当前位置:文档之家› K型热电偶传感器课程设计报告

K型热电偶传感器课程设计报告

K型热电偶传感器课程设计报告
K型热电偶传感器课程设计报告

扬州大学能源与动力工程学院课程设计报告

题目:基于K型热电偶传感器测量电路设计课程:传感器与测控电路课程实习

专业:测控技术与仪器

班级:测控0802

姓名:陈淏

学号:081302201

总目录第一部分:任务书

第二部分:课程设计报告

第三部分:设计电路图

第一部分

《传感器与测控电路课程实习》课程设计任务书

课题:基于K型热电偶传感器测量电路设计

一个电子产品的设计、制作过程所涉及的知识面很广;加上电子技术的发展异常迅速,新的电子器件的功能在不断提升,新的设计方法不断发展,新的工艺手段层出不穷,它们对传统的设计、制作方法提出了新的挑战。但对于初次涉足电子产品的设计、制作来说,了解并实践一下传感器选择与测控电路的设计、制作的基本过程是很有必要的。由于所涉及的知识面很广,相应的具体内容请参考本文中提示的《传感器原理及应用》,《测控电路》,《模拟电子技术基础实验与课程设计》,《电子技术实验》等书的有关章节。

一、基于K型热电偶传感器测量电路设计简介

K型热电偶的电极材料是镍铬—镍硅,其精度等级为0.75级时,温度为0~1200℃,其测量温度误差为±0.75%。采用恰当的线性化处理后,可将精度提高到±0.1%~±0.2%。具有零点补偿功能。

二、基于K型热电偶传感器测量电路设计的工作原理

本课题中测量电路组成框图如下所示:

测量电路由K型热电偶传感器,零点补偿和放大电路,乘法运算电路,反相放大器1,反相加法器1和反相加法器2,反相放大器2等主电路组成;电路能够实现零点补偿和非线性校正功能。输出分为两路:一路是0~600℃对应的输出电压为0~6V;另一路是600~1200℃对应的输出电压为6~12V。

三、设计目的

1、掌握传感器选择的一般设计方法;

2、掌握模拟IC器件的应用;

3、掌握测量电路的设计方法;

4、培养综合应用所学知识来指导实践的能力。

四、设计要求及技术指标

1、设计、组装、调试;

2、温度测量范围:0~1200℃;

3、使用环境温度范围:0~85℃;

4、输出电压:0~600℃为0~6V;

5、测温误差:≤±0.5%;

6、具有温度补偿功能;

7、具有非线性补偿功能。

五、设计所用仪器及器件

1.直流稳压电源

2.双踪示波器

3.万用表

4.运放AD648,AD595,AD538

5.电阻、电容若干

6.K型热电偶传感器

7.万能电路板

8.电烙铁等

六、日程安排

1.布置任务、查阅资料,方案设计;(2天)

根据设计要求,查阅参考资料,进行方案设计及可行性论证,确定设计方案,画出电路图。

2.上机用EDA软件对设计电路进行模拟仿真调试;(2天)

要求在虚拟仪器上观测到正确的波形并达到规定的技术指标。

3.电路的装配及调试;(3天)

在万能板上对电路进行装配调试,使其全面达到规定的技术指标,最终通过验收。4.总结撰写课程设计报告。(1天)

七、课程设计报告内容:

总结设计过程,写出设计报告,设计报告具体内容要求如下:

1.课程设计的目和设计的任务

2.课程设计的要求及技术指标

3.总方案的确定并画出原理框图。

4.各组成单元电路设计,及电路的原理、工作特性(结合设计图写)

5.总原理图,工作原理、工作特性(结合框图及电路图讲解)。

6.电路安装、调试步骤及方法,调试中遇到的问题,及分析解决方法。

7.实验结果分析,改进意见及收获。

8.体会。

八、电子电路设计的一般方法:

1.仔细分析产品的功能要求,利用互连网、图书、杂志查阅资料,从中提取相关和最有价值的信息、方法。

(1)设计总体方案。

(2)设计单元电路、选择传感器、测量电路元器件、根据需要调整总体方案

(3)计算电路(元件)参数。

(4)绘制总体电路初稿

(5)上机在EDB(或EDA)电路实验仿真。

(6)绘制总体电路。

2.明确电路图设计的基本要求进行电路设计。并上机在EDB(或EDA)上进行电路实验仿真,电路图设计已有不少的计算机辅助设计软件,利用这些软件可显著减轻了人工绘图的压力,电路实验仿真大大减少人工重复劳动,并可帮助工程技术人员调整电路的整体布局,减少电路不同部分的相互干扰等等。

3.掌握常用元器件的识别和测试。电子元器件种类繁多,并且不断有新的功能、性能更好的元器件出现。需要通过互连网、图书、杂志查阅它们的识别和测试方法。对于常用元器件,不少手册有所介绍。

4、熟练使用仪表,了解电路调试的基本方法。通过排除电路故障,提高电路性能的过程,巩固理论知识,提高解决实际问题的能力。

5、独立撰写课程设计报告。

第二部分

课程设计报告

目录

1课题简介 (1)

1.1基于K型热电偶传感器测量电路设计简介 (1)

1.2 K型热电偶概述 (1)

1.3 K型热电偶特点 (1)

1.4 K型热电偶分度表 (2)

2设计的目的及任务 (3)

2.1 课程设计的目的 (3)

2.2 课程设计的任务 (3)

2.3 课程设计的技术指标 (3)

3电路设计总方案及原理框图 (4)

3.1 电路设计原理框图 (4)

3.2 电路设计方案设计 (4)

4 各部分电路设计 (9)

4.1 反相放大器 (9)

4.2 反相加法器 (9)

4.3 零点补偿及放大电路 (10)

4.4非线性校正电路 (10)

4.5 总电路图 (12)

5电路的安装与调试 (13)

5.1 电路的安装与调试 (13)

5.2 调试中遇到的问题及解决的方法 (13)

5.3调试中遇到的问题及解决的方法 (13)

6电路的实验结果 (14)

7 实验总结 (15)

8 仪器仪表明细清单 (16)

参考文献 (17)

1.课题简介

1.1 基于K型热电偶传感器测量电路设计简介

K型热电偶的电极材料是镍铬—镍硅,其精度等级为0.75级时,温度为0~1200℃,其测量温度误差为±0.75%。采用恰当的线性化处理后,可将精度提高到±0.1%~±0.2%。具有零点补偿功能。

1.2 K型热电偶概述

K型热电偶作为一种温度传感器,K型热电偶通常和显示仪表,记录仪表和电子调节器配套使用。K型热电偶可以直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。

K型热电偶通常由感温元件、安装固定装置和接线盒等主要部件组成。

镍铬-偶(K型热电偶)是目前用量最大的廉金属热电偶,其用量为其他热电偶的总和。K型热电偶丝直径一般为1.2~4.0mm。

正极(KP)的名义化学成分为:Ni:Cr=92:12,负极(KN)的名义化学成分为:Ni:Si=99:3,其使用温度为-200~1300℃。

K型热电偶具有线性度好,热电动势较大,灵敏度高,稳定性和均匀性较好,抗氧化性能强,价格便宜等优点,能用于氧化性惰性气氛中。广泛为用户所采用。

K型热电偶不能直接在高温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱氧化气氛。

1.3 K型热电偶特点

1.3.1检出(测)元件热电偶是工业上最常用的温度检测元件之一。必须配二次仪

表,其优点是:

①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

1.3.2 根据温度测量范围及精度,选用相应分度号的热电偶、使用温度在

1300~1800℃,要求精度又比较高时,一般选用B型热电偶;要求精度不高,气氛又允许可用钨铼热电偶,高于1800℃一般选用钨铼热电偶;使用温度在

1000~1300℃要求精度又比较高可用S型热电偶和N型热电偶;在1000℃以下一般用K型热电偶和N型热电偶,低于400℃一般用E型热电偶;250℃下以及负温测量一般用T型电偶,在低温时T型热电偶稳定而且精度高。

1.4 K型热电偶分度表

温度单位:℃电压单位:(mV)参考温度点:0℃(冰点)

ITS-90国际温度标准(JIS C 1602-1995,ASTM E230-1996,IEC 584-1-1995)

2.设计的目的及任务

2.1 课程设计的目的

2.1.1 掌握传感器选择的一般设计方法

2.1.2 掌握模拟IC器件的应用

2.1.3 掌握测量电路的设计方法

2.1.4 培养综合应用所学知识来指导实践的能力

2.2 课程设计的任务

设计基于K型热电偶传感器的测量电路

2.3 课程设计的技术指标

2.3.1 设计、组装、调试

2.3.2 温度测量范围:0~1200℃

2.3.3 使用环境温度范围:0~85℃

2.3.4 输出电压:0~600℃为0~6V

2.3.5 测温误差:≤±0.5%

2.3.6 具有温度补偿功能

2.3.7 具有非线性补偿功能

3.电路设计总方案及原理框图3.1 电路设计原理框图

本课题中测量电路组成框图如下所示:

测量电路由K 型热电偶传感器,零点补偿和放大电路,乘法运算电路,反相放大器1,反相加法器1和反相加法器2,反相放大器2等主电路组成;电路能够实现零点补偿和非线性校正功能。输出分为两路:一路是0~600℃对应的输出电压为0~6V ;另一路是600~1200℃对应的输出电压为6~12V 。

3.2 电路设计方案设计

3.2.1方案一

零点补偿、放大和非线性校正电路见图3-1。由图可见,它由热电偶的零点补偿、放大和非线性校正两部分组成。

(1)零点补偿及放大电路 该电路由美国模拟器件公司新近生产的K 型热电偶专用集成芯片AD595组成。热电偶或通过补偿导线插入CN 插座的+IN 和-IN 即可。由AD595完成零点补偿和放大任务,其输出与输入的关系为:

V o =249.952V i

式中,V i 是热电偶的输出热电动势。

此外,AD595还具有热电偶断偶报警功能。热电偶断线时,由12脚输出报警信号,晶体管VT 导通,发光二极管点燃。

(2)非线性校正电路 热电偶的热电动势V i 与温度t 不成线性关系,可用下式表示:

V i =a 0+a 1t+a 2t 2+…+a n t n (3-1)

式中,a 0为零点输出;a 1为灵敏度;a 2,a 3,…,a n 为非线性项系数。

a 0,a 1,a 2,a 3,…,a n 可由最小二乘法或计算机程序求出。K 型热电偶的高阶多项式(3-1),经计算可用下式表示:

0~600℃ 62(11.4 1.009534 5.50610)o a a V V V -=-+-? (3-2) 600~1200℃ 62(745.20.77280813.13510)o a a V V V -=++? (3-3)

非线性校正的关键是如何通过电路的运算实现式(3-2)和式(3-3)。它可由平方器和加法器来完成。

由图3-1可见,AD538AD 组成了乘除器,它有三个输入端子V x 、V y 和V z ,且能完成下列运算:

m

z o y x V V V V ??

= ???

(3-4)

式中,m=0.2~5,可通过不同接线取得不同的m 值。AD538的B(3脚)和C(12脚)

相连,则m=1。由于V y 和V z 的输人为V a ,15脚与4脚连接,AD538AD 内部基准电压由4脚输出电压10V ,故V x =10V ,因此式(3-4)为:

1

2

1010000a a

o a V V V V V mV ??'==

???

(3-5) 从而实现了平方运算。

温度在0~600℃范围时,由A 1和A 2实现式(3-2)的运算:

由A 1和A 2完成一次系数1.009534的运算,其中A 1是反相输入的放大器,A 2是反相输入的加法器。A 1的输出为V o1:

01V =a a V Rp k k V Rp R R 1

1121415+ΩΩ-=+-

调整多圈电位器R Pl 可使V o1=-1.009534V a 。 A 2的一条支路R 6与R 3组成一个系数为(-1)的支路。

1151536-=Ω

Ω

-=-

k k R R 它将V o1转换成V o ’=1.009534V a 。 R 6与R 4组成V a 的二次系数支路

22

4661055.51000027015'"a a a o V mV

V k k V R R V -?-=?ΩΩ

-=-

= R 6与R 5组成常系数-11.4的偏置电路,其输出为:

11310102.13151056'"-=??Ω

Ω-=?-=mV M k V R R V o

由叠加定理可得:

62(11 1.009534 5.5510)o o o o a a V V V V V V -''''''=++=-+-?

上式与式(3-2)大体相同。若R 4和R 5用多圈电位器可调整到与式(3-2)完全相同。 温度在600~1200℃范围内用式(3-3)来线性校正。该式的运算由A 3和A 4完成,其中A 4是放大倍数为-1的反相放大器。其分析方法与式(3-2)相同。0~600℃和600~1200℃的输出电压V o 分别为0~6V 和6~12V ,灵敏度为10mV /℃。该电压可通过转换开关输入到A /D 转换器和进行数字显示。

图3-1 方案一原理图

3.2.1方案二

零点补偿、放大和非线性校正电路见图3-2。由图可见,它由热电偶的零点补偿、放大和非线性校正两部分组成。

(1)零点补偿及放大电路 该电路由美国模拟器件公司新近生产的K 型热电偶专用集成芯片AD595组成。热电偶或通过补偿导线插入CN 插座的+IN 和-IN 即可。由AD595完成零点补偿和放大任务,其输出与输入的关系为:

V o =249.952V i

式中,V i 是热电偶的输出热电动势。

此外,AD595还具有热电偶断偶报警功能。热电偶断线时,由12脚输出报警信号,晶体管VT 导通,发光二极管点燃。

(2)非线性校正电路 热电偶的热电动势V i 与温度t 不成线性关系,可用下式表示:

V i =a 0+a 1t+a 2t 2+…+a n t n (3-6)

式中,a 0为零点输出;a 1为灵敏度;a 2,a 3,…,a n 为非线性项系数。

a 0,a 1,a 2,a 3,…,a n 可由最小二乘法或计算机程序求出。K 型热电偶的高阶多项式(3-1),经计算可用下式表示:

0~600℃ 62(11.4 1.009534 5.50610)o a a V V V -=-+-? (3-7) 600~1200℃ 62(745.20.77280813.13510)o a a V V V -=++? (3-8)

非线性校正的关键是如何通过电路的运算实现式(3-7)和式(3-8)。它可由平方器和加

法器来完成。

由图3-2可见,AD538AD 组成了乘除器,它有三个输入端子V x 、V y 和V z ,且能完成下列运算:

m

z o y x V V V V ??

= ???

(3-9)

式中,m=0.2~5,可通过不同接线取得不同的m 值。AD538的B(3脚)和C(12脚)相连,则m=1。由于V y 和V z 的输人为V a ,15脚与4脚连接,AD538AD 内部基准电压由4脚输出电压10V ,故V x =10V ,因此式(3-9)为:

1

2

1010000a a

o a V V V V V mV ??'==

???

(3-10) 从而实现了平方运算。

温度在0~600℃范围时,由A 1和A 2实现式(3-7)的运算:

由A 1和A 2完成一次系数1.009534的运算,其中A 1是反相输入的放大器,A 2是反相输入的加法器。A 1的输出为V o1:

2111109.41o a a P R k V V V R R k k Ω

=-

=-+Ω+Ω

调整多圈电位器R Pl 可使V o1=-1.009534V a 。 A 2的一条支路R 6与R 3组成一个系数为(-1)的支路。

6310110R K R K Ω

-

=-=-Ω

它将V o1转换成V o ’=1.009534V a 。 R 6与R 4组成V a 的二次系数支路

2

626410 5.551018010000a

o a a R V k V V V R k mV

-Ω'''=-=-?=-?Ω

R 6与R 5组成常系数-11.4的偏置电路,其输出为:

65101010119.1o R k V V V R M Ω'''=-

?=-?=-Ω

由叠加定理可得:

62(11 1.009534 5.5510)o o o o a a V V V V V V -''''''=++=-+-?

上式与式(3-7)大体相同。若R 4和R 5用多圈电位器可调整到与式(3-7)完全相同。

温度在600~1200℃范围内用式(3-8)来线性校正。该式的运算由A 3和A 4完成,其中A 4是放大倍数为-1的反相放大器。其分析方法与式(3-7)相同。0~600℃和600~1200℃的输出电压V o 分别为0~6V 和6~12V ,灵敏度为10mV /℃。该电压可通过转换开关输入到A /D 转换器和进行数字显示。

图3-2 方案二原理图

4 各部分电路设计

4.1反相放大器

反相放大器如图4-1所示,开环增益1

2

R R u K i o f -==,即i o u R R u 12-=;u R 2

其中平衡电阻R3= R1 // R2 。

4.2反相加法器

图4-2

反相加法器如图4-2所示,22

11i f

i f o u R R u R R u --

=;平衡电阻R=R1//R2//Rf 。

4.3零点补偿及放大电路

该电路由美国模拟器件公司新近生产的K 型热电偶专用集成芯片AD595组成。热电偶或通过补偿导线插入CN 插座的+IN 和-IN 即可。由AD595完成零点补偿和放大任务,其输出与输入的关系为:

V o =249.952V i

式中,V i 是热电偶的输出热电动势。

此外,AD595还具有热电偶断偶报警功能。热电偶断线时,由12脚输出报警信号,晶体管VT 导通,发光二极管点燃。如图4-3所示。

图4-3零点补偿及放大电路

4.4非线性校正电路

热电偶的热电动势V i 与温度t 不成线性关系,可用下式表示:

V i =a 0+a 1t+a 2t 2+…+a n t n (4-1)

式中,a 0为零点输出;a 1为灵敏度;a 2,a 3,…,a n 为非线性项系数。

a 0,a 1,a 2,a 3,…,a n 可由最小二乘法或计算机程序求出。K 型热电偶的高阶多项式(4-1),经计算可用下式表示:

0~600℃ 62(11.4 1.009534 5.50610)o a a V V V -=-+-? (4-2) 600~1200℃ 62(745.20.77280813.13510)o a a V V V -=++? (4-3)

非线性校正的关键是如何通过电路的运算实现式(4-2)和式(4-3)。它可由平方器和加法器来完成。

由图4-4可见,AD538AD 组成了乘除器,它有三个输入端子V x 、V y 和V z ,且能完成下列运算:

m

z o y x V V V V ??

= ???

(4-4)

式中,m=0.2~5,可通过不同接线取得不同的m 值。AD538的B(3脚)和C(12脚)相连,则m=1。由于V y 和V z 的输人为V a ,15脚与4脚连接,AD538AD 内部基准电压由4脚输出电压10V ,故V x =10V ,因此式(4-4)为:

1

2

1010000a a

o a V V V V V mV ??'==

???

(4-5) 从而实现了平方运算。

温度在0~600℃范围时,由A 1和A 2实现式(4-2)的运算:

由A 1和A 2完成一次系数1.009534的运算,其中A 1是反相输入的放大器,A 2是反相输入的加法器。A 1的输出为V o1:

2111109.41o a a P R k V V V R R k k Ω

=-

=-+Ω+Ω

调整多圈电位器R Pl 可使V o1=-1.009534V a 。 A 2的一条支路R 6与R 3组成一个系数为(-1)的支路。

1202036-=-=-

K

K

R R 它将V o1转换成V o ’=1.009534V a 。 R 6与R 4组成V a 的二次系数支路

2

626410 5.551018010000a

o a a R V k V V V R k mV

-Ω'''=-=-?=-?Ω

R 6与R 5组成常系数-11.4的偏置电路,其输出为:

65101010119.1o R k V V V R M Ω'''=-

?=-?=-Ω

由叠加定理可得:

62(11 1.009534 5.5510)o o o o a a V V V V V V -''''''=++=-+-?

图4-4非线性校正电路4.5总电路图

图4-5 总电路图

5电路的安装与调试5.1 K型热电偶传感器测量电路的安装

传感器课程设计报告

河北科技大学 课程设计报告 学生姓名:齐文华学号:12L0751265 专业班级:电子信息工程L126班 课程名称:传感器原理及应用 学年学期:2 014 —2 015 学年第一学期 指导教师:陈书旺 2 0 1 4 年12月

课程设计成绩评定表

目录 一、引言----------------------4 二、设计电路及原理------------4 三、元件清单------------------5 四、相关元器件的说明和介绍----6 五、课设步骤------------------11 六、实物图--------------------11 七、发现问题并解决问题--------13 八、心得与体会----------------13 九、参考文献------------------14

一、引言 1.课程设计的目的 1)使学生掌握传感器的使用方法和设计要点的基本技能,加深学生对“传感器原理及检测技术”理论知识的理解,为从事仪器系统开发与设计打下基础。 2)锻炼学生自主独立完成课程设计的能力,培养学生积极动手创新的精神。3)通过课程设计提高我们动手实践能力,为我们以后更好的学习传感器和其他的相关知识奠定基础,使我们更好地适应现代社会的需求。 2.设计思路来源 随着科学技术的发展,许多高端技术已经实现了自动检测与控制。同时传感器的应用也逐渐增多,遍及人们生活的各个方面,给人们的生产和生活带来极大的方便。 本设计选用光敏传感器,对特殊场合的光照强度进行检测与报警。主要应用于农业大棚、城市照明等对光照强度有要求的场合。本设计用发光二极管作为警示灯,当光照强度不满足要求时就会发光起到警示的作用。 二、实际电路及原理 1.电路图

K型热电偶传感器课程设计报告

扬州大学能源与动力工程学院课程设计报告 题目:基于K型热电偶传感器测量电路设计课程:传感器与测控电路课程实习 专业:测控技术与仪器 班级:测控0802 姓名:陈淏 学号:081302201

总目录第一部分:任务书 第二部分:课程设计报告 第三部分:设计电路图

第一部分 任 务 书

《传感器与测控电路课程实习》课程设计任务书 课题:基于K型热电偶传感器测量电路设计 一个电子产品的设计、制作过程所涉及的知识面很广;加上电子技术的发展异常迅速,新的电子器件的功能在不断提升,新的设计方法不断发展,新的工艺手段层出不穷,它们对传统的设计、制作方法提出了新的挑战。但对于初次涉足电子产品的设计、制作来说,了解并实践一下传感器选择与测控电路的设计、制作的基本过程是很有必要的。由于所涉及的知识面很广,相应的具体内容请参考本文中提示的《传感器原理及应用》,《测控电路》,《模拟电子技术基础实验与课程设计》,《电子技术实验》等书的有关章节。 一、基于K型热电偶传感器测量电路设计简介 K型热电偶的电极材料是镍铬—镍硅,其精度等级为0.75级时,温度为0~1200℃,其测量温度误差为±0.75%。采用恰当的线性化处理后,可将精度提高到±0.1%~±0.2%。具有零点补偿功能。 二、基于K型热电偶传感器测量电路设计的工作原理 本课题中测量电路组成框图如下所示: 测量电路由K型热电偶传感器,零点补偿和放大电路,乘法运算电路,反相放大器1,反相加法器1和反相加法器2,反相放大器2等主电路组成;电路能够实现零点补偿和非线性校正功能。输出分为两路:一路是0~600℃对应的输出电压为0~6V;另一路是600~1200℃对应的输出电压为6~12V。 三、设计目的 1、掌握传感器选择的一般设计方法; 2、掌握模拟IC器件的应用; 3、掌握测量电路的设计方法; 4、培养综合应用所学知识来指导实践的能力。

热电阻热电偶温度传感器校准实验

湖南大学实验指导书 课程名称:实验类型: 实验名称:热电阻热电偶温度传感器校准实验 学生姓名:学号:专业: 指导老师:实验日期:年月日 一、实验目的 1.了解热电阻和热电偶温度计的测温原理 2.学会热电偶温度计的制作与校正方法 3.了解二线制、三线制和四线制热电阻温度测量的原理 4.掌握电位差计的原理和使用方法 5.了解数据自动采集的原理 6.应用误差分析理论于测温结果分析。 二、实验原理 1.热电阻 (1) 热电阻原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。常用铂电阻和铜电阻,铂电阻在0—630.74℃以内,电阻Rt与温度t 的关系为: Rt=R0(1+At+Bt2) R0系温度为0℃时的电阻,铂电阻内部引线方式有两线制,三线制,和四线制三种,两线制中引线电阻对测量的影响最大,用于测温精度不高的场合,三线制可以减小热电阻与测量仪之间连接导线的电阻因环境温度变化所引起的测量误差。四线制可以完全消除引线电阻对测量的影响,用与高精度温度检测。本实验是三线制连接,其中一端接二根引线主要是消除引线电阻对测量的影响。 (2) 热电阻的校验 热电阻的校验一般在实验室中进行,除标准铂电阻温度计需要作三定点,(水三相点,水沸点和锌凝固点)校验外,实验室和工业用的铂或铜电阻温度计的校验方法有采用比较法

传感器原理与应用习题_第7章热电式传感器

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案 教材:传感器技术(第3版)贾伯年主编,及其他参考书 第7章热电式传感器 7-1 热电式传感器有哪几类?它们各有什么特点? 答:热电式传感器是一种将温度变化转换为电量变化的装置。它可分为两大类:热电阻传感器和热电偶传感器。 热电阻传感器的特点:(1)高温度系数、高电阻率。(2)化学、物理性能稳定。(3)良好的输出特性。(4).良好的工艺性,以便于批量生产、降低成本。 热电偶传感器的特点:(1)结构简单(2)制造方便(3)测温范围宽(4)热惯性小(5)准确度高(6)输出信号便于远传 7-2 常用的热电阻有哪几种?适用范围如何? 答:铂、铜为应用最广的热电阻材料。铂容易提纯,在高温和氧化性介质中化学、物理性能稳定,制成的铂电阻输出-输入特性接近线性,测量精度高。铜在-50~150℃范围内铜电阻化学、物理性能稳定,输出-输入特性接近线性,价格低廉。当温度高于100℃时易被氧化,因此适用于温度较低和没有侵蚀性的介质中工作。 7-3 热敏电阻与热电阻相比较有什么优缺点?用热敏电阻进行线性温度测量时必须注意什么问题? 7-4 利用热电偶测温必须具备哪两个条件? 答:(1)用两种不同材料作热电极(2)热电偶两端的温度不能相同 7-5 什么是中间导体定律和连接导体定律?它们在利用热电偶测温时有什么实际意义? 答:中间导体定律:导体A、B组成的热电偶,当引入第三导体时,只要保持第三导体两端温度相同,则第三导体对回路总热电势无影响。利用这个定律可以将第三导体换成毫伏表,只要保证两个接点温度一致,就可以完成热电势的测量而不影响热电偶的输出。 连接导体定律:回路的总电势等于热电偶电势E AB(T,T0)与连接导线电势E A’B’(Tn,T0)的代数和。连接导体定律是工业上运用补偿导线进行温度测量的理论基础。 7-6 什么是中间温度定律和参考电极定律?它们各有什么实际意义? 答:E AB(T,Tn,T0)=E AB(T,Tn)+E AB(Tn,T0) 这是中间温度定律表达式,即回路的总热电势等于E AB(T,Tn)与E AB(Tn,T0)的代数和。Tn为中间温度。中间温度定律为制定分度表奠定了理论基础。 7-7 镍络-镍硅热电偶测得介质温度800℃,若参考端温度为25℃,问介质的实际温度为多少? 答:t=介质温度+k*参考温度(800+1*25=825) 7-8 热电式传感器除了用来测量温度外,是否还能用来测量其他量?举例说明之。 7-9 实验室备有铂铑-铂热电偶、铂电阻器和半导体热敏电阻器,今欲测量某设备外壳的温度。已知其温度约为300~400℃,要求精度达±2℃,问应选用哪一种?为什么?

热电偶安装手册(中英文)

WR系列热电偶 WR Series Thermocouple WZ系列热电阻 WR Series Thermocouple 使用安装手册Installation & Operation Manual 安徽天康(集团)股份有限公司Anhui Tiankang (Group) Shares Co., Ltd

目录 Index 1、概述General Description (1) 2、工作原理Operation Theory (1) 3、结构Configuration (2) 4、主要技术参数Main Technical Parameters (3) 5、安装及使用Installation & Operation (5) 6、可能发生的故障及维修Possible Troubles & Maintenance (7) 7、运输及储存Transportation & Storage (8) 8、订货须知Notices in Ordering (8) 9、型号命名Type Naming (9)

1、概述General Description 工业用热电偶作为温度测量和调节的传感器,通常与显示仪表等配套,以直接测量各种生产过程中-40~1600℃液体、蒸汽和气体介质以及固体表面温度; As sensor for temperature measuring and regulation, industrial-purpose thermocouple is usually connected with display meter and other meters to directly measure temperature of liquid, vapor, gas and solid surface ranging from -40℃to 1600℃. 工业用热电阻作为温度测量和调节的传感器,通常与显示仪表等配套,以直接测量各种生产过程中-200~500℃液体、蒸汽和气体介质以及固体表面温度。 As sensor for temperature measuring and regulation, industrial-purpose thermal resistance is usually connected with display meter and other meters to directly measure temperature of liquid, vapor, gas and solid surface ranging from -200℃to 500℃. 2、工作原理Operation Theory1 热电偶工作原理Operation Theory of Thermocouple 热电偶工作原理是基于两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。 热电偶由两根不同导线(热电极)A和B组成,它们的一端T1是互相焊接的,形成热电偶的测量端T1(也称工作端)。将它插入待测温度的介质中;而热电偶的另一端T0(参比端或自由端)则与显示仪表相连,如果热电偶的测量端与参比端存在温度差,则显示仪表将指出热电偶产生的热电动势。 热电偶的热电动势随着测量端温度的升高而增大,它的大小只与热电偶的材料和热电偶两端的温度有关,而与热电级的长度、直径无关。 Thermocouple is based on physical phenomenon that two conductor of different materials is connected to form return circuit, when temperature on both contact is different, it results in thermoelectric potential in return circuit. 热电阻工作原理Operation Theory of Thermal Resistance 热电阻是利用金属导体或半导体有温度变化时本身电阻也随着发生变化的特性来测量温度的,热电阻的受热部分(感温元件)是用细金属丝均匀地绕在绝缘材料作成的骨架上,当被测介质有温度梯度时,则所测得的温度是感温元件所在范围内介质层的平均温度。 制造热电阻的材料应具有以下特点:大的温度系数,大的电阻率,稳定的化学物理性能和良好的复现性等。在现有的各种纯金属中,铂、铜和镍是制造热电阻的最合适的材料。其中铂因具有易于提纯,在氧化性介质中具有高的稳定性以及良好的复现性等显著的优点,而成为制造热电阻的理想材料。 It is based on that temperature change of material results in change of its resistance. When resistance value changes, the working instrument will display relevant temperature. 3、结构Configuration 感温元件直径及材料Diameter & Material of Thermal Elements 热电偶Thermocouple

传感器课程设计报告

目录 1.引言 (1) 2.系统总体设计方案 (1) 2.1 设计思路 (1) 2.2 总体框图 (2) 3.系统硬件设计 (2) 3.1 总硬件原理图 (2) 3.2 模块原理图 (3) 3.2.1 光敏电阻电路 (3) 3.2.2 电机驱动电路 (6) 3.2.3单片机电路 (8) 4.元件清单 (10) 5.系统调试与测试结果 (10) 5.1软件编程与调试 (10) 5.2 硬件调试 (12) 6.测试结果分析 (13) 7.总结 (13) 8.参考文献 (13)

1.引言 随着电子技术的飞速发展,微电子技术得到越来越多的应用,同时影响着人们生活工作的方方面面。自动窗控制系统经历了从无到有,并逐步丰富功能和可靠性发展。 为了减少因光线过强引起的显示器显示模糊程度,解决人们经常手动操作闭合窗帘的烦恼, 在此,我设计出了“自动感光启闭办公百叶窗”,智能控制室内光线. 通过室外光敏电阻感受光强变化,单片机接收光敏电阻信号,从而驱动步进电机使百叶窗闭合和打开,调整进入室内的光线;当室内光线达到适宜时,室内光敏传感器向单片机发出信号,单片机控制步进电机停止转动。这样使室内光线始终保持舒适宜人,让人们能够全神贯注地工作,解决了因窗帘开合,进入室内的光线过强或过弱给人们日常生活和工作带来的不便. 本课设描述的就是一种可根据环境光强的百叶窗控制系统的实现原理和过程。2.系统总体设计方案 2.1 设计思路 本次设计采用AT89C51单片机作为系统控制器,采用光敏电阻强弱转换为电信号的高低电平对现场光强弱的识别,并通过H桥式电路来驱动直流电机,在通过电机的转动来控制窗帘的转动。

热交换器温度控制系统课程设计报告书

热交换器温度控制系统 一.控制系统组成 由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。 图1换热器出口温度控制系统流程图 控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。 二、设计控制系统选取方案 根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。以下是通过对换热器过程控制系统的分析,确定合适的控制系统。

换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来控制。 换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。 图2换热器的温度控制系统工艺流程图 引起换热器出口温度变化的扰动因素有很多,简要概括起来主要有: (1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。热流体的温度主要受到加热炉加热温度和管路散热的影响。 (2 )冷流体的流量和温度的扰动。冷流体的流量主要受到离心泵的压头、转速

热电偶温度传感器设计报告

传感器课程设计 设计题目:热电偶温度传感器 2010年12月30日 目录 1、序言 (3) 2、方案设计及论证 (4)

3、设计图纸 (9) 4、设计心得和体会 (10) 5、主要参考文献 (11) 一、序言 随着信息时代的到来,传感器技术已经成为国外优先发展的科技领域之一。测控系统的设计通常是从对象信息的有效获取开始的不同种类

的物理量不仅需要不同种类的传感器进行采集,而且因信号性质的不同,还需要采用不同的测量电路对信号进行调理以满足测量的要去。因此,触感其与检测技术在现代测量与控制系统中具有非常重要的地位。 而在所有的传感器中,热电偶具有构造简单、适用温度围广、使用方便、承受热、机械冲击能力强以及响应速度快等特点,常用于高温区域、振动冲击大等恶劣环境以及适合于微小结构测温场合。 因此,我们想设计一种热电偶传感器能够在低温下使用,可以适用于试验和科研中,测量为温度围:-200 ℃ ~500 ℃,电路不太复杂的简易的热电偶温度传感器,考虑到制作材料相对便宜,我们选择了铜-铜镍(康铜)。在选择测量电路时,我们从简单,符合测量围要求及热电偶的技术特性,我们采用了AD592对T型热电偶进行冷结点的补偿电路。这种型号的电路允许的误差(0.5 ℃或0.004x|t|)相对于其他类型的热电偶具有测量温度精度高,稳定好,低温时灵敏度高,价格低廉。能较好的满足测量围。 热电偶同其它种温度计相比具有如下特点: a、优点 ·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便, ·结构简单,制造容易, ·价格便宜, ·惰性小,

传感器课程设计报告-智能家居监控系统设计

电气工程学院 传感器课程设计报告 班级:电132 姓名:袁吉收 学号:1312021047 设计题目:智能家居监控系统设计设计时间:2015.12.22~12.28 评定成绩: 评定教师:

摘要 本文设计的智能家居系统以AT89C51单片机为核心控制单元,实时获取DS18B20温度传感器、TGS813气敏传感器、UD-02感烟传感器数据.并通过LCD1602来显示当前的状态。 关键字:AT89c51、DS18B20、TGS813、UD-02、LCD1602

目录 一、题目要求 1.1 题目介绍 1.2 模块分解 二、方案设计 2.1 方案介绍 三、硬件设计 3.1硬件原理图 四、软件设计 4.1时序图 五、设计总结 六、参考文献 附件:程序代码

一、题目要求 1.1智能家居监控系统设计 以提高家居生活的安全性、舒适度、人性化为目的,设计智能家居监控系统。利用所学的传感器与检测技术知识,实现家居温度、煤气泄漏、外人闯入、火灾(烟雾)的检测(以上检测项目必做。在此基础上增加检测项目并具有可行性,加分。除环境监测项目外,也可增加人体信号检测等。)。各检测节点可通过无线方式连接到主机,检测到危险信号后,主机可采用声光报警或远程报警。 要求(1)用Protel 画出设计原理图; 智能化家居中的 传感器 活动物体 传感器 烟雾传感器 二氧化碳 传感器 温度传感器 火焰传感器 总 线 终端 控制对象

(2)采用Quaters II、Maxplus II、multisim(EWB)、pspice、Proteus中的一种或几种软件,完成系统电路图部分或全部仿真,在设计说明书中体现仿真结果; (3)写设计说明书; 1.2模块分解 1. 温度检测:采用DS18B20温度传感器。 2. 煤气泄漏检测:气敏传感器TGS813来检测空气中的可燃性气体。 3. 烟雾检测:UD-02离子感烟传感器检测空气中烟雾。 二、方案设计 2.1方案设计及选择 在实际设计中我们要考虑的因素有很多,比如成本最低、性价比最高、性能最优、功能最强、界面最友好等等。而本次课设我采用了性价比最高的方案(首先能实现基本功能)。选用了DS18B20、TGS813、UD-02、LCD1602模块实现本次设计。 基于AT89c51的智能家居系统设计 智能家居是人们的一种居住环境,其以住宅为平台安装有智能家居

热电偶传感器的应用与发展.

热电偶传感器的应用与发展 一、引文 1.工作原理 在大量的热工仪器中,热电偶作为温度传感器,得到了广泛使用。它是利用热电效应来进行工作的,其热电势率一般为几十到几μV/℃。所谓的热电效应,是指当受热物体中的电子(洞),因随着温度梯度由高温区往低温区移动时,所产生电流或电荷堆积的一种现象。热电偶是将两种不同成份的导体,两端经焊接,形成回路,直接测量端叫工作端(热端),接线端子端叫冷端。当热端和冷端存在温差时,就会在回路里产生热电流,接上显示仪表,仪表上就会指示所产生的热电动势的对应温度值。电动势随温度升高而增长。 由于热电偶直接和被测对象接触,不受中间介质的影响,因而测量精度高,并且可以在-200~+1600℃范围内进行连续测量,甚至有些特殊热电偶,如钨-铼,可测量高达+2800℃的高温,且构造简单,使用方便。但是,热电偶只产生毫伏(mV)级输出,且需冷接点补偿(CJC)技术,延长时需补偿导线。 2.补偿原理 利用热电偶传感器测量温度时,冷端温度的影响是不可忽略的,且热电偶冷端暴露于作业环境中,可以认为冷端温度与作业环境温度一致。作业环境温度随季节气候变化而变化,因此冷端温度的测定是动态测定,冷端电势补偿是动态补偿。 在热电偶冷热端电势关系中,有如下公式存在: E AB(t,0)=E AB(t,t n)+E AB(t n,0) 其中,t为实测温度;t n为冷端温度;E AB(t,0)为冷端温度为0℃时,热电偶电势输出; E AB(t,t n)为冷端温度为t n℃时,热电偶电势输出;E AB(t n,0)为冷端补偿电势。上式中,E AB(t,t n)可直接从热电偶输出中检测到,只要获取冷端温度t n,就可以由分度表换算出E AB(t n,0),进而求出E AB(t,0)。于是完成了冷端电势补偿,并可换算出实测温度t 。

温度传感器课程设计报告1

温度传感器的特性及应用设计 集成温度传感器是将作为感温器件的晶体管及其外围电路集成在同一芯片上的集成化温度传感器。这类传感器已在科研,工业和家用电器等方面、广泛用于温度的精确测量和控制。 1、目的要求 1.测量温度传感器的伏安特性及温度特性,了解其应用。 2.利用AD590集成温度传感器,设计制作测量范围20℃~100℃的数字显示测温装置。 3.对设计的测温装置进行定标和标定实验,并测定其温度特性。 4.写出完整的设计实验报告。 2、仪器装置 AD590集成温度传感器、变阻器、导线、数字电压表、数显温度加热设备等。 3、实验原理 AD590 R=1KΩ E=(0-30V) 四、实验内容与步骤 ㈠测量伏安特性――确定其工作电压范围 ⒈按图摆好仪器,并用回路法连接好线路。 ⒉注意,温度传感器内阻比较大,大约为20MΩ左右,电源电 压E基本上都加在了温度传感器两端,即U=E。选择R4=1KΩ,温度传感器的输出电流I=V/R4=V(mV)/1KΩ=│V│(μA)。

⒊在0~100℃的范围内加温,选择0.0 、10.0、20.0……90.0、100.0℃,分别测量在0.0、1.0、2.0……25.0、30.0V时的输出电流大小。填入数据表格。 ⒋根据数据,描绘V~I特性曲线。可以看到从3V到30V,基本是一条水平线,说明在此范围内,温度传感器都能够正常工作。 ⒌根据V~I特性曲线,确定工作电压范围。一般确定在5V~25V为额定工作电压范围。 ㈡测量温度特性――确定其工作温度范围 ⒈按图连接好线路。选择工作电压为10V,输出电流为I=V/R4=V(mV)/1KΩ=│V│(μA)。 ⒉升温测量:在0~100℃的范围内加热,选择0.0 、10.0、 20.0……90.0、100.0℃时,分别同时测量输出电流大小。将数据填入数据表格。 注意:一定要温度稳定时再读输出电流值大小。由于温度传感器的灵敏度很高,大约为k=1μA/℃,所以,温度的改变量基本等于输出电流的改变量。因此,其温度特性曲线是一条斜率为k=1的直线。 ⒊根据数据,描绘I~T温度特性曲线。 ⒋根据I~T温度特性曲线,求出曲线斜率及灵敏度。 ⒌根据I~T温度特性曲线,在线性区域内确定其工作温度范围。 ㈢实验数据: ⒈温度特性

传感器课程设计(基于labview的pt100温度测量系统)

目录 第一章方案设计与论证 (2) 第一节传感器的选择 (2) 第二节方案论证 (3) 第三节系统的工作原理 (3) 第四节系统框图 (4) 第二章硬件设计 (4) 第一节PT100传感器特性和测温原理 (5) 第二节信号调理电路 (6) 第三节恒流源电路的设计 (6) 第四节TL431简介 (8) 第三章软件设计 (9) 第一节软件的流程图 (9) 第二节部分设计模块 (10) 总结 (11) 参考文献 (11)

第一章方案设计与论证 第一节传感器的选择 温度传感器从使用的角度大致可分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,而后者是使温度传感器与待测物体离开一定的距离,检测从待测物体放射出的红外线,达到测温的目的。在接触式和非接触式两大类温度传感器中,相比运用多的是接触式传感器,非接触式传感器一般在比较特殊的场合才使用,目前得到广泛使用的接触式温度传感器主要有热电式传感器,其中将温度变化转换为电阻变化的称为热电阻传感器,将温度变化转换为热电势变化的称为热电偶传感器。 热电阻传感器可分为金属热电阻式和半导体热电阻式两大类,前者简称热电阻,后者简称热敏电阻。常用的热电阻材料有铂、铜、镍、铁等,它具有高温度系数、高电阻率、化学、物理性能稳定、良好的线性输出特性等,常用的热电阻如PT100、PT1000等。近年来各半导体厂商陆续开发了数字式的温度传感器,如DALLAS公司DS18B20,MAXIM公司的MAX6576、MAX6577,ADI公司的AD7416等,这些芯片的显著优点是与单片机的接口简单,如DS18B20该温度传感器为单总线技术,MAXIM公司的2种温度传感器一个为频率输出,一个为周期输出,其本质均为数字输出,而ADI公司的AD7416的数字接口则为近年也比较流行的I2C总线,这些本身都带数字接口的温度传感器芯片给用户带来了极大的方便,但这类器件的最大缺点是测温的范围太窄,一般只有-55~+125℃,而且温度的测量精度都不高,好的才±0.5℃,一般有±2℃左右,因此在高精度的场合不太满足用户的需要。 热电偶是目前接触式测温中应用也十分广泛的热电式传感器,它具有结构简单、制造方便、测温范围宽、热惯性小、准确度高、输出信号便于远传等优点。常用的热电偶材料有铂铑-铂、铱铑-铱、镍铁-镍铜、铜-康铜等,各种不同材料的热电偶使用在不同的测温范围场合。热电偶的使用误差主要来自于分度误差、延伸导线误差、动态误差以及使用的仪表误差等。

传感器课程设计

传感器课程设计半导体吸收式光纤温度传感器

2010年12月30日 目录 序言 (3) 方案设计及论证 (4) 部件图纸 (6) 心得体会 (6)

主要参考文献 (7) 序言 1、简介 光纤温度传感器采用一种和光纤折射率相匹配的高分子温敏材料涂覆在二根熔接在一起的光纤外面,使光能由一根光纤输入该反射面出另一根光纤输出,由于这种新型温敏材料受温度影响,折射率发生变化,因此输出的光功率与温度呈函数关系。其物理本质是利用光纤中传输的光波的特征参量,如振幅、相位、偏振态、波长和模式等,对外界环境因素,如温度,压力,辐射等具有敏感特性。它属于非接触式测温。 2、特点

光纤传感器是一种新型传感器,它用光信号传感和传递被测量,具有动态范围大,频响宽,不受电磁干扰等优点。由于光纤可被拉至距测量点几十米以外,能使信号处理的电子线路远离干扰源,固而可较少受到空间电磁干扰。另外光纤传感器均为可控有源传感器,这使得在硬件和软件设计中可采用一些特殊手段来完成某些较复杂的功能。 3、现状 随着工业自动化程度的提高及连续生产规模的扩大, 对温度参数测量的快速性提出了更高的要求。目前, 普遍采用的热电偶很难实现对温度快速、准确地测量。这种接触式测量也难以保证温度场的原有特征, 易引起误差。在较高温度的测量中, 价格昂贵的金属热电偶必须接触被测高温物体, 所以损坏快, 增加了成本。光纤温度检测技术是近些年发展起来的一项新技术,由于光纤本身具有电绝缘性好、不受电磁干扰、无火花、能在易燃易爆的环境中使用等优点而越来越受到人们的重视,各种光纤温度传感器发展极为迅速。目前研究的光纤温度传感器主要利用相位调制、热辐射探测、荧光衰变、半导体吸收、光纤光栅等原理。其中半导体吸收式光纤温度传感器作为一种强度调制的传光型光纤传感器,除了具有光纤传感器的一般优点之外,还具有成本低、结构简单、可靠性高等优点,非常适合于输电设备和石油以及井下等现场的温度监测,近年来获得了广泛的研究 原理分析 1、本征吸收原理 当一定波长的光通过半导体材料时,主要引起的吸收是本征吸收,即电子从价带激发到导带引起的吸收。对直接跃迁型材料,能够引起这种吸收的光子能量hv必须大于或等于材料的禁带宽度Eg,即 式中,h为普朗克常数:v是频率。从式(1)可看出,本征吸收光谱在低频方向必然存在一个频率界限vg,当频率低于vg时不可能产生本征吸收。一定的频率vg对应一个特定的波长,λg=c/vg,称为本征吸收波长。 2、半导体测温原理 λ,半导体材料对信号光的透过率随温度变化,但对参考光的透过率不变。设信号光的透过率为()T 参考光的透过率为rλ。光纤定向耦合器的分光比为α,光纤传输损耗和探头与光纤的联接损耗为β。令

热电偶温度传感器如何正确安装和使用.

热电偶温度传感器如何正确安装和使用 西安静敏机电设备有限公司在安装和使用热电偶温度传感器时,应当注意以下事项以保证最佳测量效果: 1、安装不当引入的误差 如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;热电偶冷端太靠近炉体使温度超过100℃;热电偶的尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。 2、绝缘变差而引入的误差 如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。 3、热惰性引入的误差 由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出。所以应尽可能采用热电极较细、保护管直径较小的热电偶。测温环境许可时,甚至可将保护管取去。由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。测量滞后越大,热电偶波动 的振幅就越小,与实际炉温的差别也就越大。当用时间常数大的热电偶测温或控温时,仪表显示的温度虽然波动很小,但实际炉温的波动可能很大。为了准确的测量温度,应当选择时间常数小的热电偶。时间常数与传热系数成反比,与热电偶

传感器与检测技术课程设计报告标准

黑龙江科技学院 课程设计报告 项目名称:瓦斯浓度检测系统设计 所属课程:传感器与检测技术 实践日期:— 班级测控08---3班 学号04号 姓名王蕊 成绩 电气与信息工程学院

其具有两个通道,每个通道的增益范围为-10~30 dB,因此两个通道串连起来可以实现的增益控制范围为:-20~60 dB。图2为瓦斯传感器及信号放大电路。 2.3 A/D转换电路设计系统使用的数模转换器LTC1865是凌力尔特推出的16位SAR ADC,采用单5 V电源工作,并能保证在-40℃~+12.5℃的温度范围内工作。每个器件最大电流为8.50 uA,最大采样率达250 kS/s,供电电流随着采样速率的降低而变小。MSOP-10封装的LTC1865提供2路软件可编程的通道,并且可以根据需求来调整参考电压的大小。A/D转换电路设计如图3所示。 2.4 报警模块电路设计本设计的报警模块采用普通的蜂鸣器来完成。蜂鸣器一端接地,一端接用来驱动它工作的PNP晶体管的发射极,晶体管基极连接AT89S52的P3.3口。 2.5 键盘模块电路设计本系统中的按键主要用来设定瓦斯浓度的报警值,采用独立按键式键盘,共3个按键,它们分别与AT89S52的P2.0~P2.2口连接,平时这三个引脚输出高电平,当按键被按下时引脚变成低电平,因此,只要在软件中查询这几个引脚的电平,就可以确定是否有按键按下,从而进人相应的子程序。 3 系统软件设计系统软件主要包括系统主程序和数据采样处理子程序两部分,主程序流程如图4所示,数据采样处理子程序如图5所示。 系统开机上电工作后,首先进行初始化,接着进入主循环扫描是否有按键按下,若检测到有键按下,则设定系统的瓦斯浓度报警上限值,否则直接调用数据采集处理子程序进行数据采集处理。 主程序调用数据采样处理子程序后,就进入该子程序运行,首先启动A/D转换进行数据采样,得到的数据信号输入到AT89S52进行滤波、零点修正并计算瓦斯气体浓度值,若浓度超限则启动扬声器声音报警,否则关闭蜂鸣器并返回。 4 实验结果及分析瓦斯的主要成分是甲烷,瓦斯爆炸有一定的浓度范围,通常把在空气中瓦斯遇火后能引起爆炸的浓度范围称为瓦斯爆炸界限。瓦斯爆炸界限为5%~16%。当空气中氧气浓度达到10%时,瓦斯浓度在5%~16%之间,就会发生爆炸。 根据MJC4/3.0L的技术指标(甲烷浓度为1%时,其灵敏度为20~40 Mv),因此设定瓦斯的爆炸上限值为

热电偶温度变送器-传感器课程设计

齐鲁工业大学课程设计专用纸成绩 课程名称传感器课程设计指导教师孙凯 院(系)电气学院专业班级测控13-2学生姓名吴海旺学号201302051056设计日期2016.3.4 课程设计题目热电偶温度变送器课程设计 一、主要内容 设计一个带冷端补偿的温度变送器。其中我们用K型热电偶作为感温元件,用100Gu作为冷端的自动补偿电路的元件,使冷端工作在一个易于计算的环境下,用XTR101把传感器的电压信号放大并自动地变换成标准电流信号。并通过对输出电压的测量实现对温度的测量。 二、基本要求 (1)设计测量温度范围-100~500°C的热电偶传感器。 (2)选用合适的热电偶材料,设计测温电路,冷端补偿电路,解决非线性化等问题。 (3)有电路图(protel绘制),选型与有关计算,精度分析等。(4)采用实验室现成的热电偶进行调试。 (5)完整的实验报告。 三、主要参考资料: 赵广林.protel99电路设计与制版.北京:电子工业出版社,2005 程德福,王君.传感器原理及应用.北京:机械工业出版社,2007

目录 一、设计目的 (3) 二、课程设计的任务要求 (3) 三、课程设计的基本原理 (3) 1、热电偶测温原理 (3) 2、变送器原理框图 (4) 四、课程设计的主要内容 (4) 1、热电偶的选择 (5) 2、设计构架 (5) 3、具体电路的设计 (7) 五、课程设计的心得与体会 (12) 六、参考文献 (13) 七、附图 热电偶测温电路 (14)

热电偶温度变送器设计 一、课程设计的目的 1、掌握热电偶的结构、工作原理及正确选择。 2、了解变普通送器的结构及简单应用。 3、通过设计增加对所学知识的灵活掌握和综合应用能力。 二、课程设计的任务要求 任务要求: (1)设计测量温度范围-100~500℃的热电偶传感器 (2)选用合适的热电偶材料,设计测温电路,冷端补偿电路,解决非线性化等问题 (3)有电路图(PROTEL绘制),选型与有关计算,精度分析等 (4)采用实验室现成的热电偶进行调试 三、课程设计的基本原理 1、热电偶测温原理: 下图为热电偶测温原理图,热电偶的热端与被测物体接线,温度为t。

常用温度传感器的对比分析及选择

常用温度传感器的对比分析及选择 大致的要点: 1.温度传感器概述:应用领域,重要性; 2.四种主要的温度传感器类型的横向比较 3.热电偶传感器 4.热电阻传感器 5.热敏电阻传感器 6.集成电路温度传感器以及典型产品举例 7.温度传感器的正确选择及应用 在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为任何的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视,如压力或力的测量,往往是使用惠斯登电阻电桥,但组成电桥的电阻随温度变化引起的误差,往往会大大超过待测力引起的电阻值变化,如不对温度进行监控并据此校正测量结果,则测量完全不可能进行或者毫无效果。其他参数测量也有类似问题,可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。本文就是帮助读者针对特定的用途,选择最为合适的温度传感器,并进行精确的温度测量。 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温度传感器;每一类温度传感器有自己独特的温度测量范围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度范围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。表1是四类传感器的各自独特的性能特性及相互比较。表2是四类传感器的典型应用领域。

热电偶--通用而经济 热电偶由二根不同的金属线材,将它们一端焊接在一起构成,如图1所示;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度(参见图1),以硬件或硬件-软件相结合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

传感器与检测技术课程设计报告标准

黑龙江科技学院 课程设计报告 项目名称:瓦斯浓度检测系统设计 所属课程:传感器与检测技术 实践日期: 2011.x.x—2011.x.x 班级测控08---3班 学号04号 姓名王蕊 成绩

电气与信息工程学院

提示生产人员组织安全离开。 1 系统整体机构及工作原理1.1 系统整体结构便携式矿用瓦斯检测系统以主控制器单片机为主要核心,配置瓦斯传感器电路、A/D转换电路、报警电路与按键电路等四大功能模块。系统整体结构如图1所示: 1.2 系统工作原理瓦斯传感器将瓦斯气体浓度转换成相应大小的模拟信号,信号经过信号放大电路和A/D转换电路进行放大、转换,然后送入主控制器单片机中进行数据处理。一旦瓦斯气体浓度超过相应的设定值时,则主控制器立即启动蜂鸣器报警。 2 系统硬件电路设计2.1 主控电路设计主控电路主要用来整合系统各功能电路,完成数据的采集和处理,并发出报警指令。本设计所处理的信息量和复杂程度不是太大,采用8位单片机AT89S52足以满足本设计的要求。它是一款低功耗、高性能CMOS 8位微控制器,具有8 kB系统可编程Flash存储器,256字节RAM,6个中断源,3个16位的可编程定时器/计数器,32个IO口,看门狗定时器等资源。 2.2 瓦斯传感器及信号放大电路设计系统选用MJC4/3.0L作为瓦斯传感

器。MJC4/3.0L型催化元件根据催化燃烧效应的原理工作,由检测元件和补偿元件配对组成电桥的臂,遇可燃性气体时检测元件电阻升高,桥路输出电压变化,该电压变量随气体浓度增大而成正比例增大,补偿元件起参比及温度补偿作用。其具有桥路输出电压呈线性、响应速度快、有良好的重复性、选择性、元件工作稳定、可靠、抗H2S中毒等优点。 因MJC4/3.0L的输出电压太小,无法满足AT89S52的要求。故需要将MJC4/3.0L的输出信号进行放大。信号放大是通过调整放大器AD 602的增益控制电压来实现的。AD602是美国AD公司专门针对程控放大开发的,其具有两个通道,每个通道的增益范围为-10~30 dB,因此两个通道串连起来可以实现的增益控制范围为:-20~60 dB。图2为瓦斯传感器及信号放大电路。 2.3 A/D转换电路设计系统使用的数模转换器LTC1865是凌力尔特推出的16位SAR ADC,采用单5 V电源工作,并能保证在-40℃~+12.5℃的温度范围内工作。每个器件最大电流为8.50 uA,最大采样率达250 kS/s,供电电流随着采样速率的降低而变小。MSOP-10封装的LTC1865提供2路软件可编程的通道,并且可以根据需求来调整参考电压的大小。A/D转换电路设计如图3所示。

热电偶传感器习题及答案

1、简述热电偶与热电阻的测量原理的异同。 答:(1). 相同点:都能测温度且只能直接测温度量 (2). 不同点:热电阻传感器原理为阻值大小变化对应温度变化,而热电偶传感器为热电动势大小变化对应温度变化 2、设一热电偶工作时产生的热电动势可表示为E AB(t , t0),其中A、B、t、t0各代 表什么意义t0在实际应用时常应为多少 答:A、B——两热电极 T——热端温度,即被测温度 t0————冷端温度 t0常应为0℃ 3、用热电偶测温时,为什么要进行冷端补偿冷端补偿的方法有哪几种 答:因工作现场常常缺乏使热电偶传感器的冷端保持在0℃的条件 4、热电偶在使用时为什么要连接补偿导线 答:因为在使用热电偶测温时,必须将热电偶的参考端温度保持恒定,但在现场使用时,热电偶参考端往往处于高温热源附近,必须将它远离热源,移动到温度较为稳定的场所,又因补偿导线在规定使用温度范围内具为与热电偶相同的温度—热电势关系,因而它可以起到延长热电偶的作用,所以热电偶在使用时要连接补偿导线 5、什么叫测温仪表的准确度等级 答:测温仪表的准确度等级是指测温仪表准确度的数字部分,也就是仪表的准确度去掉百分号。 6、什么是热电偶 答:热电偶是通过测量电势从而测量温度的一种感温元件,是由两种不同成分的导体焊接在一起构成的。当两端温度不同时,在回路中就会有热电势产生,将温度信号转变为电信号,再由显示仪表显示出来。 7、为什么要进行周期检定 答:各种计量器具由于在频繁的使用中会发生变化和磨损,失去原有的精度,从而影响量值的准确性。为使测量的数据准确,必须对各种计量器具进行周期检定。

8、利用热电偶测温具有什么特点 答:测量精度高;结构简单;动态响应快;可作远距离测量;测量范围广。 计算题 1、用一K型热电偶测量温度,已知冷端温度为40℃,用高精度毫伏表测得此时的热电动势为,求被测的温度大小 1、E AB(t0,t)= E AB(t0,t n)+ E AB(t n,t) 即E AB(0,t)= E AB(0,40℃)+ E AB(40℃,t)查表,得: E AB(0,40℃)= 所以:E AB(0,t)=+=(mV) 查表,得t=740℃ 2、用一K型热电偶测钢水温度,形式如图示。已知A、B分别为镍铬、镍硅材料制成,A`、B`为延长导线。问: 1)满足哪些条件时,此热电偶才能正常工作 t01=t02,t n1=t n2 2)A、B开路是否影响装置正常工作原因 不影响。因钢水导电且温度处处相同。 3)采用A`、B`的好处为了使冷端远离高温区,降低测量成本 4)若已知t01=t02=40℃,电压表示数为,则钢水温度为多少 由E AB(t,t0)= E AB(t,t n)+ E AB(t n,t0)得: E AB(t,t0)=+=(mV) 查表得t=950℃ 5)此种测温方法的理论依据是什么中间温度定律

相关主题
文本预览
相关文档 最新文档