当前位置:文档之家› 概率统计习题课

概率统计习题课

概率统计习题课
概率统计习题课

一 随机事件及其概率

1. ,,A B C 为三个随机事件,事件“,,A B C 不同时发生”可表示

为 ,

事件“,,A B C 都不发生”可表示为 ,事件“,,A B C 至少发生两件”可表示为 。

2.从1,2,3,4中随机取出两个数,则组成的两位数是奇数的概率是 , 事件“其中一个数是另一个数的两倍”的概率是 。

3. 有r 个球,随机地放在n 个盒子中(r n ≤),则某指定的r 个盒子中各有一球的概率为_ __ __。

4.把3个球随机放入编号为1,2,3的三个盒子(每个盒子能容纳多个球),则三个盒子各放入一球的概率是___________。

5. 设,A B 为随机事件,()0.7P A =, ()0.3P A B -=,则()P A B =__ ___。

6.事件A 发生必然导致事件B 发生,且()0.1,()0.2,P A P B ==,则()P A B =____。

7. 盒中有6个大小相同的球,4个黑球2个白球,甲乙丙三人先后从盒中各任取一球,取后不放回,则至少有一人取到白球的概率为___________。

8. 甲乙两个盒子,甲盒中有2个白球1个黑球,乙盒中有1个白球2个黑球,从甲盒中任取一球放入乙盒,再从乙盒中任取一球,取出白球的概率

是 。

9.某球员进行投篮练习,设各次进球与否相互独立,且每次进球的概率相同,已知他三次投篮至少投中一次的概率是,则他的投篮命中率是 。

10. 将一枚硬币抛掷3次,观察出现正面(记为H )还是反面(记为T ),事件A ={恰有一次出现正面},B ={至少有一次出现正面},以集合的形式写出试验的样本空间Ω和事件,A B ,并求(),(),()P A P B P A B

11. 已知()0.1,()0.2P A P B ==,在下列两种情况下分别计算()P A B 和()P A B :(1) 如果事件,A B 互不相容; (2) 如果事件,A B 相互独立。

12. 盒中有3个黑球7个白球,从中任取一球,不放回,再任取一球,(1)若第一次取出的是白球,求第二次取出白球的概率 (2) 两次都取出白球的概率 (3) 第二次取出白球的概率 (4) 若第二次取出的是白球,求第一次取出白球的概率。

二 一维随机变量 1.向平面区域{(,):1

}x y x y +≤内随机投3个点,则3个点中恰有2个点落在第一象限内的概率是 。

2.设随机变量X 服从二项分布(3,0.3)B ,且2Y X =,{4}P Y == 。

3.设圆形区域的半径X 服从区间[0,2]上的均匀分布,则圆形区域的面积2Y X π=的数学期望()E Y =________。

4.设随机变量X 的密度函数()f x 对x R ?∈,有()()f c x f c x +=- , c 是常数,

则{}P X c >= ,()E X = 。

5.设随机变量X 的密度函数221

(),()x x f x x R

-+-=∈,

则2()E X = 。 6.抽样调查结果表明:某地区考生的外语成绩X 服从正态分布2(,)N μσ,

平均成绩72μ=,已知80分以上者占总人数的20%,则考生的外语成绩在64分至80分之间的概率是 。

7.一袋中装有六只球,编号是1,2,3,4,5,6,从中随机取出三个球,X 表示取出的球的最小号码,求X 的分布律,数学期望和方差。

8. 试验E 只有两种结果:A 和A ,且(),01P A p p =<<,试验E 独立重复地进行,(1) X 表示事件A 首次发生时的试验次数,求X 的分布律和数学期望; (2) Y 表示事件A 第r 次发生时的试验次数(r 是任一正整数), 求Y 的分布律和数学期望。

9. 盒中有3个黑球2个白球,每次从中任取一球,直到取到白球为止,X 表示抽取次数,(1) 如果每次取出的球不放回,求X 的分布律和数学期望;(2) 如果每次取出的球放回盒中,求X 的分布律和数学期望。

10. 设连续型随机变量X 的密度函数,01()0,

ax b x f x +≤≤?=??其他,{0.5}0.625P X >=,(1) 确定常数,a b (2) 计算{10.5}P X -<< (3) 求

()E X

11. 设随机变量X 的分布函数是()arctan F x A B x =+,求(1) 常数,A B (2)X 的概率密度()f x (3

)(1P X -≤≤

12. 乘客在某公交车站等车的时间X 服从正态分布2(7,2)N ,(单位:分钟)

(1) 求乘客的等车时间超过11分钟的概率((1)0.84Φ=,(2)0.98Φ=)

(2) 若一小时内有100位乘客在此车站等车,其中等车时间超过11分钟的人数是Y ,写出Y 的分布律,并求一小时内至少有两人等车时间超过11分钟的概率。

13. 在某次200米游泳比赛中,运动员的成绩2(180,20)X N (单位:秒),(1)成绩位于前40%的运动员直接晋级,则用时低于多少秒(设为a )的运动员得以晋级 (2)成绩位于后20%的运动员直接淘汰,则用时超过多少秒(设为b )的运动员被淘汰((0.25)0.6,(0.84)0.8Φ=Φ=)

14. 某人家住市区东郊,工作单位在西郊,上班有两条路线可选择:一条直穿市区,但可能塞车,所需时间(单位:分钟)服从正态分布2(30,10)N ;另一条环城高架,路程远但很少塞车,所需时间服从正态分布2(40,4)N ,为保证以较大概率上班不迟到,问:(1) 如果上班前50分钟出发,应选哪条路线(2) 如果上班前45分钟出发,应选哪条路线

((1.25)0.8944,(1.5)0.9332,(2)0.9772,(2.5)0.9938)Φ=Φ=Φ=Φ=

15. 设随机变量X 服从[0,1]上的均匀分布,证明:(1) ()Y a b a X =+-服从

[,]a b 上的均匀分布;(2) ln Y X =-服从参数为1的指数分布。

16. 射箭比赛中的圆靶半径为米, 设击中靶上任一同心圆内的概率与该圆的面积成正比,并设箭支都能中靶, (1) 以X 表示箭支落点与圆心的距离,证明:X

的分布函数2

00()400.510.5

x F x x x x ?; (2) 如图,从圆心起每米为一环,Y 表示射箭得到的环数,求Y 的分布律和数学期望。

17. (1) 设随机变量12,X X 相互独立,都服从参数为λ的泊松分布, 证明:12X X +服从参数为2λ的泊松分布;(2) 假设在一分钟内进入商场的顾客数X 服从参数为λ的泊松分布,相邻两位顾客进入商场的间隔时间是T ,求T 的分布函数(){}F t P T t =≤和密度函数()f t 。

(提示:由(1)可知,在t 分钟内进入商场的顾客数服从参数为t λ的泊松分布)

三 二维随机变量

1.设二维随机变量(,)X Y 的联合分布函数(,)(1)(1),0,0ax by F x y e e x y --=-->>,则其联合密度函数(,)f x y = 。

5 4 3 2 1

2.设二维随机变量),(Y X 的联合密度,01(,)0,

A y x f x y ≤≤≤?=??其他, 则=A ,11{,}22

P X Y ><= 。

3. 设二维随机变量),(Y X 的联合密度2,(,)0,c x y x f x y else ?≤≤=??,则常数c =

4. 已知随机变量X 和Y 的分布律分别为0101~~0.750.250.50.5X Y ???? ? ???

??

且{0}1P XY ==,则{0,0}P X Y === 。 5. 设随机变量X 和Y 相互独立,具有相同的分布律:11~1/21/2X -?? ???

则{}P X Y == ,{0}P X Y +== 。

6. 设随机变量(1,4)X N ,(0,16)Y N ,,X Y 相互独立,则21Z X Y =--服从的分布是 。(需注明参数)

7.甲乙两人约在7点到8点之间在车站碰头,设两人的到达时刻是随机的,记

为),(Y X ,0,60X Y ≤≤,(1) 写出),(Y X 的联合密度函数(,)f x y ; (2) 在7:15,

7:30,7:45,8:00各有一班车到站,如果两人见车就乘,求他们能乘坐同一班车的概率1p ,如果先到者最多等一班车,求他们能乘坐同一班车的概率2p 。

8.设二维随机变量),(Y X 的联合密度函数为,02,0(,)0,

y Ae x y f x y -?≤≤>=??其他 求 (1) 常数A ;(2) 关于X 和Y 的边缘密度函数)(),(y f x f Y X ,并判断X 和Y 是否相互独立(3) 求()E XY

9. 在区间(0,1)上随机取两个数X 和Y ,(1)写出(,)X Y 的联合密度函数(,)f x y ;

(2) 求两数之和小于6/5的概率。

10. 盒中有5个大小相同的球,其中1个黑球2个白球2个红球,从中任取两个球,X 和Y 分别表示取出的白球数和红球数,(1) 求(,)X Y 的联合分布律与边缘分布律; (2) 求取出的白球数和红球数的数学期望。

四 大数定律与中心极限定理

1. 设A n 是n 次独立重复试验中事件A 发生的次数,p 是事件A 发生的概率,则对任意正数ε,有lim A n n P p n ε→∞??-≥=????

。 2. 测量一个零件的长度,测量n 次,得到一组测量值12,,,n X X X ??,设零件

的实际长度是a ,则对任意正数ε,有11lim n i n i P X a n ε→∞=??-<=????

∑ 。 3. 设12,,,n X X X ?是来自于正态总体2(0,)N σ的样本,则对任意正数ε,

2211lim n i n i P x n σε→∞=??-≥=????

∑ 。 4. 设12,,,,n X X X ??是相互独立的随机变量序列,(),()i i E X D X 存在,且

(),1,2,i D X C i ≤=,则对任意正数ε,1111lim ()n n

i i n i i P X E X n n ε→∞==??-≥=????

∑∑ 5. 计算器在进行加法时,将每个加数舍入最近的整数,设所有的舍入误差X 都服从[,]上的均匀分布且相互独立。 (1) 写出X 的密度函数,数学期望和方差;

(2) 计算器将1200个数相加,用中心极限定理计算误差总和的绝对值小于10的概率。((1)0.84Φ=)

6. 抛掷一枚均匀硬币100次,其中正面向上的次数是X ,(1)写出X 的分布律,数学期望和方差 (2) 用中心极限定理计算正面向上的频率在到之间的概率

((1)0.84Φ=)

7. 从区间(0,1)中任取一个实数X ,称为随机数,(1) 证明:两个独立随机数的

和12X X +的密度函数是,01()2,120x x f x x x else ≤

, (2) 将1200个独立随机数相

加,用中心极限定理计算总和在590到610之间的概率((1)0.84Φ=)

五 数理统计

1. 某商店100天销售电视机的情况有如下统计资料,则样本均值X = 。

2. 设1210,,,x x x ?是从总体中随机抽取的容量10n =的一组样本观测值,算得数

据101021120,940i i i i x x ====∑∑

,则样本标准差s == 。 3. 设12,,,n X X X ?是来自于正态总体2

(,)N μσ的样本, 样本均值11n

i i X X n ==∑,样本方差2

211()1n i i S X X n ==--∑,则2()E X μ-= ,2()E S = 。 4. 设总体X 服从参数为λ的泊松分布,12,,,n X X X 是来自X 的样本,X 是样

本均值,则λ的最大似然估计量为 ,λ的矩估计量为 。

5. 设盒内有黑,白两种球,白球所占比例是(01)p p ≤≤ , 从盒中随机取一球,然后放回,这样取10次,发现取到6个白球4个黑球,(1) 白球记为1,黑球记为0,写出总体的分布,并求出白球比例p 的矩估计值; (2) 用最大似然估计法,求出白球比例p 的最大似然估计值。

6. 公交公司随机调查了20位乘客的等车时间,得到数据如下(单位:分钟):

5, 8, 2, 1, 10, 12, 4, 5, 6, 11, 7, 13, 15, 9, 4, 12, 14, 15,

3, 10

设乘客的等车时间X 服从[0,]t 上的均匀分布,(1) 写出总体的密度函数()f x ,并求t 的矩估计值; (2) 用最大似然估计法,求t 的最大似然估计值。

7. 设总体X 服从几何分布, 即1{}(1),1,2,x P X x p p x -==-=,其中未知参数日售出台数X 2 3 4 5 6 合计 天数 20 30 10 25 15 100

01p <<,12,,,n x x x ?是一组样本观测值,求p 的矩估计和最大似然估计。

8. 设总体X 的密度函数为???<<=-其它0

10)(1x x x f θθ,其中未知参数0>θ,设12,,,n X X X ??是来自于总体的一组样本,(1) 求θ的矩估计量;(2) 求θ的最大似然估计量。

9.设12,,,n X X X ?是来自于总体X 的样本,()E X μ=,2()D X σ=,证明:X 与2S

分别是2,σμ的无偏估计,即()E X μ=,22

()E S σ= 10. 设12,,,n X X X ??是来自于总体X 的样本,2(),()E X D X μσ==,(1)

在什么条件下, 1?n

i i i c X μ

==∑是总体期望μ的无偏估计量12,,,n c c c ?是任意常数,(2) 在形如1?n

i i i c X μ

==∑的估计量中,最有效的无偏估计是哪个

为调查某脱脂奶粉的脂肪含量,现随机抽取36罐奶粉进行试验,得到其平均脂肪含量9x =(克),设脂肪含量服从正态分布2

(,0.6)N μ,

(1) 求其平均脂肪含量μ的置信度为的置信区间;

(2) 奶粉包装罐上标明“脂肪含量≤

克”,可否认为该脱脂奶粉脂肪含量显著偏高设显著性水平为。

从今年的新生儿中随机地抽取25个,测得其平均体重x =3160克,样本标准差s =300克,假设新生儿体重X 服从正态

分布

2(,)N μσ, (1) 求新生儿平均体重μ的置信度为的置信区间;

(2) 根据过去统计资料,新生儿平均体重为3010克,问现在的新生儿体重与过去有无显著差异 设显著性水平为。

统计概率经典例题(含(答案)和解析)

统计与概率经典例题(含答案及解析) 1.(本题8分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表: ⑴表中a和b所表示的数分别为:a= .,b= .; ⑵请在图中补全频数分布直方图; ⑶如果把成绩在70分以上(含70分)定为合格,那么该学区2000名九年级考生数学成绩为合格的学生约有多少名? 2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统 计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图: (1)某镇今年1﹣5月新注册小型企业一共有家.请将折线统计图补充完整; (2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小 型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的 2家企业恰好都是餐饮企业的概率. 3.(12分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜 色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下 颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.

根据以上信息解答下列问题: (1)求实验总次数,并补全条形统计图; (2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度? (3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.4.(本题10分)某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%. 类别科普类教辅类文艺类其他册数(本)128 80 m 48 (1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数; (2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本? 5.(10分)将如图所示的版面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上(“A”看做是“1”)。 (1)从中随机抽出一张牌,牌面数字是偶数的概率是;(3分) (2)从中随机抽出两张牌,两张牌面数字的和是5的概率是;(3分)(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树形图的方法求组成的

概率统计实验复习过程

§13.6 概率统计实验 [学习目标] 1. 会用Mathematica 求概率、均值与方差; 2. 能进行常用分布的计算; 3. 会用Mathematica 进行期望和方差的区间估计; 4. 会用Mathematica 进行回归分析。 概率统计是最需要使用计算机的领域,过去依靠计算器进行统计计算,由于计算机的普及得以升级换代。本节介绍Mathematica 自带的统计程序包,其中有实现常用统计计算的各种外部函数。 一、 样本的数字特征 1. 一元的情况 Mathematica 的内部没有数理统计方面的功能,但是带有功能强大的数理统计外部程序,由多个程序文件组成。它们在标准扩展程序包集的Statistic 程序包子集中,位于目录 D :\Mathematica\4.0\AddOns\StandardPackages\Statistics 下。通过查看Help ,可以找到包含所需外部函数的程序文件名。 在程序文件DescriptiveStatistics.m 中,含有实现一元数理统计基本计算的函数,常用的有: SampleRange[data] 求表data 中数据的极差(最大数减最小数)。 Median[data] 求中值。 Mean[data] 求平均值∑=n i i x n 1 1。 Variance[data] 求方差(无偏估计)∑=--n i i x x n 12)(11。 StandardDeviation[data] 求标准差(无偏估计)∑=--n i i x x n 1 2)(11。 VarianceMLE[data] 求方差∑=-n i i x x n 1 2)(1。 StandardDeviationMLE[data] 求标准差∑=-n i i x x n 1 2)(1。 实际上程序文件中的函数很多,这里只列出了最常用的函数,其它计算函数可以通过Help 浏览。 例1 给出一组样本值:6.5,3.8,6.6,5.7,6.0,6.4,5.3,计算样本个数、最大值、最小值、均值、方差、标准差等。

概率论与数理统计试题库

概率论与数理统计 一、填空题 1.已知()()() ,5.0,4.0,3.0===B A P B P A P 则() =B A B P ( 0.25 ) 2.已知在10只产品中有2只次品,在其中任取一只,作不放回抽样,则两只都是正品的概率为( 28/45 ) 3.理论上,泊松分布是作为二项分布的极限引入的。即当n →0,p →∞,且np →λ(常数 )时,有关系式lim ∞ →n C m n p m m n q -=e m m λ λ-! 成立。 4.三人独立地去破译一份密码,已知各人能译出的概率分别为1/5,1/3,1/4,则三人中至少有一人能将此密码译出的概率是( 0.6 ) 5.若事件A,B 为任意事件,则P(A+B)=P(A)+P(B)-P( AB ). 6.写出随机变量X 服从参数为λ(正常数)的泊松分布的概率公式 {}==k X P ( ! k e k λ λ-) 7.当随机变量R.V. ξ~N (μ,σ2 )时,有P{a<ξ≤b}=(F (b )-F (a )) 8.写出样本k 阶中心矩公式=k B ( () ∑==-n i k i k X X n 1 ,3,2,1 ) 9.已知()()(),2 1 ,31,41=== B A P A B P A P 则()=B A P ( 1/3 ) 10.设第一只盒子中装有3只蓝球,2只绿球,2只白球;第二只盒子中装有2只蓝球,3只绿球,4只白球。独立地分别在两只盒子中各取一只球,则至少有一只蓝球的概率是( 5/9 ) 11.已知在10只产品中有2只次品,在其中任取一只,作不放回抽样,则正品次品各有一只的概率为( 16/45 ) 二、判断题 1、 对立事件一定是互斥事件。( ) 2、 明天下雨是随机事件。( ) 3、 若事件A 和事件B 相互独立,则P(AB)=P(A)+P(B). ( ) 4、 设随机变量X 的概率密度为a, 则E (X +1)=1 。( )

概率论与数理统计题库及答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81,81,41,21 (C) 2 1,21,21,21- (D) 16 1, 8 1, 4 1, 2 1 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 4 1414121 (B) 161814121 (C) 16 3 16 14 12 1 (D) 8 18 34 12 1- 3. 设连续型随机变量X 的密度函数 ???<<=, ,0, 10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 21)21(==X P (C) 2 1)21(= < X P (D) 2 1)21(= > X P 4. 若 )(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤? = b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞+∞ -= x x f b d )() 5. 设 )(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ? b a x x f d )( (C) ) ()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

实验5:概率统计实验

撰写人姓名:撰写时间:审查人姓名: 实验全过程记录实验 名称概率统计实验 时间2学时 地点数学实验室 姓名学号 同实验者学号 一、实验目的 1、掌握利用MATLAB处理简单的概率问题; 2、掌握利用MATLAB处理简单的数理统计问题。 二、实验内容: 1、熟练掌握几种常用的离散型、连续型随机变量的函数命令; 2、熟练掌握常用的描述样本数据特征的函数命令(如最值、均值、中位数(中值)、方差、标准差、几何平均值、调和平均值、协方差、相关系数等); 3、掌握常用的MATLAB统计作图方法(如直方图、饼图等); 4、能用MATLAB以上相关命令解决简单的数据处理问题; 5、熟练掌握常用的参数估计和假设检验的相关的函数命令; 6、能用参数估计和假设检验等相关命令解决简单的实际问题。 三、实验用仪器设备及材料 软件需求: 操作系统:Windows XP或更新的版本; 实用数学软件:MATLAB 7.0或更新的版本。 硬件需求: Pentium IV 450以上的CPU处理器、512MB以上的内存、5000MB的自由硬盘空间、CD-ROM驱动器、打印机、打印纸等。 四、实验原理: 概率论与数理统计等相关理论 五、实验步骤: 1、对下列问题,请分别用专用函数和通用函数实现。 ⑴X服从[3, 10]上均匀分布,计算P{X≤4},P{X>8};已知P{X>a}=0.4,求a。 p1=unifcdf(4,3,10) p2=1-unifcdf(8,3,10) p11=cdf('unif',4,3,10) p22=1-cdf('unif',8,3,10) unifinv(0.6,3,10) icdf('unif',0.6,3,10) p1 =

概率论与数理统计课程教学大纲

《概率论与数理统计》课程教学大纲 (2002年制定 2004年修订) 课程编号: 英文名:Probability Theory and Mathematical Statistics 课程类别:学科基础课 前置课:高等数学 后置课:计量经济学、抽样调查、试验设计、贝叶斯统计、非参数估计、统计分析软件、时间序列分析、统计预测与决策、多元统计分析、风险理论 学分:5学分 课时:85课时 修读对象:统计学专业学生 主讲教师:杨益民等 选定教材:盛骤等,概率论与数理统计,北京:高等教育出版社,2001年(第三版) 课程概述: 本课程是统计学专业的学科基础课,是研究随机现象统计规律性的一门数学课程,其理论及方法与数学其它分支、相互交叉、渗透,已经成为许多自然科学学科、社会与经济科学学科、管理学科重要的理论工具。由于其具有很强的应用性,特别是随着统计应用软件的普及和完善,使其应用面几乎涵盖了自然科学和社会科学的所有领域。本课程是统计专业学生打开统计之门的一把金钥匙,也是经济类各专业研究生招生考试的重要专业基础课。本课程由概率论与数理统计两部分组成。概率论部分侧重于理论探讨,介绍概率论的基本概念,建立一系列定理和公式,寻求解决统计和随机过程问题的方法。其中包括随机事件和概率、随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理等内容;数理统计部分则是以概率论作为理论基础,研究如何对试验结果进行统计推断。包括数理统计的基本概念、参数统计、假设检验、非参数检验、方差分析和回归分析等。 教学目的: 通过本课程的学习,要求能够理解随机事件、样本空间与随机变量的基本概念,掌握概率的运算公式,常见的各种随机变量(如0-1分布、二项分布、泊松(Poisson)分布、均匀分布、正态分布、指数分布等)的表述、性质、数字特征及其应用,一维随机变量函数的分布、二维随机变量的和分布、顺序统计量的分布。理解数学期望、方差、协方差与相关系数的本质涵义,掌握数学期望、方差、协方差与相关系数的性质,熟练运用各种计算公式。了解大数定律和中心极限定量的内容及应用,熟悉数据处理、数据分析、数据推断的各种基本方法,能用所掌握的方法具体解决所遇到的各种社会经济问题,为学生进一步学习统计专业课打下坚实的基础。 教学方法: 本课程具有很强的应用性,在教学过程中要注意理论联系实际,从实际问题出发,通过抽象、概括,引出新的概念。由于本课程是研究随机现象的科学,学生之前从未接触过,学习起来会感到难度较大,授课时应突出重点,讲清难点。要使学生明白,本课程主要研究哪些方面的问题,从何角度、用何原理和方法进行研究的,是怎样研究的,得到哪些结论,如何用这些方法和结论处理今后遇到的社会经济问题。在教育中要坚持以人为本,全面体现学生的主体地位,教师应充分发挥引导作用,注意随时根据学生的理解状况调整教学进度。授课要体现两方面的作用:一是为学生自学准备必要的理论知识和方法,二是激发学生学习兴趣,引导学生自学。在教学中要体现计算机辅助

概率统计习题及答案

1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( D )。 A. A,B 互不相容 B. A,B 相互独立 C.A ?B D. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( C ) A. 1/2 B. 1/12 C. 1/18 D. 1/9 3、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( B ) A.91 9910098 .02.0C B.i i i i C -=∑100100 9 10098 .02.0 C.i i i i C -=∑100100 10 10098 .02.0 D.i i i i C -=∑- 1009 0100 98 .02.01 4、设)3,2,1(39)(=-=i i X E i ,则)( )3 12 53(32 1=+ +X X X E B A. 0 B. 25.5 C. 26.5 D. 9 5、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25 24 23 2 1X X X X X c +++? 服从t 分布。( C ) A. 0 B. 1 C. 2 6 D. -1 6、设X ~)3,14(N ,则其概率密度为( A ) A.6 )14(2 61- -x e π B. 3 2 )14(2 61- - x e π C. 6 )14(2 321- - x e π D. 2 3 )14(2 61-- x e π 7、321,,X X X 为总体),(2 σμN 的样本, 下列哪一项是μ的无偏估计( A ) A. 32 12 110 351X X X + + B. 32 1416131X X X ++ C. 32 112 5 2 13 1X X X + + D. 32 16 13 13 1X X X + + 8 、设离散型随机变量X 的分布列为 则常数C 为( C ) (A )0 (B )3/8 (C )5/8 (D )-3/8

概率统计实验报告(三)剖析

线性回归实验报告(三) 实验目的:通过本次实验,了解matlab和spss在非参数检验中的应用,学会用matlab和spss做非参数假设检验,主要包括单样本和多样本非参数假设检验。 实验内容: 1.单样本假设检验; 2.多样本假设检验. 实验结果与分析: 1.单样本K-S儿童身高 操作步骤: ⑴分析-非参数检验-旧对话框-1-样本KS; ⑵将“周岁儿童身高”变换到检验变量列表,由于样本量太少,点击精确按钮,选择精确检验方法; ⑶回到K-S检验对话框,点击选项按钮,设置输出参数,勾选描述性和四分位数; ⑷输出检验结果。 从图形特征上看,儿童身高的分布非常接近正态分布,但是仍需要用K-S来检验

诊断。 结论:K-S检验统计量Z值为0.936,显著性为0.344,大于显著性水平0.05,所以不能拒绝原假设,认为周岁儿童的身高服从正态分布。 2.单样本游程——电缆 操作步骤: ⑴分析-非参数检验-旧对话框-游程; ⑵将“耐电压值”变换到检验变量列表; ⑶回到游程检验对话框,点击选项按钮,设置输出参数,勾选描述性和四分位数; ⑷输出检验结果。

结论:中位数渐进显著性为0.491,平均数和众数为1,大于显著性水平0.05,所以不能拒绝原假设,所以该组电缆耐电压值是随机的。 3.多独立样本——儿童身高 操作步骤: ⑴分析-非参数检验-旧对话框-K个独立样本检验; ⑵将“周岁儿童身高”变换到检验变量列表;将“城市标志”变换到分组变量,设置分组变量范围; ⑶回到多独立样本检验对话框,点击选项按钮,设置输出参数,勾选描述性和四分位数; ⑷输出检验结果。

结论:多个样本的K-W检验,即秩和检验目的是看各总体的位置参数是否一样,渐近显著性值为0.003,小于显著性水平0.05,所以拒绝原假设,因而四个城市儿童身高的分布存在显著性差异。 4.多样本配对——促销方式 操作步骤: ⑴分析-非参数检验-旧对话框-K个相关样本检验; ⑵将“促销形式1”、“促销形式2”、“促销形式3”变换到检验变量列表; ⑶回到多个关联样本检验对话框,点击选项按钮,设置输出参数,勾选描述性和四分位数; ⑷输出检验结果。

概率统计试题库及答案

、填空题 1、设 A 、B 、C 表示三个随机事件,试用 A 、B 、C 表示下列事件:①三个事件都发生 ____________ ;__②_ A 、B 发生,C 3、 设 A 、 B 、C 为三个事件,则这三个事件都不发生为 ABC; A B C.) 4、 设 A 、B 、C 表示三个事件,则事件“A 、B 、C 三个事件至少发生一个”可表示为 ,事件“A 、B 、 C 都发生”可表 示为 , 5、 设 A 、 B 、 C 为三事件,则事件“A 发生 B 与 C 都不发生”可表示为 ________ 事__件; “A 、B 、C 不都发生”可表 示为 ____________ ;_事_ 件“A 、B 、C 都不发生”可表示为 ____ 。_(_ABC ,A B C ;A B C ) 6、 A B ___________ ;__ A B ___________ ;__A B ___________ 。_(_ B A , A B , A B ) 7、 设事件 A 、B 、C ,将下列事件用 A 、B 、C 间的运算关系表示:(1)三个事件都发生表示为: _______ ;_(_ 2)三 个 事件不都发生表示为: ________ ;_(_ 3)三个事件中至少有一个事件发生表示为: _____ 。_(_ ABC , A B C , A B C ) 8、 用 A 、B 、C 分别表示三个事件,试用 A 、B 、C 表示下列事件: A 、B 出现、C 不出现 ;至少有一 个 事 件 出 现 ; 至 少 有 两 个 事 件 出 现 。 ( ABC,A B C,ABC ABC ABC ABC ) 9、 当且仅当 A 发生、 B 不发生时,事件 ________ 发_生_ 。( A B ) 10、 以 A 表 示 事 件 “甲 种 产 品 畅 销 , 乙 种 产 品 滞 销 ”, 则 其 对 立 事 件 A 表 示 。(甲种产品滞销或乙种产品畅销) 11、 有R 1, R 2 , R 3 三个电子元件,用A 1,A 2,A 3分别表示事件“元件R i 正常工作”(i 1,2,3) ,试用 A 1,A 2,A 3表示下列事件: 12、 若事件 A 发生必然导致事件 B 发生,则称事件 B _____ 事_件 A 。(包含) 13、 若 A 为不可能事件,则 P (A )= ;其逆命题成立否 。(0,不成立) 14、 设A、B为两个事件, P (A )=0 .5, P (A -B )=0.2,则 P (A B ) 。(0.7) 15、 设P A 0.4,P A B 0.7,若 A, B 互不相容,则P B ______________ ;_若 A, B 相互独立,则P B _______ 。_(_0.3, 概率论与数理统计试题库 不发生 _________ ;__③三个事件中至少有一个发生 2、 设 A 、B 、C 为三个事件,则这三个事件都发生为 _______________ 。_(__A_BC , ABC , A B C ) ;三个事件恰有一个发生 为 ABC; ABC ABC ABC )。 ;三个事件至少有一个发生为 事件“A 、 B 、C 三事件中至少有两个发生”可表示为 。( A B C , ABC , AB BC AC ) 三个元件都正常工作 ;恰有一个元件不正常工作 至少有一个元件 正常工作 。( A 1 A 2 A 3, A 1A 2 A 3 A 1 A 2A 3 A 1A 2A 3,A 1 A 2 A 3)

概率统计习题及答案

作业2(修改2008-10) 4. 掷一枚非均匀的硬币,出现正面的概率为(01)p p <<,若以X 表示直至掷到正、反面 都出现为止所需投掷的次数,求X 的概率分布. 解 对于2,3,k =L ,前1k -次出现正面,第k 次出现反面的概率是1(1)k p p --,前1k -次出现反面,第k 次出现正面的概率是1(1)k p p --,因而X 有概率分布 11()(1)(1)k k P X k p p p p --==-+-,2,3,k =L . 5. 一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布. 第1个能正确回答的概率是5/8, 第1个不能正确回答,第2个能正确回答的概率是(3/8)(5/7)15/56=, 前2个不能正确回答,第3个能正确回答的概率是(3/8)(2/7)(5/6)5/56=, 前3个不能正确回答,第4个能正确回答的概率是(3/8)(2/7)(1/6)(5/5)1/56=, 前4个都不能正确回答的概率是(3/8)(2/7)(1/6)(0/5)0=. 设在得到正确的回答以前不能正确回答问题的学生个数为X ,则X 有分布 6. 设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是,问一天中他至少收到4位朋友的电子邮件的概率是多少?试用二项分布公式和泊松近似律分别计算. 解 设一天中某人收到X 位朋友的电子邮件,则~(100,0.04)X B ,一天中他至少收到4位朋友的电子邮件的概率是(4)P X ≥. 1) 用二项分布公式计算 3 1001000(4)1(4)10.04(10.04)0.5705k k k k P X P X C -=≥=-<=--=∑. 2) 用泊松近似律计算 331004 1000 04(4)1(4)10.04(10.04)10.5665! k k k k k k P X P X C e k --==≥=-<=--≈-=∑ ∑ .

概率统计实验报告

概率统计实验报告 班级16030 学号16030 姓名 2018 年1 月3 日

1、 问题概述和分析 (1) 实验内容说明: 题目12、(综合性实验)分析验证中心极限定理的基本结论: “大量独立同分布随机变量的和的分布近似服从正态分布”。 (2) 本门课程与实验的相关内容 大数定理及中心极限定理; 二项分布。 (3) 实验目的 分析验证中心极限定理的基本结论。 2、实验设计总体思路 2.1、引论 在很多实际问题中,我们会常遇到这样的随机变量,它是由大量的相互独立的随机 因素的综合影响而形成的,而其中每一个个别因素在总的影响中所起的作用是微小的,这种随机变量往往近似的服从正态分布。 2.2、 实验主题部分 2.2.1、实验设计思路 1、 理论分析 设随机变量X1,X2,......Xn ,......独立同分布,并且具有有限的数学期望和方差:E(Xi)=μ,D(Xi)=σ2(k=1,2....),则对任意x ,分布函数 满足 该定理说明,当n 很大时,随机变量 近似地服从标准正 态分布N(0,1)。因此,当n 很大时, 近似地服从正 态分布N(n μ,n σ2). 2、实现方法(写清具体实施步骤及其依据) (1) 产生服从二项分布),10(p b 的n 个随机数, 取2.0=p , 50=n , 计算n 个随 机数之和y 以及 ) 1(1010p np np y --; 依据:n 足够大,且该二项分布具有有限的数学期望和方差。 (2) 将(1)重复1000=m 组, 并用这m 组 ) 1(1010p np np y --的数据作频率直方图进 行观察. 依据:通过大量数据验证随机变量的分布,且符合极限中心定理。

概率论与数理统计实验报告

概率论与数理统计 实验报告 概率论部分实验二 《正态分布综合实验》

实验名称:正态分布综合实验 实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。 实验内容: 实验分析: 本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。 实验过程: 1.直方图与累计百分比曲线 1)实验程序 m=[100,1000,10000]; 产生随机数的个数 n=[2,1,0.5]; 组距 for j=1:3 for k=1:3 x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个 正态分布随机数

a=min(x); a为生成随机数的最小值 b=max(x); b为生成随机数的最大值 c=(b-a)/n(k); c为按n(k)组距应该分成的组数 subplot(1,2,1); 图形窗口分两份 hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图 yy=hist(x,c)/1000; yy为各个分组的频率 s=[]; s(1)=yy(1); for i=2:length(yy) s(i)=s(i-1)+yy(i); end s[]数组存储累计百分比 x=linspace(a,b,c); subplot(1,2,2); 在第二个图形位置绘制累计百分 比曲线 plot(x,s,x,s);xlabel('累积百分比曲线'); grid on; 加网格 figure; 另行开辟图形窗口,为下一个循 环做准备 end end 2)实验结论及过程截图 实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 1 21 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2Y X =的分布列.

五、(10分)设随机变量X 具有密度函数||1 ()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1()(1),1,2,,01k P X k p p k p -==-=<<, 的样本,试求未知参数p 的极大似然估计. 《概率论与数理统计》试题(1)评分标准 一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。 二 解 (1)ABC (2)AB AC BC 或ABC ABC ABC ABC ; (3)A B C 或ABC ABC ABC ABC ABC ABC ABC ; (4)ABC ABC ABC ; (5)AB AC BC 或ABC ABC ABC ABC 每小题4分; 三 解 设A =‘三段可构成三角形’,又三段的长分别为,,x y a x y --,则0,0,0x a y a x y a <<<<<+<,不等式构成平面域S .------------------------------------5分 A 发生0,0,22 2 a a a x y x y a ?<<<<<+< 不等式确定S 的子域A , 分 所以 1 ()4 A P A = =的面积S 的面积

概率统计练习题答案

概率统计练习题答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

《概率论与数理统计》练习题 2答案 考试时间:120分钟 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、A 、B 任意二事件,则A B -=( )。 A 、B A - B 、AB C 、B A - D 、A B 答案:D 2、设袋中有6个球,其中有2个红球,4个白球,随机地等可能地作无放回抽样,连 续抽两次,则使P A ()=1 3成立的事件A 是( )。 A 、 两次都取得红球 B 、 第二次取得红球 C 、 两次抽样中至少有一次抽到红球 D 、 第一次抽得白球,第二次抽得红球, 答案:B 3、函数()0 0sin 01 x F x x x x ππ

A 、ξη= B 、2ξηξ+= C 、2ξηξ= D 、~(2,)B p ξη+ 答案:D 5、设随机变量12,,,n ξξξ???相互独立,且i E ξ及i D ξ都存在(1,2, ,)i n =,又 12,,, ,n c k k k ,为1n +个任意常数,则下面的等式中错误的是( )。 A 、11n n i i i i i i E k c k E c ξξ==??+=+ ???∑∑ B 、11n n i i i i i i E k k E ξξ==??= ???∏∏ C 、11n n i i i i i i D k c k D ξξ==??+= ???∑∑ D 、()111n n i i i i i D D ξξ==??-= ???∑∑ 答案:C 6、具有下面分布密度的随机变量中方差不存在的是( )。 A 、()150050x x x e x ?-≤?=?>? B 、( )2 6 2x x ?-= C 、()312 x x e ?-= D 、()() 42 1 1x x ?π= + 答案:D 7、设随机变量的数学期望和方差均是1m +(m 为自然数),那么 (){}041P m ξ<<+≥( )。 A 、 11m + B 、1m m + C 、0 D 、1m 答案:B 8、设1, , n X X 是来自总体2(, )N μσ的样本, 2 211 11, (),1n n i n i i i X X S X X n n --==--∑∑则以下结论中错误的是( )。 A 、X 与2n S 独立 B 、 ~(0, 1)X N μ σ -

概率统计试题及答案(本科完整版)

概率统计试题及答案(本科完整版)

一、 填空题(每题2分,共20分) 1、记三事件为A ,B ,C . 则用A ,B ,C 及其运算关系可将事件,“A ,B ,C 中只有一个发生”表示为 . 2、匣中有2个白球,3个红球。 现一个接一个地从中随机地取出所有的球。那么,白球比红球早出现的概率是 2/5 。 3、已知P(A)=0.3,P (B )=0.5,当A ,B 相互独立时,06505P(A B )_.__,P(B |A )_.__?==。 4、一袋中有9个红球1个白球,现有10名同学依次从袋中摸出一球(不放回),则第6位同学摸出白球的概率为 1/10 。 5、若随机变量X 在区间 (,)a b 上服从均匀分布,则对 a c b <<以及任意的正数0 e >,必有概率 {} P c x c e <<+ = ?+?-?e ,c e b b a b c ,c e b b a 6、设X 服从正态分布2 (,)N μσ,则~23X Y -= N ( 3-2μ , 4σ2 ) . 7、设1128363 X B EX DX ~n,p ),n __,p __==(且=,=,则 8、袋中装有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以X 表示取出3只球中 ABC ABC ABC U U

2,3,则: P ( A 1 ) = 0.1 , P ( A 2 ) = 0.2 , P ( A 3 ) = 0.15 ,由各台机器间的相互独立性可得 ()()()()()123123109080850612P A A A P A P A P A ....=??=??= ()()()12312321101020150997P A A A P A A A ....??=-=-??= ()() ()()()()1231231231231231231231233010808509020850908015090808500680153010806120941 P A A A A A A A A A A A A P A A A P A A A P A A A P A A A .................=+++=??+??+??+??=+++=U U U 2、甲袋中有n 只白球、m 只红球;乙袋中有N 只白球、M 只红球。今从甲袋任取一球放入乙袋后,再从乙袋任取一球。问此球为白球的概率是多少? 解:以W 甲表示“第一次从甲袋取出的为白球”,R 甲表示“第一次从甲袋取出的为红球”, W 乙表示“第二次从乙袋取出的为白球”, 则 所 求 概率为 ()()()() P W P W W R W P W W P R W ==+U 乙甲乙甲乙甲乙甲乙 ()( ) ()( ) P W P W W P R P W R =+甲乙甲甲乙甲 11 111111111 n m N N n m N M n m N M C C C C C C C C +++++++=?+?

概率统计计算部分练习题

1.盒中有同类产品10件,其中一级品4件,甲先从盒中任意取2件,乙再从剩下的产品中任意取2件。 (1).求乙取出的2件都不是一级品的概率; (2).求在乙取出的2件都不是一级品的条件下,甲取到的2件都是一级品的概率。 2. 某种仪器由三个部件组装而成,假设各部件质量互不影响且它们的优质品率分别为0.8,0.7和0.9。已知:如果三个部件都是优质品,则组装后的仪器一定合格;如果有一个部件不是优质品,则组装后的仪器不合格率为0.2;如果有两个部件不是优质品,则仪器的不合格率为0.6;如果三件都不是优质品,则仪器的不合格率为0.9。 (1)求仪器的不合格率; (2)如果已发现一台仪器不合格,问它有几个部件不是优质品的概率最大。 3. 设随机变量X 的分布函数为 ?????>≤≤<=1 1100,0)(2 x x ax x x F 求 (1). 常数a ;(2). X 的概率密度函数;(3). )7.03.0(<

求(1)边缘概率密度(),()X Y f x f y ; (2)(1)P X Y +<; (3)Z X Y =+的概率密度()Z f z . 6. 设2)(=X E ,4)(=Y E ,4)(=X D ,9)(=Y D ,5.0=ρXY ,求 (1)32322-+-=Y XY X U 的数学期望; (2)53+-=Y X V 的方差。 7. 罐中有5个红球,2个白球,无回放地每次取一球,直到取到红球为止,设X 表示抽取次数,求(1)X 的分布列,(2)()E X 8. 设二维连续型随机变量),(Y X 的联合概率密度函数为: ???-<<<<=其它, 0)1(20,10,1),(x y x y x f 求: (1)关于X 和Y 的边缘密度函数)(x f X 和)(y f Y ; (2))(X E 和)(X D ; (3)条件概率密度函数)|(|y x f Y X ; (4)Z =X +Y 的概率密度函数)(z f Z 。 9. 假设本班同学身高服从方差为144的正态分布,随机选取25名同学测得身高数据,算得170x cm =,是否可以认为本班同学的平均身高μ为175cm 。(0.9750.975(24) 2.0639, 1.96t u ==) 10. 设总体X 的概率密度函数为 ???<<+θ=θ其它, 010,)1()(x x x f 其中1->θ为未知参数,n X X X ,,,21 为来自该总体的一个简单随机样本。 (1)求θ的矩估计量M θ?; (2)求θ的极大似然估计量MLE θ?; (3)若给出来自该总体的一个样本1-e ,2-e ,2-e ,1-e ,3-e ,3-e ,2-e ,2-e ,求概率}2.0{

概率论与数理统计实验报告

概率论与数理统计实验报告 一、实验目的 1.学会用matlab求密度函数与分布函数 2.熟悉matlab中用于描述性统计的基本操作与命令 3.学会matlab进行参数估计与假设检验的基本命令与操作 二、实验步骤与结果 概率论部分: 实验名称:各种分布的密度函数与分布函数 实验内容: 1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设 定)。 2.向空中抛硬币100次,落下为正面的概率为0.5,。记正面向上的次数 为x, (1)计算x=45和x<45的概率, (2)给出随机数x的概率累积分布图像和概率密度图像。 3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。 程序: 1.计算三种随机变量分布的方差与期望 [m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3 [m1,v1]=poisstat(5> %泊松分布,取lambda=5 [m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12 计算结果: m0 =3 v0 =2.1000 m1 =5 v1 =5 m2 =1 v2 =0.0144 2.计算x=45和x<45的概率,并绘图 Px=binopdf(45,100,0.5> %x=45的概率 Fx=binocdf(45,100,0.5> %x<45的概率 x=1:100。 p1=binopdf(x,100,0.5>。 p2=binocdf(x,100,0.5>。 subplot(2,1,1>

plot(x,p1> title('概率密度图像'> subplot(2,1,2> plot(x,p2> title('概率累积分布图像'> 结果: Px =0.0485 Fx =0.1841 3.t(10>分布与标准正态分布的图像 subplot(2,1,1> ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]> title('标准正态分布概率密度曲线图'> subplot(2,1,2> ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。b5E2RGbCAP title('t(10>分布概率密度曲线图'> 结果:

概率统计习题带答案

概率统计习题带答案 概率论与数理统计习题及题解沈志军盛子宁第一章概率论的基本概念1.设事件A,B及A?B的概率分别为p,q及r,试求P(AB),P(AB),P(AB)及P(AB) 2.若A,B,C相互独立,试证明:A,B,C 亦必相互独立。3.试验E为掷2颗骰子观察出现的点数。每种结果以(x1,x2)记之,其中x1,x2分别表示第一颗、第二颗骰子的点数。设事件A?{(x1,x2)|x1?x2?10},事件B?{(x1,x2)|x1?x2}。试求P(B|A)和P(A|B) 4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。问:恰好第三次打开房门锁的概率?三次内打开的概率?如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n个白

球、m个红球,乙袋中装有N个白球、M个红球。今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为,,在甲系统失灵的条件下乙系统也失灵的概率为。试求下列事件的概率:仓库发生意外时能及时发出警报;乙系统失灵的条件下甲系统亦失灵?9.设A,B为两随机变量,试求解下列问题:已知P(A)?P(B)?1/3,P(A|B)?1/6。求:P(A|B);

相关主题
文本预览
相关文档 最新文档