿型带等带来的机械传动误差,提高传动的位置精度,减少速度波动和提高传动的动态特性显得非常重要。也容比较易设计象附加轴,夹紧轴或材料处理轴的信号线和电源线。 这些电机的位置编码器相应地也许要单独的设计。编码器的空心轴内径相应需要50mm。对于带摆动轴的机床旋转工作台轴,其轴径由0.5 米到几米。如望远镜电机的方位和提升轴要求的直径在5 米以上。 设计人员希望将编码器内置于电机或轴承中从而模块化。如果电机轴承和测量轴达到一定的精度,编码器可以不用内置轴承。本文主要介绍用于带空心轴的驱动电机的模块式编码器的研究动态以及该编码器的特征和与其它设计的对比。 精度和扫描原理 旋转编码器和角度编码器的精度定义为一圈内及一个信号周期内的位置偏差如(图1)。模块式编码器在一圈内的位置偏差主要是由刻度盘相对于扫描头的径向跳动和刻度本身的误差引起的。 图1:一个信号周期内的位置偏差u (上图) 和一圈内的位置偏差a (下图) 一圈内的位置偏差的绝大部分来源于轴承,测量轴的机械结构和安装产生的径向跳动。而一个信号周期内的位置偏差来自扫描质量和信号周期的质量。上述两种位置偏差对驱动

特性具有实质性的影响(表1)并要越小越好,尤其是数字式速度一个信号周期内的偏差控制。由于实际位置值决定了实际速度值,因而编码器的位置偏差决定了控制特性。 表1: 模块式编码器对驱动特性的影响 特别是一个信号周期内的位置偏差,对控制特性的影响尤其重要。这是编码器的制造误差。因此海德汉公司投入极大的精力研制和生产这种在一个信号周期内误差非常小的编码器。包括使用各种信号滤波器及设计复杂的电路以达到此目的;从而使模块式旋转和角度编码器相对于信号周期的误差限定在信号周期的± 1% 以内。扫描原理决定了光栅周期和扫描头与光栅之间的间隙的公差。一个信号周期内的位置偏差见下表(表2): 表2: 无接触式扫描原理的对比 干涉型编码器应用光的干涉和衍射原理,允许非常精细的光栅条纹周期和信号周期,因而可以保证较小的位置偏差。光电扫描的编码器通常采用"传统的" 影像非接触式测量原理,一般可以达到一个信号周期内的位置偏差在± 0.2 μm 以下,该偏差要比磁式和感应式测量原理小10 到20 倍。要选择合适的扫描原理,只有采用光电扫描原理的编码器才可满足控制特性要求较高和更高的精度。 不带内置轴承的旋转和角度编码器的精度主依赖于与其相配轴的轴承精度和用户安装编码器的安装精度。图 2 表明由于码盘与被测量轴的不对中度引起的位置偏差。通常要达到± 1 角秒到± 5 角秒,来自轴承和安装误差的径向跳动量要小于1 μm。该值是在负载下得到的,即考虑了工件重量和操作力。

相关主题
文本预览
相关文档 最新文档